JPH0468045B2 - - Google Patents

Info

Publication number
JPH0468045B2
JPH0468045B2 JP57081221A JP8122182A JPH0468045B2 JP H0468045 B2 JPH0468045 B2 JP H0468045B2 JP 57081221 A JP57081221 A JP 57081221A JP 8122182 A JP8122182 A JP 8122182A JP H0468045 B2 JPH0468045 B2 JP H0468045B2
Authority
JP
Japan
Prior art keywords
transformation
thermometer
temperature
strip
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57081221A
Other languages
Japanese (ja)
Other versions
JPS58199613A (en
Inventor
Masakuni Yamazaki
Koichi Asada
Eiji Gako
Kenichi Shinoda
Cheto Matsumoto
Katsuhiko Takaji
Toshihiko Kato
Yoshiro Seki
Seiji Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Steel Nisshin Co Ltd
Original Assignee
Toshiba Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nisshin Steel Co Ltd filed Critical Toshiba Corp
Priority to JP57081221A priority Critical patent/JPS58199613A/en
Publication of JPS58199613A publication Critical patent/JPS58199613A/en
Publication of JPH0468045B2 publication Critical patent/JPH0468045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鋼材を熱間圧延する際に最適の変態
巻取温度設定のため各種計測データに基づき各鋼
種による変態状態の変化を把握し、各鋼材の変態
開始場所や変態完了場所を任意の位置にコントロ
ールする熱間圧延機における変態巻取温度制御方
法法及び同装置に関するものである。 一般的に炭素鋼及び合金鋼の熱間圧延におい
て、仕上圧延機を出た後での熱延鋼材は冷却によ
つてγ鉄オーステナイト組織よりα鉄パーライト
組織に変態する変態温度点に達すると変態に伴う
発熱B象を生じてくる。こうした変態発熱量は炭
素含有量で一義的にきまつてはくるが、鋼材の用
途、仕向先等によつて変態開始場所や変態完了場
所が種々変化してくる。 この状況を第1図乃至第4図に基づいて例示す
ると、第1図の未変態巻取温度制御は粗大パーラ
イト組織を得るために潜伏時間を延ばし変態開始
を巻取時点T1以後に制御するものであり、第2
図の変態中巻取温度制御は球状パーライト組織を
得るために変態開始を巻取温度計の所で制御する
ものであり、第3図の変態完了巻取温度制御は均
質な微細パーライト組織を得るために巻取温度計
の所で変態完了させて完了後に巻取を行うもので
あり、第4図の変態開始巻取温度制御は均質なパ
ーライト組織を得るために中間温度計の所で変態
開始、巻取温度計の所で変態完了の如く変態温度
を略一定に保持制御するものである。 このように各鋼種によつて変態状態は種々変化
しているにもかかわらず従来の熱間圧延に於いて
は、巻取目標温度のみの制御によつて操業を行つ
ていたため前記図面でもわかる如く変態に伴う同
一温度が3箇所もあり、オペレーターにとつては
その温度が3様の変態状況即ち未変態、変態中、
変態完了のいずれの状態か不明のまま巻取つてい
たため、鋼材組織にバラつきが生じて均一な機械
的性質の製品を得る妨げとなつていた。 本発明はこうした難点を解消し、仕上圧延機を
通過してホツトランテーブル上を移動するストリ
ツプの各位置での温度分布ならびに巻取温度を計
測して、製品の用途を仕向先に応じた巻取目標温
度と変態状態を制御するため該ストリツプに対し
随時冷却注水を行う変態巻取温度の制御方法及び
同装置を提供するものである。 なお、本発明は、炭素含有量が0.10〜1.7%の
炭素鋼または合金鋼を対象にしているが、これは
炭素含有量が0.10%以下では変態発熱量が少ない
ため、圧延操業上問題(変態温度の検出が難し
い)とならないし、炭素含有量が1.7%を超える
と、鋼板は極端な過共析鋼となり薄鋼板のおいて
は実用的ではないからである。 図面に基づいてこの発明に係る熱間圧延機にお
ける変態巻取温度制御方法及び同装置の一実施態
様を説明する。 ストリツプ4の移動方向に沿つて熱延仕上圧延
機1、冷却装置2、巻取装置3と配置されてお
り、No.1からNo.6までの各スタンドにより構成さ
れた仕上圧延機1と冷却装置2との間には、前記
No.6スタンドに取付けたパルス発振器19及び厚
さ計20とストリツプ温度測定用の仕上出側温度
計5をそれぞれ設置している。 また冷却装置2内のホツトランテーブル21を
挟んで上下に配置した注水バンク8,8に注水す
る各注水ノズル9にはそれぞれ水量制御バルブ1
0を設けて流水制御自在とすると共に、同じく冷
却装置2内の中間任意箇所にストリツプ温度測定
用の中間温度計6を設置している。 さらに冷却装置2と巻取装置3との間には巻取
温度計7を設置し、前記各種計測器類のデーター
に基づく制御のために、各種制御装置即ち初期設
定装置11、上位コンピユータ12、冷却情報受
信装置13、所要バンク数計算装置14、注水マ
トリツクス作成装置15、注水バンク制御装置1
6、フイードバツク制御装置17、学習装置18
等を設けて熱間圧延機における変態巻取温度制御
装置は構成されている。 ここで鋼材の各移動位置における冷却による各
種温度降下モデルを示すと次の如くなる。 1 空冷域での温度降下モデル dθ/dt=−B/h{(θ+273)4 −(θA+273)4}−Ac/h(θ−θA) Aλ/h(θ−θw)+qt/Cρ 2 水冷域での温度降下モデル dθ/dt=−Au/h(θ−θw)−Al/h (θ−θw)−Aλ/h(θ−θw)+qt/Cρ 3 下部バンクのみの水冷域での温度降下モデル dθ/dt=−B/h{(θ+273)4 −(θA+273)4}−Ac/h(θ−θA) −Al/h(θ−θw)+qt/Cρ 但し、 θ:材温℃ t:時間sec B:幅射定数mm/sec・deq3 Al:下部バンク水冷定数mm/sec Ac:空冷定数mm/sec Aλ:テーブルローラーへの伝熱定数mm/sec θA:気温℃ h:板厚mm qt:単位時間当り発生する変態熱kcal/m3
sec C:比熱kcal/Kg ρ:比重Kg/m3 Au:上部バンク水冷定数 θw:水温℃ とする。尚、モデル式の係数 B,Au,Ak,Ac,Aλ は実操業データのオフライン計算により求め、変
態熱は鋼種と変態開始温度とで決まる変態時間
と、鋼種のみに依存する変態総発熱量とから求め
る。連続冷却による潜伏期の消費と恒温保持によ
る潜伏期の消費において、それぞれ消費の仕方は
異なるが、消費量が同じでそのときの温度も同じ
ならほぼ同じ変態挙動を示すことが知られてい
る。 このため、本発明においては、変態開始タイミ
ングは恒温変態曲線からマニング・ロリツク
(MANNING−LORIG)の方法により計算して
求める。 即ち、恒温変態曲線(TTT曲線)からホツト
ランテーブルにおける冷却での変態開始タイミン
グを求める。 第6図に恒温変態曲線の一例を示す。この第6
図では、例えば材料を800℃から650℃に急冷し、
650℃に保持すると2.4秒後に変態が始まり21秒後
に終了することを示している。TTT曲線を求め
る実験には非常に小さな試験片を使用し質量効果
の影響を極力少なくしている。 しかし、ホツトランテーブルにおける冷却のよ
うにある冷却速度で材料を冷却する場合には変態
開始タイミングをTTT曲線から求めめることが
できない。これは周知の事実である。 マニング・ロリツクの方法は変態開始に至るま
での過冷却状態において、第1式で定義される潜
伏期量が「0.1」に達した時点で変態が開始する
との考え方に基づいている。 I=∫1/Vc・1/Z(T)dt ……(1) 但しTは被圧延材温度、Z(T)は温度Tにおける
TTT曲線での変態開始時間である。 第1式のVcは冷却速度である。第1式を、微
小時間△t間の潜伏期量△Iを用いて表すと第2
式のようになる。 I(T1→T2)=oj=1 △Ij=oj=1 △tj/Zj …(2) ただし、jは材料温度T1からT2までを2分割
したうちのある1分割、△Ijはj番目の計算区分
における潜伏期量、△tjはj番目の温度区間に潜
在した時間、Zjはj番目の温度区間の平均潜伏時
間を表わす。 また、変態終了タイミングを求める方法には種
種の方法があるが、例えば、変態開始温度におけ
る変態時間をTTT曲線から求め、変態開始時刻
に加算することにより変態終了タイミングを求め
ればよい。 更に変態中の潜熱を計算する方法は、変態潜熱
が被圧延材の成分によつて決まることに基づいて
いる。即ち潜熱を実験により求めておき、被圧延
材の成分に従つて潜熱を計算する。単位時間あた
りに発生する変態熱は変態潜熱を変態時間で割る
ことにより求まる。 変態状態の変化は潜伏期量と変態熱容量の関係
から把握できる。即ち 未変態 潜伏期量<1.0 変態中 潜伏期量=1.0かつ変態熱容量=0 (変態開始時刻から変態時間経過して
いない。) 変態完了 潜伏期量=1.0かつ変態熱容量=0 (変態開始時刻から変態時間経過して
いる。) また、変態熱容量、変態開始温度、変態時間を
加味した冷却水の注水は、前述の空冷域での温度
降下モデル dθ/dt=−B/h{(θ+273)4 −(θA+273)4}−Ac/h(θ−θA) −Aλ/h(θ−θw)+qt/Cρ において、変態熱容量、変態時間は、単位時間当
り発生する変態熱qtを求める為に使用している。
即ち qt=変態熱容量/変態時間 である。 又、変態開始温度は、潜伏期量が1.0となつた
時の温度であり、変態時間は、変態熱を加味して
温度降下を求める。 以上の様にして、所望の変態状態と巻取温度と
なる様、温度降下モデルのdθ/dtに基づき冷却水
を注水する。 更に、前述の水冷域での温度降下モデル、前述
の下部バンクのみの水冷域での温度降下モデルに
ついても、同様である。 更に仕上出側温度計の測定値は、第8図に示す
如く、最初の材温(θ)として利用する。即ち、
空冷域での温度降下モデル dθ/dt=−B/h{(θ+273)4 −(θA+273)4}−Ac/h(θ−θA) −Aλ/h(θ−θw)+qt/Cρ の材温(θ)として使用する水冷域での温度降下
モデル、下部バンクのみの水冷域での温度降下モ
デルについても、同様である。 更にまた、中間温度計、巻取温度計は、第9図
乃至第11図に示す如く変態状態の検証として使
用される。 巻取温度計の測定値は、フイードバツク制御
(目標巻取温度と実績温度の偏差で修正制御)に
おいて使用される。 更に、仕上出側温度計、中間温度計、巻取温度
計の測定値は、実績管理としても使用される。 こうして得られた各種数値の必要データは前記
冷却情報受信装置13にストリツプ4の冷却情報
及び変態情報として入力しておく。 そして実際の変態巻取温度制御を行うに当つて
は、移動したきたストリツプ4が仕上圧延機1の
No.1スタンドに噛込むと、まず初期設定装置11
が作動し、上位コンピユータ12を介して冷却情
報受信装置13に受信されているストリツプ4の
各種冷却情報ならびに変態情報に基づいてストリ
ツプ4の先端部分に必要な注水バンク数及び注水
パターンを計算する。 そして注水バンク制御装置16を作動させ、前
記冷却装置2内の上下の注水バンク8,8に注水
する各注水ノズル9に設置の水量制御バルブ10
の開閉指令を出力する。 さらにストリツプ4の移動が進み仕上圧延機1
のNo.6スタンドに噛込んだ時点からパルス発信器
19により一定長さピツチ毎の割込信号が発生
し、所要バンク数計算装置14を作動させる。そ
してこの時点での仕上出側温度計5、中間温度計
6、巻取温度計7における各温度、その他材速板
厚、注水パターン等を計測した各種データを加味
した冷却情報装置13の冷却情報及び変態情報に
基づいて仕上出側温度計5の直下部分の必要注水
バンク数を計算し、次の注水マトリツクス作成装
置15によりバンク応答遅れ、通過時間等を考慮
した注水マトリツクスを作成し、これにより注水
バンク制御装置16を作動させ前記同様各水量制
御バルブ10の開閉指令を出力する。 さらにストリツプ4の移動が進み、その先端が
巻取温度計7に達するとフイードバツク制御装置
17を作動し、該巻取温度計7が目標巻取温度と
なるように制御していく。またコイル間の変動に
対しては学習装置9を作動して適宜制御するもの
である。 こうしてストリツプ4の温度分布を各種計測器
による測定データならびに各鋼種による各変態状
態のデータ等を加味して、冷却水をストリツプ4
に注水することによりホツトランテーブル21上
での変態発熱現象を自在に制御するものである。 ここで、所要バンク数計算の方法を説明する。
第1図に示すように同一温度が3点あるが、それ
ぞれ (1) 変態開始前 (2) 変態中 (3) 変態完了後 の違いがある。 これを区別するには、例えば巻取温度制御装置
に対して上位計算機から目標巻取温度と変態状態
(変態前、中、完了後)の情報を与えればよい。 第7図はホツトランテーブルにおける所要バン
ク数計算方法を模式的に示したものであり、また
変態完了後巻取の例を示している。 第7図イ被圧延材が変態するまでの潜伏期量を
模式的に表わしており、潜伏期量が1.0に達した
タイミングで変態が始まることを示している。こ
の例では注水バンクをNo.1からNo.3までとした場
合、タイミングX1で変態が始まり目標巻取温度
より高い温度Tct1で巻取られ、また注水バンク
をNo.1からNo.5までとした場合、タイミングX3
で変態が始まり目標巻取温度より低い温度Tct3
で巻取られ、そして注水バンクをNo.1からNo.4ま
でとした場合、タイミングX2で変態が始まり目
標巻取温度近傍の温度Tct2で巻取られることを
表している。 すなわち所要バンク数計算装置は、例えば、注
水バンクをNo.1から順に増やしながら目標巻取温
度と変態状態(変態前、中、完了後)の条件を満
たす所要バンク数を計算する。 上述した如く、本発明に係わる熱間圧延機にお
ける変態巻取温度制御方法は、炭素含有量0.10〜
1.7%の炭素鋼または合金鋼を熱間圧延する方法
に於いて、熱延仕上圧延機1から冷却装置2を経
て巻取機3に向けて移動しているストリツプ4の
温度分布を仕上出側温度計5、冷却装置2中の中
間温度計6、巻取温度計7によつて測定し、さら
に鋼種に依存する変態熱容量、変態開始温度、変
態時間を加味して冷却水を前記ストリツプ4に注
水することによつて変態開始場所、変態終了場所
を任意の場所に制御し、所要の鋼材特性により巻
取機3における温度分布を未変態状態、変態中状
態、変態完了状態に制御し、また中間温度計の位
置で変態開始制御するものである。 また同じく変態巻取温度制御装置は、ストリツ
プ4の移動方向に沿つて配置したところの熱延仕
上圧延機1と冷却装置2との間にストリツプ温度
測定用仕上出側温度計5を設け、且つ冷却装置2
の中間任意箇所にストリツプ温度測定用冷却装置
内中間温度計6を設け、更に冷却装置2と巻取機
3の間に巻取計7を設け、また冷却装置2内の各
注水ノズル9用の水量制御バルブ10の流水量を
制御する注水バンク制御装置16が前記仕上出側
温度計5、中間温度計6、巻取温度計7の信号を
受ける如く構成されたものである。 第12図は板厚4.0mmの機械構造用鋼S45C C 0.42〜0.48 (重量%) Si 0.15〜0.35 (重量%) Mn 0.6〜0.9 (重量%) P 0.03以下 (重量%) S 0.035以下 (重量%) を、本発明で圧延を行つたときの、熱延帯鋼の冷
却状態とそれに伴う帯鋼の変態状態を、仕上圧延
機の最終スタンドを通過して巻取機に至る間の状
態を示す。 表1は前記機械構造用鋼であるS45について未
変態、変態中、変態完了後にそれぞれ巻取を行つ
た場合の機械的性質を示す。
In order to set the optimum transformation coiling temperature when hot rolling steel materials, the present invention grasps changes in the transformation state of each steel type based on various measurement data, and sets the transformation start location and transformation completion location of each steel material at any desired location. The present invention relates to a method and apparatus for controlling the transformation coiling temperature in a hot rolling mill by positionally controlling the temperature. Generally, in hot rolling of carbon steel and alloy steel, hot rolled steel material after leaving the finishing mill undergoes transformation when it reaches a transformation temperature point where the γ iron austenite structure transforms into the α iron pearlite structure by cooling. This results in the occurrence of fever B phenomenon. The calorific value of such transformation is primarily determined by the carbon content, but the location where the transformation starts and where the transformation is completed varies depending on the use of the steel material, destination, etc. To illustrate this situation based on FIGS. 1 to 4, the untransformed winding temperature control in FIG. 1 extends the incubation time to obtain a coarse pearlite structure and controls the start of transformation after the winding time T1 . is the second
The coiling temperature control during transformation shown in the figure controls the start of transformation at the coiling thermometer in order to obtain a spherical pearlite structure, and the coiling temperature control at the completion of transformation shown in Fig. 3 obtains a homogeneous fine pearlite structure. In order to obtain a homogeneous pearlite structure, the transformation is completed at the winding thermometer and then the winding is performed after the transformation is completed. , the transformation temperature is controlled to be maintained at a substantially constant level so that the transformation is completed at the winding thermometer. Although the transformation state varies depending on the steel type, in conventional hot rolling, operations were performed by controlling only the target coiling temperature, which can be seen in the above drawing. There are three identical temperatures associated with transformation, and for the operator, the temperature can be interpreted in three different transformation states: untransformed, metamorphosed, and
Since the steel was wound without knowing whether the transformation had been completed or not, variations in the steel structure occurred, making it difficult to obtain a product with uniform mechanical properties. The present invention solves these difficulties and measures the temperature distribution and winding temperature at each position of the strip as it passes through the finishing mill and moves on the hot run table, and winds the product according to its destination. The present invention provides a method and apparatus for controlling the transformation winding temperature, in which cooling water is injected into the strip at any time to control the target temperature and the transformation state. The present invention targets carbon steel or alloy steel with a carbon content of 0.10 to 1.7%, but this is problematic in rolling operations (transformation If the carbon content exceeds 1.7%, the steel sheet becomes an extremely hypereutectoid steel, which is not practical as a thin steel sheet. An embodiment of the transformation coiling temperature control method and device in a hot rolling mill according to the present invention will be explained based on the drawings. A hot rolling finishing mill 1, a cooling device 2, and a winding device 3 are arranged along the moving direction of the strip 4. Between the device 2 and the
A pulse oscillator 19 attached to the No. 6 stand, a thickness gauge 20, and a finishing outlet thermometer 5 for measuring the strip temperature are installed respectively. In addition, each water injection nozzle 9 that injects water into the water injection banks 8 and 8 arranged above and below the hot run table 21 in the cooling device 2 has a water flow control valve 1, respectively.
0 to enable free flow control, and an intermediate thermometer 6 for measuring the strip temperature is also installed at any intermediate location within the cooling device 2. Further, a winding thermometer 7 is installed between the cooling device 2 and the winding device 3, and various control devices, that is, an initial setting device 11, a host computer 12, Cooling information receiving device 13, required bank number calculation device 14, water injection matrix creation device 15, water injection bank control device 1
6. Feedback control device 17, learning device 18
A transformation coiling temperature control device in a hot rolling mill is configured by providing the following. Here, various temperature drop models due to cooling at each moving position of the steel material are shown below. 1 Temperature drop model in air cooling area dθ/dt=-B/h {(θ+273) 4 -(θA+273) 4 }-Ac/h(θ-θA) Aλ/h(θ-θw)+qt/Cρ 2 Water-cooling area Temperature drop model dθ/dt=-Au/h(θ-θw)-Al/h(θ-θw)-Aλ/h(θ-θw)+qt/Cρ 3 Temperature drop in the water cooling area of the lower bank only Model dθ/dt=-B/h {(θ+273) 4 −(θA+273) 4 }-Ac/h(θ-θA) -Al/h(θ-θw)+qt/Cρ However, θ: Material temperature °C t: Time sec B: Radiation constant mm/sec・deq 3 Al: Lower bank water cooling constant mm/sec Ac: Air cooling constant mm/sec Aλ: Heat transfer constant to table roller mm/sec θA: Air temperature °C h: Plate thickness mm qt: Transformation heat generated per unit time kcal/ m3
sec C: Specific heat kcal/Kg ρ: Specific gravity Kg/m 3 Au: Upper bank water cooling constant θw: Water temperature °C. The coefficients B, Au, Ak, Ac, and Aλ of the model equation are obtained by off-line calculation of actual operation data, and the transformation heat is determined by the transformation time determined by the steel type and transformation start temperature, and the transformation total heat value that depends only on the steel type. Find from. It is known that consumption during the incubation period due to continuous cooling and consumption during the incubation period due to constant temperature maintenance are different, but if the consumption amount is the same and the temperature is the same, they exhibit almost the same transformation behavior. Therefore, in the present invention, the transformation start timing is determined by calculating from the isothermal transformation curve using the Manning-LORIG method. That is, the transformation start timing during cooling in the hot-transform table is determined from the isothermal transformation curve (TTT curve). FIG. 6 shows an example of a isothermal transformation curve. This sixth
In the figure, for example, the material is rapidly cooled from 800℃ to 650℃,
This shows that when held at 650°C, metamorphosis begins after 2.4 seconds and ends after 21 seconds. In experiments to determine the TTT curve, very small test pieces are used to minimize the influence of mass effects. However, when cooling a material at a certain cooling rate, such as cooling in a hot run table, the timing of the start of transformation cannot be determined from the TTT curve. This is a well-known fact. The Manning-Roritzk method is based on the idea that metamorphosis begins when the amount of incubation period defined by the first equation reaches "0.1" in the supercooled state leading up to the start of metamorphosis. I=∫1/Vc・1/Z(T)dt...(1) However, T is the temperature of the rolled material, and Z(T) is the temperature at the temperature T.
This is the start time of metamorphosis in the TTT curve. Vc in the first equation is the cooling rate. Expressing the first equation using the amount of incubation period △I between minute time △t, the second equation
It becomes like the formula. I (T 1 → T 2 ) = oj=1 △Ij= oj=1 △tj/Zj …(2) However, j is one of the two parts of the material temperature T 1 to T 2 In the division, △Ij represents the amount of latent period in the j-th calculation section, △tj represents the latent time in the j-th temperature section, and Zj represents the average latent time in the j-th temperature section. Further, there are various methods for determining the metamorphosis end timing, but for example, the metamorphosis end timing may be determined by finding the metamorphosis time at the metamorphosis start temperature from the TTT curve and adding it to the metamorphosis start time. Furthermore, the method for calculating the latent heat during transformation is based on the fact that the latent heat of transformation is determined by the composition of the rolled material. That is, the latent heat is determined by experiment, and the latent heat is calculated according to the components of the material to be rolled. The heat of transformation generated per unit time is determined by dividing the latent heat of transformation by the transformation time. Changes in the metamorphosis state can be understood from the relationship between the amount of incubation period and the heat capacity of metamorphosis. That is, untransformed Incubation period amount < 1.0 Metamorphosis Incubation period amount = 1.0 and Metamorphosis heat capacity = 0 (Metamorphosis time has not elapsed since the metamorphosis start time.) Metamorphosis completed Incubation period amount = 1.0 and Metamorphosis heat capacity = 0 (Metamorphosis time has elapsed since the metamorphosis start time) ) In addition, cooling water injection that takes into account the transformation heat capacity, transformation start temperature, and transformation time is based on the above-mentioned temperature drop model in the air cooling area dθ/dt=-B/h{(θ+273) 4 −(θA+273 ) 4 }-Ac/h(θ-θA)-Aλ/h(θ-θw)+qt/Cρ In, the transformation heat capacity and transformation time are used to determine the transformation heat qt generated per unit time.
That is, qt=transformation heat capacity/transformation time. Further, the transformation start temperature is the temperature when the amount of latent period becomes 1.0, and the transformation time is determined by taking into account the heat of transformation and determining the temperature drop. In the manner described above, cooling water is injected based on dθ/dt of the temperature drop model so that the desired transformation state and coiling temperature are achieved. Furthermore, the same applies to the temperature drop model in the water cooling area described above and the temperature drop model in the water cooling area of only the lower bank described above. Furthermore, the measured value of the finishing exit thermometer is used as the initial material temperature (θ), as shown in FIG. That is,
Temperature drop model in air cooling area dθ/dt = -B/h {(θ+273) 4 -(θA+273) 4 }-Ac/h (θ-θA) -Aλ/h (θ-θw) + qt/Cρ Material temperature The same applies to the temperature drop model in the water cooling area used as (θ) and the temperature drop model in the water cooling area of only the lower bank. Furthermore, an intermediate thermometer and a winding thermometer are used to verify the transformation state as shown in FIGS. 9 to 11. The measured value of the winding thermometer is used in feedback control (correction control based on the deviation between the target winding temperature and the actual temperature). Furthermore, the measured values of the finishing exit thermometer, intermediate thermometer, and winding thermometer are also used for performance management. The necessary data of various numerical values thus obtained are inputted into the cooling information receiving device 13 as cooling information and transformation information of the strip 4. When performing actual transformation coiling temperature control, the moved strip 4 is placed in the finishing rolling mill 1.
When you insert the No. 1 stand, first the initial setting device 11
is activated, and calculates the number of water injection banks and water injection pattern required for the tip portion of the strip 4 based on various cooling information and transformation information of the strip 4 received by the cooling information receiving device 13 via the host computer 12. Then, the water injection bank control device 16 is activated, and a water flow control valve 10 installed in each water injection nozzle 9 that injects water into the upper and lower water injection banks 8, 8 in the cooling device 2.
Outputs opening/closing commands. Further, the movement of the strip 4 progresses and the finishing rolling mill 1
From the moment the bank is inserted into the No. 6 stand, the pulse transmitter 19 generates an interrupt signal every pitch of a certain length, and the required bank number calculation device 14 is activated. Cooling information from the cooling information device 13 takes into account various data measured at this point, such as each temperature measured by the finishing exit thermometer 5, intermediate thermometer 6, and winding thermometer 7, as well as other data such as material speed, plate thickness, water injection pattern, etc. The required number of water injection banks directly below the finishing outlet thermometer 5 is calculated based on the information on the finishing exit side thermometer 5, and the next water injection matrix creation device 15 creates a water injection matrix that takes bank response delay, passage time, etc. into consideration. The water injection bank control device 16 is operated to output opening/closing commands for each water flow control valve 10 as described above. As the strip 4 moves further and the tip reaches the winding thermometer 7, the feedback control device 17 is activated to control the winding thermometer 7 to reach the target winding temperature. Further, the learning device 9 is operated to appropriately control fluctuations between the coils. In this way, the temperature distribution of the strip 4 is determined by taking into account the measurement data from various measuring instruments and the data of each transformation state of each steel type, etc., and the cooling water is applied to the strip 4.
By pouring water into the hot run table 21, the transformation heat generation phenomenon on the hot run table 21 can be freely controlled. Here, a method for calculating the required number of banks will be explained.
As shown in Figure 1, there are three points at the same temperature, but there are differences at each point: (1) before the start of transformation, (2) during transformation, and (3) after completion of transformation. In order to distinguish this, for example, information on the target winding temperature and the transformation state (before transformation, during transformation, after completion of transformation) may be provided from a host computer to the winding temperature control device. FIG. 7 schematically shows a method for calculating the required number of banks in a hot run table, and also shows an example of winding after completion of transformation. FIG. 7A schematically represents the amount of incubation period until the rolled material undergoes transformation, and shows that transformation begins at the timing when the amount of incubation period reaches 1.0. In this example, when the water injection banks are set from No. 1 to No. 3 , transformation starts at timing If up to, timing x 3
Transformation begins at a temperature Tct 3 lower than the target winding temperature.
When the water injection banks are set from No. 1 to No. 4, transformation starts at timing X 2 and winding occurs at a temperature Tct 2 near the target winding temperature. That is, the required number of banks calculating device calculates the required number of banks that satisfy the conditions of the target winding temperature and the transformation state (before, during, and after completion of transformation) while increasing the number of water injection banks sequentially from No. 1, for example. As described above, the method for controlling the transformation coiling temperature in a hot rolling mill according to the present invention is effective when the carbon content is 0.10 to 0.10.
In the method of hot rolling 1.7% carbon steel or alloy steel, the temperature distribution of the strip 4 moving from the hot rolling finishing mill 1 to the winding machine 3 via the cooling device 2 is shown on the finishing exit side. The cooling water is measured by a thermometer 5, an intermediate thermometer 6 in the cooling device 2, and a winding thermometer 7, and further takes into account the transformation heat capacity, transformation start temperature, and transformation time depending on the steel type, and then cools the strip 4. By pouring water, the transformation start place and the transformation end place can be controlled to arbitrary places, and the temperature distribution in the winder 3 can be controlled to be in an untransformed state, a transformation state, and a transformation completed state according to the required steel characteristics, and The start of transformation is controlled at the position of the intermediate thermometer. Similarly, the transformation coiling temperature control device includes a finishing outlet side thermometer 5 for measuring the strip temperature between the hot rolling finishing mill 1 and the cooling device 2, which are arranged along the moving direction of the strip 4. Cooling device 2
An intermediate thermometer 6 in the cooling device for measuring the strip temperature is installed at an arbitrary point in the middle of the strip, and a winding gauge 7 is installed between the cooling device 2 and the winding machine 3. A water injection bank control device 16 that controls the flow rate of the water flow rate control valve 10 is configured to receive signals from the finishing outlet thermometer 5, the intermediate thermometer 6, and the winding thermometer 7. Figure 12 shows machine structural steel S45C with a plate thickness of 4.0 mm C 0.42~0.48 (wt%) Si 0.15~0.35 (wt%) Mn 0.6~0.9 (wt%) P 0.03 or less (wt%) S 0.035 or less (weight %), the cooling state of the hot-rolled steel strip and the accompanying transformation state of the strip during rolling according to the present invention, and the state during the period from passing through the final stand of the finishing mill to the winding machine. show. Table 1 shows the mechanical properties of S45, which is the mechanical structural steel, when it is wound before transformation, during transformation, and after completion of transformation.

【表】 第13図は機械構造用炭素鋼S45C C 0.47〜0.53 (重量%) Si 0.15〜0.35 (重量%) Mn 0.6〜0.9 (重量%) P 0.03以下 (重量%) S 0.035以下 (重量%) を板厚1.6mmに圧延して最終仕上圧延機を出た所
の仕上温度は800℃で、巻取温度制御を適用して、
冷却したときのホツトラインテーブルにおける熱
延帯鋼の冷却曲線を示したもので、変態が完了し
て巻取られている。このときの圧延速度は
550mpmで、冷却水の温度は25℃で、冷却水量は
250m3/Hrである。 本発明は熱間圧延における変態巻取温度制御を
行うことにより、未変態、変態中巻取温度制御に
おいてはユーザーが希望する硬度が保証され、変
態完了巻取温度制御においては製品の剪断加工性
を向上し、その上一部の冷延工程、TPO焼鈍工
程も省略できるようになつた。またコイル変形に
対しても効果があり全生産量のコイル変形が1.5
%から0.3%まで低減でき、さらに変態巻取開始
制御によればホツトランテーブル上でパテンテイ
ング処理と同様な強靭で微細な組織に変化させる
効果があるため熱処理工程を省略できるなど製品
の機械的性質の向上を計る上において多くのすぐ
れた効果を有するものである。
[Table] Figure 13 shows carbon steel S45C for machine structures. ) was rolled to a plate thickness of 1.6 mm, and the finishing temperature at the point where it left the final finishing mill was 800℃, and by applying coiling temperature control,
This figure shows the cooling curve of the hot-rolled steel strip on the hot line table when it is cooled, and the transformation has been completed and the steel strip is wound up. The rolling speed at this time is
At 550mpm, the temperature of the cooling water is 25℃, and the amount of cooling water is
250m 3 /Hr. By controlling the transformation coiling temperature during hot rolling, the present invention guarantees the hardness desired by the user when controlling the coiling temperature before transformation and during transformation, and the shear workability of the product when controlling the coiling temperature after transformation. Furthermore, it has become possible to omit some cold rolling and TPO annealing processes. It is also effective against coil deformation, and the coil deformation of the total production amount is 1.5.
% to 0.3%, and furthermore, the transformation winding start control has the effect of changing the structure to a tough and fine structure similar to that of patenting treatment on a hot run table, so the heat treatment process can be omitted, improving the mechanical properties of the product. It has many excellent effects in improving the quality of life.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明に係る熱間圧延機における変
態巻取温度制御方法及び同装置の一実施態様を示
すもので、第1図乃至第4図は一般的熱延鋼材の
冷却による各種変態状態の変化を説明するもの
で、第1図は未変態巻取、第2図は変態中巻取、
第3図は変態完了巻取、第4図は変態完了巻取と
それぞれの温度制御における巻取時点を説明する
グラフ第5図は全体の本変態巻取温度制御方法及
び同装置を説明するブロツク図、第6図は恒温変
態曲線の一例図、第7図は所要バンク数計算方法
の模式図、第8図は仕上出側温度計の使用説明、
第9図乃至第11図は中間温度計、巻取温度計の
使用説明用グラフである。第12図は一実施例の
グラフ、第13図は他の実施例のグラフである。 1…熱延仕上圧延機、2…冷却装置、3…巻取
装置、4…ストリツプ、5…仕上出側温度計、6
…中間温度計、7…巻取温度計、9…注水ノズ
ル、10…水量制御バルブ。
The drawings show an embodiment of the transformation coiling temperature control method and device in a hot rolling mill according to the present invention, and FIGS. 1 to 4 show various transformation states caused by cooling of general hot rolled steel. This explains the changes. Figure 1 shows the untransformed winding, Figure 2 shows the transformed winding,
Fig. 3 is a graph explaining the transformation completed winding, and Fig. 4 is a graph explaining the transformation completed winding and the winding point in each temperature control. Fig. 5 is a block diagram explaining the entire transformation winding temperature control method and the same device. Figure 6 is an example of a isothermal transformation curve, Figure 7 is a schematic diagram of the method for calculating the required number of banks, Figure 8 is an explanation of how to use the finishing exit thermometer,
9 to 11 are graphs for explaining the use of the intermediate thermometer and the winding thermometer. FIG. 12 is a graph of one embodiment, and FIG. 13 is a graph of another embodiment. DESCRIPTION OF SYMBOLS 1... Hot rolling finishing mill, 2... Cooling device, 3... Winding device, 4... Strip, 5... Finish exit side thermometer, 6
... Intermediate thermometer, 7... Winding thermometer, 9... Water injection nozzle, 10... Water flow control valve.

Claims (1)

【特許請求の範囲】 1 炭素含有量0.10〜1.7%の炭素鋼または合金
鋼を熱間圧延する方法に於いて、熱延仕上圧延機
から冷却装置を経て巻取機に向けて移動している
ストリツプの温度分布を仕上出側温度計、冷却装
置中の中間温度計、巻取温度計によつて測定し、
さらに鋼種に依存する変態熱容量、変態開始温
度、変態時間を加味して冷却水を前記ストリツプ
に注水することによつて変態開始場所、変態終了
場所を任意の場所に制御し、所望の鋼材特性によ
り巻取機における温度分布を未変態状態、変態中
状態、変態完了状態に制御すること及び中間温度
計の位置で変態開始制御することを特徴とする熱
間圧延機における変態巻取温度制御方法。 2 ストリツプの移動方向に沿つて配置したとこ
ろの熱延仕上圧延機と冷却装置との間にストリツ
プ温度測定用仕上出側温度計を設け、且つ冷却装
置の中間任意箇所にストリツプ温度測定用冷却装
置内中間温度計を設け、更に冷却装置と巻取機の
間に巻取温度計を設け、また冷却装置内の各注水
ノズル用の水量制御バルブの流水量を制御する注
水バンク制御装置が前記仕上出側温度計、中間温
度計、巻取温度計の信号を受ける如く構成したこ
とを特徴とする熱間圧延機における変態巻取温度
制御装置。
[Claims] 1. In a method of hot rolling carbon steel or alloy steel with a carbon content of 0.10 to 1.7%, the steel is moved from a hot finishing mill to a winding machine via a cooling device. Measure the temperature distribution of the strip using a finish exit thermometer, an intermediate thermometer in the cooling device, and a winding thermometer.
Furthermore, by injecting cooling water into the strip, taking into account the transformation heat capacity, transformation start temperature, and transformation time, which depend on the steel type, the transformation start and end locations can be controlled to desired locations, and the desired steel characteristics can be controlled. A transformation coiling temperature control method in a hot rolling mill, characterized by controlling the temperature distribution in the coiler to an untransformed state, a transforming state, and a transformation completed state, and controlling the transformation start at the position of an intermediate thermometer. 2. A finishing outlet thermometer for measuring the strip temperature is installed between the hot rolling finishing mill and the cooling device, which are arranged along the direction of movement of the strip, and a cooling device for measuring the strip temperature is installed at an arbitrary point in the middle of the cooling device. In addition, a winding thermometer is provided between the cooling device and the winding machine, and a water injection bank control device that controls the flow rate of the water flow control valve for each water injection nozzle in the cooling device is provided. A transformation coiling temperature control device for a hot rolling mill, characterized in that it is configured to receive signals from an exit side thermometer, an intermediate thermometer, and a coiling thermometer.
JP57081221A 1982-05-13 1982-05-13 Method and device for controlling coiling temperature at transformation in hot rolling mill Granted JPS58199613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081221A JPS58199613A (en) 1982-05-13 1982-05-13 Method and device for controlling coiling temperature at transformation in hot rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081221A JPS58199613A (en) 1982-05-13 1982-05-13 Method and device for controlling coiling temperature at transformation in hot rolling mill

Publications (2)

Publication Number Publication Date
JPS58199613A JPS58199613A (en) 1983-11-21
JPH0468045B2 true JPH0468045B2 (en) 1992-10-30

Family

ID=13740420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081221A Granted JPS58199613A (en) 1982-05-13 1982-05-13 Method and device for controlling coiling temperature at transformation in hot rolling mill

Country Status (1)

Country Link
JP (1) JPS58199613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065077A (en) * 2012-09-06 2014-04-17 Jfe Steel Corp Method of manufacturing hot rolled steel plate
JP2014214324A (en) * 2013-04-23 2014-11-17 Jfeスチール株式会社 Method for manufacturing hot rolled steel plate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207410A (en) * 1987-02-24 1988-08-26 Kawasaki Steel Corp Method for preventing variation of sheet width of hot rolled steel strip
JPH0323009A (en) * 1989-06-20 1991-01-31 Nkk Corp Cooling method for high carbon steel strip
DE19943403A1 (en) * 1999-09-10 2001-03-22 Siemens Ag Method and device for cooling a hot-rolled steel strip emerging from a roll stand
DE19963185A1 (en) * 1999-12-27 2001-07-12 Siemens Ag Method and device for cooling a hot-rolled metal strip emerging from a roll stand
JP4529517B2 (en) * 2003-06-27 2010-08-25 Jfeスチール株式会社 High carbon steel plate manufacturing method and manufacturing equipment
DE102004005919A1 (en) 2004-02-06 2005-09-08 Siemens Ag Computer-aided modeling method for the behavior of a steel volume with a volume surface
JP4402502B2 (en) * 2004-04-13 2010-01-20 東芝三菱電機産業システム株式会社 Winding temperature controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065077A (en) * 2012-09-06 2014-04-17 Jfe Steel Corp Method of manufacturing hot rolled steel plate
JP2014214324A (en) * 2013-04-23 2014-11-17 Jfeスチール株式会社 Method for manufacturing hot rolled steel plate

Also Published As

Publication number Publication date
JPS58199613A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
CN101204717B (en) Coiling temperature control device and control method thereof
CN1094077C (en) Model supported method for controlling cooling of rolled piece during rolling and cooling
JPH0468045B2 (en)
CN103008358A (en) Optimization device, optimization method, and optimization program
JP4907587B2 (en) Steel plate cooling equipment and steel plate cooling method
JP4402502B2 (en) Winding temperature controller
CN108526224A (en) It batches cooling controller and batches cooling control method
CN100464886C (en) Device and method for controllably cooling thick steel plate
JPH0480973B2 (en)
JPH08103809A (en) Cooling control method of steel plate in hot rolling
KR20040059129A (en) Method for controlling the cooling of high carbon hot-rolled strip considering phase transformation and prevention of edge crack
KR20030053621A (en) Hot strip cooling control mothode for chage target temperature
JP2954485B2 (en) Method of controlling winding temperature of hot-rolled steel strip
JPH05277535A (en) Method for controlling cooling of steel strip
JP2004331992A (en) Method for predicting temperature of and cooling metal sheet in hot rolling
KR20030053575A (en) cooling control method of high carbon hot-rolled strip taken phase transformation into account
JPS61243125A (en) Cooling method for steel products
KR20090068992A (en) Method for cooling control of hot-rolled steel sheet
JPH0390206A (en) Control method for cooling of hot rolled steel plate
JPH06238312A (en) Method for controlling cooling of hot rolled steel sheet
KR100301992B1 (en) Method for controlling cooling of hot rolled high carbon steel
JP5803138B2 (en) Crystal grain size prediction method, crystal grain size prediction device, and crystal grain size prediction program
JP2617666B2 (en) Method of controlling winding temperature of hot-rolled steel strip
JP2012196692A (en) Method for cooling control of steel stock and continuous rolling mill
KR100711386B1 (en) A method for controlling cooling of the hot steel strip