JP2014055078A - Cubic boron nitride composition polycrystalline material and manufacturing method thereof, cutting tool and abrasion tool - Google Patents
Cubic boron nitride composition polycrystalline material and manufacturing method thereof, cutting tool and abrasion tool Download PDFInfo
- Publication number
- JP2014055078A JP2014055078A JP2012199656A JP2012199656A JP2014055078A JP 2014055078 A JP2014055078 A JP 2014055078A JP 2012199656 A JP2012199656 A JP 2012199656A JP 2012199656 A JP2012199656 A JP 2012199656A JP 2014055078 A JP2014055078 A JP 2014055078A
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- cubic boron
- composite polycrystal
- ray diffraction
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 167
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 147
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000005299 abrasion Methods 0.000 title abstract description 9
- 239000000463 material Substances 0.000 title abstract description 7
- 239000000203 mixture Substances 0.000 title description 4
- 239000002131 composite material Substances 0.000 claims abstract description 75
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 40
- 239000002245 particle Substances 0.000 claims abstract description 25
- 229910052984 zinc sulfide Inorganic materials 0.000 claims abstract description 21
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 238000005245 sintering Methods 0.000 claims description 21
- 239000007858 starting material Substances 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 239000003054 catalyst Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000002775 capsule Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000003870 refractory metal Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
Abstract
Description
本発明は立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具ならびに耐摩工具に関し、特に高い配向性を有する立方晶窒化ホウ素複合多結晶体、該多結晶体を備えた切削工具および耐摩工具に関するものである。 The present invention relates to a cubic boron nitride composite polycrystal, a method for producing the same, a cutting tool, and an anti-abrasion tool, and more particularly, a cubic boron nitride composite polycrystal having a high orientation, a cutting tool including the polycrystal, and an anti-abrasion tool It is about.
立方晶窒化ホウ素(cBN)はダイヤモンドに次ぐ硬度を有し、熱的安定性および化学的安定性に優れる。また、鉄系材料に対しては、ダイヤモンドよりも安定なため、鉄系材料の加工工具としてcBN焼結体が用いられてきた。 Cubic boron nitride (cBN) has hardness next to diamond and is excellent in thermal stability and chemical stability. Further, since iron-based materials are more stable than diamond, cBN sintered bodies have been used as processing tools for iron-based materials.
しかし、このcBN焼結体には、10〜40%程度のバインダーが含まれており、このバインダーが、焼結体の強度、耐熱性、熱拡散性を低下させる原因となっていた。そのため、特に鉄系材料を高速で切削加工する場合に、熱負荷が大きくなり、刃先の欠損や亀裂が生じやすく、工具の寿命が短くなる。 However, this cBN sintered body contains about 10 to 40% of a binder, and this binder causes a decrease in strength, heat resistance, and thermal diffusibility of the sintered body. Therefore, especially when cutting iron-based materials at a high speed, the thermal load increases, the cutting edge is easily broken or cracked, and the tool life is shortened.
この問題を解決する手法として、バインダーを用いずに、触媒を用いて焼結体を製造する方法がある。この方法では、六方晶窒化ホウ素(hBN)を原料とし、ホウ窒化マグネシウム(Mg3BN3)等を触媒として反応焼結させる。この方法で得られたcBN焼結体は、バインダーを含まないため、cBN同士が強く結合しており、熱伝導率が高くなる。そのため、ヒートシンク材やTAB(Tape Automated Bonding)ボンディングツールなどに用いられている。しかし、この焼結体の中には触媒がいくらか残留しているため、熱を加えると触媒とcBNとの熱膨張差による微細クラックが入りやすくなる。また、粒径が10μm前後と大きいため、熱伝導率が高いものの、強度は弱く、負荷の大きい切削には耐えられない。 As a method for solving this problem, there is a method of manufacturing a sintered body using a catalyst without using a binder. In this method, hexagonal boron nitride (hBN) is used as a raw material, and magnesium boronitride (Mg 3 BN 3 ) or the like is used as a catalyst for reaction sintering. Since the cBN sintered body obtained by this method does not contain a binder, the cBNs are strongly bonded to each other, and the thermal conductivity is increased. Therefore, it is used for heat sink materials and TAB (Tape Automated Bonding) bonding tools. However, since some catalyst remains in the sintered body, when heat is applied, fine cracks due to a difference in thermal expansion between the catalyst and cBN are likely to occur. Further, since the particle size is as large as about 10 μm, the thermal conductivity is high, but the strength is weak and it cannot withstand heavy cutting.
一方、hBN等の常圧型BNを、超高圧高温下で触媒を用いず、直接hBNからcBNへ変換させると同時に焼結させること(直接変換焼結法)によってもcBN焼結体は得られる。たとえば、特開昭47−34099号公報(特許文献1)や特開平3−159964号公報(特許文献2)にhBNを超高圧高温下で、cBNに変換させcBN焼結体を得る方法が示されている。また、熱分解窒化ホウ素(pBN)を原料とし、cBN焼結体を得る方法がある。この種の方法が、例えば特公昭63−394号公報(特許文献3)や特開平8−47801号公報(特許文献4)に示されている。 On the other hand, a cBN sintered body can also be obtained by converting normal pressure type BN such as hBN directly from hBN to cBN at the same time without using a catalyst under an ultra-high pressure and high temperature and simultaneously sintering it (direct conversion sintering method). For example, JP-A-47-34099 (Patent Document 1) and JP-A-3-159964 (Patent Document 2) show a method for obtaining a cBN sintered body by converting hBN to cBN under ultra-high pressure and high temperature. Has been. There is also a method for obtaining a cBN sintered body using pyrolytic boron nitride (pBN) as a raw material. This type of method is disclosed in, for example, Japanese Patent Publication No. 63-394 (Patent Document 3) and Japanese Patent Application Laid-Open No. 8-47801 (Patent Document 4).
しかし、近年の加工機械の高性能化と高能率化に伴い、加工の高速化が進んでいる。そのため、上記の従来cBN焼結体、多結晶体の切削工具を高速切削で用いると、比較的短時間で工具寿命に至ってしまう。 However, with the recent improvement in performance and efficiency of processing machines, the processing speed is increasing. Therefore, when the conventional cBN sintered body and polycrystalline cutting tool are used for high-speed cutting, the tool life is reached in a relatively short time.
上記の問題を解決するために、常圧型h−BNから高温高圧下で合成されたcBN焼結体の(111)面を切刃のすくい面として構成する切削工具が特開平8−336705号公報(特許文献5)に記載されている。cBNの(111)面がすくい面側に向くようにして工具を作製することで、すくい面側の耐摩耗性を向上させている。 In order to solve the above-mentioned problem, a cutting tool in which a (111) plane of a cBN sintered body synthesized from normal pressure type h-BN at high temperature and high pressure is used as a rake face of a cutting blade is disclosed in Japanese Patent Application Laid-Open No. 8-336705. (Patent Document 5). The wear resistance on the rake face side is improved by producing the tool so that the (111) face of cBN faces the rake face side.
しかしながら、特開平8−336705号公報に記載のcBN合成方法によると、原料であるhBNを熱処理により粒成長させ、結晶性を向上させて使用している。この場合、圧力7GPa、焼結温度2000℃の焼結条件により得られた焼結体には未変換のhBNが残り、強度や耐久性が著しく減少する。 However, according to the cBN synthesis method described in JP-A-8-336705, hBN as a raw material is grown by heat treatment to improve crystallinity. In this case, unconverted hBN remains in the sintered body obtained under the sintering conditions of a pressure of 7 GPa and a sintering temperature of 2000 ° C., and the strength and durability are significantly reduced.
本発明は、上記のような課題に鑑みなされたものであり、高い耐摩耗性を有する面を備える立方晶窒化ホウ素複合多結晶体およびその製造方法、該多結晶体を備えた切削工具、耐摩工具を提供することを目的とする。 The present invention has been made in view of the above problems, and a cubic boron nitride composite polycrystal having a surface having high wear resistance, a method for producing the same, a cutting tool provided with the polycrystal, and wear resistance The purpose is to provide a tool.
本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、超高圧高温下において、熱分解窒化ホウ素(pBN)を立方晶窒化ホウ素(hBN)とウルツ鉱型窒化ホウ素(wBN)とに直接変換させ、立方晶窒化ホウ素が[111]方向に配向した面をもつ立方晶窒化ホウ素複合多結晶体が得られることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that pyrolytic boron nitride (pBN) and cubic boron nitride (hBN) and wurtzite boron nitride (wBN) under an ultra-high pressure and high temperature. It was found that a cubic boron nitride composite polycrystal having a plane in which cubic boron nitride is oriented in the [111] direction can be obtained.
本発明に係る立方晶窒化ホウ素複合多結晶体は、ウルツ鉱型窒化ホウ素と立方晶窒化ホウ素と不可避不純物とで構成され、ウルツ鉱型窒化ホウ素の含有率が0.1〜90体積%であり、立方晶窒化ホウ素の平均粒径は500nm以下であり、立方晶窒化ホウ素の(111)面のX線回折強度I(111)に対する、立方晶窒化ホウ素の(220)面のX線回折強度I(220)の比I(220)/I(111)が0.1未満である配向面を備える。 The cubic boron nitride composite polycrystal according to the present invention is composed of wurtzite boron nitride, cubic boron nitride, and inevitable impurities, and the content of wurtzite boron nitride is 0.1 to 90% by volume. The average particle diameter of cubic boron nitride is 500 nm or less, and the X-ray diffraction intensity I of (220) plane of cubic boron nitride with respect to the X-ray diffraction intensity I (111) of (111) plane of cubic boron nitride. An orientation plane in which the ratio I (220) / I (111) of (220 ) is less than 0.1 is provided.
上記の立方晶窒化ホウ素複合多結晶体において好ましくは、六方晶窒化ホウ素のX線回折強度が検出限界以下である。ここで、「検出限界以下」とは、PANalytical社製X線回折装置X‘Pertを用いて、波長1.54ÅのCuKα線により測定したときに、X線回折強度が検出限界以下であることをいう。 In the above cubic boron nitride composite polycrystal, the X-ray diffraction intensity of hexagonal boron nitride is preferably below the detection limit. Here, “below the detection limit” means that the X-ray diffraction intensity is below the detection limit when measured with a CuKα ray having a wavelength of 1.54 mm using an X-ray diffractometer X′Pert manufactured by PANalytical. Say.
上記の立方晶窒化ホウ素複合多結晶体において好ましくは、上記配向面のヌープ硬度は55GPa以上である。 In the cubic boron nitride composite polycrystal, preferably, the Knoop hardness of the orientation plane is 55 GPa or more.
上記の立方晶窒化ホウ素複合多結晶体において好ましくは、立方晶窒化ホウ素の平均粒径は100nm以下である。 In the above cubic boron nitride composite polycrystal, the cubic boron nitride preferably has an average particle size of 100 nm or less.
本発明に係る立方晶窒化ホウ素複合多結晶体の製造方法は、出発物質として熱分解窒化ホウ素を準備する工程と、圧力8GPa以上、かつ、温度1900〜2300℃の条件下において熱分解窒化ホウ素を立方晶窒化ホウ素に直接変換させると同時に焼結させる工程とを備える。熱分解窒化ホウ素は、(002)面の面間隔が3.35Åより大きく3.5Å以下である。 The method for producing a cubic boron nitride composite polycrystal according to the present invention comprises a step of preparing pyrolytic boron nitride as a starting material, and pyrolytic boron nitride under conditions of a pressure of 8 GPa or more and a temperature of 1900 to 2300 ° C. Directly converting to cubic boron nitride and simultaneously sintering. Pyrolytic boron nitride has a (002) plane spacing of greater than 3.35 and less than or equal to 3.5.
本発明に係る切削工具は、上記の立方晶窒化ホウ素複合多結晶体を備えており、上記配向面を刃先のすくい面もしくは逃げ面として使用する。本発明に係る耐摩工具は、上記の立方晶窒化ホウ素複合多結晶体を備えており、耐摩耗性が要求される部分に上記配向面を用いる。 The cutting tool according to the present invention includes the above cubic boron nitride composite polycrystal, and uses the oriented surface as a rake face or flank face of the cutting edge. A wear-resistant tool according to the present invention includes the above cubic boron nitride composite polycrystal, and uses the above-mentioned orientation surface in a portion where wear resistance is required.
本発明によれば、高い耐摩耗性を有する立方晶窒化ホウ素の(111)面が配向している面を備える立方晶窒化ホウ素複合多結晶体を製造することができる。また、本発明によれば、該複合多結晶体を備えた優れた特性の切削工具、耐摩工具を提供することができる。 According to the present invention, it is possible to produce a cubic boron nitride composite polycrystal having a plane in which the (111) plane of cubic boron nitride having high wear resistance is oriented. In addition, according to the present invention, it is possible to provide a cutting tool and an anti-abrasion tool having excellent characteristics provided with the composite polycrystal.
以下、本実施の形態について説明する。
(実施の形態)
本実施の形態に係る立方晶窒化ホウ素複合多結晶体は、複数の立方晶窒化ホウ素(cBN)と、複数のウルツ鉱型窒化ホウ素(wBN)とを備えている。立方晶窒化ホウ素同士、ウルツ鉱型窒化ホウ素同士、さらに立方晶窒化ホウ素とウルツ鉱型窒化ホウ素とは、いずれも強固に結合し、緻密な複合組織を有している。具体的には、該多結晶体は、0.1体積%以上のウルツ鉱型窒化ホウ素と、残部を構成する立方晶窒化ホウ素と不可避不純物とで構成されている。不可避不純物とは、たとえば窒素、水素、酸素などである。このとき、立方晶窒化ホウ素の平均粒径は500nm以下程度である。該多結晶体は、実質的にバインダー、焼結助剤、触媒などを含んでいない。
Hereinafter, this embodiment will be described.
(Embodiment)
The cubic boron nitride composite polycrystal according to the present embodiment includes a plurality of cubic boron nitrides (cBN) and a plurality of wurtzite boron nitrides (wBN). Cubic boron nitrides, wurtzite boron nitrides, and cubic boron nitride and wurtzite boron nitride are all firmly bonded and have a dense composite structure. Specifically, the polycrystal is composed of 0.1% by volume or more of wurtzite boron nitride, cubic boron nitride constituting the balance, and inevitable impurities. Inevitable impurities are, for example, nitrogen, hydrogen, oxygen and the like. At this time, the average particle diameter of cubic boron nitride is about 500 nm or less. The polycrystalline body substantially does not contain a binder, a sintering aid, a catalyst and the like.
本実施の形態の立方晶窒化ホウ素複合多結晶体は、該立方晶窒化ホウ素複合体に含まれる立方晶窒化ホウ素の(111)面のX線回折強度I(111)に対する、該立方晶窒化ホウ素の(220)面のX線回折強度I(220)の比I(220)/I(111)が0.1未満である。つまり、本実施の形態の立方晶窒化ホウ素複合多結晶体は、該立方晶窒化ホウ素複合多結晶体に含まれる複数の立方晶窒化ホウ素が[111]方向に配向している面を備える(以下、立方晶窒化ホウ素複合多結晶体においてX線回折強度I(220)の比I(220)/I(111)が0.1未満である面を、[111]方向に配向している面または(111)配向面いう)。 The cubic boron nitride composite polycrystal of the present embodiment is such that the cubic boron nitride with respect to the X-ray diffraction intensity I (111) of the (111) plane of the cubic boron nitride contained in the cubic boron nitride composite The ratio I (220) / I (111) of the X-ray diffraction intensity I (220) of the (220) plane is less than 0.1. That is, the cubic boron nitride composite polycrystal of the present embodiment includes a surface in which a plurality of cubic boron nitrides included in the cubic boron nitride composite polycrystal are oriented in the [111] direction (hereinafter referred to as “the cubic boron nitride composite polycrystal”). In the cubic boron nitride composite polycrystal, the plane in which the ratio I (220) / I (111) of the X-ray diffraction intensity I (220 ) is less than 0.1 is a plane oriented in the [111] direction or (111) orientation plane).
後述する実施例より、ウルツ鉱型窒化ホウ素の含有率が0.1体積%以上であって、上記X線回折強度比I(220)/I(111)が0.04〜0.09である立方晶窒化ホウ素複合多結晶体は、配向面における室温でのヌープ硬度が55GPa以上と高硬度であることが確認できた。さらに後述する実施例より、上記X線回折強度比I(220)/I(111)が0.05〜0.09である立方晶窒化ホウ素複合体は、配向面の耐摩耗性が優れていることが確認できた。しかし、ウルツ鉱型窒化ホウ素の含有率が0.1体積%以上であって、上記X線回折強度比I(220)/I(111)が0.1未満であれば同様の効果が得られるものと考えられる。 From the examples described later, the content of the wurtzite boron nitride is 0.1% by volume or more, and the X-ray diffraction intensity ratio I (220) / I (111) is 0.04 to 0.09. It was confirmed that the cubic boron nitride composite polycrystal had a high hardness of 55 GPa or more in Knoop hardness at room temperature on the orientation plane. Further, from the examples described later, the cubic boron nitride composite having the X-ray diffraction intensity ratio I (220) / I (111) of 0.05 to 0.09 has excellent wear resistance of the orientation plane. I was able to confirm. However, if the content of the wurtzite boron nitride is 0.1% by volume or more and the X-ray diffraction intensity ratio I (220) / I (111) is less than 0.1, the same effect can be obtained. It is considered a thing.
本実施の形態の立方晶窒化ホウ素複合多結晶体は、六方晶窒化ホウ素のX線回折強度が検出限界以下である好ましい。立方晶窒化ホウ素複合多結晶体に含まれる六方晶窒化ホウ素は、立方晶窒化ホウ素複合多結晶体の硬度低下を引き起こす。後述する各実施例より、上記X線回折強度比I(220)/I(111)が0.04〜0.09であって、六方晶窒化ホウ素のX線回折強度が検出限界以下である立方晶窒化ホウ素複合多結晶体は、(111)配向面における室温でのヌープ硬度が55GPa以上と高硬度であることが確認できた。 In the cubic boron nitride composite polycrystal of the present embodiment, the X-ray diffraction intensity of hexagonal boron nitride is preferably below the detection limit. Hexagonal boron nitride contained in the cubic boron nitride composite polycrystal causes a decrease in hardness of the cubic boron nitride composite polycrystal. From each Example described later, the X-ray diffraction intensity ratio I (220) / I (111) is 0.04 to 0.09, and the X-ray diffraction intensity of hexagonal boron nitride is below the detection limit. It was confirmed that the crystal boron nitride composite polycrystal had a high Knoop hardness of 55 GPa or higher at room temperature on the (111) orientation plane.
また、本実施の形態の立方晶窒化ホウ素複合体における立方晶窒化ホウ素の平均粒径は150nm以下程度であるのが好ましい。後述する各実施例より、上記X線回折強度比I(220)/I(111)が0.04〜0.09であって、立方晶窒化ホウ素の平均粒径が31nm以上148nm以下程度である立方晶窒化ホウ素複合多結晶体は、(111)配向面における室温でのヌープ硬度が55GPa以上と高硬度であることが確認できた。しかし、上記X線回折強度比I(220)/I(111)が0.1未満であって、立方晶窒化ホウ素の平均粒径が150nm以下程度であっても、同様の効果が得られるものと考えられる。 In addition, the average particle diameter of cubic boron nitride in the cubic boron nitride composite of the present embodiment is preferably about 150 nm or less. From each Example described later, the X-ray diffraction intensity ratio I (220) / I (111) is 0.04 to 0.09, and the average particle diameter of cubic boron nitride is about 31 nm or more and 148 nm or less. It was confirmed that the cubic boron nitride composite polycrystal had a high Knoop hardness of 55 GPa or more at room temperature in the (111) orientation plane. However, even if the X-ray diffraction intensity ratio I (220) / I (111) is less than 0.1 and the average particle diameter of cubic boron nitride is about 150 nm or less, the same effect can be obtained. it is conceivable that.
次に、本実施の形態の立方晶窒化ホウ素複合多結晶体の製造方法について説明する。本実施の形態の立方晶窒化ホウ素複合多結晶体の製造方法は、出発物質として、(002)面の面間隔が3.35Å以上3.5Å以下である熱分解窒化ホウ素を準備する工程(S01)と、圧力8GPa以上、かつ、温度1300〜2300℃の条件下において前記常圧型窒化ホウ素を立方晶窒化ホウ素に直接変換させると同時に焼結させる工程(S02)とを備える。 Next, the manufacturing method of the cubic boron nitride composite polycrystal of this Embodiment is demonstrated. In the method for producing a cubic boron nitride composite polycrystal according to the present embodiment, a step of preparing pyrolytic boron nitride having a (002) plane spacing of 3.35 to 3.5 mm as a starting material (S01 ) And a step (S02) of directly converting the atmospheric boron nitride into cubic boron nitride at the same time as sintering under a pressure of 8 GPa or more and a temperature of 1300 to 2300 ° C. (S02).
まず、工程(S01)では、(002)面の面間隔が3.35Å以上3.5Å以下である熱分解窒化ホウ素(pBN)を準備する。pBNは、高配向性であることが好ましい。ここでいうpBNの高配向性とは、pBN結晶のc軸と垂直方向におけるX線回折測定において、(002)面のX線回折強度I(002)に対する、(100)面のX線回折強度I(100)の比I(100)/I(002)が2.0以上であることを指す。 First, in step (S01), pyrolytic boron nitride (pBN) having a (002) plane spacing of 3.35 mm to 3.5 mm is prepared. pBN is preferably highly oriented. The high orientation of pBN here refers to the X-ray diffraction intensity of the (100) plane relative to the X-ray diffraction intensity I (002) of the (002) plane in the X-ray diffraction measurement perpendicular to the c-axis of the pBN crystal. refers to the ratio I (100) / I of I (100) (002) is 2.0 or more.
次に、工程(S02)では、出発物質である高配向性のpBNを、超高圧高温発生装置を用いて、立方晶窒化ホウ素(cBN)とウルツ鉱型窒化ホウ素(wBN)とに変換させると同時に焼結させる。焼結は、圧力8GPa、かつ、温度1300〜2300℃の条件下において行われ、かつcBNが熱力学的に安定な圧力条件の下で所定時間保持される。好ましくは、焼結条件は圧力8GPa以上20GPa以下程度、温度1300〜2300℃である。本実施の形態では、超高圧高温下で焼結助剤や触媒の添加なしに直接的にpBNがcBNやwBNに変換焼結される。 Next, in the step (S02), the highly oriented pBN which is a starting material is converted into cubic boron nitride (cBN) and wurtzite boron nitride (wBN) using an ultrahigh pressure and high temperature generator. Sinter at the same time. Sintering is performed under conditions of a pressure of 8 GPa and a temperature of 1300 to 2300 ° C., and the cBN is held for a predetermined time under a pressure condition in which cBN is thermodynamically stable. Preferably, the sintering conditions are a pressure of about 8 GPa to 20 GPa and a temperature of 1300 to 2300 ° C. In the present embodiment, pBN is directly converted and sintered into cBN or wBN without adding a sintering aid or a catalyst under an ultra-high pressure and high temperature.
立方晶窒化ホウ素複合多結晶体の製造方法においては、特に焼結温度が重要である。焼結温度が2300℃より高いと、微粒cBN結晶は粒成長し、その平均粒径は500nmを超えてしまう。一方、焼結温度が低いと、未変換の出発物質が残ってしまう。未変換の出発物質は六方晶窒化ホウ素として立方晶窒化ホウ素複合多結晶体に含まれることになる。そのため、立方晶窒化ホウ素複合多結晶体の製造方法においては、未変換の出発物質が残らない焼結条件とするのが好ましい。 In the method for producing a cubic boron nitride composite polycrystal, the sintering temperature is particularly important. When the sintering temperature is higher than 2300 ° C., the fine cBN crystal grows and its average particle size exceeds 500 nm. On the other hand, if the sintering temperature is low, unconverted starting materials remain. Unconverted starting material will be included in the cubic boron nitride composite polycrystal as hexagonal boron nitride. Therefore, in the method for producing a cubic boron nitride composite polycrystal, it is preferable that the sintering conditions are such that no unconverted starting material remains.
立方晶窒化ホウ素複合多結晶体を合成するために適切な焼結温度は、工程(S02)において出発物質を直接変換すると同時に焼結する際に加える圧力によって変化する。圧力が低い場合には高い温度で、圧力が高い場合には低い温度で立方晶窒化ホウ素複合多結晶体を合成することができる。さらに、工程(S02)における上記温度圧力条件は、出発物質の結晶性や粒径によっても変化する。例えば、上記条件を満たす高配向性pBNの場合、10GPaでは1900℃未満の温度で未変換の出発物質が残り、15GPaでは1500℃未満程度の温度で残り、20GPaでは1300℃未満程度の温度で残る。 The appropriate sintering temperature for synthesizing the cubic boron nitride composite polycrystal varies depending on the pressure applied during the simultaneous conversion of the starting material and the sintering in step (S02). A cubic boron nitride composite polycrystal can be synthesized at a high temperature when the pressure is low, and at a low temperature when the pressure is high. Further, the temperature and pressure conditions in the step (S02) also vary depending on the crystallinity and particle size of the starting material. For example, in the case of highly oriented pBN that satisfies the above conditions, unconverted starting material remains at a temperature of less than 1900 ° C. at 10 GPa, remains at a temperature of less than 1500 ° C. at 15 GPa, and remains at a temperature of less than 1300 ° C. at 20 GPa. .
本実施の形態の立方晶窒化ホウ素複合多結晶体の製造方法によれば、wBNの含有率が0.1体積%以上であって、wBN、cBNおよび不可避不純物で構成されて、cBNが[111]方向に配向している面を持ち、cBNの平均粒径が500nm以下程度である立方晶窒化ホウ素複合多結晶体を得ることができる。 According to the method for producing a cubic boron nitride composite polycrystal of the present embodiment, the content of wBN is 0.1% by volume or more, is composed of wBN, cBN, and inevitable impurities, and the cBN is [111 ] A cubic boron nitride composite polycrystal having a plane oriented in the direction and having an average particle size of cBN of about 500 nm or less can be obtained.
後述する実施例より、工程(S02)において、圧力10GPa以上程度、温度1300〜2300℃程度の焼結条件であれば、得られた立方晶窒化ホウ素複合多結晶体は、(111)配向面を有し、該(111)配向面の室温におけるヌープ硬度は55GPaであることが確認できた。しかし、圧力8GPa以上程度、かつ2300℃程度の焼結条件においても、同様の特性を有する立方晶窒化ホウ素複合多結晶体を得ることができると考えられる。 From the examples described later, in the step (S02), if the sintering conditions are a pressure of about 10 GPa or more and a temperature of about 1300 to 2300 ° C., the obtained cubic boron nitride composite polycrystal has a (111) orientation plane. It was confirmed that the Knoop hardness at room temperature of the (111) orientation plane was 55 GPa. However, it is considered that a cubic boron nitride composite polycrystal having similar characteristics can be obtained even under sintering conditions of a pressure of about 8 GPa or more and about 2300 ° C.
以上のように、本実施の形態の立方晶窒化ホウ素複合多結晶体は、0.1体積%以上のウルツ鉱型窒化ホウ素と平均粒径が500nm以下の立方晶窒化ホウ素と不可避不純物とで構成される。さらに、本実施の形態の立方晶窒化ホウ素複合多結晶体は、高硬度である立方晶窒化ホウ素の(111)面が配向している面を備えることにより、高硬度でかつ優れた耐摩耗性を有する面を備えることができる。 As described above, the cubic boron nitride composite polycrystal of the present embodiment is composed of 0.1 vol% or more wurtzite boron nitride, cubic boron nitride having an average particle size of 500 nm or less, and inevitable impurities. Is done. Furthermore, the cubic boron nitride composite polycrystal of the present embodiment has a high hardness and excellent wear resistance by including a plane in which the (111) plane of cubic boron nitride having high hardness is oriented. The surface which has can be provided.
また、本実施の形態の立方晶窒化ホウ素複合多結晶体は、六方晶窒化ホウ素のX線回折強度を検出限界以下とすることで、より高硬度とすることができる。 Further, the cubic boron nitride composite polycrystal of the present embodiment can be made to have higher hardness by setting the X-ray diffraction intensity of hexagonal boron nitride to be below the detection limit.
また、本実施の形態の立方晶窒化ホウ素複合多結晶体は、立方晶窒化ホウ素複合多結晶体に含まれる立方晶窒化ホウ素の平均粒径を150nm以下とすることで、緻密で空隙の極めて少ない結晶組織とすることができるため、より高硬度とすることができる。 In addition, the cubic boron nitride composite polycrystal of the present embodiment is dense and has very few voids by setting the average particle size of the cubic boron nitride contained in the cubic boron nitride composite polycrystal to 150 nm or less. Since the crystal structure can be obtained, the hardness can be further increased.
さらに、本実施の形態の立方晶窒化ホウ素複合多結晶体は、切削工具や耐摩工具などに用いることができる。このとき、本実施の形態の立方晶窒化ホウ素複合多結晶体に含まれる立方晶窒化ホウ素の[111]方向に配向した面(配向面)を、被加工材と接し摩耗量が大きい面に向くように工具を作製することで、耐摩耗性に優れた切削工具または耐摩工具とすることができる。 Furthermore, the cubic boron nitride composite polycrystal of the present embodiment can be used for cutting tools, wear-resistant tools, and the like. At this time, the surface (orientation surface) oriented in the [111] direction of the cubic boron nitride contained in the cubic boron nitride composite polycrystal of the present embodiment is in contact with the workpiece and faces the surface with a large amount of wear. Thus, by producing a tool, it can be set as the cutting tool or the wear-resistant tool excellent in abrasion resistance.
例えば、送り量(送り速度)が多い切削を行う場合には切削工具のすくい面に切り屑との摩擦が大きくなる。そのため、本実施の形態の立方晶窒化ホウ素複合多結晶体の(111)配向面をすくい面に向けるように工具を作製することで、切削工具寿命を延ばすことが可能である。 For example, when cutting with a large feed amount (feed speed), friction with chips on the rake face of the cutting tool increases. Therefore, it is possible to extend the cutting tool life by making the tool so that the (111) -oriented surface of the cubic boron nitride composite polycrystal of the present embodiment faces the rake face.
例えば、送り量(送り速度)が小さい切削を行う場合には切削工具の逃げ面に被加工材の仕上げ面との摩擦から摩耗するため、[111]方向に配向した面を逃げ面に向けるように工具を作製することで、切削工具寿命を延ばすことが可能である。 For example, when cutting with a small feed amount (feed speed), the flank face of the cutting tool wears from friction with the finished surface of the workpiece, so that the surface oriented in the [111] direction is directed to the flank face. It is possible to extend the life of the cutting tool by manufacturing the tool.
次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
実施例1〜4に係る立方晶窒化ホウ素複合多結晶体を以下の方法で作製した。まず、出発原料として、(002)面の面間隔が3.36Åで、かつc軸と垂直方向におけるX線回折測定において、(002)面のX線回折強度I(002)に対する(100)面のX線回折強度I(100)の比I(100)/I(002)が4.0の高配向性のpBNを準備した。また、実施例5に係る立方晶窒化ホウ素複合多結晶体を以下の方法で作成した。出発原料として、(002)面の面間隔が3.47Åで、かつc軸と垂直方向におけるX線回折測定において、(002)面のX線回折強度I(002)に対する(100)面のX線回折強度I(100)の比I(100)/I(002)が3.4の高配向性のpBNを準備した。その出発原料を高融点金属からなるカプセルに入れ、超高圧高温発生装置を用いて表1に記載の圧力、温度条件下において20分間保持し、出発原料をcBNおよびwBNに直接変換した。 Cubic boron nitride composite polycrystals according to Examples 1 to 4 were produced by the following method. First, as a starting material, the (002) plane spacing is 3.36 mm, and in the X-ray diffraction measurement in the direction perpendicular to the c-axis, the (100) plane with respect to the (002) plane X-ray diffraction intensity I (002) A highly oriented pBN having a ratio I (100) / I (002) of X-ray diffraction intensity I (100) of 4.0 was prepared. Further, a cubic boron nitride composite polycrystal according to Example 5 was prepared by the following method. As a starting material, the (002) plane spacing is 3.47 mm, and in the X-ray diffraction measurement perpendicular to the c-axis, the (100) plane X with respect to the (002) plane X-ray diffraction intensity I (002) A highly oriented pBN having a line diffraction intensity I (100) ratio I (100) / I (002) of 3.4 was prepared. The starting material was put into a capsule made of a refractory metal, and held for 20 minutes under the pressure and temperature conditions shown in Table 1 using an ultrahigh pressure and high temperature generator to directly convert the starting material to cBN and wBN.
比較例1に係る立方晶窒化ホウ素多結晶体を以下の方法で作製した。まず、出発原料として市販のペレット状のhBNを使用した。その出発原料を高融点金属からなるカプセルに入れ、超高圧高温発生装置を用いて表1に記載の圧力、温度条件下において15分間保持し、出発原料をcBNに直接変換した。なお、超高圧高温発生装置において保持する時間は、出発物質をcBNやwBNに変換焼結するのに必要な時間を越えている限りにおいて、保持する時間の長短によって、得られる立方晶窒化ホウ素複合多結晶体の硬度や耐摩耗性等の特性は影響を受けない。つまり、本実施例および比較例に関して言えば、保持する時間が15分であっても20分であっても、それによって立方晶窒化ホウ素複合多結晶体の特性に差異が生じる訳ではない。 A cubic boron nitride polycrystal according to Comparative Example 1 was produced by the following method. First, commercially available pelletized hBN was used as a starting material. The starting material was put into a capsule made of a refractory metal, and was held for 15 minutes under the pressure and temperature conditions shown in Table 1 using an ultrahigh pressure and high temperature generator to directly convert the starting material to cBN. In addition, as long as the holding time in the ultra-high pressure and high-temperature generator exceeds the time necessary for converting and sintering the starting material to cBN or wBN, the obtained cubic boron nitride composite Properties such as hardness and wear resistance of the polycrystal are not affected. That is, with regard to the present example and the comparative example, whether the holding time is 15 minutes or 20 minutes does not cause a difference in the characteristics of the cubic boron nitride composite polycrystal.
比較例2に係る立方晶窒化ホウ素複合多結晶体を以下の方法で作製した。まず、出発原料として、(002)面の面間隔が3.51Åで、かつc軸と垂直方向におけるX線回折測定において、(002)面のX線回折強度I(002)に対する(100)面のX線回折強度I(100)の比I(100)/I(002)が1.0の低配向性のpBNを準備した。その出発原料を高融点金属からなるカプセルに入れ、超高圧高温発生装置を用いて表1に記載の圧力、温度条件下において20分間保持し、出発原料をcBNおよびwBNに直接変換した。 A cubic boron nitride composite polycrystal according to Comparative Example 2 was produced by the following method. First, as a starting material, the (002) plane spacing is 3.51 mm and the (100) plane with respect to the (002) plane X-ray diffraction intensity I (002) in the X-ray diffraction measurement in the direction perpendicular to the c-axis. A low-orientation pBN having a ratio I (100) / I (002) of the X-ray diffraction intensity I (100) of 1.0 was prepared. The starting material was put into a capsule made of a refractory metal, and held for 20 minutes under the pressure and temperature conditions shown in Table 1 using an ultrahigh pressure and high temperature generator to directly convert the starting material to cBN and wBN.
なお、pBNの配向性を求めるために行ったX線回折は、スペクトリス社製X線回折装置(X’Pert)を使用した。 In addition, X-ray diffraction performed to determine the orientation of pBN used an X-ray diffractometer (X'Pert) manufactured by Spectris.
上記の様にして得られた実施例1〜4および比較例1および比較例2の立方晶窒化ホウ素複合多結晶体の組成、粒径、硬度を下記の手法で測定した。 The composition, particle size, and hardness of the cubic boron nitride composite polycrystals of Examples 1 to 4 and Comparative Examples 1 and 2 obtained as described above were measured by the following methods.
各相の組成は、X線回折装置(PANalytical社製 X‘Pert)により各相を同定することにより得られた。この装置のX線の線源はCuであり、波長1.54ÅのKα線である。 The composition of each phase was obtained by identifying each phase with an X-ray diffractometer (X′Pert manufactured by PANalytical). The X-ray source of this apparatus is Cu, which is a Kα ray with a wavelength of 1.54 mm.
表1に記載の試料の平均粒径は、走査電子顕微鏡(Carl Zeiss社製 ULTRA55)によって測定した。平均粒径を求める方法として切断法を使用した。この方法では、まず走査電子顕微鏡(SEM)の画像に円を書き、円の中心から8本の直線を放射状に円の外周まで引き、円の中で直線が結晶粒界を横切る数を数える。そして、直線の長さをその横切る数で割ることで平均切片長さを求め、その平均切片長さに1.128をかけると平均結晶粒径が求められる。 The average particle diameters of the samples listed in Table 1 were measured with a scanning electron microscope (ULTRA 55 manufactured by Carl Zeiss). A cutting method was used as a method for obtaining the average particle diameter. In this method, first, a circle is written on an image of a scanning electron microscope (SEM), eight straight lines are drawn radially from the center of the circle to the outer periphery of the circle, and the number of lines that cross the grain boundary in the circle is counted. Then, the average intercept length is obtained by dividing the length of the straight line by the number of crossing, and the average crystal grain size is obtained by multiplying the average intercept length by 1.128.
切断法を用いるのに使用したSEM画像の倍率は30000倍である。その理由は、これ以下の倍率では、円内の粒の数が多くなり、粒界が見えにくく数え間違いが発生する上に、線を引く際に板状組織を含める可能性が高くなるからである。また、これ以上の倍率では、円内の粒の数が少な過ぎて、正確な平均粒径が算出できないからである。 The magnification of the SEM image used to use the cutting method is 30000 times. The reason for this is that at a magnification less than this, the number of grains in the circle increases, the grain boundaries are difficult to see, and counting mistakes occur, and the possibility of including a plate-like structure when drawing a line increases. is there. Further, when the magnification is higher than this, the number of grains in the circle is too small, and an accurate average particle diameter cannot be calculated.
本実験においては、1つの試料に対して、別々の箇所を撮影した3枚のSEM画像を使用した。それぞれのSEM画像に対して切断法を使用して、その平均値を平均粒径とした。 In this experiment, three SEM images obtained by photographing different locations were used for one sample. The average value was made into the average particle diameter using the cutting method with respect to each SEM image.
配向性は、上記X線回折装置を用いて評価した。X線回折法により、立方晶窒化ホウ素複合多結晶体中の立方晶窒化ホウ素の(220)面の回折強度I(220)と(111)面の回折強度I(111)との比I(220)/I(111)を算出した。 The orientation was evaluated using the X-ray diffractometer. The X-ray diffraction method, the ratio I of the cubic boron complex polycrystalline body nitride cubic boron nitride (220) plane diffraction intensity I and (220) and (111) diffraction intensity of the plane I (111) (220 ) / I (111) was calculated.
立方晶窒化ホウ素複合多結晶体において、立方晶窒化ホウ素が[111]方向に配向している面(配向面)における室温の硬度の測定として、ヌープ硬度を測定した。ヌープ硬度の測定には、マイクロヌープ圧子を使用し、試験荷重4.9Nで行った。測定機器はニコン製QM型を用いた。 In the cubic boron nitride composite polycrystal, Knoop hardness was measured as a measurement of the hardness at room temperature on the plane (orientation plane) in which the cubic boron nitride is oriented in the [111] direction. The Knoop hardness was measured using a micro Knoop indenter with a test load of 4.9 N. Nikon QM type was used as the measuring instrument.
実施例1〜5および比較例1および2の立方晶窒化ホウ素複合多結晶体の組成、X線回折強度比I(220)/I(111)、粒径、硬度の結果を表1に示す。 Table 1 shows the composition, X-ray diffraction intensity ratio I (220) / I (111) , particle size, and hardness of the cubic boron nitride composite polycrystals of Examples 1 to 5 and Comparative Examples 1 and 2.
表1に示すように、実施例1〜5は、0.20〜80.5体積%のウルツ鉱型窒化ホウ素(wBN)を含有していることが確認された。また、実施例1〜5の平均粒径は、31〜148nmであった。このとき、実施例1〜5の(111)配向面における上記X線強度比I(220)/I(111)は、0.03〜0.09であった。さらに、実施例1〜5の(111)配向面における室温のヌープ硬度は、試験荷重4.9Nの条件下において、55〜57GPaであった。 As shown in Table 1, Examples 1 to 5 were confirmed to contain 0.20 to 80.5% by volume of wurtzite boron nitride (wBN). Moreover, the average particle diameter of Examples 1-5 was 31-148 nm. At this time, the X-ray intensity ratio I (220) / I (111) in the (111) orientation plane of Examples 1 to 5 was 0.03 to 0.09. Furthermore, the Knoop hardness at room temperature on the (111) oriented surfaces of Examples 1 to 5 was 55 to 57 GPa under the condition of a test load of 4.9 N.
一方、比較例1は、ウルツ鉱型窒化ホウ素(wBN)を全く含有せず、六方晶窒化ホウ素(hBN)を0.08体積%含有していることが確認された。また、比較例1の平均粒径は412nmであり、実施例1〜5と比較して大きかった。上記X線回折強度比I(220)/I(111)は、0.05であり、実施例1〜5と同等であったが、比較例1の(111)配向面におけるヌープ硬度は47GPaであり、実施例1〜5と比較して低かった。 On the other hand, it was confirmed that Comparative Example 1 contained no wurtzite boron nitride (wBN) and contained 0.08% by volume of hexagonal boron nitride (hBN). Moreover, the average particle diameter of the comparative example 1 was 412 nm, and was large compared with Examples 1-5. The X-ray diffraction intensity ratio I (220) / I (111) was 0.05 and the same as in Examples 1 to 5, but the Knoop hardness in the (111) orientation plane of Comparative Example 1 was 47 GPa. Yes, compared with Examples 1-5.
比較例2は、ウルツ鉱型窒化ホウ素(wBN)を1.1%含んでいることが確認された。また、比較例1の平均粒径は99nmであり、実施例1〜5と比較して同等であった。上記X線回折強度比I(220)/I(111)は、0.22であり、実施例1〜5と比較して高く、どの面においても配向しておらず、等方的であった。室温におけるヌープ硬度は50GPaであり、実施例1〜5と比較して低かった。 Comparative Example 2 was confirmed to contain 1.1% wurtzite boron nitride (wBN). Moreover, the average particle diameter of the comparative example 1 was 99 nm, and was equivalent compared with Examples 1-5. The X-ray diffraction intensity ratio I (220) / I (111) was 0.22, which was higher than those of Examples 1 to 5, was not oriented in any plane, and was isotropic. . The Knoop hardness at room temperature was 50 GPa, which was low as compared with Examples 1-5.
つまり、実施例1〜5の立方晶窒化ホウ素複合多結晶体は、六方晶窒化ホウ素を含有しウルツ鉱型窒化ホウ素を含有しない比較例1の立方晶窒化ホウ素多結晶体と比較して、(111)配向面が高硬度であることが確認できた。また、実施例1〜5の立方晶窒化ホウ素複合多結晶体は、比較例2の立方晶窒化ホウ素複合多結晶体と比較して、高硬度であることが確認できた。 That is, the cubic boron nitride composite polycrystals of Examples 1 to 5 contain hexagonal boron nitride and do not contain wurtzite boron nitride, compared to the cubic boron nitride polycrystal of Comparative Example 1 ( It was confirmed that the 111) orientation plane had high hardness. In addition, it was confirmed that the cubic boron nitride composite polycrystals of Examples 1 to 5 had higher hardness than the cubic boron nitride composite polycrystal of Comparative Example 2.
さらに、立方晶窒化ホウ素複合多結晶体の[111]方向に配向している面の耐摩耗性を比較するために、摩耗試験を行った。摩耗試験は以下の方式で行った。メタルボンドで粒度#800のダイヤモンド研磨盤の上に2.0×2.0mmの大きさの試料を置き、0.7kg/mm2の荷重を試料にかけた状態で、研磨盤を1000rpmの回転速度で回転させ、研磨盤と接している面を摩耗させ、その摩耗量を比較した。試験は実施例1〜5と比較例1,2の立方晶窒化ホウ素複合多結晶体で行った。 Further, in order to compare the wear resistance of the face oriented in the [111] direction of the cubic boron nitride composite polycrystal, a wear test was conducted. The abrasion test was conducted by the following method. A sample of 2.0 × 2.0 mm size is placed on a diamond grinder with a particle size of # 800 with a metal bond, and the grinder is rotated at 1000 rpm with a load of 0.7 kg / mm 2 applied to the sample. The surface in contact with the polishing machine was worn, and the amount of wear was compared. The test was performed on the cubic boron nitride composite polycrystals of Examples 1 to 5 and Comparative Examples 1 and 2.
実施例1〜5および比較例1は[111]方向に配向している面を研磨盤に接するように置き、試験を行った。比較例2は等方的であるため、無作為に選んだ面を研磨盤に接するように置き、試験を行った。その結果を表2に示す。実施例1〜5は比較例1,2の0.6〜0.9倍の摩耗量であった。 Examples 1 to 5 and Comparative Example 1 were tested by placing the surface oriented in the [111] direction in contact with the polishing disc. Since Comparative Example 2 is isotropic, the test was conducted with the randomly selected surface placed in contact with the polishing machine. The results are shown in Table 2. In Examples 1 to 5, the wear amount was 0.6 to 0.9 times that of Comparative Examples 1 and 2.
つまり、実施例1〜5の立方晶窒化ホウ素複合多結晶体は(111)配向面を摩耗する面とすることで、比較例2の立方晶窒化ホウ素複合多結晶体と比べて耐摩耗性が向上していることが確認された。また、ウルツ鉱型窒化ホウ素を含有する実施例1〜5の立方晶窒化ホウ素複合多結晶体は、ウルツ鉱型窒化ホウ素を含有しない比較例1の立方晶窒化ホウ素複合多結晶体と比べて耐摩耗性が向上していることが確認された。 In other words, the cubic boron nitride composite polycrystals of Examples 1 to 5 have wear resistance compared to the cubic boron nitride composite polycrystal of Comparative Example 2 by making the (111) -oriented surface wear. It was confirmed that there was an improvement. Further, the cubic boron nitride composite polycrystals of Examples 1 to 5 containing wurtzite boron nitride are more resistant to the cubic boron nitride composite polycrystal of Comparative Example 1 not containing wurtzite boron nitride. It was confirmed that the wearability was improved.
以上のように本発明の実施の形態および実施例について説明を行なったが、上述の実施の形態および実施例を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態および実施例に限定されるものではない。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiments and examples of the present invention have been described above, various modifications can be made to the above-described embodiments and examples. Further, the scope of the present invention is not limited to the above-described embodiments and examples. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
Claims (8)
前記ウルツ鉱型窒化ホウ素の含有率が0.1体積%以上であり、
前記立方晶窒化ホウ素の平均粒径は500nm以下であり、
前記立方晶窒化ホウ素の(111)面のX線回折強度I(111)に対する、前記立方晶窒化ホウ素の(220)面のX線回折強度I(220)の比I(220)/I(111)が0.1未満である配向面を備える、立方晶窒化ホウ素複合多結晶体。 Consists of wurtzite boron nitride, cubic boron nitride and inevitable impurities,
The content of the wurtzite boron nitride is 0.1% by volume or more,
The cubic boron nitride has an average particle size of 500 nm or less,
The ratio of the X-ray diffraction intensity I (220) of the (220) plane of the cubic boron nitride to the X-ray diffraction intensity I (111) of the (111) plane of the cubic boron nitride I (220) / I (111 ) Is a cubic boron nitride composite polycrystal having an orientation plane of less than 0.1.
圧力8GPa以上、かつ、温度1300〜2300℃の条件下において前記熱分解窒化ホウ素を立方晶窒化ホウ素に直接変換させると同時に焼結させる工程とを備え
前記熱分解窒化ホウ素は、(002)面の面間隔が3.35Å以上、3.5Å以下である、立方晶窒化ホウ素複合多結晶体の製造方法。 Preparing pyrolytic boron nitride as a starting material;
A step of directly converting the pyrolytic boron nitride into cubic boron nitride and sintering at the same time under conditions of a pressure of 8 GPa or more and a temperature of 1300 to 2300 ° C. A method for producing a cubic boron nitride composite polycrystal having an interplanar spacing of 3.35 to 3.5 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012199656A JP5929655B2 (en) | 2012-09-11 | 2012-09-11 | Cubic boron nitride composite polycrystal, method for producing the same, cutting tool, and wear-resistant tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012199656A JP5929655B2 (en) | 2012-09-11 | 2012-09-11 | Cubic boron nitride composite polycrystal, method for producing the same, cutting tool, and wear-resistant tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014055078A true JP2014055078A (en) | 2014-03-27 |
JP5929655B2 JP5929655B2 (en) | 2016-06-08 |
Family
ID=50612757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012199656A Active JP5929655B2 (en) | 2012-09-11 | 2012-09-11 | Cubic boron nitride composite polycrystal, method for producing the same, cutting tool, and wear-resistant tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5929655B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015205789A (en) * | 2014-04-18 | 2015-11-19 | 住友電気工業株式会社 | Cubic crystal boron nitride polycrystalline body, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic crystal boron nitride polycrystalline body |
WO2018088369A1 (en) * | 2016-11-11 | 2018-05-17 | 国立大学法人愛媛大学 | Cubic boron nitride polycrystalline body and method for producing same, and cutting tool and grinding tool |
JPWO2020262468A1 (en) * | 2019-06-27 | 2020-12-30 | ||
CN116568434A (en) * | 2020-12-25 | 2023-08-08 | 京瓷株式会社 | Blade and cutting tool |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240017331A1 (en) | 2020-12-25 | 2024-01-18 | Kyocera Corporation | Insert and cutting tool |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5223114A (en) * | 1975-08-15 | 1977-02-21 | Saito Shinroku | High pressure phase boron nitride polycrystal sintered bodies and manufacture |
JPS63394B2 (en) * | 1977-07-01 | 1988-01-06 | Gen Electric | |
JPH08336705A (en) * | 1995-06-07 | 1996-12-24 | Mitsubishi Materials Corp | Cutting tool made of cubic boron nitride sintered body with cutting face of cutter showing excellent wearing resistance |
JP2000042823A (en) * | 1998-05-26 | 2000-02-15 | Sumitomo Electric Ind Ltd | Milling cutter and manufacture thereof |
JP2004250278A (en) * | 2003-02-19 | 2004-09-09 | National Institute For Materials Science | High purity ultrafine particle translucent cubic boron nitride sintered compact and its manufacturing method |
-
2012
- 2012-09-11 JP JP2012199656A patent/JP5929655B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5223114A (en) * | 1975-08-15 | 1977-02-21 | Saito Shinroku | High pressure phase boron nitride polycrystal sintered bodies and manufacture |
JPS63394B2 (en) * | 1977-07-01 | 1988-01-06 | Gen Electric | |
JPH08336705A (en) * | 1995-06-07 | 1996-12-24 | Mitsubishi Materials Corp | Cutting tool made of cubic boron nitride sintered body with cutting face of cutter showing excellent wearing resistance |
JP2000042823A (en) * | 1998-05-26 | 2000-02-15 | Sumitomo Electric Ind Ltd | Milling cutter and manufacture thereof |
JP2004250278A (en) * | 2003-02-19 | 2004-09-09 | National Institute For Materials Science | High purity ultrafine particle translucent cubic boron nitride sintered compact and its manufacturing method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015205789A (en) * | 2014-04-18 | 2015-11-19 | 住友電気工業株式会社 | Cubic crystal boron nitride polycrystalline body, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic crystal boron nitride polycrystalline body |
WO2018088369A1 (en) * | 2016-11-11 | 2018-05-17 | 国立大学法人愛媛大学 | Cubic boron nitride polycrystalline body and method for producing same, and cutting tool and grinding tool |
JPWO2018088369A1 (en) * | 2016-11-11 | 2019-10-03 | 国立大学法人愛媛大学 | Cubic boron nitride polycrystal, method for producing the same, cutting tool and grinding tool |
JP7033542B2 (en) | 2016-11-11 | 2022-03-10 | 株式会社日進製作所 | Cubic boron nitride polycrystals and their manufacturing methods, as well as cutting tools and grinding tools |
JPWO2020262468A1 (en) * | 2019-06-27 | 2020-12-30 | ||
WO2020262468A1 (en) * | 2019-06-27 | 2020-12-30 | 京セラ株式会社 | Insert and cutting tool |
CN116568434A (en) * | 2020-12-25 | 2023-08-08 | 京瓷株式会社 | Blade and cutting tool |
Also Published As
Publication number | Publication date |
---|---|
JP5929655B2 (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107207364B (en) | Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal | |
US9416304B2 (en) | Cubic boron nitride complex polycrystal and manufacturing method therefor, and cutting tool, wire-drawing die and grinding tool | |
JP6489281B2 (en) | Method for producing boron nitride polycrystal | |
JP6291995B2 (en) | Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal | |
JP6447197B2 (en) | Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal | |
JP6159064B2 (en) | Cubic boron nitride composite polycrystal and cutting tool, wire drawing die, and grinding tool | |
JP6387897B2 (en) | Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools | |
JP5929655B2 (en) | Cubic boron nitride composite polycrystal, method for producing the same, cutting tool, and wear-resistant tool | |
JP6458559B2 (en) | Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools | |
JP2014080323A (en) | Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal | |
JP2014080322A (en) | Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal | |
JP2014080321A (en) | Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal | |
JP6720816B2 (en) | Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear resistant tool and grinding tool | |
JPWO2020017039A1 (en) | Diamond polycrystal and tool equipped with the same | |
JP5880389B2 (en) | Method for producing boron nitride polycrystal | |
JP6015325B2 (en) | Polycrystalline diamond, method for producing the same, and tool | |
JP6288117B2 (en) | Boron nitride polycrystals and tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150424 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160418 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5929655 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |