JPWO2018088369A1 - Cubic boron nitride polycrystal, method for producing the same, cutting tool and grinding tool - Google Patents

Cubic boron nitride polycrystal, method for producing the same, cutting tool and grinding tool Download PDF

Info

Publication number
JPWO2018088369A1
JPWO2018088369A1 JP2018550194A JP2018550194A JPWO2018088369A1 JP WO2018088369 A1 JPWO2018088369 A1 JP WO2018088369A1 JP 2018550194 A JP2018550194 A JP 2018550194A JP 2018550194 A JP2018550194 A JP 2018550194A JP WO2018088369 A1 JPWO2018088369 A1 JP WO2018088369A1
Authority
JP
Japan
Prior art keywords
cbn
boron nitride
polycrystal
gpa
cubic boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018550194A
Other languages
Japanese (ja)
Other versions
JP7033542B2 (en
Inventor
良夫 市田
良夫 市田
徹男 入舩
徹男 入舩
弘明 大藤
弘明 大藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime University NUC
Original Assignee
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University NUC filed Critical Ehime University NUC
Publication of JPWO2018088369A1 publication Critical patent/JPWO2018088369A1/en
Application granted granted Critical
Publication of JP7033542B2 publication Critical patent/JP7033542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

本発明に係る立方晶窒化硼素(cBN)多結晶体は、平均粒径が200nm以下であるcBNの単相の結晶組織から成る無配向の多結晶体であって、ヌープ硬度が50GPa以上である。平均粒径を100nm以下とすることによりヌープ硬度を53GPa以上とすることができ、50nm以下とすることにより鋭利な工具切れ刃等に好適に用いることができる。平均粒径が70nm以下であるcBNの微細多結晶組織中に、平均粒径が120〜165nmであるcBNの粗結晶粒が分散し、該微細多結晶組織と該粗結晶粒を合わせた多結晶体の平均粒径が100nm以下であるcBN多結晶体では、54.5GPa以上のヌープ硬度が得られる。本発明に係るcBN多結晶体は、熱分解窒化硼素(pBN)から成り[001]方向に配向している原料を圧力25GPa以上で所定温度に所定時間保持することによって、pBNをcBNに直接変換することにより製造する。The cubic boron nitride (cBN) polycrystal according to the present invention is a non-oriented polycrystal having a single-phase crystal structure of cBN having an average grain size of 200 nm or less, and has a Knoop hardness of 50 GPa or more. . By setting the average particle size to 100 nm or less, the Knoop hardness can be set to 53 GPa or more, and by setting the average particle size to 50 nm or less, it can be suitably used for sharp tool cutting edges. A cBN coarse crystal grain having an average particle size of 120 to 165 nm is dispersed in a fine polycrystalline structure of cBN having an average grain size of 70 nm or less, and a polycrystal obtained by combining the fine polycrystalline structure and the coarse crystal grain A cBN polycrystal having an average particle size of 100 nm or less has a Knoop hardness of 54.5 GPa or more. The cBN polycrystal according to the present invention directly converts pBN to cBN by holding a raw material composed of pyrolytic boron nitride (pBN) and oriented in the [001] direction at a pressure of 25 GPa or higher and a predetermined temperature for a predetermined time. It is manufactured by doing.

Description

本発明は、高い硬度が要求される切削工具や研削工具等に用いることができる材料である立方晶窒化硼素多結晶体及びその製造方法に関する。   The present invention relates to a cubic boron nitride polycrystal that is a material that can be used for a cutting tool, a grinding tool, or the like that requires high hardness, and a method for manufacturing the same.

窒化硼素(boron nitride:BN)には、主に六方晶窒化硼素(hexagonal BN:hBN)、ウルツ鉱型窒化硼素(wurtzitic BN:wBN)、及び立方晶窒化硼素(cubic BN:cBN)という、結晶構造が異なる3種のものがある。これらのBNのうちcBNは、ダイヤモンドに次ぐ硬度を有し、且つ、熱的安定性及び化学的安定性がダイヤモンドよりも優れている、という特長を有する。特に、ダイヤモンドが鉄、ニッケル及びチタンといった材料と反応し易いのに対して、cBNはそれらの材料と反応しないため、cBNは鉄、ニッケル、あるいはチタンを含有するワークを加工する工具の材料として特に適している。   Boron nitride (BN) mainly includes crystals called hexagonal boron nitride (hexagonal BN: hBN), wurtzitic boron nitride (wBN), and cubic boron nitride (cubic BN: cBN). There are three types with different structures. Among these BNs, cBN has the second highest hardness after diamond, and has the characteristics that thermal stability and chemical stability are superior to diamond. In particular, diamond is easy to react with materials such as iron, nickel, and titanium, whereas cBN does not react with these materials, so cBN is particularly useful as a tool material for machining workpieces containing iron, nickel, or titanium. Is suitable.

hBNは常圧で作製することができるのに対して、cBN及びwBNは高圧下で作製される。特許文献1及び2、並びに非特許文献1には、原料であるhBN又はpBN(後述)に8〜20GPaの圧力を印加しつつ1900〜2300℃の温度で加熱することにより、cBNとwBNを含有し、cBNの結晶の平均粒径が500nm以下の多結晶体であるcBN/wBN複合多結晶体を作製することが記載されている。ここでpBN(pyrolytic boron nitride、熱分解窒化硼素)は、hBNと同じく[001]方向に配向した結晶構造を有する常圧相であり、減圧熱分解化学気相成長(Chemical Vapor Deposition, CVD)法で製造され、hBNより高純度の窒化硼素である。なお、特許文献2の比較例2、及び特許文献3の比較例1には、wBNを含有せずcBNのみから成る多結晶体が記載されているが、それらの多結晶体は結晶の平均粒径が1000nmを超えており、高い硬度を有しない。   hBN can be produced at normal pressure, whereas cBN and wBN are produced under high pressure. Patent Documents 1 and 2 and Non-Patent Document 1 contain cBN and wBN by heating at a temperature of 1900-2300 ° C while applying a pressure of 8-20 GPa to hBN or pBN (described later) as a raw material. In addition, it is described that a cBN / wBN composite polycrystal which is a polycrystal having an average particle size of cBN crystals of 500 nm or less is prepared. Here, pBN (pyrolytic boron nitride) is a normal pressure phase that has a crystal structure oriented in the [001] direction, similar to hBN, and is a low pressure pyrolysis chemical vapor deposition (CVD) method. Boron nitride with higher purity than hBN. In Comparative Example 2 of Patent Document 2 and Comparative Example 1 of Patent Document 3, there are described polycrystals which do not contain wBN and are composed only of cBN. The diameter exceeds 1000 nm and does not have high hardness.

特開2014-034487号公報JP 2014-034487 特開2015-205789号公報JP 2015-205789

H. Sumiya他3名、"Real indentation hardness of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT"(高圧高温下での直接変換焼成により作製された立方晶窒化硼素の実際の圧入硬度)、Diamond and Related Materials、Elsevier社発行、(オランダ)、第48巻、第47-51頁、2014年9月H. Sumiya et al., “Real indentation hardness of nano-polycrystalline cBN synthesized by direct conversion under under HPHT” (Diamond and diamond and actual indentation hardness of cubic boron nitride produced by direct conversion firing under high pressure and high temperature), Diamond and Related Materials, published by Elsevier, (Netherlands), Volume 48, Pages 47-51, September 2014

これら特許文献1及び2、並びに非特許文献1に記載のcBN/wBN複合多結晶体は、硬度を表す指標の1つであるヌープ硬度が最大でも48GPaである。しかし、高速度鋼やダイス鋼といった高硬度鋼等の高い硬度を有するワークを能率が良く且つ高精度に切削・研削加工するためには、50GPa以上の硬度を有する材料から成る切削工具や研削工具が必要である。   These cBN / wBN composite polycrystals described in Patent Documents 1 and 2 and Non-Patent Document 1 have a Knoop hardness of 48 GPa at the maximum, which is one of the indices representing hardness. However, in order to cut and grind highly hard workpieces such as high-hardness steel such as high-speed steel and die steel with high efficiency and high accuracy, cutting tools and grinding tools made of materials with a hardness of 50 GPa or more are required. is required.

本発明が解決しようとする課題は、50GPa以上の硬度を有する窒化硼素の多結晶体を提供することである。   The problem to be solved by the present invention is to provide a boron nitride polycrystal having a hardness of 50 GPa or more.

上記課題を解決するために成された本発明に係る立方晶窒化硼素多結晶体(cBN多結晶体)は、平均粒径が200nm以下である立方晶窒化硼素(cBN)の単相の結晶組織から成る無配向の多結晶体であって、ヌープ硬度が50GPa以上であることを特徴とする。   A cubic boron nitride polycrystal (cBN polycrystal) according to the present invention, which has been made to solve the above problems, has a single-phase crystal structure of cubic boron nitride (cBN) having an average grain size of 200 nm or less. It is a non-oriented polycrystal made of the above, and has a Knoop hardness of 50 GPa or more.

ここで「平均粒径」、「単相」及び「無配向」はそれぞれ、以下のように定義される。
本発明において「平均粒径」は、JIS G 0551:2013(鋼-結晶粒度の顕微鏡試験方法)に基づき、透過型電子顕微鏡(TEM)画像を用いた切断法により求められる値をいう。切断法では、TEM画像に円を描き、その円の中心を通る直線(直径)を30°間隔で6本(半径では12本)描き、各直線を横切る結晶粒の数を数え(但し、直線の端が結晶粒内にある場合はその結晶粒の数を0.5と数える)、その数の全ての直線での和(この和の値を「結晶粒数」とする)を求める。そして、直径の6倍を結晶粒数で除した値を平均粒径とする。なお、TEM画像に描く円の直径は特定の値に限定されないが、1本の直径における結晶粒数が10〜40程度になるように定めることが望ましい。また、1つのcBN多結晶体に対して、複数箇所のTEM画像を取得し、それら複数箇所の平均値で平均粒径を求めることが望ましい。
Here, “average particle diameter”, “single phase” and “non-oriented” are defined as follows.
In the present invention, the “average particle size” refers to a value obtained by a cutting method using a transmission electron microscope (TEM) image based on JIS G 0551: 2013 (steel-crystal grain size microscope test method). In the cutting method, a circle is drawn on the TEM image, 6 straight lines (diameter) passing through the center of the circle are drawn at 30 ° intervals (12 in radius), and the number of crystal grains crossing each straight line is counted (however, straight lines) If the end of is in a crystal grain, the number of the crystal grains is counted as 0.5), and the sum of all the straight lines of this number (the value of this sum is referred to as “the number of crystal grains”) is obtained. A value obtained by dividing 6 times the diameter by the number of crystal grains is defined as an average particle diameter. The diameter of the circle drawn on the TEM image is not limited to a specific value, but it is desirable that the number of crystal grains in one diameter is about 10 to 40. Further, it is desirable to obtain TEM images at a plurality of locations for one cBN polycrystal and obtain an average particle diameter by an average value at the plurality of locations.

本発明において「単相」とは、管電圧40KV, 管電流30mAで作動するX線発生装置から発生させたCuKα線(波長: 0.15418nm、コリメーター: 0.1mm)をcBN多結晶体に照射することにより得られるX線回折パターンにおいて、cBNの結晶以外(特に、wBNから成る異結晶)に由来するピークが検出されないものをいう。   In the present invention, “single phase” refers to irradiating a cBN polycrystal with CuKα rays (wavelength: 0.15418 nm, collimator: 0.1 mm) generated from an X-ray generator operating at a tube voltage of 40 KV and a tube current of 30 mA. In the X-ray diffraction pattern obtained by this, a peak derived from other than cBN crystals (particularly, a different crystal composed of wBN) is not detected.

本発明に係るcBN多結晶体における「無配向」とは、cBN多結晶体のバルクで(粉末にすることなく)測定したX線回折の220ピークの強度I(220)と111ピークの強度I(111)の比I(220)/I(111)が0.15以上であることをいう。その際のX線回折の測定条件は、上記の単相であることを確認する際の測定条件と同じである。“Non-orientation” in the cBN polycrystal according to the present invention means 220 peak intensity I (220) and 111 peak intensity I of X-ray diffraction measured in the bulk (without powder) of the cBN polycrystal. This means that the ratio I (220) / I (111) of (111) is 0.15 or more. The measurement conditions for X-ray diffraction at that time are the same as the measurement conditions for confirming the single phase.

本明細書では、本発明のcBN多結晶体の中でも特に、平均粒径が100nm以下のものを「微細組織cBNナノ多結晶体」と呼び、平均粒径が50nm以下であるものを「超微細組織cBNナノ多結晶体」と呼ぶ。なお、後述の、平均粒径が70nm以下である微細組織中に平均粒径が115〜165nmであるcBNの粗結晶粒が分散した構成では、粗結晶粒も本発明のcBN多結晶体を構成する結晶に含まれる。つまり、「粗結晶粒」は、平均粒径が70nm以下である結晶粒との対比において相対的に結晶粒が大きいことを意味しており、(本発明のものに限らず)一般的なcBN多結晶体における結晶粒としては微細な結晶粒に分類される。   In the present specification, among the cBN polycrystals of the present invention, those having an average particle size of 100 nm or less are referred to as “fine-structured cBN nanopolycrystals”, and those having an average particle size of 50 nm or less are referred to as “ultrafine”. It is called “tissue cBN nanopolycrystal”. In addition, in a configuration in which coarse crystal grains of cBN having an average particle size of 115 to 165 nm are dispersed in a fine structure having an average particle size of 70 nm or less, which will be described later, the coarse crystal particles also constitute the cBN polycrystal of the present invention. To be included in the crystal. In other words, “coarse crystal grains” means that the crystal grains are relatively large in comparison with crystal grains having an average grain size of 70 nm or less, and are not limited to those of the present invention. The crystal grains in the polycrystal are classified into fine crystal grains.

cBN多結晶体では、結晶の平均粒径が200nmを超えると、結晶同士が強固に結合した多結晶体を得難い。また、多結晶体がcBN以外(wBN等)の結晶(異結晶)を含有すると、外部から多結晶体に力が与えられたときに当該異結晶がすべりや微小亀裂の起点となり、硬度が低下する原因となる。さらに、多結晶体が配向していると硬度に異方性が生じ、硬度が方向によってばらつく。そこで本発明では、(i)結晶の平均粒径が200nm以下という小さい値であり、(ii)cBNのみから成る単相であって、且つ(iii)無配向であることにより、従来のcBN多結晶体では実現できなかった50GPa以上という高いヌープ硬度を有するcBN多結晶体が得られる。このような高いヌープ硬度を有するcBN多結晶体は、切削工具の工具切れ刃や研削工具の砥粒切れ刃等の材料として好適に用いることができる。   In the cBN polycrystal, if the average crystal grain size exceeds 200 nm, it is difficult to obtain a polycrystal in which the crystals are firmly bonded to each other. In addition, if the polycrystal contains a crystal other than cBN (wBN, etc.) (heterocrystal), when the polycrystal is subjected to force from the outside, the heterocrystal becomes the starting point of slipping and microcracking, and the hardness decreases. Cause. Furthermore, when the polycrystal is oriented, anisotropy occurs in the hardness, and the hardness varies depending on the direction. Therefore, in the present invention, (i) the average grain size of the crystal is a small value of 200 nm or less, (ii) a single phase consisting only of cBN, and (iii) non-oriented, A cBN polycrystal having a high Knoop hardness of 50 GPa or more, which could not be realized with a crystal, can be obtained. Such a cBN polycrystal having a high Knoop hardness can be suitably used as a material for a cutting edge of a cutting tool, an abrasive cutting edge of a grinding tool, or the like.

本発明に係るcBN多結晶体において、前記平均粒径が100nm以下(微細組織cBNナノ多結晶体)であって、前記ヌープ硬度が53GPa以上であることが望ましい。これにより、更にヌープ硬度が高く、工具切れ刃や砥粒切れ刃等により好適な材料が得られる。特に、切削加工をするだけで鏡面仕上げを行うことができるほどの鋭利な工具切れ刃や、より高精度な研磨加工を行うための鋭利な砥粒切れ刃を得るために、前記平均粒径は50nm以下(すなわち、cBN多結晶体が超微細組織cBNナノ多結晶体)であることが一層望ましい。   In the cBN polycrystal according to the present invention, it is preferable that the average particle diameter is 100 nm or less (fine-structured cBN nanopolycrystal) and the Knoop hardness is 53 GPa or more. Thereby, Knoop hardness is further high and a suitable material is obtained with a tool cutting edge, an abrasive grain cutting edge, etc. In particular, in order to obtain a sharp tool cutting edge that can be mirror-finished only by cutting, and a sharp abrasive cutting edge for performing higher-precision polishing, the average particle diameter is More desirably, it is 50 nm or less (that is, the cBN polycrystal is an ultrafine-structured cBN nanopolycrystal).

本発明に係るcBN多結晶体は、平均粒径が70nm以下であるcBNの微細多結晶組織中に、平均粒径が115〜165nmであるcBNの粗結晶粒が分散し、当該微細多結晶組織と当該粗結晶粒を合わせた多結晶体の平均粒径が100nm以下である多結晶体(微細組織cBNナノ多結晶体)であって、ヌープ硬度が53.5GPa以上であることが望ましい。ここで、前記粗結晶粒は120〜165nm、前記ヌープ硬度が54.5GPa以上であることがより望ましい。このように上記微細多結晶組織中に粗結晶粒が分散していることにより、粒径が均一に近い結晶から成る場合よりもヌープ硬度を高くすることができる。以下、このようなcBN多結晶体を「粗粒分散cBNナノ多結晶体」と呼ぶ。   In the cBN polycrystal according to the present invention, the cBN coarse crystal grains having an average particle size of 115 to 165 nm are dispersed in the fine polycrystal structure of cBN having an average particle size of 70 nm or less, and the fine polycrystal structure And a polycrystalline body (fine-structured cBN nanopolycrystal) having an average particle diameter of 100 nm or less, and a Knoop hardness of 53.5 GPa or more. Here, the coarse crystal grains are more preferably 120 to 165 nm and the Knoop hardness is 54.5 GPa or more. As described above, the coarse crystal grains are dispersed in the fine polycrystalline structure, so that the Knoop hardness can be made higher than that in the case where the grains are made of crystals having a nearly uniform grain size. Hereinafter, such a cBN polycrystal is referred to as a “coarse grain dispersed cBN nanopolycrystal”.

本発明に係るcBN多結晶体は、以下の方法により製造することができる。すなわち、本発明に係る立方晶窒化硼素多結晶体製造方法は、
出発物質である熱分解窒化硼素(pBN)から成り[001]方向に配向している原料を準備する工程と、
前記原料を圧力25GPa以上で所定温度に所定時間保持することによって、前記熱分解窒化硼素を立方晶窒化硼素(cBN)に直接変換する工程と
を有することを特徴とする。
The cBN polycrystal according to the present invention can be produced by the following method. That is, the cubic boron nitride polycrystal manufacturing method according to the present invention is:
Preparing a raw material composed of pyrolytic boron nitride (pBN) as a starting material and oriented in the [001] direction;
A step of directly converting the pyrolytic boron nitride into cubic boron nitride (cBN) by holding the raw material at a pressure of 25 GPa or higher and a predetermined temperature for a predetermined time.

ここで「[001]方向に配向している」とは、熱分解窒化硼素のバルクで(粉末にすることなく)測定したX線回折の100ピークの強度I(100)と002ピークの強度I(002)の比I(100)/I(002)が0.15以下あることをいう。その際のX線回折の測定条件は、上記のcBN多結晶体が単相であることを確認する際の測定条件と同じである。Here, “orientated in the [001] direction” means 100 peak intensity I (100) and 002 peak intensity I of X-ray diffraction measured in a pyrolytic boron nitride bulk (without powder ). (002) the ratio I (100) / I (002) refers to that 0.15. The measurement conditions for X-ray diffraction at that time are the same as the measurement conditions for confirming that the above-mentioned cBN polycrystal is a single phase.

cBNの単相の結晶組織から成るcBN多結晶体を製造するためには、[001]方向に配向している熱分解窒化硼素を原料として用いることが必要である。なお、このように原料が配向していても、製造されるcBN多結晶体では結晶が配向していない状態となる。   In order to produce a cBN polycrystal composed of a single phase crystal structure of cBN, it is necessary to use pyrolytic boron nitride oriented in the [001] direction as a raw material. Even if the raw materials are oriented in this way, the produced cBN polycrystal is in a state where the crystals are not oriented.

また、製造時の圧力が25GPaよりも低いと、多結晶体中にcBNの結晶の他にwBNから成る異結晶が生成されてしまうため、圧力の下限値は25GPaとする。一方、BNではcBNが最も高圧の状態で得られるため、圧力の上限は理論上、特に無い。   Further, if the pressure during production is lower than 25 GPa, a different crystal composed of wBN is generated in the polycrystal in addition to cBN crystals, so the lower limit of the pressure is 25 GPa. On the other hand, in the case of BN, since cBN is obtained in the highest pressure state, there is no theoretical upper limit for the pressure.

前記所定温度は圧力により相違するが、予備実験により定めることができる。例えば、圧力が25GPaである場合には、温度が1900℃よりも低いと、多結晶体中にcBNの結晶の他にwBNから成る異結晶が生成されてしまい、温度が2000℃を超えると、多結晶体中のcBNの結晶の平均粒径が200nmを超えてしまうため、前記所定温度は1900〜2000℃の範囲内の温度とする。   The predetermined temperature differs depending on the pressure, but can be determined by a preliminary experiment. For example, when the pressure is 25 GPa, if the temperature is lower than 1900 ° C., a heterocrystal composed of wBN is generated in addition to cBN crystals in the polycrystal, and when the temperature exceeds 2000 ° C., Since the average particle size of cBN crystals in the polycrystal exceeds 200 nm, the predetermined temperature is set to a temperature in the range of 1900 to 2000 ° C.

前記所定時間、すなわち前記圧力及び温度で保持する時間は、それら圧力及び温度により相違するが、予備実験により定めることができる。保持時間が短すぎるとwBNから成る異結晶が混入してしまい、長すぎると結晶の平均粒径が200nmを超えてしまう。超微細組織cBNナノ多結晶体を作製するためには、保持時間はwBNから成る異結晶が混入しない範囲内で短くする。粗粒分散cBNナノ多結晶体を作製するためには、保持時間は超微細組織cBNナノ多結晶体を作製する場合よりも長くする。例えば、圧力が25GPa、温度が1950℃の場合には、保持時間を11〜25分とすることにより本発明に係るcBN多結晶体を作製することができ、このうち保持時間を11〜13分とすることにより超微細組織cBNナノ多結晶体を作製することができ、保持時間を15〜20分とすることにより粗粒分散cBNナノ多結晶体を作製することができる。   The predetermined time, that is, the time for holding at the pressure and temperature differs depending on the pressure and temperature, but can be determined by preliminary experiments. If the holding time is too short, a different crystal composed of wBN is mixed, and if it is too long, the average grain size of the crystal exceeds 200 nm. In order to fabricate an ultrafine textured cBN nanopolycrystal, the holding time is shortened within a range in which different crystals of wBN are not mixed. In order to produce a coarse-grain-dispersed cBN nanopolycrystal, the holding time is longer than that in the case of producing an ultrafine-structured cBN nanopolycrystal. For example, when the pressure is 25 GPa and the temperature is 1950 ° C., the cBN polycrystal according to the present invention can be produced by setting the holding time to 11 to 25 minutes, among which the holding time is 11 to 13 minutes. Thus, an ultrafine-structured cBN nanopolycrystal can be produced, and a coarse-grain-dispersed cBN nanopolycrystal can be produced by setting the retention time to 15 to 20 minutes.

前記原料は、前記熱分解窒化硼素のバルクで測定したX線回折の100ピークの積分強度Area(100)、101ピークの積分強度Area(101)、及び102ピークの積分強度Area(102)によりGI=(Area(100)+Area(101))/Area(102)で表されるGI値が15以上であることが望ましい。GI値は、その値が高いほど結晶性(ここでは原料であるpBNの結晶性)が低いことを意味している。このように結晶性の低いpBNを原料として使用することにより、wBNから成る異結晶が生成され難くなる。The raw material, integrated intensity Area of 100 peaks of X-ray diffraction was measured in bulk The pyrolytic boron nitride (100), integrated intensity Area (101) of the 101 peak and 102 peak GI by integral intensity Area (102) of It is desirable that the GI value represented by = (Area (100) + Area (101) ) / Area (102) is 15 or more. The GI value means that the higher the value, the lower the crystallinity (here, the crystallinity of pBN as a raw material). Thus, by using pBN having low crystallinity as a raw material, it becomes difficult to produce a different crystal composed of wBN.

本発明により、50GPa以上の硬度を有する窒化硼素の多結晶体を得ることができる。   According to the present invention, a boron nitride polycrystal having a hardness of 50 GPa or more can be obtained.

本発明に係るcBN多結晶体の製造方法の一実施形態において用いる圧力媒体の概略構成図。The schematic block diagram of the pressure medium used in one Embodiment of the manufacturing method of the cBN polycrystal which concerns on this invention. 本実施形態のcBN多結晶体の製造方法において用いる静的超高圧付与装置の概略構成図。The schematic block diagram of the static ultrahigh pressure provision apparatus used in the manufacturing method of the cBN polycrystal of this embodiment. 本発明に係るcBN多結晶体の実施形態((c), (d))及び比較例((a), (b), (e))におけるX線回折パターン。The X-ray-diffraction pattern in embodiment ((c), (d)) and comparative example ((a), (b), (e)) of cBN polycrystal which concerns on this invention. 本実施形態(a)及び比較例(b)における断面のTEM画像。The TEM image of the cross section in this embodiment (a) and a comparative example (b). TEM画像から平均粒径を求める方法を示す図。The figure which shows the method of calculating | requiring an average particle diameter from a TEM image. 本実施形態及び比較例における加熱温度と平均粒径の関係を示すグラフ。The graph which shows the relationship between the heating temperature and average particle diameter in this embodiment and a comparative example. 本実施形態(a)〜(c)及び比較例(d)における断面のTEM画像。The TEM image of the cross section in this embodiment (a)-(c) and the comparative example (d). 粗粒分散cBNナノ多結晶体の模式図。Schematic diagram of coarse-grain dispersed cBN nanopolycrystal. 本実施形態及び比較例における保持時間と平均粒径の関係を示すグラフ。The graph which shows the relationship between the retention time and average particle diameter in this embodiment and a comparative example. 本実施形態及び比較例における平均粒径とヌープ硬度の関係を示すグラフ。The graph which shows the relationship between the average particle diameter and Knoop hardness in this embodiment and a comparative example.

図1〜図10を用いて、本発明に係るcBN多結晶体及びその製造方法の実施形態を説明する。   An embodiment of a cBN polycrystal and a method for producing the same according to the present invention will be described with reference to FIGS.

(1) 本発明に係るcBN多結晶体の製造方法の一実施形態
図1及び図2を用いて、本発明に係るcBN多結晶体の製造方法の一実施形態を説明する。本実施形態では、原料体11として、[001]方向に配向した、市販の板状のpBNを用いる。本実施形態で用いた原料体11のGI値は17.6である。まず、レーザー加工装置を用いてpBNを直径3mmの円盤状に切り出すことにより、原料体11を作製する。この原料体11を、図1に示すように、圧力媒体本体17a、上側圧力媒体17b及び下側圧力媒体17cから成る圧力媒体17内に収容する。その際、まず、原料体11を金属箔製のカプセル12内に装入し、このカプセル12を円筒状のスリーブ13内に入れる。また、原料体11の上下には断熱材14を詰める。このスリーブ13の外側を金属箔製のヒーター15で囲い、その周囲に断熱材16を配して、圧力媒体本体17aの中心に空けた円筒状の与圧室内に入れる。この本体17aの上下を四角錐状の上側圧力媒体17b及び下側圧力媒体17cで挟む。圧力媒体本体17aと上側圧力媒体17bの間、圧力媒体本体17aと下側圧力媒体17cの間にはそれぞれ、ヒーター15に電力を供給する上側金属箔電極18a、下側金属箔電極18bを介在させる。なお、図1は模式図であり、各部の寸法は正確な比率を表すものではない。
(1) One Embodiment of Method for Producing cBN Polycrystal According to the Present Invention An embodiment of a method for producing a cBN polycrystal according to the present invention will be described with reference to FIGS. In the present embodiment, a commercially available plate-like pBN oriented in the [001] direction is used as the raw material body 11. The GI value of the raw material body 11 used in this embodiment is 17.6. First, the raw material body 11 is produced by cutting out pBN into a disk shape having a diameter of 3 mm using a laser processing apparatus. As shown in FIG. 1, the raw material body 11 is accommodated in a pressure medium 17 including a pressure medium body 17a, an upper pressure medium 17b, and a lower pressure medium 17c. In that case, first, the raw material body 11 is inserted into the capsule 12 made of metal foil, and this capsule 12 is put into the cylindrical sleeve 13. In addition, a heat insulating material 14 is packed above and below the raw material body 11. The outside of the sleeve 13 is surrounded by a heater 15 made of a metal foil, and a heat insulating material 16 is disposed around the sleeve 15 and placed in a cylindrical pressurizing chamber opened at the center of the pressure medium body 17a. The upper and lower sides of the main body 17a are sandwiched between a quadrangular pyramid upper pressure medium 17b and a lower pressure medium 17c. Between the pressure medium body 17a and the upper pressure medium 17b, and between the pressure medium body 17a and the lower pressure medium 17c, an upper metal foil electrode 18a and a lower metal foil electrode 18b for supplying electric power to the heater 15 are interposed, respectively. . FIG. 1 is a schematic diagram, and the dimensions of each part do not represent an accurate ratio.

このように圧力媒体17内に収容された原料体11に、図2に示す静的超高圧付与装置20により、後述の高圧及び高温を付与する。ここで用いる静的超高圧付与装置20は、「川井式マルチアンビル型高圧発生装置」と呼ばれ、油圧駆動のピストン21、ガイドブロック22、及びそれらを固定するプレスフレーム23から構成される。ガイドブロック22には、特殊鋼製の6個のブロックから成り内部に立方体状の空間が形成された第1段アンビル24が固定されている。この立方体状の空間内に、タングステンカーバイド製の8個のブロックから成り、内部に正八面体状の空間が形成された第2段アンビル25が収容される。この正八面体状の空間内に圧力媒体17が収容される。第1段アンビル24にピストン21によって圧力を印加することにより第2段アンビル25を圧縮し、それにより圧力媒体17を圧縮し、最終的に試料に下記の所定の圧力を印加する。また、外部の電源29からガイドブロック22、第1段アンビル24、第2段アンビル25、上側金属箔電極18a及び下側金属箔電極18bを介してヒーター15に通電し、試料を下記の所定の温度まで加熱することにより、本実施形態のcBN多結晶体が得られる。   Thus, the below-mentioned high pressure and high temperature are provided to the raw material body 11 accommodated in the pressure medium 17 by the static ultrahigh pressure applying device 20 shown in FIG. The static super-high pressure applying device 20 used here is called a “Kawai-type multi-anvil high-pressure generator”, and includes a hydraulically driven piston 21, a guide block 22, and a press frame 23 for fixing them. Fixed to the guide block 22 is a first-stage anvil 24 made of six blocks made of special steel and having a cubic space formed therein. In this cubic space, the second-stage anvil 25, which is composed of eight blocks made of tungsten carbide and in which a regular octahedral space is formed, is accommodated. The pressure medium 17 is accommodated in this regular octahedral space. By applying pressure to the first stage anvil 24 by the piston 21, the second stage anvil 25 is compressed, thereby compressing the pressure medium 17, and finally applying the following predetermined pressure to the sample. In addition, the heater 15 is energized from the external power source 29 through the guide block 22, the first stage anvil 24, the second stage anvil 25, the upper metal foil electrode 18a, and the lower metal foil electrode 18b, and the sample is subjected to the following predetermined By heating to a temperature, the cBN polycrystal of this embodiment can be obtained.

本実施形態では、原料体11に印加する圧力を23〜30GPa、原料体11の加熱温度を1900〜2000℃とした。なお、本発明では原料体11に印加する圧力の上限は特に無いが、本実施形態では静的超高圧付与装置20の仕様上、圧力の最大値を30GPaとした。また、比較のために、圧力が25GPaの場合において、温度1600℃以上1900℃未満、及び2000℃を超え最高で2600℃までの温度範囲においても同様の実験を行った。さらに、比較のために、温度が1950℃の場合において、圧力が23GPaの場合についても同様の実験を行った。また、圧力が25GPaの場合においては、所定の圧力及び温度に保持する時間(保持時間)が異なる複数の例について実験を行った。   In the present embodiment, the pressure applied to the raw material body 11 is 23 to 30 GPa, and the heating temperature of the raw material body 11 is 1900 to 2000 ° C. In the present invention, the upper limit of the pressure applied to the raw material body 11 is not particularly limited. However, in the present embodiment, the maximum pressure value is set to 30 GPa due to the specifications of the static ultrahigh pressure applying device 20. For comparison, a similar experiment was also performed in the temperature range of 1600 ° C. to less than 1900 ° C. and over 2000 ° C. up to 2600 ° C. when the pressure was 25 GPa. Further, for comparison, the same experiment was performed when the temperature was 1950 ° C. and the pressure was 23 GPa. In the case where the pressure was 25 GPa, experiments were conducted on a plurality of examples having different holding times (holding times) at a predetermined pressure and temperature.

(2) 本発明に係る立方晶窒化硼素多結晶体の実施形態及び比較例
まず、作製時の圧力が25GPa、保持時間が20分間であって、加熱温度が1600℃〜2600℃の範囲内で異なる複数の試料を作製した。図3に作製した試料のうち、加熱温度が(a)1600℃(比較例)、(b)1800℃(比較例)、(c)1900℃(本実施形態)、(d)1950℃(本実施形態)、(e)2150℃(比較例)の場合について、X線回折測定を行った結果を示す。このX線回折測定には、管電圧40KV, 管電流30mAで作動するX線発生装置から発生させたCuKα線(波長: 0.15418nm、コリメーター: 0.1mm)を用いた。いずれの試料においても、2θ=43.3°付近にcBNの(111)面に由来するピークが見られる。一方、(a)及び(b)では、cBNの111ピークよりもやや2θが小さい位置(2θ=40.8°付近)にwBN(異結晶)の100ピーク(図中に矢印を付したもの)が見られるのに対して、(c), (d)及び(e)ではwBNの100ピークが見られない。また、その他には、いずれの試料にもwBNやhBN等の第二相に由来するピークは見られない。これらの結果から、比較例である(a), (b)は単相のcBNではないのに対して、本実施形態である(c)及び(d)、並びに比較例である(e)では単相のcBNが得られていることが確認された。
(2) Embodiment and comparative example of cubic boron nitride polycrystal according to the present invention First, the pressure during production is 25 GPa, the holding time is 20 minutes, and the heating temperature is within the range of 1600 ° C to 2600 ° C. Different samples were made. Among the samples prepared in FIG. 3, the heating temperatures are (a) 1600 ° C. (comparative example), (b) 1800 ° C. (comparative example), (c) 1900 ° C. (this embodiment), (d) 1950 ° C. (main) Embodiment), (e) The results of X-ray diffraction measurement for 2150 ° C. (comparative example) are shown. For this X-ray diffraction measurement, CuKα rays (wavelength: 0.15418 nm, collimator: 0.1 mm) generated from an X-ray generator operating at a tube voltage of 40 KV and a tube current of 30 mA were used. In any sample, a peak derived from the (111) plane of cBN is observed around 2θ = 43.3 °. On the other hand, in (a) and (b), 100 peaks of wBN (different crystals) (shown with arrows in the figure) are found at positions where 2θ is slightly smaller than cBN's 111 peak (around 2θ = 40.8 °). On the other hand, 100 peaks of wBN are not observed in (c), (d) and (e). In addition, no peak derived from the second phase such as wBN or hBN is observed in any sample. From these results, the comparative examples (a) and (b) are not single-phase cBN, whereas the present embodiment (c) and (d) and the comparative example (e) It was confirmed that single-phase cBN was obtained.

次に、上記「加熱温度:1600℃〜2600℃、圧力:25GPa、保持時間:20分間」の条件で作製した試料のうち、加熱温度が(a)1950℃(図3(d)に対応)及び(b)2150℃(同(e))のものについてそれぞれ、断面の透過型電子顕微鏡(TEM)画像を図4に示す。平均粒径は、本実施形態である(a)では97.2nmであるのに対して、比較例である(b)では318nmである。ここで平均粒径は、図5に示すように、TEM画像中に円31を描いたうえで、円31の中心を通る直線32を30°間隔で6本描き、各直線32を横切る結晶粒の数を数え、その数の全ての直線での和で直線32の直径の6倍を除することにより求めた。円31は、1本の直径における結晶粒数が10〜40程度になるように定め、このような円31及び直線32の組み合わせを1つの試料につき3組描いて組毎に平均粒径を求め、更にそれらの平均値を求めることで、最終的な平均粒径の値を定めた。   Next, among the samples prepared under the conditions of “heating temperature: 1600 ° C. to 2600 ° C., pressure: 25 GPa, holding time: 20 minutes”, the heating temperature is (a) 1950 ° C. (corresponding to FIG. 3 (d)) And (b) FIG. 4 shows a transmission electron microscope (TEM) image of the cross section for each of those at 2150 ° C. ((e)). The average particle diameter is 97.2 nm in the present embodiment (a), whereas it is 318 nm in the comparative example (b). Here, as shown in FIG. 5, the average grain size is a crystal grain that draws a circle 31 in the TEM image, draws six straight lines 32 passing through the center of the circle 31 at 30 ° intervals, and crosses each straight line 32. Was obtained by dividing 6 times the diameter of the straight line 32 by the sum of all the straight lines. The circle 31 is determined so that the number of crystal grains in one diameter is about 10 to 40, and three combinations of the circle 31 and the straight line 32 are drawn for one sample to obtain an average grain size for each group. Further, the final average particle size was determined by obtaining an average value of them.

図6に、上記「加熱温度:1600℃〜2600℃、圧力:25GPa、保持時間:20分間」の条件で作製した全ての試料について、平均粒径を求めた結果を示す。加熱温度が1900〜2000℃の範囲内で、平均粒径が200nm以下で且つ単相のcBNが得られている。   FIG. 6 shows the results of determining the average particle diameter for all the samples prepared under the conditions of “heating temperature: 1600 ° C. to 2600 ° C., pressure: 25 GPa, holding time: 20 minutes”. A single-phase cBN having an average particle size of 200 nm or less and a heating temperature in the range of 1900 to 2000 ° C. is obtained.

次に、加熱温度を1950℃、圧力を25GPaとし、保持時間が1〜60分間の範囲内で異なる複数の試料を作製した。X線回折測定の結果から、これら保持時間が11〜60分間の試料はいずれも、単相のcBNが得られているのに対して、保持時間が1〜10分間の試料ではwBNが混入していることが確認された。   Next, a plurality of different samples were manufactured at a heating temperature of 1950 ° C., a pressure of 25 GPa, and a holding time in the range of 1 to 60 minutes. From the results of X-ray diffraction measurement, all of these samples with a retention time of 11 to 60 minutes have single-phase cBN, whereas samples with a retention time of 1 to 10 minutes contain wBN. It was confirmed that

図7に、保持時間が(a)11分間、(b)20分間、(c)25分間、(d)30分間である試料について、断面のTEM画像を示す。なお、図7(b)のTEM画像は、図4(a)のものと同じである。平均粒径は、本実施形態である(a)では40.8nm、(b)では97.2nm、(c)では156nmと、いずれも200nm以下に収まっているのに対して、比較例である(d)では322nmという大きい値になっている。   FIG. 7 shows a cross-sectional TEM image of a sample whose holding time is (a) 11 minutes, (b) 20 minutes, (c) 25 minutes, and (d) 30 minutes. Note that the TEM image in FIG. 7B is the same as that in FIG. The average particle size is 40.8 nm in the present embodiment (a), 97.2 nm in (b), and 156 nm in (c), both of which are within 200 nm or less, compared to the comparative example (d ) Is a large value of 322nm.

また、本実施形態のうち、(a)及び(c)では粒子同士の粒径が比較的近いように見えるのに対して、(b)では粒径が比較的小さい粒子から成る組織内に、比較的大きい粒子が分散しているように見える。目視で比較的小さい粒子(結晶組織の粒子)と比較的大きい粒子(粗結晶)に分けてそれぞれの平均粒径を求めると、結晶組織の粒子では68nm、粗結晶では165nmであった。このような構造は前述の粗粒分散cBNナノ多結晶体に該当する。図8に、粗粒分散cBNナノ多結晶体30を模式的に示す。粗粒分散cBNナノ多結晶体30は、平均粒径が70nm以下であるcBNの微細多結晶31から成る微細多結晶組織中に、平均粒径が115〜165nm、望ましくは120〜165nmであるcBNの粗結晶粒32が分散した構造を有する。本実施形態で作製した粗粒分散cBNナノ多結晶体の作製条件を、平均粒径及びヌープ硬度と共に表1に示す(ヌープ硬度については後述)。なお、表1中の「全体」は、微細多結晶組織と粗結晶粒を合わせた多結晶体の平均粒径を指す。
Further, in this embodiment, in (a) and (c), the particle sizes appear to be relatively close to each other, whereas in (b), in the tissue composed of particles having a relatively small particle size, It appears that relatively large particles are dispersed. When the average particle diameters were determined by dividing the particle size into relatively small particles (grains of crystal structure) and relatively large particles (coarse crystals), it was 68 nm for grains of crystal structure and 165 nm for coarse crystals. Such a structure corresponds to the aforementioned coarse-grain-dispersed cBN nanopolycrystal. FIG. 8 schematically shows a coarse-grain-dispersed cBN nanopolycrystal 30. The coarse-grain-dispersed cBN nanopolycrystalline material 30 is a cBN having an average particle size of 115 to 165 nm, preferably 120 to 165 nm in a fine polycrystalline structure composed of cBN fine polycrystal 31 having an average particle size of 70 nm or less. The coarse crystal grains 32 are dispersed. The production conditions of the coarse-grain-dispersed cBN nanopolycrystal produced in this embodiment are shown in Table 1 together with the average particle diameter and Knoop hardness (Knoop hardness will be described later). In addition, “whole” in Table 1 indicates an average particle diameter of a polycrystalline body obtained by combining a fine polycrystalline structure and coarse crystal grains.

図9に、上記「加熱温度:1950℃、圧力:25GPa、保持時間:1〜60分間」の条件で作製した試料について、平均粒径を求めた結果を示す。保持時間が11〜25分の範囲内で、平均粒径が200nm以下である単相のcBNが得られる。   FIG. 9 shows the results of determining the average particle diameter of the sample prepared under the conditions of “heating temperature: 1950 ° C., pressure: 25 GPa, holding time: 1 to 60 minutes”. A single-phase cBN having an average particle size of 200 nm or less is obtained within a holding time of 11 to 25 minutes.

図10に、上記「加熱温度:1600℃〜2600℃、圧力:25GPa、保持時間:20分間」及び「加熱温度:1950℃、圧力:25GPa、保持時間:1〜60分間」の条件で作製した全ての試料について、ヌープ硬度を測定した結果を示す。ここでは、縦軸にヌープ硬度、横軸に平均粒径dの平方根の逆数d-1/2をとったグラフで測定結果を示している。この測定結果より、wBNが混入していない試料である単相のcBN多結晶体では、粗粒分散cBNナノ多結晶体を除いてd-1/2の1次関数(図中の直線)で近似される傾向を有し、平均粒径dが200nm以下(d-1/2が0.071nm-1/2以上)のときに、ヌープ硬度が50GPa以上という従来のcBN多結晶体よりも高い値を有する。また、平均粒径dが100nm以下(d-1/2が0.1nm-1/2以上)のときには、ヌープ硬度が53GPa以上となる。一方、単相のcBNではなくwBNが混入した例では、ヌープ硬度の値は前述の1次関数に対応する値よりも低くなっており、相変態が不十分なため、第二相が残留すると硬度が低下することが確認された。In FIG. 10, it was produced under the conditions of “heating temperature: 1600 ° C. to 2600 ° C., pressure: 25 GPa, holding time: 20 minutes” and “heating temperature: 1950 ° C., pressure: 25 GPa, holding time: 1 to 60 minutes”. The result of having measured Knoop hardness about all the samples is shown. Here, the measurement results are shown in a graph in which the vertical axis represents Knoop hardness and the horizontal axis represents the reciprocal d -1/2 of the square root of the average particle diameter d. From this measurement result, in the single-phase cBN polycrystal that is a sample not mixed with wBN, it is a linear function of d −1/2 (straight line in the figure) except for the coarse-grain dispersed cBN nanopolycrystal. Higher than conventional cBN polycrystals with Knoop hardness of 50 GPa or more when the average particle diameter d is 200 nm or less (d -1/2 is 0.071 nm -1/2 or more). Have Further, when the average particle size d is 100 nm or less (d −1/2 is 0.1 nm −1/2 or more), the Knoop hardness is 53 GPa or more. On the other hand, in the example in which wBN is mixed instead of single-phase cBN, the Knoop hardness value is lower than the value corresponding to the above-mentioned linear function, and the phase transformation is insufficient. It was confirmed that the hardness decreased.

これら本実施形態のcBN多結晶体は、50GPa以上という高いヌープ硬度を有することから、切削工具の工具切れ刃や、研削工具の砥粒切れ刃に好適に用いることができる。   These cBN polycrystals of this embodiment have a high Knoop hardness of 50 GPa or more, and therefore can be suitably used for tool cutting edges of cutting tools and abrasive grain cutting edges of grinding tools.

また、粗粒分散cBNナノ多結晶体では、前述の1次関数に対応する値よりも高いヌープ硬度を有しており(表1参照)、本実施形態ではヌープ硬度の値が53.5GPaを超えている。特に、全体の平均粒径dが97.2nm(d-1/2が0.101)であって粗結晶粒の平均粒径が165nmである試料では、ヌープ硬度の値が54.5GPaを超えており(表1の最上段)、dが84.6nm(d-1/2が0.109)であって粗結晶粒の平均粒径が130.2nmである試料では、ヌープ硬度の値が55GPaを超えている(表1の最下段。図10中に矢印を付したデータ。)。このように、微細多結晶組織中に粗粒が分散することにより、硬度が更に高まることが確認された。Further, the coarse-grain dispersed cBN nanopolycrystal has a Knoop hardness higher than the value corresponding to the above-mentioned linear function (see Table 1), and in this embodiment, the Knoop hardness value exceeds 53.5 GPa. ing. In particular, the sample having an overall average particle diameter d of 97.2 nm (d -1/2 is 0.101) and an average particle diameter of coarse crystal grains of 165 nm has a Knoop hardness value exceeding 54.5 GPa (Table 1), d is 84.6 nm (d −1/2 is 0.109), and the average grain size of the coarse grains is 130.2 nm, the Knoop hardness value exceeds 55 GPa (Table 1). (The bottom row of Fig. 10. Data with an arrow in Fig. 10). Thus, it was confirmed that the hardness is further increased by the dispersion of the coarse grains in the fine polycrystalline structure.

さらに、本実施形態では、図10に図示したように、平均粒径dが50nm以下であってヌープ硬度が53GPa以上である超微細組織cBNナノ多結晶体も得られている。超微細組織cBNナノ多結晶体は特に、切削加工をするだけで鏡面仕上げを行うことができるほどの鋭利な工具切れ刃や、より高精度な研磨加工を行うための鋭利な砥粒切れ刃を得るために好適に用いることができる。   Furthermore, in this embodiment, as shown in FIG. 10, an ultrafine-structured cBN nanopolycrystal having an average particle diameter d of 50 nm or less and a Knoop hardness of 53 GPa or more is also obtained. The ultra-fine textured cBN nanopolycrystal has a sharp tool cutting edge that can be mirror-finished only by cutting, and a sharp abrasive cutting edge that enables high-precision polishing. In order to obtain, it can use suitably.

ここまで、作製時の圧力が25GPaである場合について説明したが、23GPa及び30GPaの場合についても上記と同様の方法でcBN多結晶体を作製した。   So far, the case where the pressure at the time of production is 25 GPa has been described, but cBN polycrystals were also produced by the same method as described above in the case of 23 GPa and 30 GPa.

圧力が23GPaのときには、作製時の温度を(圧力が25GPaのときに本発明に係るcBN多結晶体が得られた温度範囲内の中央値である)1950℃として作製したところ、wBNの含有率はほぼ0%であって単相のcBNが得られたものの、結晶の平均粒径は上述の200nmよりも大きい276nmとなり、本発明に係るcBN多結晶体は得られなかった。この試料のヌープ硬度を測定したところ49.5GPaであり、本発明に係るcBN多結晶体における値の下限値である50GPaよりも小さかった。   When the pressure was 23 GPa, the production temperature was 1950 ° C. (the median value within the temperature range in which the cBN polycrystal according to the present invention was obtained when the pressure was 25 GPa). Was approximately 0%, and single-phase cBN was obtained, but the average crystal grain size was 276 nm, which was larger than the above-mentioned 200 nm, and the cBN polycrystal according to the present invention was not obtained. The Knoop hardness of this sample was measured and found to be 49.5 GPa, which was smaller than the lower limit value of 50 GPa in the cBN polycrystal according to the present invention.

圧力が30GPaのときには、作製時の温度を1800℃とした。得られた試料は、wBNの含有率が0%の単相のcBNであって、結晶の平均粒径は47nmであった。また、ヌープ硬度は55.6GPaであった。従って、この圧力及び温度の条件により、本発明に係るcBN多結晶体が得られたといえる。   When the pressure was 30 GPa, the production temperature was 1800 ° C. The obtained sample was a single-phase cBN with a wBN content of 0%, and the average crystal grain size was 47 nm. The Knoop hardness was 55.6 GPa. Therefore, it can be said that the cBN polycrystal according to the present invention was obtained under the pressure and temperature conditions.

11…原料体
12…カプセル
13…スリーブ
14…断熱材
15…ヒーター
16…断熱材
17…圧力媒体
17a…圧力媒体本体
17b…上側圧力媒体
17c…下側圧力媒体
18a…上側金属箔電極
18b…下側金属箔電極
20…静的超高圧付与装置
21…ピストン
22…ガイドブロック
23…プレスフレーム
24…第1段アンビル
25…第2段アンビル
29…電源
DESCRIPTION OF SYMBOLS 11 ... Raw material body 12 ... Capsule 13 ... Sleeve 14 ... Heat insulating material 15 ... Heater 16 ... Heat insulating material 17 ... Pressure medium 17a ... Pressure medium main body 17b ... Upper pressure medium 17c ... Lower pressure medium 18a ... Upper metal foil electrode 18b ... Lower Side metal foil electrode 20 ... Static ultrahigh pressure applying device 21 ... Piston 22 ... Guide block 23 ... Press frame 24 ... First stage anvil 25 ... Second stage anvil 29 ... Power supply

Claims (8)

平均粒径が200nm以下である立方晶窒化硼素の単相の結晶組織から成る無配向の多結晶体であって、ヌープ硬度が50GPa以上であることを特徴とする立方晶窒化硼素多結晶体。   A cubic boron nitride polycrystal comprising a non-oriented polycrystal having a single-phase crystal structure of cubic boron nitride having an average particle diameter of 200 nm or less and having a Knoop hardness of 50 GPa or more. 前記平均粒径が100nm以下であって、前記ヌープ硬度が53GPa以上であることを特徴とする請求項1に記載の立方晶窒化硼素多結晶体。   The cubic boron nitride polycrystal according to claim 1, wherein the average grain size is 100 nm or less and the Knoop hardness is 53 GPa or more. 平均粒径が70nm以下である立方晶窒化硼素の微細多結晶組織中に、平均粒径が115〜165nmである立方晶窒化硼素の粗結晶粒が分散し、該微細多結晶組織と該粗結晶粒を合わせた多結晶体の平均粒径が100nm以下である多結晶体であって、ヌープ硬度が53.5GPa以上であることを特徴とする請求項1又は2に記載の立方晶窒化硼素多結晶体。   In the fine polycrystalline structure of cubic boron nitride having an average particle diameter of 70 nm or less, coarse crystalline grains of cubic boron nitride having an average particle diameter of 115 to 165 nm are dispersed, and the fine polycrystalline structure and the coarse crystal are dispersed. 3. The cubic boron nitride polycrystal according to claim 1, wherein a polycrystal having an average grain size of 100 nm or less and a Knoop hardness of 53.5 GPa or more. body. 前記粗結晶粒の平均粒径が120〜165nmであって、前記ヌープ硬度が54.5GPa以上であることを特徴とする請求項3に記載の立方晶窒化硼素多結晶体。   4. The cubic boron nitride polycrystal according to claim 3, wherein the coarse crystal grains have an average grain size of 120 to 165 nm and the Knoop hardness is 54.5 GPa or more. 前記平均粒径が50nm以下であることを特徴とする請求項2に記載の立方晶窒化硼素多結晶体。   The cubic boron nitride polycrystal according to claim 2, wherein the average particle size is 50 nm or less. 請求項1〜5のいずれかに記載の立方晶窒化硼素多結晶体から成る工具切れ刃を備えることを特徴とする切削工具。   A cutting tool comprising a tool cutting edge made of the cubic boron nitride polycrystal according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の立方晶窒化硼素多結晶体から成る砥粒切れ刃を備えることを特徴とする研削工具。   A grinding tool comprising an abrasive cutting edge made of the cubic boron nitride polycrystal according to any one of claims 1 to 5. 出発物質である熱分解窒化硼素から成り[001]方向に配向している原料を準備する工程と、
前記原料を圧力25GPa以上で所定温度に所定時間保持することによって、前記熱分解窒化硼素を立方晶窒化硼素に直接変換する工程と
を有することを特徴とする立方晶窒化硼素多結晶体製造方法。
Preparing a raw material composed of pyrolytic boron nitride as a starting material and oriented in the [001] direction;
A method of directly converting the pyrolytic boron nitride into cubic boron nitride by holding the raw material at a pressure of 25 GPa or higher and a predetermined temperature for a predetermined time, to produce a cubic boron nitride polycrystal.
JP2018550194A 2016-11-11 2017-11-06 Cubic boron nitride polycrystals and their manufacturing methods, as well as cutting tools and grinding tools Active JP7033542B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016220331 2016-11-11
JP2016220331 2016-11-11
PCT/JP2017/039979 WO2018088369A1 (en) 2016-11-11 2017-11-06 Cubic boron nitride polycrystalline body and method for producing same, and cutting tool and grinding tool

Publications (2)

Publication Number Publication Date
JPWO2018088369A1 true JPWO2018088369A1 (en) 2019-10-03
JP7033542B2 JP7033542B2 (en) 2022-03-10

Family

ID=62109264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018550194A Active JP7033542B2 (en) 2016-11-11 2017-11-06 Cubic boron nitride polycrystals and their manufacturing methods, as well as cutting tools and grinding tools

Country Status (2)

Country Link
JP (1) JP7033542B2 (en)
WO (1) WO2018088369A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3808715A4 (en) * 2018-06-18 2022-03-09 Sumitomo Electric Hardmetal Corp. Polycrystalline cubic boron nitride and production method therefor
JP7387047B1 (en) * 2023-06-22 2023-11-27 株式会社日進製作所 Cubic boron nitride polycrystal and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108718A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of sintered body of cubic boron nitride
WO2012141171A1 (en) * 2011-04-11 2012-10-18 住友電気工業株式会社 Cutting tool and process for producing same
WO2013031681A1 (en) * 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
WO2014027470A1 (en) * 2012-08-16 2014-02-20 国立大学法人愛媛大学 Single-phase hexagonal-diamond bulk sintered body, and production method therefor
JP2014055078A (en) * 2012-09-11 2014-03-27 Sumitomo Electric Ind Ltd Cubic boron nitride composition polycrystalline material and manufacturing method thereof, cutting tool and abrasion tool
JP2015529611A (en) * 2012-08-03 2015-10-08 燕山大学 Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108718A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of sintered body of cubic boron nitride
WO2012141171A1 (en) * 2011-04-11 2012-10-18 住友電気工業株式会社 Cutting tool and process for producing same
WO2013031681A1 (en) * 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
JP2015529611A (en) * 2012-08-03 2015-10-08 燕山大学 Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof
WO2014027470A1 (en) * 2012-08-16 2014-02-20 国立大学法人愛媛大学 Single-phase hexagonal-diamond bulk sintered body, and production method therefor
JP2014055078A (en) * 2012-09-11 2014-03-27 Sumitomo Electric Ind Ltd Cubic boron nitride composition polycrystalline material and manufacturing method thereof, cutting tool and abrasion tool

Also Published As

Publication number Publication date
WO2018088369A1 (en) 2018-05-17
JP7033542B2 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
CN101583450B (en) Cutting tool
JP4275896B2 (en) Polycrystalline diamond and method for producing the same
JP5013156B2 (en) High hardness diamond polycrystal and method for producing the same
JP5140606B2 (en) Wire drawing dies
EP2752398B1 (en) Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
CN109437920B (en) Nanometer/submicron structure wBN superhard material, wBN-cBN superhard composite material, preparation method and cutter
CN107406334B (en) Diamond polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing diamond polycrystal
JP6159064B2 (en) Cubic boron nitride composite polycrystal and cutting tool, wire drawing die, and grinding tool
JP2012106925A (en) High hardness electric conductive diamond polycrystalline body and method for manufacturing the same
JP6045000B2 (en) Hexagonal diamond single-phase bulk sintered body and method for producing the same
CN110219042B (en) Polycrystalline diamond body, cutting tool, wear-resistant tool, grinding tool, and method for manufacturing polycrystalline diamond body
WO2015025757A1 (en) Diamond polycrystalline body, method for producing same, and tool
JP2007055819A (en) High-hardness polycrystalline diamond and process for producing the same
WO2018088369A1 (en) Cubic boron nitride polycrystalline body and method for producing same, and cutting tool and grinding tool
CN107207358B (en) Composite polycrystal and method for producing same
JP5076300B2 (en) High hardness diamond polycrystal
JP2004196595A (en) Heat-resistant diamond compound sintered compact and method for manufacturing the same
US9573249B2 (en) Boron nitride composites
JP6007732B2 (en) Polycrystalline diamond and method for producing the same
JP2009007248A (en) Diamond polycrystal body
JP6015325B2 (en) Polycrystalline diamond, method for producing the same, and tool
JP6288117B2 (en) Boron nitride polycrystals and tools
Sorb et al. Diamond: high-pressure synthesis
JP5880389B2 (en) Method for producing boron nitride polycrystal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20181207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7033542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150