JP7033542B2 - Cubic boron nitride polycrystals and their manufacturing methods, as well as cutting tools and grinding tools - Google Patents

Cubic boron nitride polycrystals and their manufacturing methods, as well as cutting tools and grinding tools Download PDF

Info

Publication number
JP7033542B2
JP7033542B2 JP2018550194A JP2018550194A JP7033542B2 JP 7033542 B2 JP7033542 B2 JP 7033542B2 JP 2018550194 A JP2018550194 A JP 2018550194A JP 2018550194 A JP2018550194 A JP 2018550194A JP 7033542 B2 JP7033542 B2 JP 7033542B2
Authority
JP
Japan
Prior art keywords
boron nitride
cbn
particle size
cubic boron
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018550194A
Other languages
Japanese (ja)
Other versions
JPWO2018088369A1 (en
Inventor
良夫 市田
徹男 入舩
弘明 大藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Manufacturing Co Ltd
Original Assignee
Nissin Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Manufacturing Co Ltd filed Critical Nissin Manufacturing Co Ltd
Publication of JPWO2018088369A1 publication Critical patent/JPWO2018088369A1/en
Application granted granted Critical
Publication of JP7033542B2 publication Critical patent/JP7033542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder

Description

本発明は、高い硬度が要求される切削工具や研削工具等に用いることができる材料である立方晶窒化硼素多結晶体及びその製造方法に関する。 The present invention relates to a cubic boron nitride polycrystal, which is a material that can be used for cutting tools, grinding tools, etc. that require high hardness, and a method for producing the same.

窒化硼素(boron nitride:BN)には、主に六方晶窒化硼素(hexagonal BN:hBN)、ウルツ鉱型窒化硼素(wurtzitic BN:wBN)、及び立方晶窒化硼素(cubic BN:cBN)という、結晶構造が異なる3種のものがある。これらのBNのうちcBNは、ダイヤモンドに次ぐ硬度を有し、且つ、熱的安定性及び化学的安定性がダイヤモンドよりも優れている、という特長を有する。特に、ダイヤモンドが鉄、ニッケル及びチタンといった材料と反応し易いのに対して、cBNはそれらの材料と反応しないため、cBNは鉄、ニッケル、あるいはチタンを含有するワークを加工する工具の材料として特に適している。 Boron nitride (BN) is mainly composed of crystals called hexagonal boron nitride (hexagonal BN: hBN), wurtzitic BN (wBN), and cubic boron nitride (cubic BN: cBN). There are three types with different structures. Among these BNs, cBN has the characteristics that it has the hardness next to diamond and is superior in thermal stability and chemical stability to diamond. In particular, diamond reacts easily with materials such as iron, nickel and titanium, whereas cBN does not react with those materials, so cBN is particularly a material for tools for machining workpieces containing iron, nickel or titanium. Are suitable.

hBNは常圧で作製することができるのに対して、cBN及びwBNは高圧下で作製される。特許文献1及び2、並びに非特許文献1には、原料であるhBN又はpBN(後述)に8~20GPaの圧力を印加しつつ1900~2300℃の温度で加熱することにより、cBNとwBNを含有し、cBNの結晶の平均粒径が500nm以下の多結晶体であるcBN/wBN複合多結晶体を作製することが記載されている。ここでpBN(pyrolytic boron nitride、熱分解窒化硼素)は、hBNと同じく[001]方向に配向した結晶構造を有する常圧相であり、減圧熱分解化学気相成長(Chemical Vapor Deposition, CVD)法で製造され、hBNより高純度の窒化硼素である。なお、特許文献2の比較例2、及び特許文献3の比較例1には、wBNを含有せずcBNのみから成る多結晶体が記載されているが、それらの多結晶体は結晶の平均粒径が1000nmを超えており、高い硬度を有しない。 hBN can be produced under normal pressure, whereas cBN and wBN are produced under high pressure. Patent Documents 1 and 2 and Non-Patent Document 1 contain cBN and wBN by heating the raw material hBN or pBN (described later) at a temperature of 1900 to 2300 ° C. while applying a pressure of 8 to 20 GPa. However, it is described that a cBN / wBN composite polycrystal, which is a polycrystal having an average particle size of cBN crystals of 500 nm or less, is produced. Here, pBN (pyrolytic boron nitride) is a normal pressure phase having a crystal structure oriented in the [001] direction like hBN, and is a vacuum thermal decomposition chemical vapor deposition (CVD) method. It is a boron nitride with a higher purity than hBN. In Comparative Example 2 of Patent Document 2 and Comparative Example 1 of Patent Document 3, polycrystals containing only cBN without containing wBN are described, but these polycrystals are average grains of crystals. It has a diameter exceeding 1000 nm and does not have high hardness.

特開2014-034487号公報Japanese Unexamined Patent Publication No. 2014-034487 特開2015-205789号公報JP-A-2015-205789

H. Sumiya他3名、"Real indentation hardness of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT"(高圧高温下での直接変換焼成により作製された立方晶窒化硼素の実際の圧入硬度)、Diamond and Related Materials、Elsevier社発行、(オランダ)、第48巻、第47-51頁、2014年9月H. Sumiya et al., "Real indentation hardness of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT", Diamond and Related Materials, published by Elsevier, (Netherlands), Vol. 48, pp. 47-51, September 2014

これら特許文献1及び2、並びに非特許文献1に記載のcBN/wBN複合多結晶体は、硬度を表す指標の1つであるヌープ硬度が最大でも48GPaである。しかし、高速度鋼やダイス鋼といった高硬度鋼等の高い硬度を有するワークを能率が良く且つ高精度に切削・研削加工するためには、50GPa以上の硬度を有する材料から成る切削工具や研削工具が必要である。 The cBN / wBN composite polycrystals described in Patent Documents 1 and 2 and Non-Patent Document 1 have a Knoop hardness, which is one of the indexes representing hardness, at the maximum of 48 GPa. However, in order to efficiently and accurately cut and grind workpieces with high hardness such as high-speed steel and die steel, cutting tools and grinding tools made of materials with hardness of 50 GPa or more is necessary.

本発明が解決しようとする課題は、50GPa以上の硬度を有する窒化硼素の多結晶体を提供することである。 An object to be solved by the present invention is to provide a polycrystal of boron nitride having a hardness of 50 GPa or more.

上記課題を解決するために成された本発明に係る立方晶窒化硼素多結晶体(cBN多結晶体)は、平均粒径が200nm以下である立方晶窒化硼素(cBN)の単相の結晶組織から成る無配向の多結晶体であって、ヌープ硬度が50GPa以上であることを特徴とする。 The cubic boron nitride polycrystal (cBN polycrystal) according to the present invention, which has been made to solve the above problems, has a single-phase crystal structure of cubic boron nitride (cBN) having an average particle size of 200 nm or less. It is an unoriented polycrystal composed of, and is characterized by having a noup hardness of 50 GPa or more.

ここで「平均粒径」、「単相」及び「無配向」はそれぞれ、以下のように定義される。
本発明において「平均粒径」は、JIS G 0551:2013(鋼-結晶粒度の顕微鏡試験方法)に基づき、透過型電子顕微鏡(TEM)画像を用いた切断法により求められる値をいう。切断法では、TEM画像に円を描き、その円の中心を通る直線(直径)を30°間隔で6本(半径では12本)描き、各直線を横切る結晶粒の数を数え(但し、直線の端が結晶粒内にある場合はその結晶粒の数を0.5と数える)、その数の全ての直線での和(この和の値を「結晶粒数」とする)を求める。そして、直径の6倍を結晶粒数で除した値を平均粒径とする。なお、TEM画像に描く円の直径は特定の値に限定されないが、1本の直径における結晶粒数が10~40程度になるように定めることが望ましい。また、1つのcBN多結晶体に対して、複数箇所のTEM画像を取得し、それら複数箇所の平均値で平均粒径を求めることが望ましい。
Here, "average particle size", "single phase" and "non-oriented" are defined as follows.
In the present invention, the "average particle size" refers to a value obtained by a cutting method using a transmission electron microscope (TEM) image based on JIS G 0551: 2013 (microscopic test method for steel-crystal particle size). In the cutting method, a circle is drawn on the TEM image, 6 straight lines (diameter) passing through the center of the circle are drawn at 30 ° intervals (12 in radius), and the number of crystal grains crossing each straight line is counted (however, a straight line). If the end of is inside the crystal grain, the number of the crystal grain is counted as 0.5), and the sum of all the straight lines of the number (the value of this sum is defined as the "number of crystal grains") is obtained. Then, the value obtained by dividing 6 times the diameter by the number of crystal grains is taken as the average particle size. The diameter of the circle drawn on the TEM image is not limited to a specific value, but it is desirable to set the number of crystal grains in one diameter to be about 10 to 40. In addition, it is desirable to acquire TEM images at a plurality of locations for one cBN polycrystal and obtain the average particle size from the average value of the plurality of locations.

本発明において「単相」とは、管電圧40KV, 管電流30mAで作動するX線発生装置から発生させたCuKα線(波長: 0.15418nm、コリメーター: 0.1mm)をcBN多結晶体に照射することにより得られるX線回折パターンにおいて、cBNの結晶以外(特に、wBNから成る異結晶)に由来するピークが検出されないものをいう。 In the present invention, "single phase" means to irradiate a cBN polycrystal with CuKα rays (wavelength: 0.15418 nm, collimator: 0.1 mm) generated from an X-ray generator operating at a tube voltage of 40 KV and a tube current of 30 mA. In the X-ray diffraction pattern obtained thereby, a peak derived from a crystal other than the cBN crystal (particularly, a different crystal composed of wBN) is not detected.

本発明に係るcBN多結晶体における「無配向」とは、cBN多結晶体のバルクで(粉末にすることなく)測定したX線回折の220ピークの強度I(220)と111ピークの強度I(111)の比I(220)/I(111)が0.15以上であることをいう。その際のX線回折の測定条件は、上記の単相であることを確認する際の測定条件と同じである。The "non-oriented" in the cBN polycrystal according to the present invention means the intensity I (220) of 220 peaks and the intensity I of 111 peaks of X-ray diffraction measured in bulk (without powdering) of the cBN polycrystal. It means that the ratio I (220) / I (111) of (111) is 0.15 or more. The measurement conditions for X-ray diffraction at that time are the same as the measurement conditions for confirming that the phase is single-phase.

本明細書では、本発明のcBN多結晶体の中でも特に、平均粒径が100nm以下のものを「微細組織cBNナノ多結晶体」と呼び、平均粒径が50nm以下であるものを「超微細組織cBNナノ多結晶体」と呼ぶ。なお、後述の、平均粒径が70nm以下である微細組織中に平均粒径が115~165nmであるcBNの粗結晶粒が分散した構成では、粗結晶粒も本発明のcBN多結晶体を構成する結晶に含まれる。つまり、「粗結晶粒」は、平均粒径が70nm以下である結晶粒との対比において相対的に結晶粒が大きいことを意味しており、(本発明のものに限らず)一般的なcBN多結晶体における結晶粒としては微細な結晶粒に分類される。 In the present specification, among the cBN polycrystals of the present invention, those having an average particle size of 100 nm or less are referred to as “microstructure cBN nanopolycrystals”, and those having an average particle size of 50 nm or less are referred to as “ultrafine”. It is called "tissue cBN nanopolycrystal". In the configuration described later in which coarse crystal grains of cBN having an average particle size of 115 to 165 nm are dispersed in a fine structure having an average particle size of 70 nm or less, the coarse crystal grains also constitute the cBN polycrystal of the present invention. It is contained in the crystals. In other words, "coarse crystal grains" mean that the crystal grains are relatively large in comparison with the crystal grains having an average grain size of 70 nm or less, and a general cBN (not limited to that of the present invention). The crystal grains in the polycrystal are classified into fine crystal grains.

cBN多結晶体では、結晶の平均粒径が200nmを超えると、結晶同士が強固に結合した多結晶体を得難い。また、多結晶体がcBN以外(wBN等)の結晶(異結晶)を含有すると、外部から多結晶体に力が与えられたときに当該異結晶がすべりや微小亀裂の起点となり、硬度が低下する原因となる。さらに、多結晶体が配向していると硬度に異方性が生じ、硬度が方向によってばらつく。そこで本発明では、(i)結晶の平均粒径が200nm以下という小さい値であり、(ii)cBNのみから成る単相であって、且つ(iii)無配向であることにより、従来のcBN多結晶体では実現できなかった50GPa以上という高いヌープ硬度を有するcBN多結晶体が得られる。このような高いヌープ硬度を有するcBN多結晶体は、切削工具の工具切れ刃や研削工具の砥粒切れ刃等の材料として好適に用いることができる。 In the cBN polycrystal, when the average particle size of the crystals exceeds 200 nm, it is difficult to obtain a polycrystal in which the crystals are firmly bonded to each other. In addition, if the polycrystal contains crystals (different crystals) other than cBN (wBN, etc.), the different crystals become the starting points of slips and microcracks when a force is applied to the polycrystal from the outside, and the hardness decreases. Causes the problem. Furthermore, if the polycrystals are oriented, anisotropy occurs in the hardness, and the hardness varies depending on the direction. Therefore, in the present invention, (i) the average particle size of the crystal is as small as 200 nm or less, (ii) it is a single phase consisting only of cBN, and (iii) it is non-oriented, so that the conventional cBN many A cBN polycrystal having a high Knoop hardness of 50 GPa or more, which could not be realized with a crystal, can be obtained. The cBN polycrystal having such a high Knoop hardness can be suitably used as a material for a tool cutting edge of a cutting tool, an abrasive grain cutting edge of a grinding tool, and the like.

本発明に係るcBN多結晶体において、前記平均粒径が100nm以下(微細組織cBNナノ多結晶体)であって、前記ヌープ硬度が53GPa以上であることが望ましい。これにより、更にヌープ硬度が高く、工具切れ刃や砥粒切れ刃等により好適な材料が得られる。特に、切削加工をするだけで鏡面仕上げを行うことができるほどの鋭利な工具切れ刃や、より高精度な研磨加工を行うための鋭利な砥粒切れ刃を得るために、前記平均粒径は50nm以下(すなわち、cBN多結晶体が超微細組織cBNナノ多結晶体)であることが一層望ましい。 In the cBN polycrystal according to the present invention, it is desirable that the average particle size is 100 nm or less (microstructure cBN nanopolycrystal) and the Knoop hardness is 53 GPa or more. As a result, a material having a higher Knoop hardness and suitable for a tool cutting edge, an abrasive grain cutting edge, or the like can be obtained. In particular, in order to obtain a sharp tool cutting edge that can perform a mirror finish only by cutting and a sharp abrasive grain cutting edge for performing more accurate polishing processing, the average particle size is set. It is more desirable that the cBN polycrystal is 50 nm or less (that is, the cBN polycrystal is an ultrafine structure cBN nanopolycrystal).

本発明に係るcBN多結晶体は、平均粒径が70nm以下であるcBNの微細多結晶組織中に、平均粒径が115~165nmであるcBNの粗結晶粒が分散し、当該微細多結晶組織と当該粗結晶粒を合わせた多結晶体の平均粒径が100nm以下である多結晶体(微細組織cBNナノ多結晶体)であって、ヌープ硬度が53.5GPa以上であることが望ましい。ここで、前記粗結晶粒は120~165nm、前記ヌープ硬度が54.5GPa以上であることがより望ましい。このように上記微細多結晶組織中に粗結晶粒が分散していることにより、粒径が均一に近い結晶から成る場合よりもヌープ硬度を高くすることができる。以下、このようなcBN多結晶体を「粗粒分散cBNナノ多結晶体」と呼ぶ。 The cBN polycrystal according to the present invention has a fine polycrystal structure in which coarse crystal grains of cBN having an average particle size of 115 to 165 nm are dispersed in a fine polycrystal structure of cBN having an average particle size of 70 nm or less. It is desirable that the polycrystal obtained by combining the coarse crystal grains and the coarse crystal grains has an average particle size of 100 nm or less (microstructure cBN nanopolycrystal) and a noup hardness of 53.5 GPa or more. Here, it is more desirable that the coarse crystal grains are 120 to 165 nm and the Knoop hardness is 54.5 GPa or more. Since the coarse crystal grains are dispersed in the fine polycrystalline structure as described above, the Knoop hardness can be made higher than that in the case of crystals having a nearly uniform particle size. Hereinafter, such a cBN polycrystal is referred to as a “coarse grain dispersed cBN nanopolycrystal”.

本発明に係るcBN多結晶体は、以下の方法により製造することができる。すなわち、本発明に係る立方晶窒化硼素多結晶体製造方法は、
出発物質である熱分解窒化硼素(pBN)から成り[001]方向に配向している原料を準備する工程と、
前記原料を圧力25GPa以上で所定温度に所定時間保持することによって、前記熱分解窒化硼素を立方晶窒化硼素(cBN)に直接変換する工程と
を有することを特徴とする。
The cBN polycrystal according to the present invention can be produced by the following method. That is, the method for producing a cubic boron nitride polycrystal according to the present invention is
The process of preparing a raw material that is composed of pyrolysis boron nitride (pBN), which is the starting material, and is oriented in the [001] direction.
It is characterized by having a step of directly converting the pyrolyzed boron nitride to cubic boron nitride (cBN) by holding the raw material at a pressure of 25 GPa or more at a predetermined temperature for a predetermined time.

ここで「[001]方向に配向している」とは、熱分解窒化硼素のバルクで(粉末にすることなく)測定したX線回折の100ピークの強度I(100)と002ピークの強度I(002)の比I(100)/I(002)が0.15以下あることをいう。その際のX線回折の測定条件は、上記のcBN多結晶体が単相であることを確認する際の測定条件と同じである。Here, "aligned in the [001] direction" means the intensity I (100) of 100 peaks and the intensity I of 002 peaks of X-ray diffraction measured in bulk of pyrolysis boron nitride (without powdering). It means that the ratio I (100) / I (002) of (002) is 0.15 or less. The measurement conditions for X-ray diffraction at that time are the same as the measurement conditions for confirming that the cBN polycrystal is single-phase.

cBNの単相の結晶組織から成るcBN多結晶体を製造するためには、[001]方向に配向している熱分解窒化硼素を原料として用いることが必要である。なお、このように原料が配向していても、製造されるcBN多結晶体では結晶が配向していない状態となる。 In order to produce a cBN polycrystal having a single-phase crystal structure of cBN, it is necessary to use pyrolysis boron nitride oriented in the [001] direction as a raw material. Even if the raw materials are oriented in this way, the crystals are not oriented in the produced cBN polycrystal.

また、製造時の圧力が25GPaよりも低いと、多結晶体中にcBNの結晶の他にwBNから成る異結晶が生成されてしまうため、圧力の下限値は25GPaとする。一方、BNではcBNが最も高圧の状態で得られるため、圧力の上限は理論上、特に無い。 If the manufacturing pressure is lower than 25 GPa, different crystals consisting of wBN will be generated in the polycrystal in addition to the cBN crystals, so the lower limit of the pressure is set to 25 GPa. On the other hand, in BN, since cBN is obtained at the highest pressure, there is theoretically no upper limit to the pressure.

前記所定温度は圧力により相違するが、予備実験により定めることができる。例えば、圧力が25GPaである場合には、温度が1900℃よりも低いと、多結晶体中にcBNの結晶の他にwBNから成る異結晶が生成されてしまい、温度が2000℃を超えると、多結晶体中のcBNの結晶の平均粒径が200nmを超えてしまうため、前記所定温度は1900~2000℃の範囲内の温度とする。 The predetermined temperature varies depending on the pressure, but can be determined by a preliminary experiment. For example, when the pressure is 25 GPa, if the temperature is lower than 1900 ° C, different crystals consisting of wBN will be generated in the polycrystal in addition to the cBN crystal, and if the temperature exceeds 2000 ° C, Since the average particle size of the cBN crystals in the polycrystal exceeds 200 nm, the predetermined temperature is set within the range of 1900 to 2000 ° C.

前記所定時間、すなわち前記圧力及び温度で保持する時間は、それら圧力及び温度により相違するが、予備実験により定めることができる。保持時間が短すぎるとwBNから成る異結晶が混入してしまい、長すぎると結晶の平均粒径が200nmを超えてしまう。超微細組織cBNナノ多結晶体を作製するためには、保持時間はwBNから成る異結晶が混入しない範囲内で短くする。粗粒分散cBNナノ多結晶体を作製するためには、保持時間は超微細組織cBNナノ多結晶体を作製する場合よりも長くする。例えば、圧力が25GPa、温度が1950℃の場合には、保持時間を11~25分とすることにより本発明に係るcBN多結晶体を作製することができ、このうち保持時間を11~13分とすることにより超微細組織cBNナノ多結晶体を作製することができ、保持時間を15~20分とすることにより粗粒分散cBNナノ多結晶体を作製することができる。 The predetermined time, that is, the time for holding at the pressure and temperature varies depending on the pressure and temperature, but can be determined by a preliminary experiment. If the holding time is too short, different crystals consisting of wBN will be mixed in, and if it is too long, the average grain size of the crystals will exceed 200 nm. In order to prepare hyperfine cBN nanopolycrystals, the retention time should be short within the range where different crystals composed of wBN are not mixed. In order to produce a coarse-grained dispersed cBN nanopolycrystal, the retention time is longer than in the case of producing an ultrafine structure cBN nanopolycrystal. For example, when the pressure is 25 GPa and the temperature is 1950 ° C., the cBN polycrystal according to the present invention can be produced by setting the holding time to 11 to 25 minutes, of which the holding time is 11 to 13 minutes. By setting the above, an ultrafine structure cBN nanopolycrystal can be produced, and by setting the holding time to 15 to 20 minutes, a coarse-grained dispersed cBN nanopolycrystal can be produced.

前記原料は、前記熱分解窒化硼素のバルクで測定したX線回折の100ピークの積分強度Area(100)、101ピークの積分強度Area(101)、及び102ピークの積分強度Area(102)によりGI=(Area(100)+Area(101))/Area(102)で表されるGI値が15以上であることが望ましい。GI値は、その値が高いほど結晶性(ここでは原料であるpBNの結晶性)が低いことを意味している。このように結晶性の低いpBNを原料として使用することにより、wBNから成る異結晶が生成され難くなる。The raw material is GI based on the integrated intensity Area (100) of 100 peaks of X-ray diffraction measured in the bulk of the pyrolyzed boron nitride, the integrated intensity Area (101) of 101 peaks, and the integrated intensity Area (102) of 102 peaks. It is desirable that the GI value represented by = (Area (100) + Area (101) ) / Area (102) is 15 or more. The GI value means that the higher the value, the lower the crystallinity (here, the crystallinity of the raw material pBN). By using pBN having low crystallinity as a raw material in this way, it becomes difficult to generate different crystals composed of wBN.

本発明により、50GPa以上の硬度を有する窒化硼素の多結晶体を得ることができる。 According to the present invention, a polycrystal of boron nitride having a hardness of 50 GPa or more can be obtained.

本発明に係るcBN多結晶体の製造方法の一実施形態において用いる圧力媒体の概略構成図。The schematic block diagram of the pressure medium used in one Embodiment of the manufacturing method of the cBN polycrystal according to this invention. 本実施形態のcBN多結晶体の製造方法において用いる静的超高圧付与装置の概略構成図。The schematic block diagram of the static ultrahigh pressure application apparatus used in the manufacturing method of the cBN polycrystal of this embodiment. 本発明に係るcBN多結晶体の実施形態((c), (d))及び比較例((a), (b), (e))におけるX線回折パターン。The X-ray diffraction pattern in the embodiment ((c), (d)) and the comparative example ((a), (b), (e)) of the cBN polycrystal according to the present invention. 本実施形態(a)及び比較例(b)における断面のTEM画像。TEM images of cross sections in the present embodiment (a) and comparative example (b). TEM画像から平均粒径を求める方法を示す図。The figure which shows the method of obtaining the average particle diameter from a TEM image. 本実施形態及び比較例における加熱温度と平均粒径の関係を示すグラフ。The graph which shows the relationship between the heating temperature and the average particle diameter in this Embodiment and a comparative example. 本実施形態(a)~(c)及び比較例(d)における断面のTEM画像。TEM images of cross sections in the present embodiments (a) to (c) and comparative example (d). 粗粒分散cBNナノ多結晶体の模式図。Schematic diagram of coarse-grained dispersed cBN nanopolycrystal. 本実施形態及び比較例における保持時間と平均粒径の関係を示すグラフ。The graph which shows the relationship between the holding time and the average particle diameter in this Embodiment and a comparative example. 本実施形態及び比較例における平均粒径とヌープ硬度の関係を示すグラフ。The graph which shows the relationship between the average particle diameter and Knoop hardness in this Embodiment and a comparative example.

図1~図10を用いて、本発明に係るcBN多結晶体及びその製造方法の実施形態を説明する。 An embodiment of the cBN polycrystal according to the present invention and a method for producing the same will be described with reference to FIGS. 1 to 10.

(1) 本発明に係るcBN多結晶体の製造方法の一実施形態
図1及び図2を用いて、本発明に係るcBN多結晶体の製造方法の一実施形態を説明する。本実施形態では、原料体11として、[001]方向に配向した、市販の板状のpBNを用いる。本実施形態で用いた原料体11のGI値は17.6である。まず、レーザー加工装置を用いてpBNを直径3mmの円盤状に切り出すことにより、原料体11を作製する。この原料体11を、図1に示すように、圧力媒体本体17a、上側圧力媒体17b及び下側圧力媒体17cから成る圧力媒体17内に収容する。その際、まず、原料体11を金属箔製のカプセル12内に装入し、このカプセル12を円筒状のスリーブ13内に入れる。また、原料体11の上下には断熱材14を詰める。このスリーブ13の外側を金属箔製のヒーター15で囲い、その周囲に断熱材16を配して、圧力媒体本体17aの中心に空けた円筒状の与圧室内に入れる。この本体17aの上下を四角錐状の上側圧力媒体17b及び下側圧力媒体17cで挟む。圧力媒体本体17aと上側圧力媒体17bの間、圧力媒体本体17aと下側圧力媒体17cの間にはそれぞれ、ヒーター15に電力を供給する上側金属箔電極18a、下側金属箔電極18bを介在させる。なお、図1は模式図であり、各部の寸法は正確な比率を表すものではない。
(1) Embodiment of the method for producing a cBN polycrystal according to the present invention An embodiment of the method for producing a cBN polycrystal according to the present invention will be described with reference to FIGS. 1 and 2. In the present embodiment, a commercially available plate-shaped pBN oriented in the [001] direction is used as the raw material 11. The GI value of the raw material 11 used in this embodiment is 17.6. First, the raw material 11 is produced by cutting pBN into a disk shape having a diameter of 3 mm using a laser processing device. As shown in FIG. 1, the raw material 11 is housed in a pressure medium 17 including a pressure medium body 17a, an upper pressure medium 17b, and a lower pressure medium 17c. At that time, first, the raw material 11 is charged into a metal foil capsule 12, and the capsule 12 is placed in a cylindrical sleeve 13. Further, the heat insulating material 14 is packed above and below the raw material body 11. The outside of the sleeve 13 is surrounded by a heater 15 made of metal leaf, a heat insulating material 16 is arranged around the heater 15, and the sleeve 13 is placed in a cylindrical pressurization chamber opened in the center of the pressure medium body 17a. The upper and lower parts of the main body 17a are sandwiched between a quadrangular pyramid-shaped upper pressure medium 17b and a lower pressure medium 17c. An upper metal leaf electrode 18a and a lower metal leaf electrode 18b for supplying power to the heater 15 are interposed between the pressure medium body 17a and the upper pressure medium 17b, and between the pressure medium body 17a and the lower pressure medium 17c, respectively. .. Note that FIG. 1 is a schematic diagram, and the dimensions of each part do not represent an accurate ratio.

このように圧力媒体17内に収容された原料体11に、図2に示す静的超高圧付与装置20により、後述の高圧及び高温を付与する。ここで用いる静的超高圧付与装置20は、「川井式マルチアンビル型高圧発生装置」と呼ばれ、油圧駆動のピストン21、ガイドブロック22、及びそれらを固定するプレスフレーム23から構成される。ガイドブロック22には、特殊鋼製の6個のブロックから成り内部に立方体状の空間が形成された第1段アンビル24が固定されている。この立方体状の空間内に、タングステンカーバイド製の8個のブロックから成り、内部に正八面体状の空間が形成された第2段アンビル25が収容される。この正八面体状の空間内に圧力媒体17が収容される。第1段アンビル24にピストン21によって圧力を印加することにより第2段アンビル25を圧縮し、それにより圧力媒体17を圧縮し、最終的に試料に下記の所定の圧力を印加する。また、外部の電源29からガイドブロック22、第1段アンビル24、第2段アンビル25、上側金属箔電極18a及び下側金属箔電極18bを介してヒーター15に通電し、試料を下記の所定の温度まで加熱することにより、本実施形態のcBN多結晶体が得られる。 The raw material 11 housed in the pressure medium 17 in this way is subjected to the high pressure and high temperature described later by the static ultrahigh pressure applying device 20 shown in FIG. The static ultra-high pressure applying device 20 used here is called a "Kawai-type multi-anvil type high pressure generator" and is composed of a hydraulically driven piston 21, a guide block 22, and a press frame 23 for fixing them. A first-stage anvil 24, which is composed of six blocks made of special steel and has a cubic space formed therein, is fixed to the guide block 22. In this cubic space, the second stage anvil 25, which is composed of eight blocks made of tungsten carbide and has a regular octahedral space formed inside, is housed. The pressure medium 17 is housed in this octahedral space. By applying pressure to the first stage anvil 24 by the piston 21, the second stage anvil 25 is compressed, thereby compressing the pressure medium 17, and finally the following predetermined pressure is applied to the sample. Further, the heater 15 is energized from the external power supply 29 via the guide block 22, the first-stage anvil 24, the second-stage anvil 25, the upper metal leaf electrode 18a, and the lower metal foil electrode 18b, and the sample is supplied to the predetermined predetermined state below. By heating to a temperature, the cBN polycrystal of the present embodiment can be obtained.

本実施形態では、原料体11に印加する圧力を23~30GPa、原料体11の加熱温度を1900~2000℃とした。なお、本発明では原料体11に印加する圧力の上限は特に無いが、本実施形態では静的超高圧付与装置20の仕様上、圧力の最大値を30GPaとした。また、比較のために、圧力が25GPaの場合において、温度1600℃以上1900℃未満、及び2000℃を超え最高で2600℃までの温度範囲においても同様の実験を行った。さらに、比較のために、温度が1950℃の場合において、圧力が23GPaの場合についても同様の実験を行った。また、圧力が25GPaの場合においては、所定の圧力及び温度に保持する時間(保持時間)が異なる複数の例について実験を行った。 In the present embodiment, the pressure applied to the raw material 11 is 23 to 30 GPa, and the heating temperature of the raw material 11 is 1900 to 2000 ° C. In the present invention, there is no particular upper limit of the pressure applied to the raw material 11, but in the present embodiment, the maximum value of the pressure is set to 30 GPa due to the specifications of the static ultrahigh pressure applying device 20. For comparison, similar experiments were performed at a pressure of 25 GPa over a temperature range of 1600 ° C or higher and lower than 1900 ° C, and above 2000 ° C and up to 2600 ° C. Furthermore, for comparison, a similar experiment was performed when the temperature was 1950 ° C and the pressure was 23 GPa. In addition, when the pressure was 25 GPa, experiments were conducted on a plurality of examples in which the holding time (holding time) at a predetermined pressure and temperature was different.

(2) 本発明に係る立方晶窒化硼素多結晶体の実施形態及び比較例
まず、作製時の圧力が25GPa、保持時間が20分間であって、加熱温度が1600℃~2600℃の範囲内で異なる複数の試料を作製した。図3に作製した試料のうち、加熱温度が(a)1600℃(比較例)、(b)1800℃(比較例)、(c)1900℃(本実施形態)、(d)1950℃(本実施形態)、(e)2150℃(比較例)の場合について、X線回折測定を行った結果を示す。このX線回折測定には、管電圧40KV, 管電流30mAで作動するX線発生装置から発生させたCuKα線(波長: 0.15418nm、コリメーター: 0.1mm)を用いた。いずれの試料においても、2θ=43.3°付近にcBNの(111)面に由来するピークが見られる。一方、(a)及び(b)では、cBNの111ピークよりもやや2θが小さい位置(2θ=40.8°付近)にwBN(異結晶)の100ピーク(図中に矢印を付したもの)が見られるのに対して、(c), (d)及び(e)ではwBNの100ピークが見られない。また、その他には、いずれの試料にもwBNやhBN等の第二相に由来するピークは見られない。これらの結果から、比較例である(a), (b)は単相のcBNではないのに対して、本実施形態である(c)及び(d)、並びに比較例である(e)では単相のcBNが得られていることが確認された。
(2) Embodiment and Comparative Example of Cubic Boron Nitride Polycrystal According to the Present Invention First, the pressure at the time of fabrication is 25 GPa, the holding time is 20 minutes, and the heating temperature is within the range of 1600 ° C to 2600 ° C. Multiple different samples were made. Among the samples prepared in FIG. 3, the heating temperatures are (a) 1600 ° C (comparative example), (b) 1800 ° C (comparative example), (c) 1900 ° C (this embodiment), and (d) 1950 ° C (this). The results of X-ray diffraction measurement are shown for the cases of (Embodiment) and (e) 2150 ° C (Comparative Example). For this X-ray diffraction measurement, CuKα rays (wavelength: 0.15418 nm, collimator: 0.1 mm) generated from an X-ray generator operating at a tube voltage of 40 KV and a tube current of 30 mA were used. In all the samples, a peak derived from the (111) plane of cBN can be seen near 2θ = 43.3 °. On the other hand, in (a) and (b), 100 peaks of wBN (different crystal) (with arrows in the figure) can be seen at the position where 2θ is slightly smaller than the 111 peak of cBN (around 2θ = 40.8 °). On the other hand, 100 peaks of wBN are not seen in (c), (d) and (e). In addition, no peaks derived from the second phase such as wBN and hBN are observed in any of the samples. From these results, the comparative examples (a) and (b) are not single-phase cBNs, whereas the comparative examples (c) and (d) and the comparative example (e) have. It was confirmed that a single-phase cBN was obtained.

次に、上記「加熱温度:1600℃~2600℃、圧力:25GPa、保持時間:20分間」の条件で作製した試料のうち、加熱温度が(a)1950℃(図3(d)に対応)及び(b)2150℃(同(e))のものについてそれぞれ、断面の透過型電子顕微鏡(TEM)画像を図4に示す。平均粒径は、本実施形態である(a)では97.2nmであるのに対して、比較例である(b)では318nmである。ここで平均粒径は、図5に示すように、TEM画像中に円31を描いたうえで、円31の中心を通る直線32を30°間隔で6本描き、各直線32を横切る結晶粒の数を数え、その数の全ての直線での和で直線32の直径の6倍を除することにより求めた。円31は、1本の直径における結晶粒数が10~40程度になるように定め、このような円31及び直線32の組み合わせを1つの試料につき3組描いて組毎に平均粒径を求め、更にそれらの平均値を求めることで、最終的な平均粒径の値を定めた。 Next, among the samples prepared under the above conditions of "heating temperature: 1600 ° C to 2600 ° C, pressure: 25 GPa, holding time: 20 minutes", the heating temperature is (a) 1950 ° C (corresponding to FIG. 3 (d)). FIG. 4 shows a transmission electron microscope (TEM) image of the cross section of each of (b) at 2150 ° C (same as (e)). The average particle size is 97.2 nm in (a) of the present embodiment, whereas it is 318 nm in (b) of the comparative example. Here, as shown in FIG. 5, for the average particle size, after drawing a circle 31 in the TEM image, six straight lines 32 passing through the center of the circle 31 are drawn at intervals of 30 °, and crystal grains crossing each straight line 32. Was counted and calculated by dividing the sum of all the straight lines by 6 times the diameter of the straight line 32. The circle 31 is set so that the number of crystal grains in one diameter is about 10 to 40, and three sets of such combinations of the circle 31 and the straight line 32 are drawn for one sample to obtain the average particle size for each set. Furthermore, the final average particle size value was determined by obtaining the average value thereof.

図6に、上記「加熱温度:1600℃~2600℃、圧力:25GPa、保持時間:20分間」の条件で作製した全ての試料について、平均粒径を求めた結果を示す。加熱温度が1900~2000℃の範囲内で、平均粒径が200nm以下で且つ単相のcBNが得られている。 FIG. 6 shows the results of determining the average particle size of all the samples prepared under the conditions of "heating temperature: 1600 ° C to 2600 ° C, pressure: 25 GPa, holding time: 20 minutes". A single-phase cBN with an average particle size of 200 nm or less is obtained in a heating temperature range of 1900 to 2000 ° C.

次に、加熱温度を1950℃、圧力を25GPaとし、保持時間が1~60分間の範囲内で異なる複数の試料を作製した。X線回折測定の結果から、これら保持時間が11~60分間の試料はいずれも、単相のcBNが得られているのに対して、保持時間が1~10分間の試料ではwBNが混入していることが確認された。 Next, the heating temperature was 1950 ° C., the pressure was 25 GPa, and multiple samples having different holding times within the range of 1 to 60 minutes were prepared. From the results of X-ray diffraction measurements, single-phase cBN was obtained in all of these samples with a retention time of 11 to 60 minutes, whereas wBN was mixed in the samples with a retention time of 1 to 10 minutes. It was confirmed that

図7に、保持時間が(a)11分間、(b)20分間、(c)25分間、(d)30分間である試料について、断面のTEM画像を示す。なお、図7(b)のTEM画像は、図4(a)のものと同じである。平均粒径は、本実施形態である(a)では40.8nm、(b)では97.2nm、(c)では156nmと、いずれも200nm以下に収まっているのに対して、比較例である(d)では322nmという大きい値になっている。 FIG. 7 shows a TEM image of a cross section of a sample having a retention time of (a) 11 minutes, (b) 20 minutes, (c) 25 minutes, and (d) 30 minutes. The TEM image in FIG. 7 (b) is the same as that in FIG. 4 (a). The average particle size is 40.8 nm in (a), 97.2 nm in (b), and 156 nm in (c) of the present embodiment, which are all within 200 nm, whereas they are comparative examples (d). ) Has a large value of 322 nm.

また、本実施形態のうち、(a)及び(c)では粒子同士の粒径が比較的近いように見えるのに対して、(b)では粒径が比較的小さい粒子から成る組織内に、比較的大きい粒子が分散しているように見える。目視で比較的小さい粒子(結晶組織の粒子)と比較的大きい粒子(粗結晶)に分けてそれぞれの平均粒径を求めると、結晶組織の粒子では68nm、粗結晶では165nmであった。このような構造は前述の粗粒分散cBNナノ多結晶体に該当する。図8に、粗粒分散cBNナノ多結晶体30を模式的に示す。粗粒分散cBNナノ多結晶体30は、平均粒径が70nm以下であるcBNの微細多結晶31から成る微細多結晶組織中に、平均粒径が115~165nm、望ましくは120~165nmであるcBNの粗結晶粒32が分散した構造を有する。本実施形態で作製した粗粒分散cBNナノ多結晶体の作製条件を、平均粒径及びヌープ硬度と共に表1に示す(ヌープ硬度については後述)。なお、表1中の「全体」は、微細多結晶組織と粗結晶粒を合わせた多結晶体の平均粒径を指す。

Figure 0007033542000001
Further, in the present embodiments, in (a) and (c), the particle sizes of the particles appear to be relatively close to each other, whereas in (b), the particles are contained in a structure composed of particles having a relatively small particle size. Relatively large particles appear to be dispersed. When the average particle size of each of the relatively small particles (particles having a crystalline structure) and the relatively large particles (coarse crystals) was visually determined, it was 68 nm for the particles having a crystalline structure and 165 nm for the coarse crystals. Such a structure corresponds to the above-mentioned coarse-grained dispersed cBN nanopolycrystal. FIG. 8 schematically shows a coarse-grained dispersed cBN nanopolycrystal 30. The coarse-grained dispersed cBN nanopolycrystal 30 has a cBN having an average particle size of 115 to 165 nm, preferably 120 to 165 nm, in a fine polycrystal structure composed of fine polycrystals 31 of cBN having an average particle size of 70 nm or less. It has a structure in which the coarse crystal grains 32 of the above are dispersed. The preparation conditions for the coarse-grained dispersed cBN nanopolycrystal prepared in this embodiment are shown in Table 1 together with the average particle size and Knoop hardness (Knoop hardness will be described later). In addition, "whole" in Table 1 refers to the average particle size of a polycrystalline body in which a fine polycrystalline structure and coarse crystal grains are combined.
Figure 0007033542000001

図9に、上記「加熱温度:1950℃、圧力:25GPa、保持時間:1~60分間」の条件で作製した試料について、平均粒径を求めた結果を示す。保持時間が11~25分の範囲内で、平均粒径が200nm以下である単相のcBNが得られる。 FIG. 9 shows the results of determining the average particle size of the sample prepared under the conditions of "heating temperature: 1950 ° C., pressure: 25 GPa, holding time: 1 to 60 minutes". Single-phase cBN with an average particle size of 200 nm or less can be obtained with a retention time in the range of 11 to 25 minutes.

図10に、上記「加熱温度:1600℃~2600℃、圧力:25GPa、保持時間:20分間」及び「加熱温度:1950℃、圧力:25GPa、保持時間:1~60分間」の条件で作製した全ての試料について、ヌープ硬度を測定した結果を示す。ここでは、縦軸にヌープ硬度、横軸に平均粒径dの平方根の逆数d-1/2をとったグラフで測定結果を示している。この測定結果より、wBNが混入していない試料である単相のcBN多結晶体では、粗粒分散cBNナノ多結晶体を除いてd-1/2の1次関数(図中の直線)で近似される傾向を有し、平均粒径dが200nm以下(d-1/2が0.071nm-1/2以上)のときに、ヌープ硬度が50GPa以上という従来のcBN多結晶体よりも高い値を有する。また、平均粒径dが100nm以下(d-1/2が0.1nm-1/2以上)のときには、ヌープ硬度が53GPa以上となる。一方、単相のcBNではなくwBNが混入した例では、ヌープ硬度の値は前述の1次関数に対応する値よりも低くなっており、相変態が不十分なため、第二相が残留すると硬度が低下することが確認された。FIG. 10 shows the preparation under the conditions of "heating temperature: 1600 ° C to 2600 ° C, pressure: 25 GPa, holding time: 20 minutes" and "heating temperature: 1950 ° C, pressure: 25 GPa, holding time: 1 to 60 minutes". The results of measuring the Knoop hardness for all the samples are shown. Here, the measurement results are shown in a graph in which the vertical axis is Knoop hardness and the horizontal axis is the reciprocal d- 1 / 2 of the square root of the average particle size d. From this measurement result, in the single-phase cBN polycrystal, which is a sample without wBN , the linear function of d-1 / 2 (straight line in the figure) except for the coarse-grained dispersed cBN nanopolycrystal. It has a tendency to be approximated, and when the average particle size d is 200 nm or less (d-1 / 2 is 0.071 nm- 1 / 2 or more), the noup hardness is 50 GPa or more, which is higher than that of the conventional cBN polycrystal. Have. When the average particle size d is 100 nm or less (d- 1 / 2 is 0.1 nm- 1 / 2 or more), the Knoop hardness is 53 GPa or more. On the other hand, in the example in which wBN is mixed instead of single-phase cBN, the Knoop hardness value is lower than the value corresponding to the above-mentioned linear function, and the phase transformation is insufficient, so that the second phase remains. It was confirmed that the hardness decreased.

これら本実施形態のcBN多結晶体は、50GPa以上という高いヌープ硬度を有することから、切削工具の工具切れ刃や、研削工具の砥粒切れ刃に好適に用いることができる。 Since these cBN polycrystals of the present embodiment have a high Knoop hardness of 50 GPa or more, they can be suitably used for tool cutting edges of cutting tools and abrasive grain cutting edges of grinding tools.

また、粗粒分散cBNナノ多結晶体では、前述の1次関数に対応する値よりも高いヌープ硬度を有しており(表1参照)、本実施形態ではヌープ硬度の値が53.5GPaを超えている。特に、全体の平均粒径dが97.2nm(d-1/2が0.101)であって粗結晶粒の平均粒径が165nmである試料では、ヌープ硬度の値が54.5GPaを超えており(表1の最上段)、dが84.6nm(d-1/2が0.109)であって粗結晶粒の平均粒径が130.2nmである試料では、ヌープ硬度の値が55GPaを超えている(表1の最下段。図10中に矢印を付したデータ。)。このように、微細多結晶組織中に粗粒が分散することにより、硬度が更に高まることが確認された。In addition, the coarse-grained dispersed cBN nanopolycrystal has a Knoop hardness higher than the value corresponding to the above-mentioned linear function (see Table 1), and the Knoop hardness value exceeds 53.5 GPa in this embodiment. ing. In particular, in the sample in which the average grain size d of the whole is 97.2 nm (d- 1 / 2 is 0.101) and the average grain size of the coarse crystal grains is 165 nm, the Knoop hardness value exceeds 54.5 GPa (Table). In the sample with 84.6 nm (d- 1 / 2 is 0.109) and the average grain size of coarse crystal grains is 130.2 nm, the Knoop hardness value exceeds 55 GPa (Table 1). The bottom row of. Data with arrows in FIG. 10). As described above, it was confirmed that the hardness was further increased by dispersing the coarse particles in the fine polycrystalline structure.

さらに、本実施形態では、図10に図示したように、平均粒径dが50nm以下であってヌープ硬度が53GPa以上である超微細組織cBNナノ多結晶体も得られている。超微細組織cBNナノ多結晶体は特に、切削加工をするだけで鏡面仕上げを行うことができるほどの鋭利な工具切れ刃や、より高精度な研磨加工を行うための鋭利な砥粒切れ刃を得るために好適に用いることができる。 Further, in the present embodiment, as shown in FIG. 10, an ultrafine structure cBN nanopolycrystal having an average particle size d of 50 nm or less and a Knoop hardness of 53 GPa or more is also obtained. The ultra-fine structure cBN nanopolycrystal has a sharp tool cutting edge that can be mirror-finished just by cutting, and a sharp abrasive grain cutting edge for more accurate polishing. It can be suitably used for obtaining.

ここまで、作製時の圧力が25GPaである場合について説明したが、23GPa及び30GPaの場合についても上記と同様の方法でcBN多結晶体を作製した。 Up to this point, the case where the pressure at the time of preparation is 25 GPa has been described, but the cBN polycrystal was prepared by the same method as above for the cases of 23 GPa and 30 GPa.

圧力が23GPaのときには、作製時の温度を(圧力が25GPaのときに本発明に係るcBN多結晶体が得られた温度範囲内の中央値である)1950℃として作製したところ、wBNの含有率はほぼ0%であって単相のcBNが得られたものの、結晶の平均粒径は上述の200nmよりも大きい276nmとなり、本発明に係るcBN多結晶体は得られなかった。この試料のヌープ硬度を測定したところ49.5GPaであり、本発明に係るcBN多結晶体における値の下限値である50GPaよりも小さかった。 When the pressure was 23 GPa, the temperature at the time of preparation was 1950 ° C. (the median value within the temperature range in which the cBN polycrystal according to the present invention was obtained when the pressure was 25 GPa), and the wBN content was obtained. Although a single-phase cBN was obtained at almost 0%, the average grain size of the crystals was 276 nm, which was larger than the above-mentioned 200 nm, and the cBN polycrystal according to the present invention could not be obtained. The Knoop hardness of this sample was measured to be 49.5 GPa, which was smaller than the lower limit of 50 GPa in the cBN polycrystal according to the present invention.

圧力が30GPaのときには、作製時の温度を1800℃とした。得られた試料は、wBNの含有率が0%の単相のcBNであって、結晶の平均粒径は47nmであった。また、ヌープ硬度は55.6GPaであった。従って、この圧力及び温度の条件により、本発明に係るcBN多結晶体が得られたといえる。 When the pressure was 30 GPa, the temperature at the time of fabrication was 1800 ° C. The obtained sample was a single-phase cBN having a wBN content of 0%, and the average grain size of the crystals was 47 nm. The Knoop hardness was 55.6 GPa. Therefore, it can be said that the cBN polycrystal according to the present invention was obtained under the pressure and temperature conditions.

11…原料体
12…カプセル
13…スリーブ
14…断熱材
15…ヒーター
16…断熱材
17…圧力媒体
17a…圧力媒体本体
17b…上側圧力媒体
17c…下側圧力媒体
18a…上側金属箔電極
18b…下側金属箔電極
20…静的超高圧付与装置
21…ピストン
22…ガイドブロック
23…プレスフレーム
24…第1段アンビル
25…第2段アンビル
29…電源
11 ... Raw material 12 ... Capsule 13 ... Sleeve 14 ... Heat insulating material 15 ... Heater 16 ... Heat insulating material 17 ... Pressure medium 17a ... Pressure medium body 17b ... Upper pressure medium 17c ... Lower pressure medium 18a ... Upper metal leaf electrode 18b ... Lower Side metal leaf electrode 20 ... Static ultra-high pressure applying device 21 ... Piston 22 ... Guide block 23 ... Press frame 24 ... First stage anvil 25 ... Second stage anvil 29 ... Power supply

Claims (6)

立方晶窒化硼素の単相の結晶組織から成る無配向の多結晶体であって、
平均粒径が70nm以下であって所定の最大粒径を有する立方晶窒化硼素の微細多結晶組織中に、平均粒径が115~165nmであって粒径が前記最大粒径よりも大きい立方晶窒化硼素の複数個の粗結晶粒が個々に孤立して分散しており、
該微細多結晶組織と該粗結晶粒を合わせた多結晶体の平均粒径が100nm以下であり、
ヌープ硬度が53.5GPa以上である
ことを特徴とする立方晶窒化硼素多結晶体。
An unoriented polycrystal consisting of a single-phase crystal structure of cubic boron nitride,
In the fine polycrystalline structure of cubic boron nitride having an average particle size of 70 nm or less and a predetermined maximum particle size , the average particle size is 115 to 165 nm and the particle size is larger than the maximum particle size. A plurality of coarse crystal grains of cubic boron nitride are individually isolated and dispersed.
The average particle size of the polycrystalline body obtained by combining the fine polycrystalline structure and the coarse crystal grains is 100 nm or less.
A cubic boron nitride polycrystal characterized by a Knoop hardness of 53.5 GPa or higher.
前記粗結晶粒の平均粒径が120~165nmであって、前記ヌープ硬度が54.5GPa以上であることを特徴とする請求項1に記載の立方晶窒化硼素多結晶体。 The cubic boron nitride polycrystal according to claim 1, wherein the coarse crystal grains have an average particle size of 120 to 165 nm and a Knoop hardness of 54.5 GPa or more. 前記粗結晶粒の平均粒径が135~165nmであることを特徴とする請求項1又は2に記載の立方晶窒化硼素多結晶体。The cubic boron nitride polycrystal according to claim 1 or 2, wherein the coarse crystal grains have an average particle size of 135 to 165 nm. 請求項1~3のいずれか1項に記載の立方晶窒化硼素多結晶体から成る工具切れ刃を備えることを特徴とする切削工具。 A cutting tool comprising a tool cutting edge made of the cubic boron nitride polycrystal according to any one of claims 1 to 3 . 請求項1~3のいずれか1項に記載の立方晶窒化硼素多結晶体から成る砥粒切れ刃を備えることを特徴とする研削工具。 A grinding tool comprising an abrasive grain cutting edge made of the cubic boron nitride polycrystal according to any one of claims 1 to 3 . 請求項1~3のいずれか1項に記載の立方晶窒化硼素多結晶体を製造する方法であって、
出発物質である熱分解窒化硼素のみから成り[001]方向に配向している原料を準備する工程と、
前記原料を圧力25GPa以上で所定温度に所定時間保持することによって、前記熱分解窒化硼素を立方晶窒化硼素に直接変換する工程と
を有することを特徴とする立方晶窒化硼素多結晶体製造方法。
The method for producing a cubic boron nitride polycrystal according to any one of claims 1 to 3.
The process of preparing a raw material that is oriented in the [001] direction and consists only of pyrolysis boron nitride, which is the starting material.
A method for producing a cubic boron nitride polycrystal, which comprises a step of directly converting the pyrolyzed boron nitride into cubic boron nitride by holding the raw material at a pressure of 25 GPa or more at a predetermined temperature for a predetermined time.
JP2018550194A 2016-11-11 2017-11-06 Cubic boron nitride polycrystals and their manufacturing methods, as well as cutting tools and grinding tools Active JP7033542B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016220331 2016-11-11
JP2016220331 2016-11-11
PCT/JP2017/039979 WO2018088369A1 (en) 2016-11-11 2017-11-06 Cubic boron nitride polycrystalline body and method for producing same, and cutting tool and grinding tool

Publications (2)

Publication Number Publication Date
JPWO2018088369A1 JPWO2018088369A1 (en) 2019-10-03
JP7033542B2 true JP7033542B2 (en) 2022-03-10

Family

ID=62109264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018550194A Active JP7033542B2 (en) 2016-11-11 2017-11-06 Cubic boron nitride polycrystals and their manufacturing methods, as well as cutting tools and grinding tools

Country Status (2)

Country Link
JP (1) JP7033542B2 (en)
WO (1) WO2018088369A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334434B (en) * 2018-06-18 2023-06-30 住友电工硬质合金株式会社 Polycrystalline cubic boron nitride and method for producing same
JP7387047B1 (en) * 2023-06-22 2023-11-27 株式会社日進製作所 Cubic boron nitride polycrystal and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141171A1 (en) 2011-04-11 2012-10-18 住友電気工業株式会社 Cutting tool and process for producing same
WO2013031681A1 (en) 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
WO2014027470A1 (en) 2012-08-16 2014-02-20 国立大学法人愛媛大学 Single-phase hexagonal-diamond bulk sintered body, and production method therefor
JP2014055078A (en) 2012-09-11 2014-03-27 Sumitomo Electric Ind Ltd Cubic boron nitride composition polycrystalline material and manufacturing method thereof, cutting tool and abrasion tool
JP2015529611A (en) 2012-08-03 2015-10-08 燕山大学 Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108718A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of sintered body of cubic boron nitride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141171A1 (en) 2011-04-11 2012-10-18 住友電気工業株式会社 Cutting tool and process for producing same
WO2013031681A1 (en) 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
JP2015529611A (en) 2012-08-03 2015-10-08 燕山大学 Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof
WO2014027470A1 (en) 2012-08-16 2014-02-20 国立大学法人愛媛大学 Single-phase hexagonal-diamond bulk sintered body, and production method therefor
JP2014055078A (en) 2012-09-11 2014-03-27 Sumitomo Electric Ind Ltd Cubic boron nitride composition polycrystalline material and manufacturing method thereof, cutting tool and abrasion tool

Also Published As

Publication number Publication date
WO2018088369A1 (en) 2018-05-17
JPWO2018088369A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
CN101583450B (en) Cutting tool
CN101228095B (en) High-hardness polycrystalline diamond and process for producing the same
JP4203900B2 (en) Polycrystalline diamond and method for producing the same
CN101588877B (en) Wire drawing die
JP6045000B2 (en) Hexagonal diamond single-phase bulk sintered body and method for producing the same
CN107406334B (en) Diamond polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing diamond polycrystal
JPWO2005065809A1 (en) High hardness conductive diamond polycrystal and method for producing the same
JP2007055819A (en) High-hardness polycrystalline diamond and process for producing the same
CN109437920A (en) Nano/submicron structure wBN superhard material and wBN-cBN super-hard compound material and preparation method and cutter
JP7033542B2 (en) Cubic boron nitride polycrystals and their manufacturing methods, as well as cutting tools and grinding tools
RU2312844C2 (en) Heat-resistant composite diamond sintered article and the method of its production
CN107207358B (en) Composite polycrystal and method for producing same
JP5076300B2 (en) High hardness diamond polycrystal
KR20210129661A (en) Cubic boron nitride polycrystal and method for manufacturing the same
US9573249B2 (en) Boron nitride composites
JP6741017B2 (en) Composite polycrystalline
JP2009007248A (en) Diamond polycrystal body
Jia et al. Effects of initial crystal size of diamond powder on surface residual stress and morphology in polycrystalline diamond (PCD) layer
TWI794393B (en) Composite polycrystalline diamond and its manufacturing method
JP6015325B2 (en) Polycrystalline diamond, method for producing the same, and tool
Sorb et al. Diamond: high-pressure synthesis
TW202014379A (en) Diamond polycrystal, tool including diamond polycrystal, and method of producing diamond polycrystal
TW202248124A (en) Diamond polycrystal body, and tool provided with diamond polycrystal body
EA006011B1 (en) Process for synthesis of superhard materials

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20181207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7033542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150