JP2014058029A - ロボット装置及び力覚センサの診断方法 - Google Patents

ロボット装置及び力覚センサの診断方法 Download PDF

Info

Publication number
JP2014058029A
JP2014058029A JP2012205972A JP2012205972A JP2014058029A JP 2014058029 A JP2014058029 A JP 2014058029A JP 2012205972 A JP2012205972 A JP 2012205972A JP 2012205972 A JP2012205972 A JP 2012205972A JP 2014058029 A JP2014058029 A JP 2014058029A
Authority
JP
Japan
Prior art keywords
force
detection
force sensor
jig
stress value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012205972A
Other languages
English (en)
Inventor
Ken Akimasa
謙 明正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012205972A priority Critical patent/JP2014058029A/ja
Publication of JP2014058029A publication Critical patent/JP2014058029A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

【課題】複数のロボットのそれぞれに設けられた力覚センサを容易に診断可能なロボット装置及び力覚センサの診断方法を提供すること。
【解決手段】アームと、エンドエフェクタと、力を検出する力覚センサと、を有する第1ロボット10及び第2ロボット10と、カメラ17と、エンドエフェクタのそれぞれに第1検出マーク54a及び第2検出マーク54bを有する力検出治具51を把持させ、力検出治具51を変形させた状態にて、力覚センサのそれぞれから検出される検出応力値と、カメラ17で撮影された力検出治具5の変形による検出マークの変形量と、から第1ロボット10及び第2ロボット10の力覚センサのそれぞれが正常であるかを判断するコントローラ6と、を備えた。
【選択図】図1

Description

本発明は、様々な部品の組み立てを行うロボット装置及びロボット装置の診断方法に関し、特には、力覚センサが設けられたロボット装置及びロボット装置に設けられた力覚センサの診断方法に関する。
近年、小型で複雑な構造をしたカメラ等の組み立てに対する自動化の要求が高まっており、これらの製品は小型のロボット装置で、高速かつ微妙な力制御を伴って精密部品の組み付けを行う必要がある。同時に、海外生産との競争力確保等のためコストを抑えた生産体制の確立が必要となり、それに伴った安定して稼動するロボット装置による生産性の高い生産ラインの確立が望まれている。
ここで、ロボット装置は、アームとエンドエフェクタとを有するロボットを備えており、ロボットには、エンドエフェクタで把持した部品を正確かつ確実に組み付けるため、アームとエンドエフェクタとの間に力覚センサが設けられている。そして、ロボット装置は、力覚センサで部品を組み付ける際の接触力を検知しながらロボットの制御を行っている。
しかし、例えば、歪みや変位を力に換算する力覚センサの場合、力覚センサはアームやエンドエフェクタよりも剛性が低いため、ロボットの教示やメンテナンス作業時の衝撃等によって検知ずれを生じる場合がある。このような場合、その都度生産ラインを止めて、力覚センサが正常であるかの診断を行う必要があった。
これに対しては、ロボットアームを備え付ける架台上に診断機器を設置し、定期的若しくは何らかの異常を検知した際に、その位置に移動して所定の作業を行うことで力覚センサの診断を行うロボット装置が提案されている(特許文献1参照)。
また、一方のロボットアームの先端を他方のロボットアームの先端で押圧して一方のロボットアームの多軸力センサに既知のモーメントを加え、多軸力センサの出力値に応じて他方の力覚センサを校正するロボット装置が提案されている(特許文献2参照)。
特開平05−96488号公報 特開平09−11168号公報
しかしながら、ロボット装置の架台上には組み立てに使用する治工具類が隙間なく配置されているため、これら以外に診断機器を設置するためのスペースを確保する必要がある特許文献1に記載のロボット装置では、装置が大型化してしまうという問題がある。また、特許文献2に記載のロボット装置の場合、2台のロボットアームのエンドエフェクタ同士を押圧させて検知するため、一方の力覚センサが正しく他方が異常であるとわかっている必要がある。そのため、どちらの力覚センサに異常があるかわからない場合には、1台ごとに診断をする必要があり多くの時間を必要とするという問題がある。
そこで、本発明は、複数のロボットのそれぞれに設けられた力覚センサを容易に診断可能なロボット装置及び力覚センサの診断方法を提供することを目的とする。
本発明は、ロボット装置において、アームと、前記アームの先端でワークに対して作業を行うエンドエフェクタと、前記アーム又は前記エンドエフェクタに設けられ、加えられた力を検出する力覚センサと、を有する複数のロボットと、カメラと、前記複数のロボットの前記エンドエフェクタのそれぞれに検出マークを有する弾性変形可能な力検出治具を把持させ、前記アームを駆動して前記力検出治具を変形させた状態にて、前記複数のロボットの前記力覚センサのそれぞれから検出される検出応力値と、前記カメラで撮影された前記検出マークの変形量と、から前記複数のロボットの前記力覚センサのそれぞれが正常であるかを判断する制御部と、を備えたことを特徴とする。
本発明によれば、複数のロボットのそれぞれに設けられた力覚センサを容易に診断可能なロボット装置及び力覚センサの診断方法を提供することができる。
本発明の実施形態に係るロボット装置の全体構造を模式的に示す図である。 本実施形態に係るロボット装置の診断に用いる力検出治具を示す図である。 本実施形態に係るロボット装置を制御するコントローラのブロック図である。 本実施形態に係る第1ロボットの第1力覚センサ及び第2ロボットの第2力覚センサの診断プログラムを実行するフローチャートである。 本実施形態に係るロボット装置の診断時における力検出治具の変形状態を示す図である。
以下、本発明の実施形態に係るロボット装置1について、図1から図5を参照しながら説明する。まず、ロボット装置1の概略構成について、図1から図3を参照しながら説明する。図1は、本発明の実施形態に係るロボット装置1の全体構造を模式的に示す図である。図2は、本実施形態に係るロボット装置1の診断に用いる力検出治具51を示す図である。図3は、本実施形態に係るロボット装置1を制御するコントローラ6のブロック図である。
図1に示すように、ロボット装置1は、部品を把持して組み立てを行う第1ロボット10及び第2ロボット20と、第1ロボット10の第1力覚センサ12及び第2ロボット20の第2力覚センサ22の診断を行うための力検出治具51と、を備えている。また、ロボット装置1は、力検出治具51を撮影するカメラ17と、第1ロボット10及び第2ロボット20を制御する制御部としてのコントローラ6と、を備えている。
第1ロボット10は、6軸多関節の第1アーム11と、第1アーム11の先端部に連結される第1エンドエフェクタ13と、第1エンドエフェクタ13に取り付けられる第1力覚センサ12と、を備えている。
第1アーム11は、各関節を各関節軸まわりにそれぞれ回転駆動する6つのアクチュエータを備えており、各アクチュエータのそれぞれを選択的に駆動することで第1エンドエフェクタ13を任意の3次元位置に移動させる。第1エンドエフェクタ13は、複数のフィンガーを有しており、複数のフィンガーでワークや部品等を把持する。第1力覚センサ12は、第1エンドエフェクタ13を用いて部品の組付け等を行う際に、部品同士や部品と治工具との接触で発生する力を検知する。
第2ロボット20は、6軸多関節の第2アーム21と、第2アーム21の先端部に連結される第2エンドエフェクタ23と、第2エンドエフェクタ23に設けられる第2力覚センサ22と、を備えている。なお、第2ロボット20は第1ロボット10と構成が同じであるため、第1ロボット10の説明を援用してその説明は省略する。
図2(a)に示すように、力検出治具51は、第1ロボット10が把持する第1被把持部52aと、第2ロボット20が把持する第2被把持部52bと、第1被把持部52aと第2被把持部52bとの間に設けられる弾性変形可能な弾性部53と、を備えている。
第1被把持部52aは、弾性部53に対して相対的な位置ずれを起こさないように、ネジ締め又は接着等により弾性部53に接合されている。また、第1被把持部52aには、第1検出マーク54aが設けられており、第1検出マーク54aは、図2(b)に示すように、力検出治具51の長手方向中心軸に平行な直線54cと、長手方向の基準となる位置を示す基準マーク54dと、から構成されている。基準マーク54dは、直線54cと直交しており、第1検出マーク54aは、所謂、十字型マークとなっている。
第2被把持部52bは、弾性部53に対して相対的な位置ずれを起こさないように、ネジ締め又は接着等により弾性部53に接合されている。また、第2被把持部52bには、第2検出マーク54bが設けられており、第2検出マーク54bは、図2(b)に示すように、力検出治具51の長手方向中心軸に平行な直線54cと、長手方向の基準となる位置を示す基準マーク54dと、から構成されている。基準マーク54dは、直線54cと直交しており、検出マーク54bは、所謂、十字型マークとなっている。
なお、第1検出マーク54a及び第2検出マーク54bは、カメラ17による撮影ミスや精度確保のため白地に黒、又は黒字に白などのコントラストを確保することが望ましい。また、第1検出マーク54a及び第2検出マーク54bは、例えば、図2(c)に示すように、力検出治具51の長手方向中心軸に平行な直線上に、2つ以上の円形マーク54eを配置したものであってもよい。長手方向に2点円形マークを配置することで、十字型マークと同様に、画像処理による計測を行うことができる。
力検出治具51は、このような第1検出マーク54a及び第2検出マーク54bを用いることで、第1被把持部52aと、第2被把持部52bと、の相対位置及び相対的な傾きの検出を行うことができる。
弾性部53は、第1被把持部52aのみを第1ロボット10に把持されている状態(片持ち状態)で容易に変形しない程度の剛性をもった弾性部材であり、例えば、金属製の板ばねを組み合わせて形成される。
カメラ17は、第1ロボット10が第1被把持部52aを把持し、第2ロボット20が第2被把持部52bを把持した際に、第1検出マーク54a及び第2検出マーク54bを撮影可能に第1ロボット10及び第2ロボット20の上方に配設されている。また、カメラ17は、第1力覚センサ12及び第2力覚センサ22の診断を行わない場合には、部品の3次元位置を測定するための部品の撮影に用いられている。
図3に示すように、コントローラ6は、演算装置60と、記憶装置61と、を有するコンピュータ本体に、第1ロボット10、第2ロボット20及びカメラ17がバスを介して接続されて構成されている。また、コンピュータ本体には、入力装置62、ティーチングペンダント63、ディスプレイ64、記録メディア読取装置66及び通信装置67などもバスを介して接続されている。なお、図3においては、これらを接続するためのインターフェイスは不図示としている。
演算装置60は、CPU60aと、画像処理装置60bと、を備えている。CPU60aは、カメラ制御部60dと、ロボット制御部60eと、を備えている。カメラ制御部60dは、記憶装置61に記憶された各種プログラムや入力装置62から入力される設定等に従って、部品や力検出治具51の撮影等を行う。ロボット制御部60eは、カメラ制御部60dにより計測された画像、後述する診断プログラムや入力装置62から入力される設定等に基づいて、第1ロボット10及び第2ロボット20の制御や第1力覚センサ12及び第2力覚センサ22診断等を行う。なお、カメラ制御部60dによる部品や力検出治具51の撮影、ロボット制御部60eによる第1ロボット10及び第2ロボット20の制御についての精細な説明は省略する。
画像処理装置60bは、CPU60aからの描画指示に応じてディスプレイ64を制御して、画面上に画像(例えば、カメラ17で撮影した画像)を表示させる。記憶装置61は、バスを介してCPU60aに接続されており、各種プログラムやデータ等が格納されたROM61aと、CPU60aの作業領域として確保されたRAM61bと、を備えている。
入力装置62は、キーボード62aと、マウス62bと、から構成されており、第1力覚センサ12及び第2力覚センサ22の診断に必要な情報、ワークや部品の3次元位置の計測に必要な情報、或いはその他の指示の入力を可能としている。記録メディア読取装置66は、第1力覚センサ12及び第2力覚センサ22の診断プログラム等の各種プログラムを記録したコンピュータ読み取り可能な記録媒体68を読み込み、ROM61aに格納させるため等に用いられる。通信装置67は、例えば、上述したような記録媒体68を使用せずに、通信装置67を介してインターネット等から配信される更新プログラム等をダウンロードする際に用いられる。
以上のような構成のロボット装置1の第1エンドエフェクタ13又は第2エンドエフェクタ23で部品を把持し、部品を組付ける際に部品同士や部品と治工具との接触で発生する応力を第1力覚センサ12及び第2力覚センサ22で検知する。そして、検出した応力が予め決められた応力の範囲内に収まるように、コントローラ6で第1ロボット10及び第2ロボット20の動作を制御する。これにより、単なる位置決め精度に頼らないバラツキを許容したフレキシブルな部品の組み立てが実現され、同時に部品の異常な接触力による不良の発生を抑え、安定した品質の組み立てを行うことができるようになる。
次に、第1ロボット10の第1力覚センサ12及び第2ロボット20の第2力覚センサ22の力検出治具51を用いた力覚センサの診断方法について、図4及び図5を参照しながら説明する。図4は、本実施形態に係る第1ロボット10の第1力覚センサ12及び第2ロボット20の第2力覚センサ22の診断プログラムを実行するフローチャートである。図5は、本実施形態に係るロボット装置1の診断時における力検出治具51の変形状態を示す図である。
まず、力検出治具51を変形させた際の変形方向、変形させる力及び変形量との関係を予め測定(記録)すると共に、各変形方向の弾性係数Kを求めておき、力検出治具51の変形量に合わせて発生する応力値の大きさ(マップ応力値)を予め求めておく。
次に、図4に示すように、第1検出マーク54a及び第2検出マーク54bがカメラ17で撮影できるように、第1検出マーク54a及び第2検出マーク54bを上向きにした状態で第1エンドエフェクタ13に第1被把持部52aを把持させる(ステップS1)。つまり、診断用の力検出治具51を準備し、これを第1エンドエフェクタ13に把持させる(治具把持工程)。
次に、第1アーム21を駆動して、把持した力検出治具51をカメラ17の視野の下に移動させる(ステップS2)。力検出治具51がカメラ17の視野の下に移動すると、第2ロボット20の第2エンドエフェクタ23がカメラ17の視野の下に入るように、第1アーム21を駆動する(ステップS3)。
この状態(第2ロボット20が力検出治具51を把持していない状態)で、まず、力検出治具51の第1検出マーク54a及び第2検出マーク54bをカメラ17で撮影する(ステップS4)。そして、第1検出マーク54a及び第2検出マーク54bの相対位置を画像処理装置60bによる画像処理で計測させ、CPU60aを通してRAM61bに記憶させておく(ステップS5)。同様に、この状態での第1力覚センサ12の検出応力値Fb1及び第2力覚センサ22の検出応力値Fb2を測定し、RAM61bに記憶させておく(ステップS6)。
次に、第2ロボット20の第2エンドエフェクタ23で力検出治具51の第2被把持部52bを把持させる(ステップS7、治具把持工程)。第2エンドエフェクタ23が第2被把持部52bを把持すると、第1アーム11及び第2アーム21を駆動して、力検出治具51の弾性部53を変形させる(ステップS8、治具変形工程)。例えば、図5(a)に示すように、第1被把持部52aと第2被把持部52bとを弾性部53に向かって押圧し、弾性部53を変形させる。このとき、カメラ17で第1検出マーク54a及び第2検出マーク54bを撮影し(ステップS9)、第1検出マーク54a及び第2検出マーク54bの相対位置を認識して画像処理装置60bによる画像処理で計測させる。そして、これをRAM61bに記憶させておく(ステップS10)。同様に、この状態での第1力覚センサ12の検出応力値Fa1及び第2力覚センサ22の検出応力値Fa2を測定し、RAM61bに記憶させておく(ステップS11)。
次に、第1力覚センサ12の検出応力値の変化量(Fa1−Fb1)をΔF1、第2力覚センサ22の検出応力値の変化量(Fa2−Fb2)をΔF2とし、ΔF1及びΔF2の演算を行う。
次に、変形前に撮影した第1検出マーク54a及び第2検出マーク54bの相対位置と、変形後に撮影した第1検出マーク54a及び第2検出マーク54bの相対位置と、から力検出治具51の変形方向(変形状態)及び変形量を求める(変形量検出工程)。そして、予め測定した変形方向、変形させる力及び変形量との関係を示す応力値のマップから、対応した第1力覚センサ12のマップ応力値Fc1と、第2力覚センサ22のマップ応力値Fc2を抽出する。
そして、変化量ΔF1とマップ応力値Fc1とを比較し(ステップS12)、比較した値が所定のずれ量の範囲内であれば、第1力覚センサ12は正常と判断し(ステップS13)、所定のずれ量の範囲外であれば、異常と判断する(ステップS14、判断工程)。
同様に、変化量ΔF2とマップ応力値Fc2とを比較し(ステップS15)、比較した値が所定のずれ量の範囲内であれば、第2力覚センサ22は正常と判断し(ステップS17)、所定のずれ量の範囲外であれば、異常と判断する(ステップS16、判断工程)。
以上説明したように、本実施形態に係るロボット装置1は、力検出治具51を第1ロボット10と第2ロボット20とに把持させ、力検出治具51を変形させて第1力覚センサ12及び第2力覚センサ22の異常診断を行う。そのため、架台上に異常診断用の専用の機器を置くスペースやそれに伴う配線を必要としない。これにより、ロボット装置を小型化することができる。
また、第1力覚センサ12及び第2力覚センサ22と異なる力検知センサとしての力検出治具を用いて診断することで、第1力覚センサ12及び第2力覚センサ22のいずれか異常があるか分からない場合でも、1台ごとに診断をしなくても診断が可能となる。そのため、一度に短時間でそれぞれの力覚センサの診断が可能となり、診断時間の短縮を図ることができる。
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されるものではない。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されない。
例えば、本実施形態においては、力検出治具51の弾性部53を図5(a)に示す圧縮方向に変形させたが本発明においてはこれに限定されない。例えば、図5(b)に示すように、弾性部53をせん断方向に変形させてせん断方向における変形量ΔL及びマップ応力値Fc1、Fc2を予め求めておき、力検出治具51をせん断方向に変形させてY方向に負荷をかけて診断してもよい。力覚センサ12のZ方向を診断する場合は、力検出治具51を90°回転させて、同様に行うことで診断が可能となる。
また、例えば、図5(c)に示すように、弾性部53を曲げ方向に変形させて曲げ方向における変形量Δd及びマップ応力値Fc1、Fc2を予め求めておき、力検出治具51に曲げモーメントを負荷して診断してもよい。更に、例えば、図5(d)に示すように、弾性部53をねじり方向に変形させてねじり方向における変形量ΔL及びマップ応力値Fc1、Fc2を予め求めておき、力検出治具51にねじり負荷をかけて診断してもよい。
また、本実施形態においては、複数のロボットとして、第1ロボットと第2ロボットとを用いて説明したが、本発明においてはこれに限定されない。複数のロボットは、例えば、3台のロボットを用いるものであってもよい。
また、本実施形態においては、力覚センサをエンドエフェクタに設けたが、本発明においてはこれに限定されない。力覚センサは、アームに設けてもよく、エンドエフェクタとアームとの間に設けてもよい。
1 ロボット装置
6 コントローラ
10 第1ロボット
11 第1アーム
12 第1力覚センサ
13 第1エンドエフェクタ
17 カメラ
20 第2ロボット
21 第2アーム
22 第2力覚センサ
23 第2エンドエフェクタ
51 力検出治具
54a 第1検出マーク(検出マーク)
54b 第2検出マーク(検出マーク)

Claims (8)

  1. アームと、前記アームの先端でワークに対して作業を行うエンドエフェクタと、前記アーム又は前記エンドエフェクタに設けられ、加えられた力を検出する力覚センサと、を有する複数のロボットと、
    カメラと、
    前記複数のロボットの前記エンドエフェクタのそれぞれに検出マークを有する弾性変形可能な力検出治具を把持させ、前記アームを駆動して前記力検出治具を変形させた状態にて、前記複数のロボットの前記力覚センサのそれぞれから検出される検出応力値と、前記カメラで撮影された前記検出マークの変形量と、から前記複数のロボットの前記力覚センサのそれぞれが正常であるかを判断する制御部と、を備えた、
    ことを特徴とするロボット装置。
  2. 前記制御部は、前記カメラにより撮影された前記検出マークの前記変形量を画像から計測し、前記検出マークの前記変形量に応じて予め記録された前記力検出治具に生じる応力値のマップの中から、前記カメラで撮影した前記検出マークの前記変形量に対応したマップ応力値を抽出し、前記検出応力値と前記マップ応力値とを比較して、前記複数のロボットの前記力覚センサのそれぞれが正常であるかを判断する、
    ことを特徴とする請求項1に記載のロボット装置。
  3. 前記制御部は、前記検出応力値が前記マップ応力値に対して所定の範囲内にある場合には、前記力覚センサが正常であると判断する、
    ことを特徴とする請求項2に記載のロボット装置。
  4. 制御部が、アームと、前記アームの先端でワークに対して作業を行うエンドエフェクタと、前記アームと前記エンドエフェクタとの間に設けられた力覚センサと、を有する複数のロボットの前記エンドエフェクタのそれぞれに、検出マークを有する弾性変形可能な力検出治具を把持させる治具把持工程と、
    前記制御部が、前記複数のロボットの前記アームのそれぞれを駆動して、前記力検出治具に力を加える治具変形工程と、
    前記制御部が、前記治具変形工程で変形した前記力検出治具の前記検出マークをカメラで撮影して、前記力検出治具の変形量を検出する変形量検出工程と、
    前記制御部が、前記変形量検出工程で検出した前記力検出治具の前記変形量と、前記力検出治具を変形させることにより前記複数のロボットの力覚センサのそれぞれから検出される検出応力値と、から前記複数のロボットの力覚センサのそれぞれが正常であるかを判断する判断工程と、を備えた、
    ことを特徴とする力覚センサの診断方法。
  5. 前記判断工程は、前記制御部が、前記カメラにより撮影された前記検出マークの前記変形量を認識し、前記検出マークの前記変形量に応じて予め記録された前記力検出治具に生じる応力値のマップの中から、前記カメラで撮影した前記検出マークの前記変形量に対応したマップ応力値を抽出し、前記検出応力値と前記マップ応力値とを比較して、前記複数のロボットの前記力覚センサのそれぞれが正常であるかを判断する、
    ことを特徴とする請求項4に記載の力覚センサの診断方法。
  6. 前記判断工程は、前記制御部が、前記検出応力値が前記マップ応力値に対して所定の範囲内にある場合には、前記力覚センサが正常であると判断する、
    ことを特徴とする請求項5に記載の力覚センサの診断方法。
  7. 請求項4ないし6のいずれか1項に記載の各工程をコンピュータに実行させるための力覚センサの診断プログラム。
  8. 請求項7に記載の力覚センサの診断プログラムを記録したコンピュータ読み取り可能な記録媒体。
JP2012205972A 2012-09-19 2012-09-19 ロボット装置及び力覚センサの診断方法 Pending JP2014058029A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012205972A JP2014058029A (ja) 2012-09-19 2012-09-19 ロボット装置及び力覚センサの診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205972A JP2014058029A (ja) 2012-09-19 2012-09-19 ロボット装置及び力覚センサの診断方法

Publications (1)

Publication Number Publication Date
JP2014058029A true JP2014058029A (ja) 2014-04-03

Family

ID=50614992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205972A Pending JP2014058029A (ja) 2012-09-19 2012-09-19 ロボット装置及び力覚センサの診断方法

Country Status (1)

Country Link
JP (1) JP2014058029A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950816A (zh) * 2015-06-29 2015-09-30 贵州桂荣科技有限公司 一种电子手环组装设备智能编码控制方法
WO2023119449A1 (ja) * 2021-12-21 2023-06-29 ファナック株式会社 制御装置及び機械システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950816A (zh) * 2015-06-29 2015-09-30 贵州桂荣科技有限公司 一种电子手环组装设备智能编码控制方法
WO2023119449A1 (ja) * 2021-12-21 2023-06-29 ファナック株式会社 制御装置及び機械システム

Similar Documents

Publication Publication Date Title
CN108453701B (zh) 控制机器人的方法、示教机器人的方法和机器人系统
US8498745B2 (en) Robot apparatus and gripping method for use in robot apparatus
JP6108860B2 (ja) ロボットシステム及びロボットシステムの制御方法
JP6429473B2 (ja) ロボットシステム、ロボットシステムの校正方法、プログラム、およびコンピュータ読み取り可能な記録媒体
US9969088B2 (en) Force sensor correcting method
US8712589B2 (en) System and method for judging success or failure of work of robot
EP3539734B1 (en) Driving mechanism, robot apparatus control method and component manufacturing method
JP4643619B2 (ja) ロボット制御装置
JP2011230243A (ja) ロボットの教示手順校正装置および方法
JP2019069493A (ja) ロボットシステム
JP2018167334A (ja) 教示装置および教示方法
JP6312113B2 (ja) 分割鏡式望遠鏡の鏡交換装置およびその鏡交換方法
JP4613955B2 (ja) 回転軸線算出方法、プログラムの作成方法、動作方法およびロボット装置
JP5787646B2 (ja) ロボットシステム及び部品の製造方法
JP7281910B2 (ja) ロボット制御システム
JP2021003771A (ja) ロボットシステム
JP2014058029A (ja) ロボット装置及び力覚センサの診断方法
JP2014104530A (ja) ロボットシステム及びロボットシステムの制御方法
JP7392154B2 (ja) ロボット制御装置
JP2016203282A (ja) エンドエフェクタの姿勢変更機構を備えたロボット
JP6091272B2 (ja) 多関節ロボットのバネ定数補正装置
JP2022168826A (ja) 力覚センサの校正方法
CN114791333A (zh) 力传感器测量坐标系标定方法、装置、设备及存储介质
JP5942720B2 (ja) 状態判別方法、ロボット、制御装置、及びプログラム
US20240131699A1 (en) Robot system, learning apparatus, information processing apparatus, learned model, control method, information processing method, method for manufacturing product, and recording medium