JP2014063942A - 多結晶シリコン膜の検査方法及びその装置 - Google Patents

多結晶シリコン膜の検査方法及びその装置 Download PDF

Info

Publication number
JP2014063942A
JP2014063942A JP2012209249A JP2012209249A JP2014063942A JP 2014063942 A JP2014063942 A JP 2014063942A JP 2012209249 A JP2012209249 A JP 2012209249A JP 2012209249 A JP2012209249 A JP 2012209249A JP 2014063942 A JP2014063942 A JP 2014063942A
Authority
JP
Japan
Prior art keywords
silicon film
polycrystalline silicon
image
light
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012209249A
Other languages
English (en)
Inventor
Go Muramatsu
剛 村松
Yasuhiro Yoshitake
康裕 吉武
Susumu Iwai
進 岩井
Kiyomi Yamaguchi
清美 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012209249A priority Critical patent/JP2014063942A/ja
Publication of JP2014063942A publication Critical patent/JP2014063942A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】ライン状のエキシマレーザでアニールした多結晶シリコン膜を撮像して得た画像から、アニール時のエキシマレーザのエネルギの過不足を判定することを可能にする。
【解決手段】多結晶シリコン膜検査方法において、線状に成形されたエキシマレーザを用いたレーザアニール処理により表面に多結晶シリコン膜が形成された基板に光を照射し、この光が照射された多結晶シリコン膜の表面から発生する1次回折光の像を撮像し、この撮像して得た1次回折光の像を処理して多結晶シリコン膜の画像を形成し、この形成した画像から予め設定した輝度レベル以下の領域を欠陥領域として抽出し、予め記憶しておいた線上に成形されたエキシマレーザの強度分布のデータに基づいて抽出された欠陥領域がアニール処理におけるエキシマレーザのエネルギの不足又は過多の何れにより発生したものであるかを判定し、この判定した結果を出力するようにした。
【選択図】図7

Description

本発明は、基板上に形成したアモルファスシリコン膜をレーザアニールにより多結晶化させた多結晶シリコン膜の結晶の状態を検査する多結晶シリコン膜の検査方法及びその装置に関する。
液晶表示素子や有機EL素子などに用いられる薄膜トランジスタ(TFT)は、高速な
動作を確保するために、基板上に形成したアモルファスシリコンの一部をエキシマレーザ
で低温アニールすることにより多結晶化した領域に形成されている。
このように、アモルファスシリコンの一部をエキシマレーザで低温アニールして多結晶
化させる場合、均一に多結晶化させることが求められるが、実際には、レーザ光源の変動
の影響により結晶にばらつきが生じてしまう場合がある。
そこで、このシリコン結晶のばらつきの発生状態を監視する方法として、特許文献1に
は、パルスレーザを半導体膜に照射してレーザアニールを行うとともにレーザ照射領域に
検査光を照射し、照射した検査光による基板からの反射光を検出し、この反射光の強度変
化から半導体膜の結晶化の状態を確認することが記載されている。
また、特許文献2には、レーザを照射前の非晶質シリコンに検査光を照射してその反射
光又は透過光を検出しておき、レーザを非晶質シリコンに照射中にも検査光を照射してそ
の反射光又は透過光を検出し、レーザ照射前とレーザ照射中の反射光又は透過光の強度の
差が最大になったときからレーザ照射前の反射光又は透過光の強度に戻るまでの経過時間
を検出して、レーザアニールの状態を監視することが記載されている。
更に、特許文献3には、基板上に形成された非晶質シリコンをエキシマレーザアニール
により多結晶シリコンに変化させた領域に可視光を基板表面に対して10−85度の方向
から照射し、照射と同じ角度の範囲に接地したカメラで反射光を検出し、この反射光の変
化から結晶表面の突起の配置の状態を検査することが記載されている。
更に、特許文献4には、アモルファスシリコン膜にエキシマレーザを照射して形成した
多結晶シリコン膜に検査光を照射して多結晶シリコン膜からの回折光を回折光検出器
でモニタリングし、多結晶シリコン膜の結晶性が高い規則的な微細凹凸構造の領域から
発生した回折光の強度が結晶性の低い領域からの回折・散乱光の強度に比べて高いことを
利用して、多結晶シリコン膜の状態を検査することが記載されている。
更に、特許文献5には、アモルファスシリコン膜にエキシマレーザを照射して形成した多結晶シリコン膜に基板の裏面からレーザを照射して、基板の表面側で発生した1次回折光を検出して、多結晶シリコン膜の結晶の状態を検査する装置とその方法について記載されている。
特開2002−305146号公報 特開平10−144621号公報 特開2006−19408号公報 特開2001−308009号公報 特開2011−192785号公報
液晶表示素子や有機EL素子などに用いられる薄膜トランジスタ(TFT)は、高速な動作を確保するために、基板上に形成したアモルファスシリコンの薄膜の一部にエキシマレーザを照射してアニールすることにより多結晶化した領域に形成される。
このエキシマレーザを照射しアニールして形成した多結晶シリコン膜(ポリシリコン膜)の表面には、微細な凹凸がある周期で発生することが知られている。そして、この微細な突起は、多結晶シリコン膜の結晶性の度合いを反映しており、結晶状態が均一な(多結晶粒径がそろっている)多結晶シリコン膜の表面には微細な凹凸がある規則性をもって周期的に形成され、結晶状態の均一性が低い(多結晶粒径が不ぞろいな)多結晶シリコン膜の表面には微細な凹凸が不規則に形成されることが知られている。
また、表示画面サイズの大型化に伴い基板サイズも大型化しているが、この比較的大きなサイズの基板にエキシマレーザを照射してアモルファスシリコン膜を効率よくアニールするために、光源から発射されたエキシマレーザをライン状に成形して基板上を走査する方法が採用されている。このとき、ライン状に成形したエキシマレーザにライン状の長手方向に沿って輝度の分布があると、このエキシマレーザでアニールされて形成される多結晶シリコン膜の結晶の成長の仕方に影響を与え、エキシマレーザのライン状の長手方向に沿って結晶の粒径に分布が発生してしまう。
このような結晶の状態が反射光に反映される多結晶シリコン膜の表面状態を検査する方法として、特許文献1にはレーザアニールした領域に照射した光の反射光の強度変化から半導体膜の結晶化の状態を確認することが記載されている。しかし特許文献1には、ライン状に成形したエキシマレーザでアニールしたときに、エキシマレーザの長手方向の輝度の分布に起因して多結晶シリコン膜の結晶粒径に分布が発生することについては考慮されていない。
また、特許文献2には、レーザアニール中のレーザ照射領域からの反射光をアニール前の反射光と比較してアニールの進行状態をモニタするものであって、特許文献1と同様に、ライン状に成形したエキシマレーザでアニールしたときに、エキシマレーザの長手方向の輝度の分布に起因して多結晶シリコン膜の結晶粒径に分布が発生することについては考慮されていない。
また、特許文献3には、レーザアニールによって形成される多結晶シリコン膜表面の突起の配置により反射する光の変化によって多結晶シリコンの結晶の品質を検査することが記載されているが、特許文献1及び2と同様に、ライン状に成形したエキシマレーザでアニールしたときに、エキシマレーザの長手方向の輝度の分布に起因して多結晶シリコン膜の結晶粒径に分布が発生することについては考慮されていない。
更に、特許文献4には、レーザアニールによって形成される多結晶シリコン膜表面の突起により発生する回折光を検出することについては記載されている。しかし、回折光検出器で検出した回折光の強度レベルをモニタして多結晶シリコン膜の状態を検査するものであって、特許文献1乃至3と同様に、ライン状に成形したエキシマレーザでアニールしたときに、エキシマレーザの長手方向の輝度の分布に起因して多結晶シリコン膜の結晶粒径に分布が発生することについては考慮されていない。
更に、特許文献5には、レーザアニールによって形成される多結晶シリコン膜表面の突起により発生する回折光を検出することについては記載されているが、ライン状に成形したエキシマレーザでアニールしたときに、エキシマレーザの長手方向の輝度の分布に起因して多結晶シリコン膜の結晶粒径に分布が発生することについては考慮されていない。
本発明は、上記した従来技術の課題を解決して、ライン状のエキシマレーザでアニールした多結晶シリコン膜を撮像して得た画像から、アニール時のエキシマレーザのエネルギの過不足を判定することを可能にする多結晶シリコン膜の検査方法及びその装置を提供するものである。
上記した課題を解決するために、本発明では、多結晶シリコン膜の検査装置を、線状に成形されたエキシマレーザを用いたレーザアニール処理により表面に多結晶シリコン膜が形成された基板に光を照射する光照射手段と、この光照射手段により光が照射された多結晶シリコン膜の表面から発生する1次回折光の像を撮像する撮像手段と、この撮像手段で撮像して得た1次回折光の像を処理して多結晶シリコン膜の画像を形成する画像形成手段と、この画像形成手段で形成した画像から予め設定した輝度レベル以下の領域を欠陥領域として抽出する欠陥領域抽出手段と、予め記憶しておいた線上に成形されたエキシマレーザの強度分布のデータに基づいて欠陥抽出手段で抽出された欠陥領域がアニール処理におけるエキシマレーザのエネルギの不足により発生したものであるのか、又はエキシマレーザエネルギの過多により発生したものであるかを判定する判定手段と、この判定手段で判定した結果を出力する出力手段とを備えて構成した。
また、上記した課題を解決するために、本発明では、多結晶シリコン膜の検査方法において、線状に成形されたエキシマレーザを用いたレーザアニール処理により表面に多結晶シリコン膜が形成された基板に光を照射し、この光が照射された多結晶シリコン膜の表面から発生する1次回折光の像を撮像し、この撮像して得た1次回折光の像を処理して多結晶シリコン膜の画像を形成し、この形成した画像から予め設定した輝度レベル以下の領域を欠陥領域として抽出し、予め記憶しておいた線上に成形されたエキシマレーザの強度分布のデータに基づいて抽出された欠陥領域がアニール処理におけるエキシマレーザのエネルギの不足により発生したものであるのか、又はエキシマレーザエネルギの過多により発生したものであるかを判定し、この判定した結果を出力するようにした。
本発明によれば、ライン状のエキシマレーザでアニールした多結晶シリコン膜に光を照射し撮像して得られる1次回折光の画像から、アニール時のエキシマレーザのエネルギの過不足を判定することが可能になった。また、多結晶シリコン膜の結晶の状態と膜厚のばらつきの状態とを同時に検査することができるようになった。
エキシマレーザの照射エネルギと多結晶シリコン膜の結晶粒径との関係を示すグラフである。 エキシマレーザの照射エネルギが小さいときに形成される多結晶シリコン膜の状態を模式的に示した多結晶シリコン膜の平面図である。 エキシマレーザの照射エネルギが適正なときに形成される多結晶シリコン膜の状態を模式的に示した多結晶シリコン膜の平面図である。 エキシマレーザの照射エネルギが大きすぎたときに形成される多結晶シリコン膜の状態を模式的に示した多結晶シリコン膜の平面図である。 多結晶シリコン膜が形成された基板に照明光を照射して1次回折光を検出する光学系の概略の構成を示すブロック図である。 エキシマレーザの照射エネルギと、照明光を照射したときに多結晶シリコン膜から発生する1次回折光の輝度との関係を示すグラフである。 アニールに用いる線状に成形したエキシマレーザの線状に沿った長手方向のエネルギ分布の例を示すグラフである。 アニール時の線状に成形したエキシマレーザの線状に沿った長手方向のエネルギ分布のレベルと検査工程において検出される1次回折光輝度との関係を示すグラフである。 図6Aのグラフにおける照射エネルギ分布曲線501の分布特性を有するエキシマレーザでアニールされた試料を撮像して得た画像61、及び図6Aのグラフにおける照射エネルギ分布曲線502の分布特性を有するエキシマレーザでアニールされた試料を撮像して得た画像62の例を示す図である。 検査装置全体の概略の構成を説明するブロック図である。 実施例1における検査ユニットの概略の構成を説明するブロック図である。 実施例1における多結晶シリコン膜の結晶の状態を検査するために基板を撮像する撮像シーケンスを示すフロー図である。 実施例1における多結晶シリコン膜の結晶の状態を検査するために撮像して得た画像を処理して欠陥部分を検出する画像処理のシーケンスを示すフロー図である。 多結晶シリコン膜の膜厚と透過光量との関係を示すグラフである。 実施例1における多結晶シリコン膜の膜厚と1次回折光の画像のコントラストとの関係を示すグラフである。 実施例2における検査ユニットの概略の構成を説明するブロック図である。 実施例2における多結晶シリコン膜の膜厚と1次回折光の画像のコントラストとの関係を示すグラフである。 基板走査方向の各位置における画像の輝度値の分布を示すグラフである。
本発明の実施の形態として、液晶表示パネル用ガラス基板に形成した多結晶シリコン膜を検査する装置に適用した例を説明する。
検査対象の液晶表示パネル用ガラス基板(以下、基板と記す)には、基板上にアモルファスシリコンの薄膜が形成されている。そのアモルファスシリコンの薄膜の一部の領域にエキシマレーザを照射して走査することにより、エキシマレーザが照射された部分のアモルファスシリコンを加熱して溶融し(アニール)、エキシマレーザが走査された後、溶融したアモルファスシリコンが徐々に冷却されて多結晶化し、多結晶シリコンの状態に結晶が成長する。
図1のグラフには、エキシマレーザでアモルファスシリコンをアニールするときのエキシマレーザの照射エネルギと多結晶シリコンの結晶粒径の概略の関係を示す。アニール時のエキシマレーザの照射エネルギを大きくすると多結晶シリコンの結晶粒径も大きくなる。
アニール時のエキシマレーザの照射エネルギが弱い(図1の範囲A)場合には、図2Aに示すように多結晶シリコン膜の結晶201の粒径が小さく、かつ、ばらつきが大きい状態となってしまう。このような結晶状態では、多結晶シリコン膜として安定した特性を得ることができない。
これに対して、アニール時のエキシマレーザのエネルギを適切な範囲(図1の範囲B)に設定すると、図2Bに示すように結晶202の粒径が比較的揃った多結晶シリコン膜が形成される。このように、結晶粒径が揃った状態に膜が得られると、多結晶シリコン膜として安定した特性を得ることができる。
アニール時のエキシマレーザの照射エネルギを更に上げていくと(図1の範囲C)、多結晶シリコンの結晶粒径が大きくなっていく。しかし、照射エネルギを大きくすると結晶粒の成長速度のばらつきが大きくなり、図2Cに示すように結晶203の粒径のばらつきが大きな多結晶シリコン膜となってしまい、多結晶シリコン膜として安定した特性を得ることができない。
従って、アモルファスシリコンに照射するエキシマレーザのエネルギを図1のBの範囲に安定に維持することが重要になる。
一方、特許文献3に記載されているように、アモルファスシリコンをエキシマレーザでアニールして形成した多結晶シリコン膜には、結晶粒界に微小な突起が形成されることが知られている。
このような多結晶シリコン膜301が形成されたガラス基板303に、図3に示すように裏側に配置した光源310から光を照射すると、多結晶シリコン膜301の結晶粒界の微小な突起302で散乱された光によりガラス基板303の表面の側に回折光が発生する。この回折光が発生する位置は、光源310から照射する光の波長や多結晶シリコン膜301の結晶粒界に形成される微小な突起302のピッチによって異なる。
図3に示した構成において、基板300を照射する光の波長をλ、多結晶シリコン膜301の結晶粒界に形成される微小な突起302のピッチをP,基板300を照射する光の基板300の法線方向からの角度をθi、基板300から発生する1次回折光の基板300の法線方向からの角度をθoとすると、それらの間には、
sinθi+sinθo=λ/P ・・・(数1)
という関係が成り立つ。
従って、多結晶シリコン膜301の結晶粒界に微小な突起302が所定のピッチPで形成されている状態(図2Bのように、結晶粒径がそろっている状態)で、光源310から出射して角度θiの方向から照射された波長λの光により発生する1次回折光を、角度θoの位置に配置した撮像カメラ320で観察することにより、多結晶シリコン膜301からの1次回折光の像を観察することができ、図4の領域Bに示すような1次回折光輝度の比較的明るい画像を観察することができる。
一方、多結晶シリコン膜301の結晶粒径は、図1に示したようにアニール時のエキシマレーザの照射エネルギに依存し、図1のエキシマレーザの照射エネルギがA,B及びCの領域では、結晶粒径がエキシマレーザの照射エネルギの増加に伴って大きくなる。従って、アニール時にエキシマレーザの照射エネルギが変動すると、多結晶シリコン膜301の結晶粒径が変化して図2A又は図2Cで説明したように粒径のばらつきが大きくなる。この結晶粒径が変化して微小な突起302のピッチのばらつきが大きくなった状態の多結晶シリコン膜301に光源310から光を照射した場合、多結晶シリコン膜301から発生する1次回折光の進行方向が変化すると主にその強度が低下してしまうために、図4の領域A又はCに示すように撮像カメラ320で検出される1次回折光の輝度が減少する。
一方、多結晶シリコン膜301の結晶粒径がそろっていて突起のピッチのばらつきが小さい場合であっても、多結晶シリコン膜301の膜厚が変化すると、ガラス基板303の裏面側から照射した光の透過量が変化して、撮像カメラ320で検出される1次回折光の輝度が変化する。すなわち、膜厚が厚くなるに従い、多結晶シリコン膜301から発生する1次回折光の強度が弱くなっていく。
また、レーザアニール装置においてアモルファスシリコン膜が形成された基板に照射するライン状に成形されたエキシマレーザのラインに沿った方向のエキシマレーザのエネルギには、例えば図5に示すような分布がある。又、エキシマレーザはパルス発振されるが、各発振パルス間にもエネルギのばらつきが発生する。又、エキシマレーザは、時間的にも出力が変動する場合がある。
図5に示したような分布を持つライン状のエキシマレーザにおいて、エネルギが高いピーク52,54及びエネルギが低いボトム51,53が共に図4に示したエキシマレーザ照射エネルギの分布のBの範囲に入っている場合には適切な1次回折光輝度の画像を検出することができる。
しかし、エキシマレーザのエネルギが変動することにより、図6Aの照射エネルギ分布曲線501に示すように、エキシマレーザのエネルギが低いボトム51と53の領域が適正な照射エネルギの範囲Bから少ない方に外れてしまった状態のライン状のエキシマレーザを基板上のアモルファスシリコン膜に照射する場合が考えられる。この場合、基板上に形成される多結晶シリコン膜の結晶は、図6Bの画像61のように、照射エネルギ分布曲線501のエキシマレーザのエネルギが低いボトム51と53に対応するエキシマレーザが照射された個所では、エキシマレーザの照射エネルギが低いために十分な結晶の成長が進まず、図2Aに示したような結晶粒径の大きさにばらつきが大きくなる。
その結果、図6Bに示すように、撮像カメラ320で撮像される基板の画像61には、図6Aのエキシマレーザのエネルギが低いボトム51及び53に対応する領域に、暗い領域510及び530が現れる。
これに対して、エキシマレーザのエネルギが変動することにより、図6Aの照射エネルギ分布曲線502に示すように、エキシマレーザのエネルギが高いピーク52と54の領域が適正な照射エネルギの範囲Bから大きい方に外れてしまった状態のライン状のエキシマレーザを基板上のアモルファスシリコン膜に照射する場合も考えられる。この場合、基板上に形成される多結晶シリコン膜の結晶は、図6Bの画像62のように、照射エネルギ分布曲線502のエキシマレーザのエネルギが高いピーク52と54に対応するエキシマレーザが照射された個所では、エキシマレーザの照射エネルギが大きいために結晶の成長が進み過ぎて、図2Cに示したような結晶粒径の大きさにばらつきが大きくなる。
その結果、図6Bに示すように、撮像カメラ320で撮像される基板の画像62には、図6Aのエキシマレーザのエネルギが高いピーク52及び54に対応する領域に、暗い小域520及び540が現れる。
図6Bの画像61と画像62とを比較すると、エキシマレーザのライン状の方向の輝度の分布に応じて、基板に照射するエキシマレーザのエネルギレベルによって暗くなる領域の現れ方が異なることが分かる。この特性を利用して、基板に照射するエキシマレーザのライン状の方向の輝度の分布を予め測定しておくことにより、画像上で暗くなった領域が、図4のAのアニール時にエキシマレーザの照射エネルギが低すぎたために発生した領域に相当するものであるのか、又は、Cのアニール時にエキシマレーザの照射エネルギが高すぎたために発生した領域に相当するものであるのかを判別することが可能になる。
本発明では、多結晶シリコン膜を照明して膜表面の微小な突起により発生する回折光の像を撮像し、撮像して得た回折光の画像を処理することにより、基板上に多結晶シリコン膜が結晶の粒径がそろった状態の正常な膜として形成されているかどうかを検査して多結晶シリコン膜の結晶の状態を評価する方法及びその装置において、上記した観点に基づいて、多結晶シリコン膜の結晶の状態が基準から外れている領域が見つかった場合に、それがアニール時に照射したエキシマレーザのエネルギが高すぎたために発生したものであるのか、又は低すぎたために発生したものであるのか、即ちアニール時のエキシマレーザのエネルギの過不足を判別することを可能にした、多結晶シリコン膜の検査方法及びその装置を提供するものである。
以下に、本発明の実施例を図を用いて説明する。
本発明に係る液晶表示パネル用ガラス基板の多結晶シリコン膜検査装置700の全体の構成を図7に示す。
多結晶シリコン膜検査装置700は、基板ロード部710、検査部720、基板アンロード部730、検査データ処理・制御部740及び全体制御部750を備えて構成されている。
検査対象の液晶表示パネル用ガラス基板(以下、基板と記す)300は、ガラス基板303上に形成されたアモルファスシリコンの薄膜に、本検査工程の直前の工程で一部の領域にエキシマレーザを照射して走査し加熱することにより、加熱された領域がアニールされてアモルファスの状態から結晶化し、図3に示したように、多結晶シリコン膜301の状態になる。多結晶シリコン膜検査装置700は、基板300の表面を撮像して、この多結晶シリコン膜301が正常に形成されているかどうかを調べるものである。
検査対象の基板300は、図示していない搬送手段でロード部710にセットされる。ロード部710にセットされた基板300は、全体制御部750で制御される図示していない搬送手段により検査部720へ搬送される。検査部には検査ユニット721が備えられており、検査データ処理・制御部740で制御されて基板300の表面に形成された多結晶シリコン膜の状態を検査する。検査ユニット721で検出されたデータは検査データ処理・制御部740で処理されて、基板300の表面に形成された多結晶シリコン膜301の状態が評価される。
検査が終わった基板300は、全体制御部750で制御される図示していない搬送手段により検査部720からアンロード部730に搬送され、図示していないハンドリングユニットにより検査装置700から取り出される。なお、図7には、検査部720に検査ユニット721が1台備えられている構成を示しているが、検査対象の基板300のサイズや形成される多結晶シリコン膜301の面積や配置に応じて2台であっても、又は3台以上であっても良い。
検査部720における検査ユニット721の構成を図8に示す。
本実施例においては、照明系を基板の表面側に配置し検出系を基板の裏面側に配置してそれぞれの装置配置上の自由度を大きくするような構成にした。
検査ユニット721は、照明光学系810、撮像用カメラ820、透過光検出用カメラ830、基板ステージ部840、検査部データ処理部850、入出力部860、及び電源・制御系870で構成されており、電源・制御系870は図7に示した全体制御部750と接続している。
照明光学系810は、波長λの光を発射する光源811、光源811から発射された波長λの光を集光して線状の光に成形して基板ステージ部841に保持されているガラス基板300に照射するシリンドリカルレンズ812を備えている。
波長λの光は、300nm〜700nmの範囲の波長の光であり、光源811には、例えば、レーザダイオードを1次元又は2次元状に多数配置させたものを用いる。
シリンドリカルレンズ812は、光源811から発射された波長λの光を、基板300上の検査領域の大きさに合わせて効率よく照明できるように照明光束を一方向に集光させて、一方向と直角な方向(図面に垂直な方向)に長い線状の形状に成形する。シリンドリカルレンズ812で一方向に集光した光を基板300に、法線方向に対してθ1の角度方向から照射することにより、基板300上の線上の検査領域の照明光量が増加し、撮像光学系820でコントラストの高い画像を検出することができる。
撮像用カメラ820は、照明光が照射された基板300から発生する1次回折光による像を撮像する。
撮像用カメラ820は、基板300の法線方向に対してθ2傾いた角度方向に設置されている。撮像用カメラ820は、シリンドリカルレンズ812により成形された波長λの光が照明された基板300の表面の一方向に長い領域に存在する多結晶シリコン膜301の結晶粒界にピッチP1で形成された微小突起302からの1次回折光による光学像を撮像する。撮像用カメラ820は、基板300の照明された一方向に長い領域の像に合わせて配置された1次元のCCD(電化結合素子)イメージセンサ(図示せず)、又は2次元のCCDイメージセンサ(図示せず)を備えている。
すなわち、撮像用カメラ820の傾き角度θ2は、多結晶シリコン膜301の結晶粒界の微小突起302のピッチP1と、照明光の波長λ、及び照明光の基板300への入射角度θ1により、(数1)の関係に基づいて決まる。
透過光検出用カメラ830は、光源811から発射されて基板300を透過した光を検出する。
基板ステージ部840は、駆動手段842によりXY平面内で移動可能なステージ841の上面に検査対照の基板300を載置して保持する。駆動手段842は、例えばステッピングモータ又はロータリエンコーダが備えられたサーボモータを用いればよい。
検査データ処理部850は、A/D変換部851、A/D変換部852、画像処理部853、画像補正値算出部854、処理判定部855とを備え、入出力部860と接続している。電源・制御系870は、電源部872、駆動手段制御部873、制御部871とを備えている。
A/D変換部851は透過光検出用カメラ830から出力されるアナログ画像信号をデジタル画像信号に変換する。A/D変換部852は、撮像用カメラ820から出力される透過光のアナログ画像信号をデジタル画像信号に変換する。
画像処理部853は、A/D変換部852でA/D変換されたデジタル画像信号を前処理して1次回折光像を作成する。画像補正値算出部854は、透過光検出用カメラ830から出力された信号を処理して透過光の光量を求め、この透過光の光量と予め記憶しておいた透過光量と画像補正値との関係から、撮像用カメラ820で撮像して得た画像の補正量を求める。
処理判定部855は、画像補正値算出部854で算出した画像の補正量に基づいて撮像用カメラ820で撮像して画像処理部852で処理された1次回折光像の画像を補正して基板300上に形成された多結晶シリコン膜からの1次回折光像の明るさの分布を求める。そして、この明るさの分布から得られる情報を予め設定された基準値と比較して基準値以下の明るさの領域を欠陥領域として抽出する。更に、この欠陥領域として抽出された領域を予め求めておいたアニール用の線状に成形されたエキシマレーザのエネルギ分布の情報を用いてアニール用のエキシマレーザのエネルギが低すぎたために発生した欠陥領域であるのか、エネルギが高すぎたために発生した欠陥であるのかを判定する。
入出力部860は、表示部861を備え、処理判定部855で処理された結果を表示する。また、電源部872は光源811の電源であり、駆動手段制御部873は基板ステージ部840の駆動手段842を制御する。
更に、制御部871は、検査データ処理部850と出力部860と電源部872と駆動手段制御部873とを制御する。
また、制御部871は全体制御部750と接続されている。
このような構成で、照明光学系810は基板ステージ841に載置された基板300を裏面側から照明し、基板300を透過した光により発生した1次回折光の像を撮像用カメラ820で撮像すると共に、透過光検出用カメラ830で基板300を透過した光を検出して検査データ処理分850で処理し、基板300上に形成された多結晶シリコン膜301の結晶粒径の分布、及び結晶粒径の基準範囲からの大小を判別する。
次に、図8に示した構成の検査ユニット721を用いて基板300上のエキシマレーザでアニールされて多結晶化した多結晶シリコン膜301の結晶粒径の分布の状態を検査する方法について説明する。
先ず、エキシマレーザのアニールにより基板300上に形成された多結晶シリコン膜301の検査領域を検査する処理の流れを説明する。検査処理には、基板300の所定の領域又は全面を撮像する撮像シーケンスと、撮像して得た画像を処理する画像処理のシーケンスとがある。
先ず、撮像シーケンスについて図9を用いて説明する。
最初に、多結晶シリコン膜301の検査領域の検査開始位置が撮像光学系のカメラ820の視野に入るように駆動手段制御部873で駆動手段842を駆動して基板ステージ841の位置を制御し、基板300を初期位置(検査開始位置)に設定する(S901)。
次に、電源制御部872で光源811を制御して、シリンドリカルレンズ812により線状に成形された波長λの光をθ1の入射角度で基板300上の多結晶シリコン膜301に照射する(S902)。照明光学系810により波長λの光が照明された多結晶シリコン膜301の検査領域に沿って撮像用カメラ820の撮像領域が移動するように、駆動手段制御部873で駆動手段842を制御して基板ステージ841を一定の速度での移動を開始する(S903)。
基板ステージ841を一定の速度で移動させながら、照明光学系810のシリンドリカルレンズ812により線状に成形されてθ1の角度で入射した波長λの光により照明された多結晶シリコン膜301の一方向に長い検査領域の結晶粒界の微小突起302から、θ2の方向に発生した1次回折光による光学像を撮像用カメラ820で撮像する(S904)。又、このとき同時に、波長λの光により照明されて多結晶シリコン膜301を透過した光を透過光検出用カメラ830で撮像する(S905)。
波長λの光の1次回折光による光学像を撮像した撮像用カメラ820からの画像信号と多結晶シリコン膜301の透過光を撮像した透過光検出用カメラ830からの画像信号とは、それぞれ検査データ処理部850で処理されてデジタル画像が作成される(S906)。以上の操作をX方向又はY方向に沿った1ライン分の検査が終了するまで繰り返して実行する(S907)。
次に、検査した1ライン分の領域に隣接する検査領域が有るか否かをチェックし(S908)、隣接する未検査領域が有る場合には、基板ステージ841を隣接する検査領域に移動させて(S909)、S903からのステップを繰り返す。検査すべき領域が全て検査を終了するとXYテーブルの移動を停止し(S910),電源制御部872で光源811を制御することにより照明を消して(S911)撮像シーケンスを終了する。
次に、S902からS908の撮像シーケンスで得られたデジタル画像を処理する画像処理シーケンスについて図10を用いて説明する。
撮像シーケンスのデジタル画像作成ステップ(S906)において、撮像用カメラ820からの画像信号と透過光検出用カメラ830からの画像信号とは、それぞれA/D変換器851,852に入力してデジタル画像信号に変換される。A/D変換された撮像用カメラ820からの画像信号は、画像処理部853でシェーディング補正などの前処理が施されてデジタル画像が生成され、処理判定部855に入力される(S1001)。
一方、A/D変換された透過光検出用カメラ830からの信号は、画像補正値算出部に入力して(S1002)、予め求めておいた図11に示すような透過光検出光量と多結晶シリコン膜の膜厚との関係から、膜厚が求められる(S1003)。次に、予め求めておいた図12に示すような多結晶シリコン膜の膜厚と1次回折光のコントラスト強度との関係から、S1002で求めた膜厚のデータから、S1001で判定処理部855に入力された画像のコントラスト補正値を求める(S1004)。
判定処理部855では、S1004で求めたコントラスト補正値に基づいてS1001で入力した画像のコントラストを補正する画像補正処理を実行し(S1005)、これを基板の所定の領域に対して行うことにより、検査領域の補正した画像を作成し、この作成した画像を小領域に分けて各領域ごとに画像特徴量(輝度、コントラストなど)を求め、この特徴量を予め設定した基準値と比較して欠陥領域を抽出する(S1006)。
次に、予め求めておいた図5Aに示すような、アニール工程において基板300に照射されたライン状に成形されたエキシマレーザのライン状の方向のエネルギ分布におけるピーク位置52,54とボトム位置51,53の位置情報と、S1006で抽出した欠陥領域の位置情報とを比較して、S1006で抽出した欠陥領域がエキシマレーザの照射エネルギが大きすぎて結晶粒径が成長しすぎたために発生した結晶粒径大(図2Cに相当)の欠陥領域であるのか、又は、エキシマレーザの照射エネルギが少なすぎたために結晶粒径が成長せずに発生した結晶粒径小(図2Aに相当)の欠陥領域であるのかを判定する(S1007)。最後に、S1006で抽出した欠陥の分布にS1007で判定した欠陥粒径の大・小の情報を付加した欠陥分布図を作成して、入出力部860の表示部861画面上に表示して(S1008)、画像処理のシーケンスを終了する。
また、S1005でコントラストを補正した画像を用いて、画像信号の輝度値を撮像の方向と直角な方向(基板300の移動方向に直角な方向:線状照明の線状に沿った方向)に加算した信号を作ることができる。これにより、図15に示すような、アニール時のエキシマレーザの走査方向(検査時の撮像の方向:基板の移動方向と同じ)のパルスエネルギの時間的なばらつきを求めることもできる。これにより、エキシマレーザのパルス発振の安定性を確認することができる。
このように、多結晶シリコン膜の1次回折光の強度分布の画像を、欠陥粒径の大・小の情報を付加して表示できるようになり、1次回折光の強度分布及び、アニール時のエキシマレーザの照射エネルギ分布の状態をより正確にとらえることができるようになった。
上記した構成及びシーケンスで検査することにより、本実施例によればエキシマレーザでアニールされて形成された多結晶シリコン膜の結晶の状態を比較的高い精度で検査することができると共に、アニール時のエキシマレーザの照射エネルギ分布の状態をより正確にとらえることができ、これをアニール工程にフィードバックすることにより、品質の高い液晶表示パネル用ガラス基板を製造することが可能になる。
なお、照明光学系200にシリンドリカルレンズ205を用いて基板1上の一方向に長い領域を照明する構成で説明したが、これを通常の円形のレンズに置き換えても同様の効果が得られる。
次に、実施例2に係る液晶表示パネル用ガラス基板の多結晶シリコン膜検査装置について、説明する。
本実施例においては、実施例1における検査ユニット721の構成が、照明光学系と、透過光検出用カメラの配置を逆にした点が、実施例1と異なる。
実施例2における液晶表示パネル用ガラス基板の多結晶シリコン膜検査装置の全体の構成は、実施例1において図7を用いて説明した構成と同じである。
本実施例においては、実施例1における検査ユニット721と検査データ処理・制御部740とを、検査ユニット1321と検査データ処理・制御ユニット1345とに置き換えたものである。
本実施例における検査ユニット1321と検査データ処理・制御ユニット1345の構成を、図13に示す。本実施例における検査ユニット1321は、照明光学系1310と1次回折光の像を撮像する撮像用カメラ1320とを基板ステージ部1340の基板ステージ1341に保持されている基板300の表側に配置し、透過光検出用カメラ1330を基板300の裏面側に配置した構成となっている。
また、本実施例における検査データ処理・制御ユニット1345は、検査部データ処理部1350、入出力部1360、及び制御部1370を備えており、制御部1370は図6に示した全体制御部750と接続している。
本実施例においても、基板303の表面に形成された多結晶シリコン膜301の膜厚が変化すると、それに応じて照明光学系1310から多結晶シリコン膜301に照射された光の透過率(多結晶シリコン膜301の反射率)が変化してしまう。その結果、撮像用カメラ1320で撮像する多結晶シリコン膜301で発生した1次回折光の像のコントラストが変化してしまうために、1次回折光の像のコントラスト変化が多結晶シリコン膜301の突起302のピッチの変動によるものなのか、多結晶シリコン膜301の膜厚の変化によるものなのかを切り分けて検出することが必要になる。
照明光学系1310は、波長λの光を発射する光源1311、光源1311から発射された波長λの光を集光して線状の光に成形して基板ステージ1341に保持されているガラス基板300に照射するシリンドリカルレンズ1312を備えている。
波長λの光は、300nm〜700nmの範囲の波長の光であり、光源1311には、例えば、レーザダイオードを用いる。
シリンドリカルレンズ1312は、光源1311から発射された波長λの光を、基板300上の検査領域の大きさに合わせて効率よく照明できるように照明光束を一方向に集光させて断面形状が一方向に長い線状の形状に成形する。シリンドリカルレンズ1312で一方向に集光しこれに直角な方向(図12の紙面に垂直な方向)に長い線状の光を基板300に、基板300の表面の法線方向(図12で基板300と交わる一点鎖線の方向)に対してθ1の角度方向から照射することにより、基板300上の検査領域の照明光量が増加し、撮像光用カメラ1320でコントラストの高い画像を検出することができる。
撮像用カメラ1320は、照明光が照射された基板300から発生する1次回折光による像を撮像する。
撮像用カメラ1320は、基板300の表面の法線方向に対してθ2傾いた角度方向に設置されている。撮像用カメラ1320は、シリンドリカルレンズ1312により成形された波長λの光が照明された基板300の表面の一方向に長い領域に存在する多結晶シリコン膜301の結晶粒界にピッチP1で形成された微小突起302からの1次回折光による光学像を撮像する。撮像用カメラ1320は、基板300の照明された一方向に長い領域の像に合わせて配置された1次元のCCD(電化結合素子)イメージセンサ(図示せず)、又は2次元のCCDイメージセンサ(図示せず)を備えている。
すなわち、撮像用カメラ1320の基板300の表面の法線方向に対する傾き角度θ2は、多結晶シリコン膜301の結晶粒界の微小突起302のピッチP1と、照明光の波長λ、及び照明光の基板300への入射角度θ1により、(数1)の関係に基づいて決まる。
基板ステージの構成及び制御は、実施例1で説明したものと同じであるので、説明を省略する。
実施例2における撮像のシーケンス及び画像処理のシーケンスは、実施例1で図9及び図10を用いて説明したものと同じであるので、説明を省略する。ただし、本実施例においては、多結晶シリコン膜301の膜厚と1次回折光のコントラストとは、図14に示したような関係になる。
このように、多結晶シリコン膜の1次回折光の強度分布の画像を、欠陥粒径の大・小の情報を付加して表示できるようになり、1次回折光の強度分布及び、アニール時のエキシマレーザの照射エネルギ分布の状態をより正確にとらえることができるようになった。
上記した構成及びシーケンスで検査することにより、本実施例によればエキシマレーザでアニールされて形成された多結晶シリコン膜の結晶の状態を比較的高い精度で検査することができると共に、アニール時のエキシマレーザの照射エネルギ分布の状態をより正確にとらえることができ、これをアニール工程にフィードバックすることにより、品質の高い液晶表示パネル用ガラス基板を製造することが可能になる。
なお、照明光学系1310にシリンドリカルレンズ1312を用いて基板1上の一方向に長い領域を照明する構成で説明したが、これを通常の円形のレンズに置き換えても同様の効果が得られる。
300・・・基板 700・・・多結晶シリコン膜検査装置 720・・・検査部 721・・・検査ユニット 740・・・検査データ処理・制御部 750・・・全体制御部 810,1310・・・照明光学系 812,1312・・・シリンドリカルレンズ 820,1320・・・撮像用カメラ 830、1330・・・透過光検出用カメラ 840・・・基板ステージ部 850,1350・・・検査データ処理部 855,1355・・・判定処理部 860,1360・・・入出力部。

Claims (10)

  1. 線状に成形されたエキシマレーザを用いたレーザアニール処理により表面に多結晶シリコン膜が形成された基板に光を照射する光照射手段と、
    該光照射手段により光が照射された前記多結晶シリコン膜の表面から発生する1次回折光の像を撮像する撮像手段と、
    前記撮像手段で撮像して得た前記1次回折光の像を処理して前記多結晶シリコン膜の画像を形成する画像形成手段と、
    該画像形成手段で形成した画像から予め設定した輝度レベル以下の領域を欠陥領域として抽出する欠陥領域抽出手段と、
    予め記憶しておいた前記線上に成形されたエキシマレーザの強度分布のデータに基づいて前記欠陥抽出手段で抽出された欠陥領域が前記アニール処理における前記エキシマレーザのエネルギの不足により発生したものであるのか、又は前記エキシマレーザエネルギの過多により発生したものであるかを判定する判定手段と、
    該判定手段で判定した結果を出力する出力手段と
    を備えたことを特徴とする多結晶シリコン膜の検査装置。
  2. 前記光照射手段により光が照射された前記多結晶シリコン膜が形成された基板を透過した光を検出する透過光検出手段と、
    該透過光検出手段で検出した前記透過光の情報に基づいて前記画像形成手段で形成された画像の補正量を求める画像補正量算出手段と、
    該画像補正量算出手段で求めた画像補正量に基づいて前記画像形成手段で形成された画像を補正する画像補正手段と、
    を更に備え、
    前記欠陥領域抽出手段は、前記画像補正手段で補正された前記多結晶シリコン膜の画像から予め設定した輝度レベル以下の領域を欠陥領域として抽出することを特徴とする請求項1記載の多結晶シリコン膜の検査装置。
  3. 前記光照射手段は、一方向には平行光で、該一方向と直行する方向には集光して長い形状に成形した光を前記基板に照射することを特徴とする請求項1記載の多結晶シリコン膜の検査装置。
  4. 前記照明手段は、前記表面に多結晶シリコン膜が形成された基板に対して該基板の裏側から光を照射し、前記撮像手段は、前記光照射手段により光が照射された前記多結晶シリコン膜の表面から発生する1次回折光の像を前記基板の表面の側で撮像することを特徴とする請求項1記載の多結晶シリコン膜の検査装置。
  5. 前記判定手段は、前記予め記憶しておいた前記線上に成形されたエキシマレーザの強度分布のデータにおいて、前記エキシマレーザの強度が低い部分でアニールされた前記多結晶シリコン膜の領域の画像が前記予め設定した輝度レベルよりも低い場合には、該領域が前記アニール処理における前記エキシマレーザのエネルギの不足により発生した欠陥領域であると判定し、前記エキシマレーザの強度が高い部分でアニールされた前記多結晶シリコン膜の領域の画像が前記予め設定した輝度レベルよりも低い場合には、該領域が前記アニール処理における前記エキシマレーザのエネルギの過多により発生した欠陥領域であると判定することを特徴とする請求項1記載の多結晶シリコン膜の検査装置。
  6. 線状に成形されたエキシマレーザを用いたレーザアニール処理により表面に多結晶シリコン膜が形成された基板に光を照射し、
    該光が照射された前記多結晶シリコン膜の表面から発生する1次回折光の像を撮像し、
    該撮像して得た前記1次回折光の像を処理して前記多結晶シリコン膜の画像を形成し、
    該形成した画像から予め設定した輝度レベル以下の領域を欠陥領域として抽出し、
    予め記憶しておいた前記線上に成形されたエキシマレーザの強度分布のデータに基づいて前記抽出された欠陥領域が前記アニール処理における前記エキシマレーザのエネルギの不足により発生したものであるのか、又は前記エキシマレーザエネルギの過多により発生したものであるかを判定し、
    該判定した結果を出力する
    ことを特徴とする多結晶シリコン膜の検査方法。
  7. 前記光が照射された前記多結晶シリコン膜が形成された基板を透過した光を検出し、
    該検出した前記透過光の情報に基づいて前記形成された画像の補正量を求め、
    該求めた画像補正量に基づいて前記形成された画像を補正する
    ことを更に備え、
    前記欠陥領域として抽出することを、前記補正された前記多結晶シリコン膜の画像から予め設定した輝度レベル以下の領域を欠陥領域として抽出することにより行うことを特徴とする請求項6記載の多結晶シリコン膜の検査方法。
  8. 前記基板に光を照射することを、一方向には平行光で、該一方向と直行する方向には集光して長い形状に成形した光を前記基板に照射することを特徴とする請求項6記載の多結晶シリコン膜の検査方法。
  9. 前記基板に光を照射することを、前記表面に多結晶シリコン膜が形成された基板に対して該基板の裏側から光を照射することにより行い、前記撮像することを、前記光が照射された前記多結晶シリコン膜の表面から発生する1次回折光の像を前記基板の表面の側で撮像することにより行うことを特徴とする請求項6記載の多結晶シリコン膜の検査方法。
  10. 前記判定することを、前記予め記憶しておいた前記線上に成形されたエキシマレーザの強度分布のデータにおいて、前記エキシマレーザの強度が低い部分でアニールされた前記多結晶シリコン膜の領域の画像が前記予め設定した輝度レベルよりも低い場合には、該領域が前記アニール処理における前記エキシマレーザのエネルギの不足により発生した欠陥領域であると判定し、前記エキシマレーザの強度が高い部分でアニールされた前記多結晶シリコン膜の領域の画像が前記予め設定した輝度レベルよりも低い場合には、該領域が前記アニール処理における前記エキシマレーザのエネルギの過多により発生した欠陥領域であると判定することを特徴とする請求項6記載の多結晶シリコン膜の検査方法。
JP2012209249A 2012-09-24 2012-09-24 多結晶シリコン膜の検査方法及びその装置 Pending JP2014063942A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209249A JP2014063942A (ja) 2012-09-24 2012-09-24 多結晶シリコン膜の検査方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209249A JP2014063942A (ja) 2012-09-24 2012-09-24 多結晶シリコン膜の検査方法及びその装置

Publications (1)

Publication Number Publication Date
JP2014063942A true JP2014063942A (ja) 2014-04-10

Family

ID=50618882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209249A Pending JP2014063942A (ja) 2012-09-24 2012-09-24 多結晶シリコン膜の検査方法及びその装置

Country Status (1)

Country Link
JP (1) JP2014063942A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991082A (zh) * 2019-12-19 2020-04-10 信利(仁寿)高端显示科技有限公司 一种基于准分子激光退火的Mura的量化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991082A (zh) * 2019-12-19 2020-04-10 信利(仁寿)高端显示科技有限公司 一种基于准分子激光退火的Mura的量化方法
CN110991082B (zh) * 2019-12-19 2023-11-28 信利(仁寿)高端显示科技有限公司 一种基于准分子激光退火的Mura的量化方法

Similar Documents

Publication Publication Date Title
JP5444053B2 (ja) 多結晶シリコン薄膜検査方法及びその装置
JP5824984B2 (ja) 太陽電池セル検査装置
KR101352702B1 (ko) 다결정 실리콘 박막 검사 방법 및 그 장치
JP2022176404A (ja) 欠陥良否判定方法及び装置
US8629979B2 (en) Inspection system, inspection method, and program
KR20160127768A (ko) 엑시머 레이저 어닐링 제어를 위한 모니터링 방법 및 장치
JP2009065146A (ja) 半導体薄膜の形成方法および半導体薄膜の検査装置
KR20090122123A (ko) 반도체 박막 형성 방법 및 반도체 박막 검사 장치
JP2011227049A (ja) 光透過性矩形板状物の端面検査方法及び端面検査装置
KR101302881B1 (ko) 다결정 실리콘 박막의 검사 방법 및 그 장치
TWI697664B (zh) 透過雷射結晶設備的雲紋量化系統及透過雷射結晶設備的雲紋量化方法
JP2014063942A (ja) 多結晶シリコン膜の検査方法及びその装置
JP5042503B2 (ja) 欠陥検出方法
JP2013258181A (ja) 多結晶シリコン膜の検査方法及びその装置
JP4246319B2 (ja) 照明むら測定方法および測定装置
US20200150052A1 (en) Apparatus and method for inspecting glass substrate
JP2014063941A (ja) 多結晶シリコン膜の検査方法及びその装置
JP2008180578A (ja) 周期性パターンのムラ検査装置
JP4256123B2 (ja) 結晶膜の検査方法および検査装置
WO2015040894A1 (ja) 欠陥観察装置およびその方法
JP5531405B2 (ja) 周期性パターンのムラ検査方法及び検査装置
KR101502430B1 (ko) 실시간 검사 기능을 구비한 평판 디스플레이 전극 제거 장치 및 그 제어 방법
US9194815B2 (en) Apparatus and method for inspecting crystallization
JP2014063943A (ja) 多結晶シリコン膜検査方法及びその装置
EP3433601A1 (en) Process and system for measuring morphological characteristics of fiber laser annealed polycrystalline silicon films for flat panel display