JP2014058003A - 校正治具及びロボット装置並びに校正治具を用いたロボット装置の校正方法 - Google Patents

校正治具及びロボット装置並びに校正治具を用いたロボット装置の校正方法 Download PDF

Info

Publication number
JP2014058003A
JP2014058003A JP2012202800A JP2012202800A JP2014058003A JP 2014058003 A JP2014058003 A JP 2014058003A JP 2012202800 A JP2012202800 A JP 2012202800A JP 2012202800 A JP2012202800 A JP 2012202800A JP 2014058003 A JP2014058003 A JP 2014058003A
Authority
JP
Japan
Prior art keywords
calibration
end effector
calibration jig
claws
pressure contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012202800A
Other languages
English (en)
Inventor
Kinya Kamiguchi
欣也 上口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012202800A priority Critical patent/JP2014058003A/ja
Publication of JP2014058003A publication Critical patent/JP2014058003A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

【課題】簡単に高精度な校正を行うことが可能な校正治具及び校正治具により校正されたロボット装置並びに校正治具を用いたロボット装置の校正方法を提供すること。
【解決手段】多軸多関節のロボットアーム20の先端軸J6に接続されたエンドエフェクタ21のワークに対する傾きの校正に用いられる校正治具4において、ワークが載置される架台3に取り付け可能なマグネットスタンド40と、マグネットスタンド40にマグネットスタンド40から延設される弾性軸41と、弾性軸41に回転自在に支持され、エンドエフェクタ21により圧接保持可能であり、かつ弾性軸41と直交する方向の断面の形状が弾性軸41を中心とした真円となるように形成された球体部品42と、を備えた。
【選択図】図1

Description

本発明は、様々な部品の組み立てを行うロボット装置の校正に用いられる校正治具及び校正治具で校正可能なロボット装置並びに校正治具を用いたロボット装置の校正方法に関する。
近年、小型で複雑な構造をしたカメラ等の組み立てに対する自動化の要求が高まっており、これらの製品は小型のロボット装置で、高速かつ微妙な力制御を伴って精密な組み付けを行う必要がある。そのため、ロボット装置は、使用に際し、動作を精密に校正しておく必要があり、従来より、様々な校正装置(校正治具)や校正方法が提案されている。
例えば、2つの微小変位計と円柱治具とを用い、ロボットの先端軸を回転させて微小変位計の信号を読み取り、読み取った情報からロボットの先端軸を校正する校正装置が開示されている(特許文献1参照)。
また、近年のロボット装置は、生産効率化から生産現場のセル化が求められており、複数の作業工程を実行可能とするエンドエフェクタ(把持機構)を備えたロボット装置が広く使用されている。このようなロボット装置は、エンドエフェクタに様々な作業工程を実行させることから高い動作精度が求められており、それに伴った高い校正精度を必要としている。例えば、複数爪(例えば、3爪)を有するエンドエフェクタの場合、ワークを把持した際の複数爪それぞれの位置により把持されたワークの中心位置が決まるため、複数爪の偏心を校正しておく必要がある。これに対しては、円筒ワークを回転させながら側面に測定子を倣わせることで円筒のZ軸の位置を測定して校正する校正方法が開示されている(特許文献2参照)。
特開平01−58490号公報 特開2010−266413号公報
しかしながら、特許文献1に記載の校正装置及び特許文献2に記載の校正方法のいずれにおいても、偏心の校正を行う前にロボットの先端軸の傾き校正を行わないため、複数爪の傾きに対する校正が行われず、爪の先端位置での校正残差が残ってしまう。そのため、例えば、ワークを把持する際に複数爪がワークに衝突し、ワークの破損や爪の変形を引き起こすおそれがあった。また、ロボットの繰返し位置の再現性等から、爪のワークの掴む位置が変わることによって把持中心がずれてしまい、組付け作業などで組み付けられずに不良品となるおそれがあるという問題があった。
そこで、本発明は、容易に高精度な校正を行うことが可能な校正治具及び校正治具により校正されたロボット装置並びに校正治具を用いたロボット装置の校正方法を提供することを目的とする。
本発明は、ロボットアームの先端軸に接続されたエンドエフェクタのワークに対する傾きの校正に用いられる校正治具において、ワークが載置される架台に取り付け可能な取付け台と、前記架台に前記取付け台から延設される回転軸と、前記回転軸に回転自在に支持され、前記エンドエフェクタにより圧接保持可能であり、かつ前記回転軸と直交する方向の断面の形状が前記回転軸を中心とした真円となるように形成された被圧接部材と、を備えたことを特徴とする。
本発明によれば、校正治具を用いてエンドエフェクタの校正を行う際に、エンドエフェクタのワークに対する傾き校正を行うことにより、簡単に高精度なエンドエフェクタの校正を行うことできる。
本発明の実施形態に係るロボット装置の全体構成を模式的に示す正面図である。 本実施形態に係る多関節ロボットを制御する制御部のブロック図である。 第1実施形態に係る校正治具を示す断面図である。 第1実施形態に係る校正治具を用いたロボット装置の校正方法を示すフローチャートである。 第2実施形態に係る校正治具を示す断面図である。 第3実施形態に係る校正治具を示す断面図である。 校正治具の他の形態を示す断面図である。 校正治具の検出感度を示す図である。
<第1実施形態>
以下、本発明の第1実施形態に係るロボット装置1について、図1から図4を参照しながら説明する。まず、ロボット装置1の全体構成について、図1及び図2を参照しながら説明する。図1は、本発明の第1実施形態に係るロボット装置1の全体構成を模式的に示す正面図である。図2は、第1実施形態に係る多関節ロボット2を制御する制御部6のブロック図である。
図1に示すように、本実施形態に係るロボット装置1は、ワークの組み立てを行う多関節ロボット2と、ワークの組み立てが行われる架台3と、不図示のステレオカメラと、多関節ロボット2を制御する制御部6と、を備えている。
多関節ロボット2は、6軸多関節のロボットアーム20と、ロボットアーム20の先端軸J6に接続されたエンドエフェクタ21と、を備えている。ロボットアーム20は、各関節を各関節軸J1〜J6まわりにそれぞれ回転駆動する6つのアクチュエータ(図示せず)を備えており、6つのアクチュエータのそれぞれを選択的に駆動することでエンドエフェクタ21を任意の3次元位置に移動させる。
エンドエフェクタ21は、ワーク等を圧接保持可能な3つの爪22、23、24と、3つの爪22、23、24を駆動させる不図示のアクチュエータと、力覚センサ25と、を備えている。3つの爪22、23、24は、ロボットアーム20の先端軸J6の中心に向かって移動自在に構成されており、把持中心となる先端軸J6の中心に対して接離することで開閉し、開閉することでワーク等を挟み込んで把持等する。具体的には、3つの爪22、23、24を先端軸J6の中心に向かって移動させることでワーク等を挟んで把持し、先端軸J6の中心から離反させることでワーク等を離す。なお、3つの爪22、23、24を駆動するアクチュエータとしては、ステッピングモータやロータリーエンコーダ等が例示できる。また、力覚センサ25は、3つの爪22、23、24のそれぞれにかかる3軸方向の力及び3軸モーメントを検出可能になっている。
このように、エンドエフェクタ21は、ロボットアーム20の各関節の駆動により移動し、移動した位置でアクチュエータを駆動することで3つの爪22、23、24を開閉させてワーク等を把持する。また、その際、力覚センサ25で3つの爪22、23、24のそれぞれに生じる反力(応力)を検出することで、3つの爪22、23、24やワークの破損や変形等を防止可能に制御される。
架台3は、矩形箱状に形成されており、上面にワークが載置される平面上の載置部30が設けられている。本実施形態においては、載置部30は、鉄系の材料により形成されている。また、載置部30の略中央部には、ワークの組み立てに用いられる不図示の治具が設けられており、その周りには、部品供給器や工具置台等が配置される。更に、架台3の下部には、架台を移動させるための不図示のキャスターと、架台3を床面に固定させるための不図示の固定金具とが設けられており、任意の位置に移動した後、固定可能となっている。ステレオカメラは、架台3の載置部30に載置されたワークやエンドエフェクタ21、後述する校正治具4等を撮像する。
図2に示すように、制御部6は、演算装置60と、記憶装置61と、を有するコンピュータ本体に、ロボットアーム20、エンドエフェクタ21、ステレオカメラがバスを介して接続されて構成されている。また、コンピュータ本体には、入力装置62、ティーチングペンダント63、ディスプレイ64、スピーカ65、記録メディア読取装置66及び通信装置67などもバスを介して接続されている。なお、図2においては、これらを接続するためのインターフェイスは不図示としている。
演算装置60は、CPU60aと、画像処理装置60bと、音声処理装置60cと、を備えている。CPU60aは、カメラ制御部60dと、ロボット制御部60eと、を備えている。カメラ制御部60dは、ステレオカメラにより撮像された撮像情報に基づいて、記憶装置61に記憶された各種プログラムや入力装置62から入力される設定等に従って、ワーク、エンドエフェクタ21及び校正治具4等の3次元位置等を計測する。ロボット制御部60eは、カメラ制御部60dにより計測された3次元位置及び記憶装置61に記憶された各種プログラムや入力装置62から入力される設定等に基づいて、ロボットアーム20やエンドエフェクタ21を制御する。例えば、ロボット制御部60eは、記憶装置61に記憶された後述する校正プログラムに従って、エンドエフェクタ21の調芯及び傾き校正を実行させる。
なお、カメラ制御部60dによるワーク等の3次元位置計測、ロボット制御部60eによるロボットアーム20やエンドエフェクタ21の動作制御についての精細な説明は省略する。また、校正治具4を用いたロボット制御部60eによるエンドエフェクタ21の傾き校正については後に詳しく説明する。
画像処理装置60bは、CPU60aからの描画指示に応じてディスプレイ64を制御して、画面上に所定の画像を表示させる。音声処理装置60cはCPU60aからの発音指示に応じた音声信号生成してスピーカ65に出力する。記憶装置61は、バスを介してCPU60aに接続されており、各種プログラムやデータ等が格納されたROM61aと、CPU60aの作業領域として確保されたRAM61bと、を備えている。
入力装置62は、キーボード62aと、マウス62bと、から構成されており、ワークや校正治具4の3次元位置の計測に必要な情報、或いはその他の指示の入力を可能としている。記録メディア読取装置66は、校正プログラム等の各種プログラムを記録したコンピュータ読み取り可能な記録媒体68を読み込み、ROM61aに格納させるため等に用いられる。通信装置67は、例えば、上述したような記録媒体68を使用せずに、通信装置67を介してインターネット等から配信される更新プログラム等をダウンロードする際に用いられる。
次に、上述のように構成されたロボット装置1による多関節ロボット2の校正について、図1に加え、図3から図5を参照しながら説明する。まず、多関節ロボット2の校正に用いられる校正治具4について、図3を参照しながら説明する。図3は、第1実施形態に係る校正治具4を示す断面図である。
図3に示すように、校正治具4は、取付け台としてのマグネットスタンド40と、マグネットスタンド40に支持される回転軸としての弾性軸41と、弾性軸41に回転自在に支持される被圧接部材としての球体部品42と、を備えている。なお、本実施形態においては、弾性変形可能な弾性軸41を用いて球体部品42を偏心回転可能に構成したが、例えば、マグネットスタンドや、回転軸とマグネットスタンドとの間に偏心回転を許容する許容部を設けて球体部品を偏心回転可能にしてもよい。
マグネットスタンド40は、マグネットスイッチ43を有しており、架台3の載置部30上の任意の位置に配置した後、マグネットスイッチ43をオンすることで磁力により載置部30に固定可能になっている。なお、本実施形態においては、マグネットスタンド40を載置部30上に設置するが、磁力で固定可能な平面を有する場所であれば、例えば、載置部30に設けられた治具等に設置してもよい。マグネットスタンド40を取付け台とすることで、載置部30の任意の位置に校正治具4を設置可能になる。
弾性軸41は、弾性変形可能な材料により棒状に形成されており、マグネットスタンド40を載置部30に設置した際の載置部30に対する垂直精度が±0.3°以内になるように、マグネットスタンド40から延設されている。また、弾性軸41は、上支持部材44と下支持部材45とを有しており、上支持部材44と下支持部材45とは、上支持部材44と下支持部材45との間で球体部品42を回転自在に支持している。なお、本実施形態においては、弾性軸41は、あらかじめ軸方向の曲げ試験を実施し、部品としての応力−歪み曲線を取得している金属材料で形成されている。
球体部品42は、軸心と直交する方向の断面の形状が弾性軸41を中心とした真円となるような球状に形成されており、軸心には、弾性軸41が貫通可能な貫通孔46が形成されている。また、貫通孔46には、複数のベアリング47が配設されており、複数のベアリング47は、弾性軸41を貫通孔46に貫通させた際の球体部品42を回転自在に支持する。言い換えると、球体部品42は、複数のベアリング47を介して弾性軸41に回転自在に支持されている。
次に、校正治具4を用いたロボット装置1の校正方法について、図4に示すフローチャートに沿って説明する。図4は、第1実施形態に係る校正治具4を用いたロボット装置1の校正方法を示すフローチャートである。
図4に示すように、まず、架台3の載置部30上に校正治具4を配置する。校正治具4を配置する位置は、多関節ロボット2のロボットアーム20の可動範囲内であり、載置部30上の空いているスペースであればよい。載置部30上に校正治具4を配置すると、マグネットスイッチ43をオンして、マグネットスタンド40を載置部30に磁力で固定する(ステップST1)。
次に、ロボットアーム20を可動して、エンドエフェクタ21を校正治具4の上方に位置させた後、ロボットアームの先端軸J6(エンドエフェクタ21の把持中心)が弾性軸41と同軸上に位置するようにロボットアーム20を可動制御(指令)する。可動制御によりロボットアーム20が移動すると、エンドエフェクタ21を校正治具4に向けて下降させ、エンドエフェクタ21の爪22、23、24で校正治具4の球体部品42の表面を圧接保持して把持させる(圧接保持工程、ステップST2)。なお、球体部品42を把持させた際の力覚センサ25の出力値の最大値がレンジの1/3程度までとすることが好ましい。
次に、ロボットアーム20の先端軸J6を回転駆動して、エンドエフェクタ21とエンドエフェクタ21の爪22、23、24によって把持された球体部品42とを1回転させる。そして、1回転した際に出力される、弾性軸41に対する先端軸J6の傾きから発生する、エンドエフェクタ21の爪22、23、24への弾性軸41からの反力(応力)を検出(測定)する(応力測定工程、ステップST3)。
反力を測定すると、球体部品42を離し、反力とロボットアーム20の先端軸J6の回転位置とから、エンドエフェクタ21の弾性軸41に対する傾き校正量(先端軸J6の弾性軸41に対する傾き校正量)を算出(演算)する(演算工程、ステップST4)。
次に、算出した傾き校正量に基づいて、ロボットアーム20を駆動制御して、エンドエフェクタ21の姿勢、すなわちエンドエフェクタ21の弾性軸41に対する傾きを校正する(傾き校正工程、ステップST5)。これにより、エンドエフェクタ21の弾性軸41に対する傾きが校正される。
傾きを校正すると、再び、球体部品42をエンドエフェクタ21の爪22、23、24で把持させる(ステップST6)。そして、先端軸J6を回転駆動して、エンドエフェクタ21とエンドエフェクタ21の爪22、23、24によって把持された球体部品42とを1回転させ、弾性軸41に対するエンドエフェクタ21の把持中心の偏心を測定する(ステップST7)。球体部品42を1回転させることで、先端軸J6からの各爪22、23、24のバラつき、即ち、エンドエフェクタ21の把持中心からのズレにより発生する弾性軸41の変形による反力が検出可能になる。
反力を測定すると、再び、球体部品42を離し、反力から爪22、23、24の位置の校正量を算出し、爪22、23、24を移動させることでエンドエフェクタ21の把持中心を弾性軸41と同軸上に位置させる(ステップST8、ST9)。これにより、エンドエフェクタ21の偏心が校正される。つまり、エンドエフェクタ21が調芯される。
次に、偏心の許容値(閾値)を設定し、許容値を満たすまで上述を繰り返して偏心の校正を行う(ステップST10)ことで、より高精度な校正を行うことが可能になる。なお、本実施形態においては、ステップST9による校正後、許容値を満たすまで校正を繰り返し実施させたが、1回のみの校正で終了させてもよい。
また、上述の圧接保持工程、応力測定工程、演算工程及び傾き校正工程は、校正プログラムとして記憶装置61に記憶可能であり、ユーザ等によって校正治具4を載置部30に設置された後、校正プログラムを実行することで、調芯及び傾き校正は実行可能となる。
このように、本実施形態に係る校正治具4を用いてロボット装置1を校正することで、エンドエフェクタ21の傾き補正を行うことができる。そのため、例えば、エンドエフェクタの傾きから生じるワークに対する把持中心の位置ズレを防止することができる。これにより、ワークを把持する際のワークやエンドエフェクタの破損等を防止可能となり、組み付け作業時等における不良品の発生等を防止することができる。その結果、品質の安定した製造プロセスを構築することができ、高品質な製品を製造することができる。
また、校正治具4は、傾き校正と調芯とを実施可能である。そのため、例えば、調芯のみを行った場合に生じ得るエンドエフェクタの校正残差を解消させることができる。これにより、より高精度な校正を行うことができる。また、1回の校正作業で調芯及び傾き校正が可能であるため、校正時間を短くすることが可能になる。これにより、生産効率を向上させることができる。
また、本実施形態に係る校正治具4は、マグネットスタンド40で載置部30に設置し、マグネットスイッチで固定するため、簡単な構成で、着脱が容易となると共に、設置場所の自由度を向上させることができる。
<第2実施形態>
次に、本発明の第2実施形態に係るロボット装置1Aついて、図1及び図2を援用すると共に、図5を参照しながら説明する。第2実施形態は、多関節ロボット2の校正に用いられる校正治具の形状が第1実施形態と相違する。そのため、第2実施形態においては、第1実施形態と相違する点、即ち、校正治具を中心に説明し、第1実施形態と同様の構成については、同じ符号を付してその説明を省略する。図5は、第2実施形態に係る校正治具4Aを示す断面図である。
図5に示すように、校正治具4Aは、マグネットスタンド40と、弾性軸41と、弾性軸41に回転自在に支持される被圧接部材としての円柱体部品42Aと、を備えている。なお、本実施形態においては、弾性変形可能な弾性軸41を用いて円柱体部品42Aを偏心回転可能に構成したが、例えば、マグネットスタンドや回転軸とマグネットスタンドとの間に偏心回転を許容する許容部を設けて偏心回転可能にしてもよい。
円柱体部品42Aは、軸心と直交する方向の断面の形状が弾性軸41を中心とした真円となるような円柱状に形成されており、軸心には、弾性軸41が貫通可能な貫通孔46が形成されている。また、貫通孔46には、複数のベアリング47が配設されており、複数のベアリング47は、弾性軸41を貫通孔46に貫通させた際の円柱体部品42Aを回転自在に支持する。言い換えると、円柱体部品42Aは、複数のベアリング47を介して弾性軸41に回転自在に支持されている。
校正治具4Aを用いたロボット装置1Aの校正方法については、第1実施形態と同様であるため、その説明は省略する。
このように、第2実施形態に係る校正治具4Aを用いてロボット装置1Aを校正することで、エンドエフェクタ21の傾き補正を容易に行うことができる。また、エンドエフェクタ21の爪22、23、24で円柱体部品42Aを把持する際、爪22、23、24と円柱体部品42Aとが面接触するため、調芯を行う際に確実に円柱体部品42Aを把持させることが可能になる。
<第3実施形態>
次に、本発明の第3実施形態に係るロボット装置1Bついて、図1及び図2を援用すると共に、図6を参照しながら説明する。第3実施形態は、多関節ロボット2の校正に用いられる校正治具の形状が第1実施形態と相違する。そのため、第3実施形態においては、第1実施形態と相違する点、即ち、校正治具を中心に説明し、第1実施形態と同様の構成については、同じ符号を付してその説明を省略する。図6は、第3実施形態に係る校正治具4Bを示す断面図である。
図6に示すように、校正治具4Bは、マグネットスタンド40と、弾性軸41と、弾性軸41に回転自在に支持される被圧接部材としての円錐体部品42Bと、を備えている。なお、本実施形態においては、弾性軸41を用いて円錐体部品42Bを偏心回転可能に構成したが、例えば、マグネットスタンドや、回転軸とマグネットスタンドとの間に偏心回転を許容する許容部を設けて円錐体部品42Bを偏心回転可能にしてもよい。
円錐体部品42Bは、軸心と直交する方向の断面の形状が弾性軸41を中心とした真円となるような円錐状に形成されており、軸心には、弾性軸41が貫通可能な貫通孔46が形成されている。また、貫通孔46には、複数のベアリング47が配設されており、複数のベアリング47は、弾性軸41を貫通孔46に貫通させた際の円錐体部品42Bを回転自在に支持する。言い換えると、円錐体部品42Bは、複数のベアリング47を介して弾性軸41に回転自在に支持されている。
校正治具4Bを用いたロボット装置1Bの校正方法については、第1実施形態と同様であるため、その説明は省略する。
このように、第2実施形態に係る校正治具4Bを用いてロボット装置1Bを校正することで、エンドエフェクタ21の傾き補正を容易に行うことができる。また、例えば、大小各種のエンドエフェクタを用いた場合でも、円錐体部品をスライドすると把持させることができるため、校正治具の製作コストを低減することができる。
<校正治具の他の形態>
次に、校正治具の他の形態について、図7を参照しながら説明する。図7は、校正治具の他の形態を示す断面図である。
校正治具の被圧接部材は、例えば、図7(a)に示すように、先端側が半球状に形成され、基端側が円柱状に形成された被圧接部品を用いてもよい。この場合、例えば、傾き校正を行う際に先端側の半球状部分を使用し、調芯を行う際には円筒状の部分を使用する等、校正の目的に応じて使い分けることができる。同様に、図7(b)に示すように、先端側が球状に形成され、基端側が円柱状に形成された被圧接部品を用いてもよく、図7(c)に示すように、先端側が円筒状で、基端側が球状に形成された被圧接部品を用いてもよい。また、図7(d)に示すように、内部が円筒状に切り抜かれた円筒状の被圧接部品を用いてもよい。この場合、例えば、外周面側で傾き校正を行い、内周面側を用いて調芯を行ったり、またこの逆で傾き校正及び調芯を行うことができる。
<実施例>
次に上述のように構成された校正治具を用いてロボット装置を校正した実施例について、図8を用いて説明する。図8は、校正治具の検出感度を示す図である。
(実施例1)
第1実施形態に係るロボット装置1及び校正治具4を用意した。校正治具4のマグネットスタンドは、厚さは40[mm]とし、マグネットスイッチ43により、架台3の載置部30略中心位置に固定した。弾性軸41は、ベリリウム銅(ヤング率130[GPa])で形成し、直径を2.8[mm]、球体部品42内の長さを24[mm]、マグネットスタンド40から球体部品42までの長さを35[mm]とした。球体部品42は、半径12[mm]の球であり、軽量化のため材質はアルミニウムを用い、切削加工と研磨加工にて製作した。その後、ベアリング47を付けた弾性軸41を嵌め込み、再研磨加工を行い、マグネットスタンド40に取り付けることで校正治具4を製作した。
ベアリング47を設けることで回転摩擦力が低くなり、エンドエフェクタ21により把持しながら球体部品42を回転させることでの偏心検出が可能であった。また、被圧接部材として球体部品42を用いることで、偏心校正前の先端軸J6校正の検出において、校正治具4の斜め把持などによる初期ノイズを低減することができ、より短時間での校正作業が可能となった。また、図8に示すように、球体部品42を用いることで、ノイズが少なく、より広範囲な偏心を検出することができた。
(実施例2)
第2実施形態に係るロボット装置1A及び校正治具4Aを用意した。校正治具4Aのマグネットスタンドは、厚さは40[mm]とし、マグネットスイッチ43により、架台3の載置部30略中心位置に固定した。弾性軸41は、ベリリウム銅(ヤング率130[GPa])で形成し、直径を2.8[mm]、円柱体部品42A内の長さを24[mm]、マグネットスタンド40から円柱体部品42Aまでの長さを35[mm]とした。円柱体部品42Aは、半径12[mm]の円柱体であり、軽量化から材質はマグネシウムを用い、切削加工にて製作した。その後、ベアリング47を付けた弾性軸41を嵌め込み、マグネットスタンド40に取り付けることで校正治具4Aを製作した。
ベアリング47を設けることで回転摩擦力が低くなり、エンドエフェクタ21により把持しながら円柱体部品42Aを回転させることでの偏心検出が可能であった。また、図8に示すように、円柱体部品42Aを用いることで、ノイズは発生するものの感度が良いので、より微小な偏心を検出することができた。
(実施例3)
第3実施形態に係るロボット装置1B及び校正治具4Bを用意した。校正治具4Bのマグネットスタンドは、厚さは40[mm]とし、マグネットスイッチ43により、架台3の載置部30略中心位置に固定した。弾性軸41は、ベリリウム銅(ヤング率130[GPa])で形成し、直径を2.8[mm]、円錐体部品42B内の長さを24[mm]、マグネットスタンド40から円錐体部品42Bまでの長さを35[mm]とした。円錐体部品42Bは、半径12[mm]の円錐体であり、軽量化から材質はマグネシウムを用い、切削加工にて製作した。その後、ベアリング47を付けた弾性軸41を嵌め込み、マグネットスタンド40に取り付けることで校正治具4Bを製作した。
ベアリング47を設けることで回転摩擦力が低くなり、エンドエフェクタ21により把持しながら円錐体部品42Bを回転させることでの偏心検出が可能であった。また、図8に示すように、円錐体部品42Bは、感度がよく、微小な偏心を検出することができた。
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されるものではない。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されない。
例えば、本実施形態においては、6軸多関節のロボットアーム20を用いて説明したが、本発明においてはこれに限定されない。ロボットアームは、先端軸を有する多軸多関節のものであればよい。
また、本実施形態においては、3つの爪22、23、24を有するエンドエフェクタ21を用いて説明したが、本発明においてはこれに限定されない。エンドエフェクタは、例えば、2つの爪や4つの爪等の複数爪を有する構成であってもよい。
また、本実施形態においては、取付け台として架台3の載置部30に着脱自在のマグネットスタンドを用いて説明したが、本発明においてはこれに限定されない。取付け台は、例えば、載置部30に取り付け可能であればよい。
1、1A、1B ロボット装置
2 多関節ロボット
3 架台
4、4A、4B 校正治具
6 制御部
20 ロボットアーム
21 エンドエフェクタ
22、23、24 爪(複数爪)
25 力覚センサ
40 マグネットスタンド(取付け台)
41 弾性軸(回転軸)
42 球体部品(被圧接部材)
42A 円柱体部品(被圧接部材)
42B 円錐体部品(被圧接部材)
J6 先端軸

Claims (8)

  1. ロボットアームの先端軸に接続されたエンドエフェクタのワークに対する傾きの校正に用いられる校正治具において、
    ワークが載置される架台に取り付け可能な取付け台と、
    前記架台に前記取付け台から延設される回転軸と、
    前記回転軸に回転自在に支持され、前記エンドエフェクタにより圧接保持可能であり、かつ前記回転軸と直交する方向の断面の形状が前記回転軸を中心とした真円となるように形成された被圧接部材と、を備えた、
    ことを特徴とする校正治具。
  2. 前記被圧接部材は、球状に形成された、
    ことを特徴とする請求項1に記載の校正治具。
  3. 前記被圧接部材は、円柱状に形成された、
    ことを特徴とする請求項1に記載の校正治具。
  4. 前記被圧接部材は、円錐状に形成された、
    ことを特徴とする請求項1に記載の校正治具。
  5. 先端に設けられる先端軸を有するロボットアームと、
    請求項1から4のいずれか1項に記載の校正治具の前記被圧接部材を圧接保持可能な複数爪を有し、前記先端軸に接続されたエンドエフェクタと、
    前記複数爪それぞれに加わる応力を検出可能な力覚センサと、
    前記複数爪に前記被圧接部材を圧接保持させた後、前記先端軸を中心に前記エンドエフェクタを回転させることで前記力覚センサにより検出される前記複数爪それぞれの応力から、前記先端軸の前記回転軸に対する傾き校正量を演算し、演算した前記傾き校正量に応じて前記ロボットアームを駆動制御して前記エンドエフェクタの傾きを校正する制御部と、を備えた、
    ことを特徴とするロボット装置。
  6. 架台に取り付けられた請求項1から4のいずれか1項に記載の校正治具の前記被圧接部材を前記エンドエフェクタに圧接保持させる圧接保持工程と、
    前記被圧接部材を圧接保持した前記エンドエフェクタを回転させて、前記エンドエフェクタに加わる応力を検出可能な力覚センサが検出する応力を測定する応力測定工程と、
    前記応力測定工程で測定された応力から前記先端軸の前記回転軸に対する傾き校正量を演算する演算工程と、
    前記傾き校正量に応じて前記ロボットアームを駆動制御して前記エンドエフェクタの傾きを校正する傾き校正工程と、を備えた、
    ことを特徴とするロボット装置の校正方法。
  7. 請求項6に記載の各工程をコンピュータに実行させるためのロボット装置の校正プログラム。
  8. 請求項7に記載のロボットアームの校正プログラムを記録したコンピュータ読み取り可能な記録媒体。
JP2012202800A 2012-09-14 2012-09-14 校正治具及びロボット装置並びに校正治具を用いたロボット装置の校正方法 Pending JP2014058003A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012202800A JP2014058003A (ja) 2012-09-14 2012-09-14 校正治具及びロボット装置並びに校正治具を用いたロボット装置の校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012202800A JP2014058003A (ja) 2012-09-14 2012-09-14 校正治具及びロボット装置並びに校正治具を用いたロボット装置の校正方法

Publications (1)

Publication Number Publication Date
JP2014058003A true JP2014058003A (ja) 2014-04-03

Family

ID=50614970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012202800A Pending JP2014058003A (ja) 2012-09-14 2012-09-14 校正治具及びロボット装置並びに校正治具を用いたロボット装置の校正方法

Country Status (1)

Country Link
JP (1) JP2014058003A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3067166A1 (en) 2015-03-13 2016-09-14 Canon Kabushiki Kaisha Robot controlling method, robot apparatus, program and recording medium
JP2016215316A (ja) * 2015-05-20 2016-12-22 キヤノン株式会社 ロボット装置、ロボット制御方法、プログラム、記録媒体及び組立部品の製造方法
TWI584925B (zh) * 2016-05-16 2017-06-01 Prec Machinery Research&Development Center A detection module for a multi-axis moving vehicle, and a positioning correction of the detection module And a multi-axis moving vehicle device having the detection module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3067166A1 (en) 2015-03-13 2016-09-14 Canon Kabushiki Kaisha Robot controlling method, robot apparatus, program and recording medium
US10144132B2 (en) 2015-03-13 2018-12-04 Canon Kabushiki Kaisha Robot controlling method, robot apparatus, program and recording medium
JP2016215316A (ja) * 2015-05-20 2016-12-22 キヤノン株式会社 ロボット装置、ロボット制御方法、プログラム、記録媒体及び組立部品の製造方法
TWI584925B (zh) * 2016-05-16 2017-06-01 Prec Machinery Research&Development Center A detection module for a multi-axis moving vehicle, and a positioning correction of the detection module And a multi-axis moving vehicle device having the detection module

Similar Documents

Publication Publication Date Title
JP7250804B2 (ja) 座標位置決め機械
JP5550468B2 (ja) 力覚センサの校正方法
JP4464318B2 (ja) パラレルメカニズム機械のキャリブレーション方法
JP5628873B2 (ja) パラレルリンクロボット
US10335895B2 (en) Friction stir welding device and friction stir welding method
US20160263749A1 (en) Joint driving apparatus and robot apparatus
JP6153316B2 (ja) ロボットシステム及びロボットシステムの制御方法
JP2010531238A (ja) 切断機用自在軸受装置の位置調整用装置および方法
CN105965505A (zh) 机器人控制方法、机器人装置、程序和记录介质
JP2010506738A (ja) ワークピースを自動的に処理および/または機械加工するためのシステム及び方法
JP2017226031A (ja) 力覚センサーユニットおよびロボット
JP5643082B2 (ja) 作業の良否判定システム及び良否判定方法
JP7143215B2 (ja) キャリブレーション装置およびキャリブレーション方法
JPH11502471A (ja) 多軸工業ロボットの較正の装置と方法
US10773391B2 (en) Control device and robot system
JP2011112414A (ja) 力センサ試験装置
JP2014058003A (ja) 校正治具及びロボット装置並びに校正治具を用いたロボット装置の校正方法
JP6039382B2 (ja) ロボットシステム及びロボットシステムの制御方法
JP2006297559A (ja) キャリブレーションシステムおよびロボットのキャリブレーション方法
JP6668665B2 (ja) ロボット装置
JP2016030308A (ja) ロボットシステム、ロボットシステム制御方法、プログラム及び記録媒体
JP3162609U (ja) 薄板材用試験機
WO2021246521A1 (ja) 角度キャリブレーション方法
TWI814988B (zh) 調整機器人臂之裝置及方法
JP2014104528A (ja) ロボットシステム及びロボットシステムの制御方法