JP2014080322A - Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal - Google Patents

Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal Download PDF

Info

Publication number
JP2014080322A
JP2014080322A JP2012228815A JP2012228815A JP2014080322A JP 2014080322 A JP2014080322 A JP 2014080322A JP 2012228815 A JP2012228815 A JP 2012228815A JP 2012228815 A JP2012228815 A JP 2012228815A JP 2014080322 A JP2014080322 A JP 2014080322A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
composite polycrystal
cubic
nitride composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012228815A
Other languages
Japanese (ja)
Inventor
Takeshi Ishida
雄 石田
Hitoshi Sumiya
均 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012228815A priority Critical patent/JP2014080322A/en
Publication of JP2014080322A publication Critical patent/JP2014080322A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cubic boron nitride composite polycrystal having excellent crack propagation resistance, a production method thereof, and a cutting tool, an abrasion resistant tool and a grinding tool each equipped with the polycrystal.SOLUTION: A cubic boron nitride composite polycrystal 10 comprises: granular cubic boron nitride 1; and laminar boron nitride 3. The laminar boron nitride 3 has contact with the granular cubic boron nitride 1, and tabular boron nitride 2 is laminated on the laminar boron nitride 3. The tabular boron nitride 2 at least includes one of cubic boron nitride and wurtzite type boron nitride. The area of the tabular boron nitride 2 is more than 30% and less than 70%, in an area ratio to the whole surface area.

Description

本発明は立方晶窒化ホウ素複合多結晶体およびその製造方法ならびに当該立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具に関し、特に鉄系材料の切削工具および耐摩工具に有用な立方晶窒化ホウ素複合多結晶体およびその製造方法ならびに当該立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具に関するものである。   The present invention relates to a cubic boron nitride composite polycrystal, a method for producing the same, and a cutting tool, an anti-wear tool and a grinding tool provided with the cubic boron nitride composite polycrystal, and in particular, a cubic useful for an iron-based material cutting tool and an anti-wear tool. The present invention relates to a crystalline boron nitride composite polycrystal, a method for producing the same, and a cutting tool, an anti-abrasion tool and a grinding tool provided with the cubic boron nitride composite polycrystal.

従来、切削工具や耐摩工具として用いられる立方晶窒化ホウ素(cBN)焼結体には、焼結助剤あるいは結合材としてTiN、TiC、Coなどが用いられている。これらは、cBN粉末を焼結助剤や結合材とともに4〜5GPa程の圧力下で焼結することで得られる。この焼結体には10〜40%ほどのバインダーが含まれており、このバインダーが、焼結体の強度、耐熱性、熱拡散性に大きく影響を与え、特に鉄系材料を切削する場合に、刃先の欠損や亀裂が生じやすく、工具としての寿命が短くなる。   Conventionally, cubic boron nitride (cBN) sintered bodies used as cutting tools and anti-wear tools have used TiN, TiC, Co, and the like as sintering aids or binders. These can be obtained by sintering cBN powder together with a sintering aid and a binder under a pressure of about 4 to 5 GPa. This sintered body contains about 10 to 40% binder, and this binder greatly affects the strength, heat resistance and thermal diffusibility of the sintered body, especially when cutting iron-based materials. The cutting edge is easily broken and cracked, and the tool life is shortened.

工具寿命を長くする手法として、バインダーを含まずにcBN焼結体を製造する方法が知られている。この方法では、ホウ窒化マグネシウムなどの触媒を用いた六方晶窒化ホウ素(hBN)を原料とし、これを反応焼結させる。この方法ではバインダーを含まないため、cBN同士が強く結合しており熱伝導率が6〜7W/cm℃と高くなる。そのため、該cBN焼結体は、ヒートシンク材やTAB(Tape Automated Bonding)ボンディングツールなどに用いられている。しかし、この焼結体の中には触媒がいくらか残留しているため、熱を加えると触媒とcBNとの熱膨張差による微細クラックが入りやすい。このため、その耐熱温度は700℃程度と低く、切削工具としては大きな問題となる。また、粒径が10μm前後と大きいため、熱伝導率が高いものの、強度は弱く、負荷の大きい切削には耐えられない。   As a technique for extending the tool life, a method of producing a cBN sintered body without including a binder is known. In this method, hexagonal boron nitride (hBN) using a catalyst such as magnesium boronitride is used as a raw material, and this is subjected to reaction sintering. Since this method does not include a binder, the cBNs are strongly bonded to each other, and the thermal conductivity is as high as 6 to 7 W / cm ° C. Therefore, the cBN sintered body is used for a heat sink material, a TAB (Tape Automated Bonding) bonding tool, and the like. However, since some catalyst remains in this sintered body, when heat is applied, fine cracks due to a difference in thermal expansion between the catalyst and cBN are likely to occur. For this reason, the heat-resistant temperature is as low as about 700 ° C., which is a serious problem as a cutting tool. Further, since the particle size is as large as about 10 μm, the thermal conductivity is high, but the strength is weak and it cannot withstand heavy cutting.

一方、hBNなどの常圧型BNを超高圧高温下で、直接変換焼結させることによってもcBN焼結体は得られる。たとえば、特開昭47−34099号公報(特許文献1)や特開平3−159964号公報(特許文献2)にhBNを超高圧高温下で、cBNに変換させcBN焼結体を得る方法が示されている。   On the other hand, a cBN sintered body can also be obtained by subjecting atmospheric pressure type BN such as hBN to direct conversion sintering under ultra-high pressure and high temperature. For example, JP-A-47-34099 (Patent Document 1) and JP-A-3-159964 (Patent Document 2) show a method for obtaining a cBN sintered body by converting hBN to cBN under ultra-high pressure and high temperature. Has been.

また、熱分解窒化ホウ素(pBN)を原料とし、cBN焼結体を得る方法がある。例えば特公昭63−394号公報(特許文献3)や特開平8−47801号公報(特許文献4)に示されている。この方法では7GPa、2100℃以上の厳しい条件が必要である。   There is also a method for obtaining a cBN sintered body using pyrolytic boron nitride (pBN) as a raw material. For example, it is disclosed in Japanese Patent Publication No. 63-394 (Patent Document 3) and Japanese Patent Application Laid-Open No. 8-47801 (Patent Document 4). This method requires severe conditions of 7 GPa and 2100 ° C. or higher.

上記の条件よりマイルドな圧力6GPa、1100℃という条件でcBN焼結体を得る方法が特公昭49−27518号公報(特許文献5)に記載されている。この方法では原料であるhBNの粒子を3μm以下にするため、hBNが数%程度の酸化ホウ素不純物や吸着ガスを含む。したがって、これら不純物や吸着ガスの影響により、焼結が十分に進行せず、また、酸化物を含むために硬度、強度、耐熱性が低くなり、切削工具および耐摩工具として用いることができない。   Japanese Patent Publication No. 49-27518 (Patent Document 5) describes a method for obtaining a cBN sintered body under conditions of 6 GPa and 1100 ° C. that are milder than the above conditions. In this method, in order to make the particles of hBN as a raw material 3 μm or less, hBN contains boron oxide impurities or adsorbed gas of about several percent. Therefore, due to the influence of these impurities and adsorbed gas, sintering does not proceed sufficiently, and since it contains an oxide, the hardness, strength, and heat resistance are lowered, and it cannot be used as a cutting tool or wear-resistant tool.

上記の問題を解決するために、低結晶性の六方晶窒化ホウ素を原料とし、6〜7GPa、1550〜2100℃の条件で合成する方法が特開平11−246271号公報(特許文献6)に記載されている。   In order to solve the above problems, a method of synthesizing under conditions of 6-7 GPa and 1550-2100 ° C. using low crystalline hexagonal boron nitride as a raw material is described in JP-A-11-246271 (Patent Document 6). Has been.

特開昭47−34099号公報JP 47-34099 A 特開平3−159964号公報JP-A-3-159964 特公昭63−394号公報Japanese Patent Publication No. 63-394 特開平8−47801号公報Japanese Patent Laid-Open No. 8-47801 特公昭49−27518号公報Japanese Patent Publication No. 49-27518 特開平11−246271号公報JP-A-11-246271

しかしながら、この方法で合成されたcBN多結晶体では結晶粒径が500nm程度であり、微細加工用途の切削工具や耐摩工具には向かない。一方、温度を制御し、cBN多結晶体の粒径を小さくした場合、微細加工用途に使うことが可能である。しかし、粒径を小さくすることで亀裂が伝播しやすくなり(言い換えれば靭性が低くなり)、高負荷の加工が困難となるという課題があった。   However, the cBN polycrystal synthesized by this method has a crystal grain size of about 500 nm, and is not suitable for a cutting tool or an anti-abrasion tool for micromachining applications. On the other hand, when the temperature is controlled and the grain size of the cBN polycrystal is reduced, it can be used for fine processing applications. However, there is a problem that cracks are easily propagated by reducing the particle size (in other words, the toughness is lowered), and high-load processing becomes difficult.

本発明は、上記のような課題に鑑みなされたものであり、耐亀裂伝搬性に優れた立方晶窒素化ホウ素複合多結晶体およびその製造方法ならびに当該多結晶体を備えた切削工具、耐摩工具および研削工具を提供することを目的とする。   The present invention has been made in view of the above problems, and has a cubic boron nitride composite polycrystal having excellent crack propagation resistance, a method for producing the same, and a cutting tool and a wear-resistant tool provided with the polycrystal. And to provide a grinding tool.

本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、温度をT(℃)、圧力をP(GPa)としたときに、T≧200P−700であり、かつT<100P+1000を満たす温度および圧力条件において、六方晶窒化ホウ素を立方晶窒化ホウ素に直接変換させることにより、微粒で粒状の立方晶窒化ホウ素の間に、比較的粗い板状の窒化ホウ素が層状に積み重なった窒化ホウ素が分散し、かつ板状の窒化ホウ素の面積が全表面積に対して面積比で30%より多く70%未満の多結晶体とすることで、微細クラックの進展阻止効果が高まり、非常に硬くて強靱な立方晶窒素化ホウ素複合多結晶体が得られることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found that when the temperature is T (° C.) and the pressure is P (GPa), T ≧ 200P−700 and T <100P + 1000. Boron nitride in which hexagonal boron nitride is directly converted into cubic boron nitride under a satisfying temperature and pressure condition, and relatively coarse plate-like boron nitride is layered between fine and granular cubic boron nitride. Is dispersed, and the area of the plate-like boron nitride is a polycrystal having an area ratio of more than 30% and less than 70% with respect to the total surface area, the effect of preventing the development of fine cracks is increased, and it is very hard. It has been found that a tough cubic boron nitride composite polycrystal can be obtained.

本発明に係る立方晶窒化ホウ素複合多結晶体は、粒状の立方晶窒化ホウ素と、層状の窒化ホウ素とを有している。層状の窒化ホウ素は、粒状の立方晶窒化ホウ素と接し、かつ板状の窒化ホウ素が積層されたものである。板状の窒化ホウ素は立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素の少なくともいずれかを含む。板状の窒化ホウ素の面積は全表面積に対して面積比で30%より多く70%未満である。これにより、耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体を得ることができる。   The cubic boron nitride composite polycrystal according to the present invention has granular cubic boron nitride and layered boron nitride. Layered boron nitride is formed by laminating plate-like boron nitride in contact with granular cubic boron nitride. The plate-like boron nitride includes at least one of cubic boron nitride and wurtzite boron nitride. The area of the plate-like boron nitride is more than 30% and less than 70% by area ratio with respect to the total surface area. Thereby, a cubic boron nitride composite polycrystal having excellent crack propagation resistance can be obtained.

上記に係る立方晶窒化ホウ素複合多結晶体において好ましくは、立方晶窒化ホウ素とは結晶構造の異なる窒化ホウ素をさらに有する。結晶構造の異なる窒化ホウ素の含有率は0.1体積%以上である。これにより、より耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体を得ることができる。   Preferably, the cubic boron nitride composite polycrystal according to the above further includes boron nitride having a crystal structure different from that of cubic boron nitride. The content of boron nitride having a different crystal structure is 0.1% by volume or more. Thereby, a cubic boron nitride composite polycrystal having better crack propagation resistance can be obtained.

上記に係る立方晶窒化ホウ素複合多結晶体において好ましくは、結晶構造の異なる窒化ホウ素はウルツ鉱型窒化ホウ素である。これにより、より耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体を得ることができる。   In the cubic boron nitride composite polycrystal according to the above, preferably, the boron nitride having a different crystal structure is wurtzite boron nitride. Thereby, a cubic boron nitride composite polycrystal having better crack propagation resistance can be obtained.

上記に係る立方晶窒化ホウ素複合多結晶体において好ましくは、結晶構造の異なる窒化ホウ素は圧縮型六方晶窒化ホウ素である。これにより、より耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体を得ることができる。   In the cubic boron nitride composite polycrystal according to the above, preferably, the boron nitride having a different crystal structure is compressed hexagonal boron nitride. Thereby, a cubic boron nitride composite polycrystal having better crack propagation resistance can be obtained.

上記に係る立方晶窒化ホウ素複合多結晶体において好ましくは、破壊靭性値が8.0MPa・m0.5以上である。これにより、破壊靭性値が8.0MPa・m0.5以上である立方晶窒化ホウ素複合多結晶体を得ることができる。 In the cubic boron nitride composite polycrystal according to the above, the fracture toughness value is preferably 8.0 MPa · m 0.5 or more. Thereby, a cubic boron nitride composite polycrystal having a fracture toughness value of 8.0 MPa · m 0.5 or more can be obtained.

本発明に係る切削工具は上記の立方晶窒化ホウ素複合多結晶体を有している。これにより、耐亀裂伝搬性に優れた切削工具を得ることができる。   The cutting tool according to the present invention has the cubic boron nitride composite polycrystal. Thereby, the cutting tool excellent in crack propagation resistance can be obtained.

本発明に係る耐摩工具は上記の立方晶窒化ホウ素複合多結晶体を有している。これにより、耐亀裂伝搬性に優れた耐摩工具を得ることができる。   The wear-resistant tool according to the present invention has the above cubic boron nitride composite polycrystal. Thereby, an abrasion resistant tool having excellent crack propagation resistance can be obtained.

本発明に係る研削工具は上記の立方晶窒化ホウ素複合多結晶体を有している。これにより、耐亀裂伝搬性に優れた研削工具を得ることができる。   A grinding tool according to the present invention has the above cubic boron nitride composite polycrystal. Thereby, the grinding tool excellent in crack propagation resistance can be obtained.

本発明に係る立方晶窒化ホウ素複合多結晶体の製造方法は以下の工程を有している。出発物質として常圧型窒化ホウ素が準備される。温度をT(℃)、圧力をP(GPa)としたときに、T≧200P−700であり、かつT<100P+1000を満たす温度および圧力条件において、常圧型窒化ホウ素が立方晶窒化ホウ素とウルツ鉱型窒化ホウ素とに直接変換させると同時に焼結される。これにより、耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体を得ることができる。   The method for producing a cubic boron nitride composite polycrystal according to the present invention includes the following steps. Atmospheric pressure boron nitride is prepared as a starting material. When the temperature is T (° C.) and the pressure is P (GPa), T ≧ 200P−700 and T <100P + 1000, and the atmospheric pressure boron nitride is cubic boron nitride and wurtzite. It is directly converted into type boron nitride and sintered at the same time. Thereby, a cubic boron nitride composite polycrystal having excellent crack propagation resistance can be obtained.

上記の立方晶窒化ホウ素複合多結晶体の製造方法において好ましくは、出発物質は、X線回折法における黒鉛化指数が5未満である。これにより、効率的に耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体を得ることができる。   In the above method for producing a cubic boron nitride composite polycrystal, the starting material preferably has a graphitization index of less than 5 in the X-ray diffraction method. Thereby, a cubic boron nitride composite polycrystal having excellent crack propagation resistance can be obtained efficiently.

本発明によれば、耐亀裂伝搬性に優れた立方晶窒素化ホウ素複合多結晶体およびその製造方法ならびに当該立方晶窒化ホウ素複合多結晶体を備えた切削工具、耐摩工具および研削工具を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cubic boron nitride composite polycrystal excellent in crack propagation resistance, its manufacturing method, and the cutting tool provided with the said cubic boron nitride composite polycrystal, an abrasion resistant tool, and a grinding tool are provided. be able to.

本発明の一実施の形態に係る立方晶窒化ホウ素複合多結晶の表面を概略的に示す平面模式図である。1 is a schematic plan view schematically showing a surface of a cubic boron nitride composite polycrystal according to an embodiment of the present invention. 本発明の一実施の形態に係る立方晶窒化ホウ素複合多結晶の板状の窒化ホウ素の形状を概略的に示す斜視模式図である。1 is a schematic perspective view schematically showing the shape of a cubic boron nitride composite polycrystalline plate-like boron nitride according to an embodiment of the present invention. 本発明の一実施の形態に係る立方晶窒化ホウ素複合多結晶の構成を概略的に示す断面模式図である。It is a cross-sectional schematic diagram which shows roughly the structure of the cubic boron nitride compound polycrystal which concerns on one embodiment of this invention. 本発明の一実施の形態に係る立方晶窒化ホウ素複合多結晶の板状の窒化ホウ素の積層状態の例を概略的に示す斜視模式図である。It is a perspective schematic diagram which shows roughly the example of the lamination | stacking state of the plate-shaped boron nitride of the cubic boron nitride composite polycrystal based on one embodiment of this invention. 本発明の一実施の形態に係る立方晶窒化ホウ素複合多結晶の板状の窒化ホウ素の積層状態の例を概略的に示す斜視模式図である。It is a perspective schematic diagram which shows roughly the example of the lamination | stacking state of the plate-shaped boron nitride of the cubic boron nitride composite polycrystal based on one embodiment of this invention. 本発明の一実施の形態に係る立方晶窒化ホウ素複合多結晶の板状の窒化ホウ素の積層状態の例を概略的に示す斜視模式図である。It is a perspective schematic diagram which shows roughly the example of the lamination | stacking state of the plate-shaped boron nitride of the cubic boron nitride composite polycrystal based on one embodiment of this invention. 実施例および比較例の立方晶窒化ホウ素複合多結晶の製造方法における温度と圧力との関係を示す図である。It is a figure which shows the relationship between the temperature and the pressure in the manufacturing method of the cubic boron nitride composite polycrystal of an Example and a comparative example. 実施例3に係る立方晶窒化ホウ素複合多結晶の表面状態を示すSEM画像である。4 is a SEM image showing a surface state of a cubic boron nitride composite polycrystal according to Example 3. FIG.

以下、本実施の形態について図1〜図6を用いて説明する。
図1に示すように、本実施の形態に係る立方晶窒化ホウ素複合多結晶体10は、粒状の立方晶窒化ホウ素1と、板状の窒化ホウ素2が積層された層状の窒化ホウ素3とを有している。板状の窒化ホウ素2の大部分は立方晶窒化ホウ素であるが、板状の窒化ホウ素2はウルツ鉱型窒化ホウ素を含んでいても構わない。つまり、板状の窒化ホウ素2は立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素の少なくともいずれかを含んでいる。また、本実施の形態に係る立方晶窒化ホウ素複合多結晶体10は、焼結助剤や触媒を含まない実質的に高圧相窒化ホウ素のみからなる多結晶体である。
Hereinafter, the present embodiment will be described with reference to FIGS.
As shown in FIG. 1, a cubic boron nitride composite polycrystalline body 10 according to the present embodiment includes granular cubic boron nitride 1 and layered boron nitride 3 in which plate-like boron nitride 2 is laminated. Have. Most of the plate-like boron nitride 2 is cubic boron nitride, but the plate-like boron nitride 2 may contain wurtzite boron nitride. That is, the plate-like boron nitride 2 contains at least one of cubic boron nitride and wurtzite boron nitride. In addition, the cubic boron nitride composite polycrystalline body 10 according to the present embodiment is a polycrystalline body that is substantially composed of only high-pressure phase boron nitride that does not contain a sintering aid or a catalyst.

板状の窒化ホウ素2が積層された層状の窒化ホウ素3は、図1に示すように、粒状の立方晶窒化ホウ素1と接し、粒状の立方晶窒化ホウ素1の中に分散するように存在している。本実施の形態に係る立方晶窒化ホウ素多結晶体10における板状の窒化ホウ素2の面積は全表面積に対して面積比で30%より多く70%未満である。好ましくは、板状の窒化ホウ素2の面積は全面積に対して面積比で33%以上67%以下である。   As shown in FIG. 1, the layered boron nitride 3 in which the plate-like boron nitride 2 is laminated exists in contact with the granular cubic boron nitride 1 so as to be dispersed in the granular cubic boron nitride 1. ing. The area of the plate-like boron nitride 2 in the cubic boron nitride polycrystal 10 according to the present embodiment is more than 30% and less than 70% in terms of the area ratio with respect to the total surface area. Preferably, the area of the plate-like boron nitride 2 is 33% or more and 67% or less by area ratio with respect to the total area.

図2を参照して板状の窒化ホウ素について説明する。「板状」とは、長手方向の長さ(長辺の長さa)が短手方向の長さ(短辺の長さb)の3倍以上であり、厚みtが長辺および短辺の長さよりも小さい形状である。なお、短辺とは長辺に対してほぼ垂直な方向の長さの最大値である。   The plate-like boron nitride will be described with reference to FIG. “Plate-like” means that the length in the longitudinal direction (long side length a) is at least three times the length in the short side direction (short side length b), and the thickness t is the long side and short side. The shape is smaller than the length of. The short side is the maximum value of the length in a direction substantially perpendicular to the long side.

図3〜図6を参照して、板状の窒化ホウ素2の積層状態を模式的に説明する。まず図3を参照して、層状の窒化ホウ素3は、板状の窒化ホウ素2が積層されたものである。板状の窒化ホウ素2は粒状の立方晶窒化ホウ素1と接しているが、粒状の立方晶窒化ホウ素と接していない板状の窒化ホウ素2があっても構わない。   With reference to FIGS. 3-6, the lamination | stacking state of plate-shaped boron nitride 2 is demonstrated typically. First, referring to FIG. 3, layered boron nitride 3 is obtained by laminating plate-like boron nitride 2. The plate-like boron nitride 2 is in contact with the granular cubic boron nitride 1, but there may be a plate-like boron nitride 2 not in contact with the granular cubic boron nitride.

図4を参照して、層状の窒化ホウ素3は、板状の窒化ホウ素2が、当該板状の窒化ホウ素2の結晶の最大面積を有する面の法線方向に積層されていても構わない。当該法線方向は、立方晶窒化ホウ素の(111)方向であっても構わない。図4においては、板状の窒化ホウ素2の結晶の最大面積を有する面のほぼ全てが重なっている。図5を参照して、板状の窒化ホウ素2の結晶の最大面積を有する面の一部が重なって層状の窒化ホウ素3が形成されてもよい。図6を参照して、板状の窒化ホウ素2が板状の窒化ホウ素の長辺方向に積層されて層状の窒化ホウ素3が形成されていてもよいし、短辺方向に積層されて層状の窒化ホウ素3が形成されてもよい。   Referring to FIG. 4, layered boron nitride 3 may be formed by laminating plate-like boron nitride 2 in the normal direction of the surface having the maximum area of the plate-like boron nitride 2 crystal. The normal direction may be the (111) direction of cubic boron nitride. In FIG. 4, almost all the surfaces having the maximum area of the plate-like boron nitride 2 crystal overlap. Referring to FIG. 5, layered boron nitride 3 may be formed by overlapping a part of the surface of the plate-like boron nitride 2 crystal having the largest area. Referring to FIG. 6, plate-like boron nitride 2 may be laminated in the long side direction of plate-like boron nitride to form layered boron nitride 3, or laminated in the short side direction to form layered boron nitride. Boron nitride 3 may be formed.

再び図1を参照して、板状の窒化ホウ素2の各々は、短手方向に沿ってずれた位置において最大面積を有する面の法線方向に重なっていてもよい。また板状の窒化ホウ素2が積層された層状の窒化ホウ素3の各々は、互いに交差する方向に延在していてもよい。   Referring again to FIG. 1, each of the plate-like boron nitrides 2 may overlap the normal direction of the surface having the maximum area at a position shifted along the short direction. Further, each of the layered boron nitrides 3 on which the plate-like boron nitrides 2 are laminated may extend in a direction intersecting with each other.

本実施の形態に係る立方晶窒化ホウ素多結晶体10においては、層状の窒化ホウ素3が複数の小さな粒状の立方晶窒化ホウ素1の間に様々な向きで存在しているので、クラックの進展を抑制することができる。言い換えれば、複数の層状の窒化ホウ素3の各々の長手方向が互いに交差するように延在している。そのため、本実施の形態の立方晶窒化ホウ素複合多結晶体10は、高い耐亀裂伝搬性を有する。具体的には、本実施の形態に係る立方晶窒化ホウ素多結晶体10の耐亀裂伝搬性の指標の一つである破壊靭性値が8.0MPa・m0.5以上であり、好ましくは8.1MPa・m0.5以上である。それゆえ、本実施の形態の立方晶窒化ホウ素複合多結晶体10は、高負荷が必要とされる切削工具、耐摩工具および研削工具などに好適に使用可能である。より具体的には、当該立方晶窒化ホウ素複合多結晶体10は、切削バイト、ダイスやマイクロ工具などの精密工具の材料として使用可能である。 In the cubic boron nitride polycrystal 10 according to the present embodiment, the layered boron nitride 3 is present in various directions between the plurality of small granular cubic boron nitrides 1, so that the cracks propagate. Can be suppressed. In other words, each of the plurality of layered boron nitrides 3 extends so that the longitudinal directions thereof intersect each other. Therefore, cubic boron nitride composite polycrystalline body 10 of the present embodiment has high crack propagation resistance. Specifically, the fracture toughness value, which is one index of crack propagation resistance, of the cubic boron nitride polycrystal 10 according to the present embodiment is 8.0 MPa · m 0.5 or more, preferably 8.1 MPa. -M 0.5 or more. Therefore, the cubic boron nitride composite polycrystal 10 of the present embodiment can be suitably used for a cutting tool, an anti-wear tool, a grinding tool, and the like that require a high load. More specifically, the cubic boron nitride composite polycrystalline body 10 can be used as a material for precision tools such as cutting tools, dies, and micro tools.

立方晶窒化ホウ素複合多結晶体10は、立方晶窒化ホウ素とは結晶構造の異なる窒化ホウ素をさらに有していても構わない。立方晶窒化ホウ素と結晶構造の異なる窒化ホウ素とは、例えば、ウルツ鉱型窒化ホウ素や圧縮型六方晶窒化ホウ素などである。つまり、立方晶窒化ホウ素複合多結晶体10は、少量のウルツ鉱型窒化ホウ素を含んでいてもよいし、少量のウルツ鉱型窒化ホウ素と圧縮型六方晶窒化ホウ素を含んでいてもよい。立方晶窒化ホウ素とは結晶構造の異なる窒化ホウ素の含有率は、たとえば0.1体積%以上である。好ましくは、当該含有率は0.4体積%以上である。なお、立方晶窒化ホウ素と結晶構造の異なる窒化ホウ素が2種類以上存在する場合、当該含有率とは全ての種類の窒化ホウ素の合計値である。   The cubic boron nitride composite polycrystalline body 10 may further include boron nitride having a crystal structure different from that of the cubic boron nitride. Examples of the boron nitride having a different crystal structure from the cubic boron nitride include wurtzite boron nitride and compressed hexagonal boron nitride. That is, the cubic boron nitride composite polycrystal 10 may contain a small amount of wurtzite boron nitride or a small amount of wurtzite boron nitride and compressed hexagonal boron nitride. The content of boron nitride having a crystal structure different from that of cubic boron nitride is, for example, 0.1% by volume or more. Preferably, the content is 0.4% by volume or more. In addition, when there are two or more types of boron nitride having different crystal structures from cubic boron nitride, the content is the total value of all types of boron nitride.

ウルツ鉱型窒化ホウ素および圧縮型六方晶窒化ホウ素は、粒状結晶であってもよいし、板状結晶であってもよい。また、粒状の立方晶窒化ホウ素1の平均粒径は500nm以下であることが好ましく、388nm以下であることがより好ましい。また、立方晶窒化ホウ素複合多結晶体10は不可避不純物をさらに含んでいてもよい。不可避不純物とは、たとえば窒素、水素、酸素などである。   The wurtzite boron nitride and the compressed hexagonal boron nitride may be granular crystals or plate crystals. The average particle size of the granular cubic boron nitride 1 is preferably 500 nm or less, and more preferably 388 nm or less. The cubic boron nitride composite polycrystal 10 may further contain inevitable impurities. Inevitable impurities are, for example, nitrogen, hydrogen, oxygen and the like.

次に、本実施の形態の立方晶窒化ホウ素複合多結晶体の製造方法について説明する。
まず、出発物質として常圧型窒化ホウ素である常圧型六方晶窒化ホウ素(hBN)を準備する。六方晶窒化ホウ素は、高結晶性であることが好ましい。ここでいう原料の高結晶性とは、X線回折法における黒鉛化指数(GI値)が5未満のことを指す。GI値とは、hBNのX線回折の3本のピーク、すなわち(100)、(101)、(102)のピークの面積を以下の数式1に導入することによって導き出される値である。ここで、I(XXX)はhBN結晶の(XXX)面の回折ピークの面積のことである。hBNの結晶性が向上するとGI値は小さくなる。
Next, the manufacturing method of the cubic boron nitride composite polycrystal of this Embodiment is demonstrated.
First, atmospheric pressure type hexagonal boron nitride (hBN), which is atmospheric pressure type boron nitride, is prepared as a starting material. The hexagonal boron nitride is preferably highly crystalline. The high crystallinity of the raw material here means that the graphitization index (GI value) in the X-ray diffraction method is less than 5. The GI value is a value derived by introducing the areas of three peaks of x-ray diffraction of hBN, that is, the peaks of (100), (101), and (102) into the following Equation 1. Here, I (XXX) is the area of the diffraction peak on the (XXX) plane of the hBN crystal. When the crystallinity of hBN is improved, the GI value is decreased.

結晶性が低くなると(つまり黒鉛化指数が高くなると)、hBNからcBNへの拡散型転位となるので、wBNが生成されない傾向があり、かつ板状組織(板状の窒化ホウ素2)が生成されない傾向がある。拡散型転位は原子拡散と格子の組み換えを伴うので、当該転位の場合は粒状組織が形成される。それゆえ、黒鉛化指数を低く(つまり5未満)にすることで、板状組織の形成を促進することができると考えられる。   When the crystallinity is low (that is, when the graphitization index is high), it becomes a diffusion type dislocation from hBN to cBN, so that wBN tends not to be generated and a plate-like structure (plate-like boron nitride 2) is not generated. Tend. Since the diffusion type dislocation involves atomic diffusion and recombination of the lattice, a granular structure is formed in the case of the dislocation. Therefore, it is considered that the formation of a plate-like structure can be promoted by lowering the graphitization index (that is, less than 5).

次に、高結晶性のhBN原料を超高圧高温発生装置を用いて、六方晶窒化ホウ素を立方晶窒化ホウ素に変換させると同時に焼結させる。具体的には、温度をT(℃)、圧力をP(GPa)としたときに、T≧200P−700であり、かつT<100P+1000を満たす温度および圧力条件において、常圧型窒化ホウ素である六方晶窒化ホウ素を立方晶窒化ホウ素とウルツ鉱型窒化ホウ素とに直接変換させると同時に焼結させる。好ましい温度条件は1700℃以上2300℃以下である。好ましい圧力条件は10GPa以上15GPa以下である。本実施の形態では、超高圧高温下で焼結助剤や触媒の添加なしに直接的にhBNが高圧相BN(立方晶窒化ホウ素やウルツ鉱型窒化ホウ素)に変換焼結される。   Next, the highly crystalline hBN raw material is sintered at the same time as the hexagonal boron nitride is converted into cubic boron nitride using an ultrahigh pressure and high temperature generator. More specifically, when the temperature is T (° C.) and the pressure is P (GPa), T ≧ 200P−700 and T <100P + 1000. Crystalline boron nitride is directly converted into cubic boron nitride and wurtzite boron nitride and simultaneously sintered. A preferable temperature condition is 1700 ° C. or higher and 2300 ° C. or lower. A preferable pressure condition is 10 GPa or more and 15 GPa or less. In the present embodiment, hBN is directly converted and sintered into a high-pressure phase BN (cubic boron nitride or wurtzite boron nitride) without adding a sintering aid or a catalyst under an ultra-high pressure and high temperature.

なお、本実施の形態の製造方法においては、六方晶窒化ホウ素の全てを立方晶窒化ホウ素に変換させる必要はない。たとえば、六方晶窒化ホウ素の一部が立方晶窒化ホウ素に変換され、残りがウルツ鉱型窒化ホウ素や圧縮型六方晶窒化ホウ素に変換されてもよい。   In the manufacturing method of the present embodiment, it is not necessary to convert all hexagonal boron nitride into cubic boron nitride. For example, a part of hexagonal boron nitride may be converted into cubic boron nitride, and the rest may be converted into wurtzite boron nitride or compressed hexagonal boron nitride.

本発明の高強度cBN多結晶体を製造するために重要なことは、合成圧力と合成温度である。合成圧力が高い程層状組織が増え、合成温度が高い程粒成長に伴い層状組織が消えてしまう。そのため、合成圧力と合成温度のバランスが重要となる。cBN結晶の粒成長を抑制し、かつ層状のcBNを残す温度は圧力により異なる。   What is important for producing the high-strength cBN polycrystal of the present invention is the synthesis pressure and the synthesis temperature. The higher the synthesis pressure, the more the layered structure, and the higher the synthesis temperature, the more the layered structure disappears with grain growth. Therefore, the balance between the synthesis pressure and the synthesis temperature is important. The temperature at which the grain growth of the cBN crystal is suppressed and the layered cBN is left varies depending on the pressure.

次に、本実施の形態の作用効果について説明する。
本実施の形態に係る立方晶窒化ホウ素複合多結晶体10は、粒状の立方晶窒化ホウ素1と、層状の窒化ホウ素3とを有している。層状の窒化ホウ素3は、粒状の立方晶窒化ホウ素1と接し、かつ板状の窒化ホウ素2が積層されたものである。板状の窒化ホウ素2は立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素の少なくともいずれかを含む。板状の窒化ホウ素2の面積は全表面積に対して面積比で30%より多く70%未満である。
Next, the effect of this Embodiment is demonstrated.
A cubic boron nitride composite polycrystal 10 according to the present embodiment has granular cubic boron nitride 1 and layered boron nitride 3. The layered boron nitride 3 is in contact with the granular cubic boron nitride 1 and is laminated with a plate-like boron nitride 2. The plate-like boron nitride 2 contains at least one of cubic boron nitride and wurtzite boron nitride. The area of the plate-like boron nitride 2 is more than 30% and less than 70% in the area ratio with respect to the total surface area.

板状の窒化ホウ素2の面積が全表面積に対して面積比で30%以下である場合はクラック進展を抑制する効果が低くなり、70%以上である場合は層状の窒化ホウ素2の層に沿ってクラックが進展し、耐亀裂伝搬性が低くなる。それゆえ、板状の窒化ホウ素2の面積は全表面積に対して面積比で30%より多く70%未満とすることにより、耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体10を得ることができる。   When the area of the plate-like boron nitride 2 is 30% or less in terms of the area ratio with respect to the total surface area, the effect of suppressing crack growth is reduced, and when it is 70% or more, the layered layer of boron nitride 2 is aligned. As a result, the crack progresses and the crack propagation resistance is lowered. Therefore, the area of the plate-like boron nitride 2 is more than 30% and less than 70% in terms of the area ratio with respect to the total surface area, whereby the cubic boron nitride composite polycrystal 10 having excellent crack propagation resistance is obtained. be able to.

また本実施の形態に係る立方晶窒化ホウ素複合多結晶体10は、立方晶窒化ホウ素とは結晶構造の異なる窒化ホウ素をさらに有する。結晶構造の異なる窒化ホウ素の含有率は0.1体積%以上である。これにより、より耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体10を得ることができる。   In addition, cubic boron nitride composite polycrystal 10 according to the present embodiment further includes boron nitride having a crystal structure different from that of cubic boron nitride. The content of boron nitride having a different crystal structure is 0.1% by volume or more. Thereby, the cubic boron nitride composite polycrystal 10 having more excellent crack propagation resistance can be obtained.

さらに本実施の形態に係る立方晶窒化ホウ素複合多結晶体10によれば、結晶構造の異なる窒化ホウ素はウルツ鉱型窒化ホウ素である。これにより、より耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体10を得ることができる。   Furthermore, according to cubic boron nitride composite polycrystalline body 10 according to the present embodiment, boron nitride having a different crystal structure is wurtzite boron nitride. Thereby, the cubic boron nitride composite polycrystal 10 having more excellent crack propagation resistance can be obtained.

さらに本実施の形態に係る立方晶窒化ホウ素複合多結晶体10によれば、結晶構造の異なる窒化ホウ素は圧縮型六方晶窒化ホウ素である。これにより、より耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体10を得ることができる。   Furthermore, according to cubic boron nitride composite polycrystal 10 according to the present embodiment, boron nitride having a different crystal structure is compressed hexagonal boron nitride. Thereby, the cubic boron nitride composite polycrystal 10 having more excellent crack propagation resistance can be obtained.

さらに本実施の形態に係る立方晶窒化ホウ素複合多結晶体10は、破壊靭性値が8.0MPa・m0.5以上である。これにより、破壊靭性値が8.0MPa・m0.5以上である立方晶窒化ホウ素複合多結晶体10を得ることができる。 Furthermore, the cubic boron nitride composite polycrystal 10 according to the present embodiment has a fracture toughness value of 8.0 MPa · m 0.5 or more. Thereby, the cubic boron nitride composite polycrystal 10 having a fracture toughness value of 8.0 MPa · m 0.5 or more can be obtained.

本実施の形態に係る切削工具は上記の立方晶窒化ホウ素複合多結晶体10を有している。これにより、耐亀裂伝搬性に優れた切削工具を得ることができる。   The cutting tool according to the present embodiment has the cubic boron nitride composite polycrystalline body 10 described above. Thereby, the cutting tool excellent in crack propagation resistance can be obtained.

本実施の形態に係る耐摩工具は上記の立方晶窒化ホウ素複合多結晶体10を有している。これにより、耐亀裂伝搬性に優れた耐摩工具を得ることができる。   The wear-resistant tool according to the present embodiment has the cubic boron nitride composite polycrystalline body 10 described above. Thereby, an abrasion resistant tool having excellent crack propagation resistance can be obtained.

本実施の形態に係る研削工具は上記の立方晶窒化ホウ素複合多結晶体10を有している。これにより、耐亀裂伝搬性に優れた研削工具を得ることができる。   The grinding tool according to the present embodiment has the cubic boron nitride composite polycrystalline body 10 described above. Thereby, the grinding tool excellent in crack propagation resistance can be obtained.

本実施の形態に係る立方晶窒化ホウ素複合多結晶体の製造方法によれば、出発物質として常圧型窒化ホウ素が準備される。温度をT(℃)、圧力をP(GPa)としたときに、T≧200P−700であり、かつT<100P+1000を満たす温度および圧力条件において、常圧型窒化ホウ素が立方晶窒化ホウ素とウルツ鉱型窒化ホウ素とに直接変換させると同時に焼結される。これにより、耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体10を得ることができる。   According to the method for manufacturing a cubic boron nitride composite polycrystal according to the present embodiment, atmospheric boron nitride is prepared as a starting material. When the temperature is T (° C.) and the pressure is P (GPa), T ≧ 200P−700 and T <100P + 1000, and the atmospheric pressure boron nitride is cubic boron nitride and wurtzite. It is directly converted into type boron nitride and sintered at the same time. Thereby, the cubic boron nitride composite polycrystal 10 excellent in crack propagation resistance can be obtained.

また本実施の形態に係る立方晶窒化ホウ素複合多結晶体の製造方法によれば、出発物質は、X線回折法における黒鉛化指数が5未満である。これにより、効率的に耐亀裂伝搬性に優れた立方晶窒化ホウ素複合多結晶体10を得ることができる。   Moreover, according to the method for producing a cubic boron nitride composite polycrystal according to the present embodiment, the starting material has a graphitization index of less than 5 in the X-ray diffraction method. Thereby, the cubic boron nitride composite polycrystal 10 having excellent crack propagation resistance can be obtained efficiently.

次に、本発明の実施例について説明する。
実施例1〜4に係る立方晶窒化ホウ素複合多結晶体を以下の方法で作製した。まず、出発原料として市販のペレット状のGI値が3.8の高結晶性のhBNを使用した。その出発原料を高融点金属からなるカプセルに入れ、超高圧高温発生装置を用いて以下の圧力、温度条件下において20分間保持し、出発原料をcBNとウルツ鉱型窒化ホウ素とに直接変換した。実施例1の圧力条件を10GPaとし、温度条件を1900℃とした。実施例2の圧力条件を11GPaとし、温度条件を2000℃とした。実施例3の圧力条件を12GPaとし、温度条件を1700℃とした。実施例4の圧力条件を15GPaとし、温度条件を2300℃とした。
Next, examples of the present invention will be described.
Cubic boron nitride composite polycrystals according to Examples 1 to 4 were produced by the following method. First, a highly pelletized hBN having a GI value of 3.8 in the form of a pellet was used as a starting material. The starting material was put into a capsule made of a refractory metal and held for 20 minutes under the following pressure and temperature conditions using an ultrahigh pressure and high temperature generator to directly convert the starting material into cBN and wurtzite boron nitride. The pressure condition of Example 1 was 10 GPa, and the temperature condition was 1900 ° C. The pressure condition of Example 2 was 11 GPa, and the temperature condition was 2000 ° C. The pressure condition of Example 3 was 12 GPa, and the temperature condition was 1700 ° C. The pressure condition of Example 4 was 15 GPa, and the temperature condition was 2300 ° C.

比較例1に係る立方晶窒化ホウ素複合多結晶体を以下の方法で作製した。まず、出発原料として市販のペレット状のGI値が4.2の高結晶性のhBNを使用した。その出発原料を高融点金属からなるカプセルに入れ、超高圧発生装置で7.7GPaの圧力を発生させ、2300℃の温度で15分間保持し、cBNに直接変換した。   A cubic boron nitride composite polycrystal according to Comparative Example 1 was produced by the following method. First, a highly crystalline hBN having a GI value of 4.2 as a commercially available pellet was used as a starting material. The starting material was put in a capsule made of a refractory metal, a pressure of 7.7 GPa was generated by an ultrahigh pressure generator, held at a temperature of 2300 ° C. for 15 minutes, and directly converted to cBN.

比較例2、3に係る立方晶窒化ホウ素複合多結晶体を以下の方法で作製した。まず、出発原料として市販のペレット状のGI値が3.8の高結晶性のhBNを使用した。その出発原料を、高融点金属からなるカプセルに入れ、超高圧高温発生装置を用いて以下の圧力、温度条件下において20分間保持し、出発原料をcBNに直接変換した。比較例2の圧力条件を10GPaとし、温度条件を2400℃とした。比較例3の圧力条件を10Paとし、温度条件を2200℃とした。   Cubic boron nitride composite polycrystals according to Comparative Examples 2 and 3 were produced by the following method. First, a highly pelletized hBN having a GI value of 3.8 in the form of a pellet was used as a starting material. The starting material was put into a capsule made of a refractory metal, and was held for 20 minutes under the following pressure and temperature conditions using an ultrahigh pressure and high temperature generator to directly convert the starting material to cBN. The pressure condition of Comparative Example 2 was 10 GPa, and the temperature condition was 2400 ° C. The pressure condition of Comparative Example 3 was 10 Pa, and the temperature condition was 2200 ° C.

上述した製造方法によって得られた実施例1〜4および比較例1〜3の立方晶窒化ホウ素多結晶体10の組成、粒状組織(粒状結晶)の平均粒径、板状組織(板状結晶)の割合および破壊靭性値(K1c)を下記の手法で測定した。 Composition of cubic boron nitride polycrystal 10 of Examples 1 to 4 and Comparative Examples 1 to 3 obtained by the above-described production method, average grain size of granular structure (granular crystals), plate-like structure (plate-like crystals) And the fracture toughness value (K 1c ) were measured by the following method.

各相の組成は、X線回折装置により各相を同定することにより得られた。この装置のX線の線源はCuであり、波長1.54ÅのKα線である。   The composition of each phase was obtained by identifying each phase with an X-ray diffractometer. The X-ray source of this apparatus is Cu, which is a Kα ray with a wavelength of 1.54 mm.

粒状結晶(粒状の立方晶窒化ホウ素1)の平均粒径は、走査電子顕微鏡によって測定した。平均粒径を求める方法として切断法を使用した。この方法では、まず走査電子顕微鏡(SEM)の画像に円を書き、円の中心から8本の直線を放射状に円の外周まで引き、円の中で直線が結晶粒界を横切る数を数える。そして、直線の長さをその横切る数で割ることで平均切片長さを求め、その平均切片長さに1.128をかけると平均結晶粒径が求められる。   The average particle size of the granular crystals (granular cubic boron nitride 1) was measured with a scanning electron microscope. A cutting method was used as a method for obtaining the average particle diameter. In this method, first, a circle is written on an image of a scanning electron microscope (SEM), eight straight lines are drawn radially from the center of the circle to the outer periphery of the circle, and the number of lines that cross the grain boundary in the circle is counted. Then, the average intercept length is obtained by dividing the length of the straight line by the number of crossing, and the average crystal grain size is obtained by multiplying the average intercept length by 1.128.

切断法を用いるのに使用したSEM画像の倍率は30000倍である。その理由は、これ以下の倍率では、円内の粒の数が多くなり、粒界が見えにくく数え間違いが発生する上に、線を引く際に板状組織を含める可能性が高くなるからである。また、これ以上の倍率では、円内の粒の数が少な過ぎて、正確な平均粒径が算出できないからである。   The magnification of the SEM image used to use the cutting method is 30000 times. The reason for this is that at a magnification less than this, the number of grains in the circle increases, the grain boundaries are difficult to see, and counting mistakes occur, and the possibility of including a plate-like structure when drawing a line increases. is there. Further, when the magnification is higher than this, the number of grains in the circle is too small, and an accurate average particle diameter cannot be calculated.

本実験においては、1つの試料に対して、別々の箇所を撮影した3枚のSEM画像を使用した。それぞれのSEM画像に対して切断法を使用して、その平均値を平均粒径とした。   In this experiment, three SEM images obtained by photographing different locations were used for one sample. The average value was made into the average particle diameter using the cutting method with respect to each SEM image.

また、板状組織(板状の窒化ホウ素2)の割合は、倍率3000倍のSEM画像を用いて、板状組織の面積と粒状組織の面積を比較することで測定した。それより倍率が高いと粒状組織のみの場所を選ぶ可能性があり、それより低いと粒界が良く見えなくなり、粒状組織と板状組織を区別できなくなるからである。   The ratio of the plate-like structure (plate-like boron nitride 2) was measured by comparing the area of the plate-like structure and the area of the granular structure using an SEM image with a magnification of 3000 times. If the magnification is higher than that, there is a possibility of selecting only the granular structure, and if it is lower than that, the grain boundary cannot be seen well, and the granular structure and the plate-like structure cannot be distinguished.

破壊靭性値(K1c)は、日本工業規格のJIS−R−1607に則り、ビッカース硬さを測定する際に発生する亀裂の長さにより測定を行った。ビッカース硬さを測定するときの荷重は98Nとした。測定は5回行い、その中で一番小さい値と大きい値を除いた3つの値の平均値を試料の破壊靭性値とした。 The fracture toughness value (K 1c ) was measured by the length of cracks generated when measuring Vickers hardness according to JIS-R-1607 of Japanese Industrial Standard. The load when measuring the Vickers hardness was 98N. The measurement was performed five times, and the average value of three values excluding the smallest value and the largest value was taken as the fracture toughness value of the sample.

実施例1〜4および比較例1〜3の立方晶窒化ホウ素複合多結晶体10の組成、粒状組織の粒径、層状組織の割合と破壊靭性値(K1c)を表1に示す。 Table 1 shows the composition of the cubic boron nitride composite polycrystal 10 of Examples 1 to 4 and Comparative Examples 1 to 3, the particle size of the granular structure, the ratio of the layered structure, and the fracture toughness value (K 1c ).

表1に示すように、実施例1〜4は、板状の窒化ホウ素2(板状組織)を全表面積の30%より多く70%未満程度含むことがわかった。図8に示すように、実施例2は、粒状の立方晶窒化ホウ素1と板状の窒化ホウ素2とを含んでいることが確認された。粒状の結晶(粒状の立方晶窒化ホウ素1)の平均粒径は、98nm以上388nm以下であった。また、破壊靭性値は8.1MPa・m1/2以上9.1MPa・m1/2以下であった。また実施例1〜4はcBNを97.05体積%以上99.6体積%以下含んでおり、wBNを0.4体積%以上2.9体積%以下含んでいた。また実施例3は高圧型hBNを0.05体積%含んでいた。 As shown in Table 1, Examples 1 to 4 were found to contain plate-like boron nitride 2 (plate-like structure) more than 30% and less than 70% of the total surface area. As shown in FIG. 8, Example 2 was confirmed to contain granular cubic boron nitride 1 and plate-like boron nitride 2. The average particle size of the granular crystals (granular cubic boron nitride 1) was 98 nm or more and 388 nm or less. Furthermore, fracture toughness values were 8.1 MPa · m 1/2 or more 9.1 MPa · m 1/2 or less. Moreover, Examples 1-4 contained 97.05 volume% or more and 99.6 volume% or less of cBN, and contained 0.4 volume% or more and 2.9 volume% or less of wBN. In addition, Example 3 contained 0.05% by volume of high-pressure hBN.

一方、比較例1および2は、板状の窒化ホウ素2(板状組織)を有さないことが確認された。また、比較例3は板状組織の割合が面積比で6%であり、30%以下であることが確認された。また、比較例1〜3の破壊靭性値は8.0MPa・m1/2よりも小さかった。比較例1は高圧型hBNを0.08体積%含んでいた。比較例3はwBNを0.9体積%含んでいた。比較例2は高圧型hBNとwBNを含んでいなかった。 On the other hand, it was confirmed that Comparative Examples 1 and 2 did not have plate-like boron nitride 2 (plate-like structure). In Comparative Example 3, it was confirmed that the ratio of the plate-like structure was 6% in area ratio and 30% or less. Moreover, the fracture toughness values of Comparative Examples 1 to 3 were smaller than 8.0 MPa · m 1/2 . Comparative Example 1 contained 0.08% by volume of high pressure type hBN. Comparative Example 3 contained 0.9% by volume of wBN. Comparative Example 2 did not contain high pressure type hBN and wBN.

以上の結果より、板状の窒化ホウ素2の面積が全表面積に対して面積比で30%より多く70%未満である立方晶窒化ホウ素複合多結晶体10は、当該面積比が30%以下である立方晶窒化ホウ素複合多結晶体10よりも破壊靭性値が高く、耐亀裂伝搬性が向上していることが確認された。   From the above results, the cubic boron nitride composite polycrystal 10 in which the area of the plate-like boron nitride 2 is more than 30% and less than 70% in terms of the area ratio with respect to the total surface area is 30% or less. It was confirmed that the fracture toughness value was higher than that of a certain cubic boron nitride composite polycrystal 10 and the crack propagation resistance was improved.

次に、図7を参照して実施例と比較例との製造条件の違いについて説明する。図7において、黒丸が実施例の条件であり、白三角が比較例の条件である。破線で示す境界線11は、温度をT(℃)、圧力をP(GPa)としたときに、T=200P−700を満たす温度および圧力の関係を示す式である。また破線で示す境界線12は、温度をT(℃)、圧力をP(GPa)としたときに、T=100P+1000を満たす温度および圧力の関係を示す式である。つまり、温度をT(℃)、圧力をP(GPa)としたときに、T≧200P−700であり、かつT<100P+1000を満たす温度および圧力条件において、常圧型窒化ホウ素を立方晶窒化ホウ素とウルツ鉱型窒化ホウ素とに直接変換させると同時に焼結させることにより、実施例に係る立方晶窒化ホウ素複合多結晶体が得られることが確認された。   Next, the difference in manufacturing conditions between the example and the comparative example will be described with reference to FIG. In FIG. 7, black circles are the conditions of the example, and white triangles are the conditions of the comparative example. The boundary line 11 indicated by a broken line is an expression showing the relationship between temperature and pressure that satisfies T = 200P-700, where T (° C.) is the temperature and P (GPa) is the pressure. A boundary line 12 indicated by a broken line is an expression showing a relationship between temperature and pressure satisfying T = 100P + 1000 when the temperature is T (° C.) and the pressure is P (GPa). That is, when the temperature is T (° C.) and the pressure is P (GPa), T ≧ 200P−700, and at a temperature and pressure satisfying T <100P + 1000, normal pressure boron nitride is cubic boron nitride. It was confirmed that the cubic boron nitride composite polycrystal according to the example can be obtained by direct conversion to wurtzite boron nitride and sintering.

以上のように本発明の実施の形態および実施例について説明を行なったが、上述の実施の形態および実施例を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態および実施例に限定されるものではない。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。   Although the embodiments and examples of the present invention have been described above, various modifications can be made to the above-described embodiments and examples. Further, the scope of the present invention is not limited to the above-described embodiments and examples. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 粒状の立方晶窒化ホウ素、2 板状の窒化ホウ素、3 層状の窒化ホウ素、11,12 境界線。   1 granular cubic boron nitride, 2 plate-like boron nitride, 3 layered boron nitride, 11, 12 border.

Claims (10)

粒状の立方晶窒化ホウ素と、
前記粒状の立方晶窒化ホウ素と接し、かつ板状の窒化ホウ素が積層された層状の窒化ホウ素とを備え、
前記板状の窒化ホウ素は立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素の少なくともいずれかを含み、
前記板状の窒化ホウ素の面積は全表面積に対して面積比で30%より多く70%未満である、立方晶窒化ホウ素複合多結晶体。
Granular cubic boron nitride,
A layered boron nitride in contact with the granular cubic boron nitride and laminated with a plate-like boron nitride;
The plate-like boron nitride includes at least one of cubic boron nitride and wurtzite boron nitride,
The cubic boron nitride composite polycrystal, wherein the area of the plate-like boron nitride is more than 30% and less than 70% in the area ratio with respect to the total surface area.
前記立方晶窒化ホウ素とは結晶構造の異なる窒化ホウ素をさらに備え、
前記結晶構造の異なる窒化ホウ素の含有率は0.1体積%以上である、請求項1に記載の立方晶窒化ホウ素複合多結晶体。
Further comprising boron nitride having a different crystal structure from the cubic boron nitride,
The cubic boron nitride composite polycrystal according to claim 1, wherein the content of boron nitride having different crystal structures is 0.1% by volume or more.
前記結晶構造の異なる窒化ホウ素はウルツ鉱型窒化ホウ素である、請求項2に記載の立方晶窒化ホウ素複合多結晶体。   The cubic boron nitride composite polycrystal according to claim 2, wherein the boron nitride having a different crystal structure is wurtzite boron nitride. 前記結晶構造の異なる窒化ホウ素は圧縮型六方晶窒化ホウ素である、請求項2に記載の立方晶窒化ホウ素複合多結晶体。   The cubic boron nitride composite polycrystal according to claim 2, wherein the boron nitrides having different crystal structures are compressed hexagonal boron nitrides. 破壊靭性値が8.0MPa・m0.5以上である、請求項1〜4のいずれか1項に記載の立方晶窒化ホウ素複合多結晶体。 The cubic boron nitride composite polycrystal according to any one of claims 1 to 4, having a fracture toughness value of 8.0 MPa · m 0.5 or more. 請求項1〜5のいずれか1項に記載の立方晶窒化ホウ素複合多結晶体を備える、切削工具。   A cutting tool comprising the cubic boron nitride composite polycrystal according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載の立方晶窒化ホウ素複合多結晶体を備える、耐摩工具。   A wear-resistant tool comprising the cubic boron nitride composite polycrystal according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載の立方晶窒化ホウ素複合多結晶体を備える、研削工具。   A grinding tool comprising the cubic boron nitride composite polycrystal according to any one of claims 1 to 5. 出発物質として常圧型窒化ホウ素を準備する工程と、
温度をT(℃)、圧力をP(GPa)としたときに、T≧200P−700であり、かつT<100P+1000を満たす温度および圧力条件において、前記常圧型窒化ホウ素を立方晶窒化ホウ素とウルツ鉱型窒化ホウ素とに直接変換させると同時に焼結させる工程とを備えた、立方晶窒化ホウ素複合多結晶体の製造方法。
Preparing atmospheric pressure boron nitride as a starting material;
When the temperature is T (° C.) and the pressure is P (GPa), T ≧ 200P−700 and T <100P + 1000, and the normal pressure type boron nitride is converted into cubic boron nitride and wurtz. A method for producing a cubic boron nitride composite polycrystal, comprising a step of directly converting to ore-type boron nitride and simultaneously sintering.
前記出発物質は、X線回折法における黒鉛化指数が5未満である、請求項9に記載の立方晶窒化ホウ素複合多結晶体の製造方法。   The method for producing a cubic boron nitride composite polycrystal according to claim 9, wherein the starting material has a graphitization index of less than 5 in an X-ray diffraction method.
JP2012228815A 2012-10-16 2012-10-16 Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal Pending JP2014080322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228815A JP2014080322A (en) 2012-10-16 2012-10-16 Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228815A JP2014080322A (en) 2012-10-16 2012-10-16 Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal

Publications (1)

Publication Number Publication Date
JP2014080322A true JP2014080322A (en) 2014-05-08

Family

ID=50784888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228815A Pending JP2014080322A (en) 2012-10-16 2012-10-16 Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal

Country Status (1)

Country Link
JP (1) JP2014080322A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531317A (en) * 2012-09-29 2015-11-02 ダイヤモンド イノベイションズ インコーポレーテッド Single crystal diamond or CBN characterized by microfracturing during grinding
JP2016145131A (en) * 2015-02-09 2016-08-12 住友電気工業株式会社 Cubic boron nitride polycrystalline material, cutting tool, abrasion-resistant tool, grinding tool, and production method of cubic boron nitride polycrystalline material
US10562822B2 (en) 2015-02-04 2020-02-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019164A (en) * 2007-08-08 2008-01-31 National Institute For Materials Science Superfine particulate cubic boron nitride sintered compact
JP2010042963A (en) * 2008-08-18 2010-02-25 Kaneka Corp Manufacture method of hexagonal boron nitride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019164A (en) * 2007-08-08 2008-01-31 National Institute For Materials Science Superfine particulate cubic boron nitride sintered compact
JP2010042963A (en) * 2008-08-18 2010-02-25 Kaneka Corp Manufacture method of hexagonal boron nitride

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531317A (en) * 2012-09-29 2015-11-02 ダイヤモンド イノベイションズ インコーポレーテッド Single crystal diamond or CBN characterized by microfracturing during grinding
US10562822B2 (en) 2015-02-04 2020-02-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material
JP2016145131A (en) * 2015-02-09 2016-08-12 住友電気工業株式会社 Cubic boron nitride polycrystalline material, cutting tool, abrasion-resistant tool, grinding tool, and production method of cubic boron nitride polycrystalline material
WO2016129328A1 (en) * 2015-02-09 2016-08-18 住友電気工業株式会社 Cubic boron nitride polycrystal, cutting tool, wear resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
CN107207364A (en) * 2015-02-09 2017-09-26 住友电气工业株式会社 Cubic boron nitride polycrystal, cutting element, wear resistant tools, the manufacture method of milling tool and cubic boron nitride polycrystal
US10519068B2 (en) 2015-02-09 2019-12-31 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal

Similar Documents

Publication Publication Date Title
JP5900502B2 (en) Cubic boron nitride composite polycrystal and manufacturing method thereof, cutting tool, drawing die, and grinding tool
JP6447205B2 (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
JP6447197B2 (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
JP6291995B2 (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
JP6159064B2 (en) Cubic boron nitride composite polycrystal and cutting tool, wire drawing die, and grinding tool
JP2014080323A (en) Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal
WO2015025757A1 (en) Diamond polycrystalline body, method for producing same, and tool
US20180079010A1 (en) Polycrystalline diamond body, cutting tool, wear-resistant tool, grinding tool, and method for producing polycrystalline diamond body
JP2015227278A (en) Diamond polycrystal body, cutting tool, wear-resistant tool, grinding tool and production method of diamond polycrystal body
JP5929655B2 (en) Cubic boron nitride composite polycrystal, method for producing the same, cutting tool, and wear-resistant tool
CN106132906B (en) Composite sintered body
JP2014080322A (en) Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal
JP2014080321A (en) Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal
CN106164017B (en) Composite sintered body
WO2017073297A1 (en) Polycrystalline composite
JP6288117B2 (en) Boron nitride polycrystals and tools
JP5880389B2 (en) Method for producing boron nitride polycrystal
JP6015325B2 (en) Polycrystalline diamond, method for producing the same, and tool
JP2016074550A (en) Sintered compact, cutting tool using the sintered compact, and method for producing the sintered compact
JP2010024103A (en) Method for producing high-purity boron nitride sintered compact having high hardness and high toughness
JP2012021187A (en) Light metal-based composite material and method for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160719