JP2004250278A - High purity ultrafine particle translucent cubic boron nitride sintered compact and its manufacturing method - Google Patents

High purity ultrafine particle translucent cubic boron nitride sintered compact and its manufacturing method Download PDF

Info

Publication number
JP2004250278A
JP2004250278A JP2003041715A JP2003041715A JP2004250278A JP 2004250278 A JP2004250278 A JP 2004250278A JP 2003041715 A JP2003041715 A JP 2003041715A JP 2003041715 A JP2003041715 A JP 2003041715A JP 2004250278 A JP2004250278 A JP 2004250278A
Authority
JP
Japan
Prior art keywords
cbn
sintered body
boron nitride
pressure
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003041715A
Other languages
Japanese (ja)
Other versions
JP4061374B2 (en
Inventor
Takashi Taniguchi
尚 谷口
Minoru Akaishi
實 赤石
Yasushi Sugaya
康 菅家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003041715A priority Critical patent/JP4061374B2/en
Publication of JP2004250278A publication Critical patent/JP2004250278A/en
Application granted granted Critical
Publication of JP4061374B2 publication Critical patent/JP4061374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an ultrafine particle translucent cBN sintered compact which contains cBN in the amount of 100%, which has never been obtained by a conventional technology for synthesizing a high purity cBN sintered compact, and which has a fine structure such that the diameters of the constitutive particles are ≤0.1 μm and is translucent. <P>SOLUTION: The high purity ultrafine particle cBN sintered compact which contains cBN in the amount of 100%, has an average particle diameter in the sintered compact of ≤0.1 μm, and is translucent is manufactured by using, as a raw material, low pressure phase boron nitride, and sintering it at a pressure not lower than 9.5×10<SP>4</SP>atm and at a temperature of 1,700 to 1,900°C at which the cubic boron nitride (cBN) is thermodynamically stable without adding a sintering aid while accompanying a high pressure phase transition to the cubic crystal phase. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ダイヤモンドに次ぐ硬度を持ち、鉄系金属に対してはダイヤモンドよりも安定であり、鉄系金属の切削工具、研削材等として従来の機械加工分野に技術革新をもたらすことが期待できる高純度超微粒子透光性立方晶窒化ホウ素(cBN)焼結体とその製造方法に関する。
【0002】
【従来の技術】
鉄系金属の切削工具、研削材として多様な形態のcBN焼結体が用いられてきた。これらは鉄系材料の機械加工に優れた特徴を有し、現代の産業基盤である機械加工分野で重要な位置を占めている。これまでに用いられてきたcBN焼結体は4〜5万気圧領域において種々の焼結助剤と共に焼結した複合焼結体であり、cBNの含有量は約40〜90wt%程度まで種々のものが開発されている。切削工具として用いる際には被削材の特性に応じてcBNの含有量が制御されているが、近年、cBN含有量が100%の高純度焼結体により優れた切削性能が現れることが見いだされている(非特許文献1)。
【0003】
cBN含有量が100%の高純度cBN焼結体の合成方法として、六方晶などの低圧相窒化ホウ素を原料として、高圧高温度下で高圧相であるcBNへの相転移を進めながら同時に焼結反応を進行させる反応焼結法と、予め調製したcBN結晶粒子を原料として焼結助剤無添加で焼結する直接焼結法が知られている。これらにより現在までに、7.7万気圧、2000℃領域において構成粒子径が0.5μm程度までの緻密な透光性のcBN焼結体の合成が報告されている(非特許文献2,3)。
【0004】
一方、焼結体の強度は構成粒子径に依存することが知られているが、微粒子が緻密に焼結した組織では内在する微小亀裂のサイズが小さくなるために焼結体としての強度が向上することが知られている。また、焼結体を切削工具として使用する際には被削材の加工面の面粗さは焼結体の構成粒子径の大きさの影響を受ける。このため、材料の鏡面加工などの精密加工を目的とした場合、焼結体の粒子径は可能な限り微小であることが望まれる。
【0005】
さらに、透光性のcBN焼結体の高強度化を図ることは、工業的な応用として切削工具のみならず、高強度の窓材等への応用など実用上の意義がある。しかしながら、現在までに得られている透光性の高純度cBN焼結体の粒子径は微粒径のものでも0.5μm程度までであり、これより小さい粒子径の緻密な高純度焼結体の合成は報告されていない。
【0006】
【非特許文献 1】
H.Sumiya and S.Uesaka,J.Mater.Res.,35,1181(2000)
【非特許文献 2】
M.Akaishi、他、J.Mater.Sci.Let.,12,1883(1993)
【非特許文献 3】
T.Taniguchi 他 J.Mater.Res.,14,162(1999)
【0007】
【発明が解決しようとする課題】
自動車産業に代表される機械加工工程の高効率化、環境保全を実現する上で、既存のcBN焼結体工具の特性向上が求められている。cBN焼結体工具の特性向上には、焼結体構造の微細な制御が不可欠であり、そのためには微粒子が緻密に焼結したcBN含有量が100%の高純度cBN焼結体の供給が不可欠である。
【0008】
既存の技術による高純度cBN焼結体の合成は7.7万気圧領域で進められているが、この際に合成可能な透光性高純度cBN焼結体の構成粒子径は微粒径のものでも、0.5μm程度以上である。粒径0.1μm以下の微細な組織の高純度cBN焼結体は得られておらず、精密切削用の高性能切削工具や高強度の窓材等への応用が進められていない。
【0009】
すなわち、本発明が解決しようとする課題は、従来の高純度cBN焼結体の合成技術ではなし得なかった、構成粒子径が0.1μm以下の微細な構造を有し、かつcBN含有量が100%の高純度超微粒子透光性cBN焼結体を得ることである。
【0010】
【課題を解決するための手段】
六方晶などの低圧相窒化ホウ素を原料とした、反応焼結法による高純度cBN焼結体の合成プロセスにおいては、良好な焼結体を得るための最低温度条件は低圧相窒化ホウ素からcBNへの高圧相転移が完了する温度下限に相当する。これ以下の温度で焼結した場合には焼結体の組織中に低圧相成分が残留し、良好な焼結体が得られない。
【0011】
一方、焼結体の構成粒子径は焼結温度の増加と共に粒成長により増大するため、ナノスケールオーダーの微細な粒子の焼結体を合成するためには焼結条件を低く抑えることが必要となる。7.7万気圧領域におけるこの合成温度下限は約2000℃であり、この条件下で粒径0.5μm程度の高純度の透光性cBN焼結体が合成されている。これより微細な粒径の焼結体を合成するためには粒成長を抑制する必要があり、このためには焼結温度を低減する必要がある。
【0012】
物質の低圧相から高圧相への相転換挙動は圧力と温度に依存するが、窒化ホウ素の相転換挙動を6万気圧から9万気圧の領域にかけて吟味した。その結果、残留する低圧相が全て高圧相である立方晶相に転換する温度は圧力の上昇と共に減少することが見いだされた。すなわち、7.7万気圧よりも高い圧力のもとでは六方晶相から立方晶へ相転移完了温度が低減することになる。これにより合成温度を低減し、粒成長を抑制した超微粒子焼結体の合成が期待できる。そこで、圧力9.5万気圧領域で六方晶窒化ホウ素を原料としてcBN焼結体の合成実験を行った。
【0013】
六方晶窒化ホウ素原料は焼結体又は六方晶窒化ホウ素粉末として市販されているものを使用できる。しかし、通常、原料である六方晶窒化ホウ素には主たる不純物として酸化ホウ素が含まれており、これは得られる焼結体の強度の低下の原因となる。このため、窒素気流中、2000℃で2時間の熱処理を原料の六方晶窒化ホウ素に施し、原料中の酸素不純物濃度を当初の0.5%から一桁程度低減した。この脱酸素処理を施した六方晶窒化ホウ素を原料として、9.5万気圧、1000℃から2000℃の範囲で高圧処理し、得られた焼結体の特性を評価した。得られた焼結体は合成温度が1700℃以上でcBN単相であり、透光性を呈していた。走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(IEM)観察によると構成粒子径は0.1μm以下であり、均一な組織であった。X線回折ではcBN以外のいかなる相も観測されず、ビッカース硬度は試験荷重49Nにおいて55GPaであり、通常の焼結助剤を用いたcBN焼結体を大きく上回る特性であった。
【0014】
なお、合成温度が1700℃未満では低圧相BN成分が残留し、透過率の減少と共に硬度の減少が見られた。また、合成温度が1900℃を超えると焼結体の透過率は増加するが、硬度の減少が見られた。組織観察によると粒子径1μm以上までの粒成長が観察された。
【0015】
以上の実験から、六方晶窒化ホウ素を原料として、立方晶窒化ホウ素熱力学的に安定な9.5万気圧、1700℃以上1900℃以下の圧力、温度条件で、立方晶相への高圧相転移を伴いながら助剤無添加で焼結することにより、平均粒子径0.1μm以下の緻密な組織を有する高純度高硬度透光性cBN超微粒子焼結体が合成できることを見いだした。本発明は、この知見に基づいて成されたものである。なお、当該微粒焼結体を合成するための最適温度条件は、低圧相から高圧相への転換を完了させるための温度下限と粒成長を抑制するための温度上限の間となる。
この最適条件は圧力に依存しており、圧力が高いほど最適温度の幅を広く取ることができるため、9.5万気圧以上の圧力領域であれば当該微粒焼結体の合成が可能となる。通常、この種の高圧装置としては、ベルト型超高圧力発生装置が適するが、このような装置では 10万気圧程度までの高圧を発生することが可能である。他の方式の高圧発生装置(たとえば多面体型高圧装置など)を用いれば、より高い圧力発生は可能であるが、この場合の試料容積は10mm程度以下と小さくなる。このため工業生産としての経済性を考慮すれば、当該焼結体の合成条件の上限としては、ベルト型高圧装置を用いた10万気圧程度でよい。
【0016】
すなわち、本発明は、低圧相窒化ホウ素を従来技術よりも高い圧力条件で処理することにより、従来技術、先行技術では得ることのできなかった、高純度超微粒子透光性焼結体を提供するものである。
【0017】
【実施例】
以下、本発明を実施例及び図面に基づいて説明する。
実施例1
真空中で1500℃、窒素気流中で2000℃の熱処理による脱酸素処理を施した六方晶窒化ホウ素焼結体(粒径約0.5μm)を高圧容器内のタンタルカプセルに充填し、ベルト型超高圧力発生装置により9.5万気圧、1700℃、の圧力、温度条件で30分間焼結した。この際に、いっさいのcBN焼結助剤は添加しなかった。昇温速度は5℃/分程度であった。500℃/分程度で冷却後、除圧し試料を圧力容器内のタンタルカプセルと共に回収した。
【0018】
機械的又は化学処理(弗酸−硝酸混液)によりタンタルカプセルを除去し試料を回収した。試料の評価はダイヤモンド砥粒による研磨を施した後に硬度測定、破面のSEM観察、TEM観察、並びにX線回折による相の同定を行った。図1に示した焼結体のX線回折図形より、焼結体はcBN単相であり、図2及び図3のSEM及びTEM観察写真が示すように平均粒子径0.1μm以下の均一な組織を呈し、異常粒成長等による粗大な粒子は見られなかった。
【0019】
また、硬度試験により、ビッカース硬度 55GPa(荷重49N)程度の高硬度高純度のcBN微粒子焼結体であることが示された。焼結体は図4に示すような光透過率の波長依存性を示した。焼結体の厚さが0.6mmの場合、可視光領域(波長500〜800nm)から赤外領域(波長3000nm)における光透過率が10%程度であった。図4に併せて示した焼結体の光学顕微鏡写真に見られるような透光性を呈する。
【0020】
比較例 1
実施例1記載のプロセスにおいて焼結条件9.5万気圧、1600℃以下では低圧相窒化ホウ素の成分が焼結体中に残留し、cBN単相の焼結体とならなかった。また、焼結温度が1900℃を超えると得られる焼結体はcBN単相で高純度であり、高い透光性を呈するが、組織には粒成長が観察され、焼結体の硬度も低下が見られた。
【0021】
本発明の高純度微粒cBN焼結体の製造法において、良好な焼結体組織を得るためには焼結温度が重要であることが比較例から明らかとなった。実施例並びに比較例は本発明において高純度超微粒透光性cBN焼結体を作製する際に、従来技術よりも高い圧力条件で焼結温度を最適化することが重要であることを示している

【0022】
【発明の効果】
本発明では、低圧相窒化ホウ素を原料に用いた反応焼結法を9.5万気圧領域で行うことにより、従来の技術では得られなかった平均粒子径0.1μm以下の透光性高硬度cBN超微粒子焼結体の供給が可能となった。
【図面の簡単な説明】
【図1】実施例1において合成した高純度透光性超微粒子cBN焼結体のX線回折図形である。
【図2】実施例1において合成した高純度透光性超微粒子cBN焼結体の破断面の図面代用走査型電子顕微鏡写真である。
【図3】実施例1において合成した高純度透光性超微粒子cBN焼結体の破断面の図面代用透過型電子顕微鏡写真である。
【図4】実施例1において合成した高純度透光性超微粒子cBN焼結体の光透過率の波長依存性と焼結体の透光性を示す図面代用光学顕微鏡写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has hardness next to diamond, is more stable than diamond for iron-based metals, and can be expected to bring technological innovation to the conventional machining field as a cutting tool for iron-based metals, abrasives, and the like. The present invention relates to a high-purity ultrafine particle translucent cubic boron nitride (cBN) sintered body and a method for producing the same.
[0002]
[Prior art]
Various forms of cBN sintered bodies have been used as cutting tools and abrasives for ferrous metals. These have excellent features in machining iron-based materials and occupy an important position in the machining field, which is a modern industrial base. The cBN sintered bodies used so far are composite sintered bodies sintered together with various sintering aids in the range of 40,000 to 50,000 atm, and the cBN content varies from about 40 to 90 wt%. Things are being developed. When used as a cutting tool, the content of cBN is controlled in accordance with the characteristics of the work material. In recent years, however, it has been found that a high-purity sintered body having a cBN content of 100% exhibits excellent cutting performance. (Non-Patent Document 1).
[0003]
As a method for synthesizing a high-purity cBN sintered body having a cBN content of 100%, a low-pressure phase boron nitride such as hexagonal material is used as a raw material and simultaneously sintering while promoting a phase transition to a high-pressure phase cBN under high pressure and high temperature. A reaction sintering method in which a reaction proceeds and a direct sintering method in which sintering is performed without using a sintering aid using cBN crystal particles prepared in advance as a raw material are known. Thus, synthesis of a dense translucent cBN sintered body having a constituent particle diameter of about 0.5 μm in the region of 77,000 atmospheres and 2000 ° C. has been reported to date (Non-Patent Documents 2, 3). ).
[0004]
On the other hand, it is known that the strength of a sintered body depends on the constituent particle diameter.However, in a structure in which fine particles are densely sintered, the strength of the sintered body is improved because the size of the internal microcracks becomes smaller. It is known to When the sintered body is used as a cutting tool, the surface roughness of the machined surface of the workpiece is affected by the size of the constituent particle diameter of the sintered body. Therefore, when the purpose is precision processing such as mirror finishing of a material, it is desired that the particle size of the sintered body be as small as possible.
[0005]
Further, increasing the strength of the translucent cBN sintered body has practical significance, such as application to not only cutting tools but also high-strength window materials as industrial applications. However, the light-transmitting high-purity cBN sintered body obtained to date has a particle size of about 0.5 μm even for a fine-grained high-purity cBN sintered body. Has not been reported.
[0006]
[Non-patent document 1]
H. Sumiya and S.M. Uesaka, J .; Mater. Res. , 35, 1181 (2000)
[Non-patent document 2]
M. Akaishi, et al. Mater. Sci. Let. , 12, 1883 (1993)
[Non-patent document 3]
T. Taniguchi et al. Mater. Res. , 14, 162 (1999)
[0007]
[Problems to be solved by the invention]
In order to improve the efficiency of the machining process represented by the automobile industry and realize environmental conservation, there is a demand for improving the characteristics of existing cBN sintered body tools. Fine control of the structure of the sintered body is indispensable for the improvement of the characteristics of the cBN sintered body tool. For this purpose, it is necessary to supply a high-purity cBN sintered body having a cBN content of 100% in which fine particles are densely sintered. It is essential.
[0008]
The synthesis of a high-purity cBN sintered body by an existing technique has been promoted in a 77,000 atmospheric pressure region. At this time, the constituent particle diameter of the translucent high-purity cBN sintered body that can be synthesized is a fine particle diameter. It is about 0.5 μm or more. A high-purity cBN sintered body having a fine structure with a particle size of 0.1 μm or less has not been obtained, and its application to a high-performance cutting tool for precision cutting, a high-strength window material, or the like has not been advanced.
[0009]
That is, the problem to be solved by the present invention is a fine structure with a constituent particle diameter of 0.1 μm or less, and a cBN content of at least 0.1 μm, which could not be achieved by the conventional high-purity cBN sintered body synthesis technology. The purpose is to obtain a 100% high-purity ultrafine particle translucent cBN sintered body.
[0010]
[Means for Solving the Problems]
In the process of synthesizing a high-purity cBN sintered body by reaction sintering using low-pressure phase boron nitride such as hexagonal as a raw material, the minimum temperature condition for obtaining a good sintered body is from low-pressure phase boron nitride to cBN. Corresponds to the lower temperature limit at which the high pressure phase transition is completed. When the sintering is performed at a temperature lower than this, the low-pressure phase component remains in the structure of the sintered body, and a good sintered body cannot be obtained.
[0011]
On the other hand, the constituent particle diameter of the sintered body increases due to the grain growth with the increase of the sintering temperature, so it is necessary to keep the sintering conditions low in order to synthesize a sintered body of fine particles on the nanoscale order. Become. The lower limit of the synthesis temperature in the 77,000 atmosphere range is about 2000 ° C., and under this condition, a highly pure translucent cBN sintered body having a particle size of about 0.5 μm is synthesized. In order to synthesize a sintered body having a finer particle size than this, it is necessary to suppress grain growth, and for this purpose, it is necessary to reduce the sintering temperature.
[0012]
Although the phase transition behavior of the material from the low pressure phase to the high pressure phase depends on pressure and temperature, the phase transition behavior of boron nitride was examined in the range of 60,000 to 90,000 atmospheres. As a result, it was found that the temperature at which all the remaining low-pressure phase was converted to the cubic phase, which was the high-pressure phase, decreased with increasing pressure. That is, at a pressure higher than 77,000 atmospheres, the phase transition completion temperature decreases from the hexagonal phase to the cubic phase. As a result, the synthesis temperature can be reduced, and synthesis of an ultrafine particle sintered body in which grain growth is suppressed can be expected. Therefore, a synthesis experiment of a cBN sintered body was performed using a hexagonal boron nitride as a raw material at a pressure of 950,000 atm.
[0013]
As the hexagonal boron nitride raw material, a commercially available sintered body or hexagonal boron nitride powder can be used. However, usually, the hexagonal boron nitride as a raw material contains boron oxide as a main impurity, which causes a reduction in the strength of the obtained sintered body. Therefore, a heat treatment at 2000 ° C. for 2 hours was performed on the raw material hexagonal boron nitride in a nitrogen stream to reduce the oxygen impurity concentration in the raw material by about one digit from the initial 0.5%. Using the deoxygenated hexagonal boron nitride as a raw material, a high-pressure treatment was performed at 95,000 atmospheres at a temperature in the range of 1000 ° C. to 2000 ° C., and the characteristics of the obtained sintered body were evaluated. The obtained sintered body was a single phase of cBN at a synthesis temperature of 1700 ° C. or higher, and exhibited translucency. According to observation by a scanning electron microscope (SEM) and a transmission electron microscope (IEM), the constituent particle diameter was 0.1 μm or less, and the structure was uniform. No phase other than cBN was observed by X-ray diffraction, and the Vickers hardness was 55 GPa at a test load of 49 N, which was much higher than that of a cBN sintered body using a normal sintering aid.
[0014]
When the synthesis temperature was lower than 1700 ° C., the low-pressure phase BN component remained, and a decrease in the transmittance and a decrease in the hardness were observed. When the synthesis temperature exceeds 1900 ° C., the transmittance of the sintered body increases, but the hardness is reduced. According to the microstructure observation, grain growth up to a particle diameter of 1 μm or more was observed.
[0015]
From the above experiments, it was found that cubic boron nitride was thermodynamically stable at 95,000 atm and high-pressure phase to cubic phase under pressure and temperature conditions of 1700 ° C to 1900 ° C using hexagonal boron nitride as a raw material. It has been found that by sintering without addition of an auxiliary while accompanied by transition, a high-purity, high-hardness translucent cBN ultrafine particle sintered body having a dense structure with an average particle diameter of 0.1 μm or less can be synthesized. The present invention has been made based on this finding. The optimum temperature condition for synthesizing the fine-grained sintered body is between the lower limit temperature for completing the conversion from the low-pressure phase to the high-pressure phase and the upper limit temperature for suppressing the grain growth.
The optimum conditions depend on the pressure, and the higher the pressure, the wider the range of the optimum temperature can be. Therefore, if the pressure region is 950,000 atmospheres or more, the fine-grained sintered body can be synthesized. . Usually, a belt-type ultra-high pressure generator is suitable as this kind of high-pressure device, but such a device can generate a high pressure up to about 100,000 atmospheres. If another type of high-pressure generator (for example, a polyhedral high-pressure device) is used, higher pressure can be generated, but in this case, the sample volume becomes as small as about 10 mm 3 or less. For this reason, considering the economics of industrial production, the upper limit of the conditions for synthesizing the sintered body may be about 100,000 atmospheres using a belt-type high-pressure apparatus.
[0016]
That is, the present invention provides a high-purity ultrafine-particle translucent sintered body that could not be obtained by the prior art and the prior art by treating the low-pressure phase boron nitride under a higher pressure condition than the prior art. Things.
[0017]
【Example】
Hereinafter, the present invention will be described with reference to examples and drawings.
Example 1
A hexagonal boron nitride sintered body (particle diameter: about 0.5 μm) that has been subjected to a deoxidation treatment by heat treatment at 1500 ° C. in a vacuum and 2000 ° C. in a nitrogen stream is filled in a tantalum capsule in a high-pressure container, and a belt type super Sintering was performed for 30 minutes at a pressure and temperature of 95,000 atmospheres and 1700 ° C. using a high pressure generator. At this time, no cBN sintering aid was added. The heating rate was about 5 ° C./min. After cooling at about 500 ° C./min, the pressure was released and the sample was collected together with the tantalum capsules in the pressure vessel.
[0018]
The tantalum capsule was removed by mechanical or chemical treatment (a mixture of hydrofluoric acid and nitric acid), and the sample was recovered. The sample was evaluated by hardness measurement, SEM observation of the fractured surface, TEM observation, and phase identification by X-ray diffraction after polishing with diamond abrasive grains. From the X-ray diffraction pattern of the sintered body shown in FIG. 1, the sintered body is a single phase of cBN, and as shown in the SEM and TEM observation photographs of FIGS. 2 and 3, the sintered body has a uniform average particle diameter of 0.1 μm or less. It had a texture and no coarse particles due to abnormal grain growth or the like were observed.
[0019]
Further, a hardness test showed that the sintered body was a high hardness and high purity cBN fine particle sintered body having a Vickers hardness of about 55 GPa (a load of 49 N). The sintered body showed the wavelength dependence of the light transmittance as shown in FIG. When the thickness of the sintered body was 0.6 mm, the light transmittance in a visible light region (wavelength 500 to 800 nm) to an infrared region (wavelength 3000 nm) was about 10%. The sintered body exhibits translucency as seen in an optical micrograph taken together with FIG.
[0020]
Comparative Example 1
Under the sintering conditions of 950,000 atmospheres and 1600 ° C. or lower in the process described in Example 1, the components of the low-pressure phase boron nitride remained in the sintered body and did not become a single-phase cBN sintered body. Further, when the sintering temperature exceeds 1900 ° C., the obtained sintered body is a single phase of cBN and has high purity and high translucency, but grain growth is observed in the structure, and the hardness of the sintered body decreases. It was observed.
[0021]
In the method for producing a high-purity fine-grained cBN sintered body of the present invention, it was clarified from the comparative example that the sintering temperature was important for obtaining a good sintered body structure. Examples and Comparative Examples show that it is important to optimize the sintering temperature under higher pressure conditions than in the prior art when producing a high-purity ultrafine translucent cBN sintered body in the present invention. I have.
[0022]
【The invention's effect】
In the present invention, the reaction sintering method using low-pressure phase boron nitride as a raw material is performed in a 95,000-atmosphere region, so that the light-transmitting high hardness having an average particle diameter of 0.1 μm or less, which cannot be obtained by the conventional technology. It has become possible to supply a cBN ultrafine particle sintered body.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of a high-purity translucent ultrafine particle cBN sintered body synthesized in Example 1.
FIG. 2 is a scanning electron micrograph of a fractured surface of the high-purity translucent ultrafine particle cBN sintered body synthesized in Example 1 instead of a drawing.
FIG. 3 is a transmission electron micrograph instead of a drawing of a fracture surface of the high-purity translucent ultrafine particle cBN sintered body synthesized in Example 1.
FIG. 4 is a drawing-substitute optical microscope photograph showing the wavelength dependence of the light transmittance of the high-purity translucent ultrafine particle cBN sintered body synthesized in Example 1 and the translucency of the sintered body.

Claims (2)

低圧相窒化ホウ素を原料として、立方晶窒化ホウ素(以下 cBNとして記載する)が熱力学的に安定な9.5万気圧以上、1700℃以上1900℃以下の圧力、温度で立方晶相への高圧相転移を伴いながら助剤無添加で焼結した、cBN含有量が100%で、焼結体の平均粒子径が0.1μm以下で透光性を呈する高純度超微粒子cBN焼結体。Using low-pressure phase boron nitride as a raw material, cubic boron nitride (hereinafter referred to as cBN) is thermodynamically stable at a pressure of 950,000 atmospheres or more and 1700 ° C or more and 1900 ° C or less. High-purity ultrafine cBN sintered body having a cBN content of 100%, a sintered body having an average particle diameter of 0.1 μm or less, and exhibiting light transmissivity, which is sintered with no aid added while accompanied by a phase transition. 低圧相窒化ホウ素を原料として、立方晶窒化ホウ素(以下 cBNとして記載する) が熱力学的に安定な9.5万気圧以上、1700℃以上1900℃以下の圧力、温度で立方晶相への高圧相転移を伴いながら助剤無添加で焼結することを特徴とする、cBN含有量が100%で、焼結体の平均粒子径が0.1μm以下で透光性を呈する高純度超微粒子cBN焼結体の製造法。Using low-pressure phase boron nitride as a raw material, cubic boron nitride (hereinafter referred to as cBN) is thermodynamically stable at a pressure of 950,000 atmospheres or more and 1700 ° C or more and 1900 ° C or less. High-purity ultrafine cBN particles having a cBN content of 100%, a sintered body having an average particle diameter of 0.1 μm or less, and exhibiting light transmissivity, characterized by sintering without the addition of an auxiliary while accompanied by a phase transition. Manufacturing method of sintered body.
JP2003041715A 2003-02-19 2003-02-19 Method for producing ultrafine particle cBN sintered body Expired - Lifetime JP4061374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041715A JP4061374B2 (en) 2003-02-19 2003-02-19 Method for producing ultrafine particle cBN sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041715A JP4061374B2 (en) 2003-02-19 2003-02-19 Method for producing ultrafine particle cBN sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007206653A Division JP2008019164A (en) 2007-08-08 2007-08-08 Superfine particulate cubic boron nitride sintered compact

Publications (2)

Publication Number Publication Date
JP2004250278A true JP2004250278A (en) 2004-09-09
JP4061374B2 JP4061374B2 (en) 2008-03-19

Family

ID=33025210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041715A Expired - Lifetime JP4061374B2 (en) 2003-02-19 2003-02-19 Method for producing ultrafine particle cBN sintered body

Country Status (1)

Country Link
JP (1) JP4061374B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055078A (en) * 2012-09-11 2014-03-27 Sumitomo Electric Ind Ltd Cubic boron nitride composition polycrystalline material and manufacturing method thereof, cutting tool and abrasion tool
JP2015205789A (en) * 2014-04-18 2015-11-19 住友電気工業株式会社 Cubic crystal boron nitride polycrystalline body, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic crystal boron nitride polycrystalline body
KR20200057044A (en) * 2017-10-20 2020-05-25 엘리먼트 씩스 (유케이) 리미티드 Polycrystalline cubic boron nitride body
CN112384319A (en) * 2018-07-03 2021-02-19 住友电工硬质合金株式会社 Cutting insert and method of manufacturing the same
WO2021186617A1 (en) 2020-03-18 2021-09-23 住友電工ハードメタル株式会社 Compound sintered compact and tool using same
WO2023012857A1 (en) 2021-08-02 2023-02-09 住友電工ハードメタル株式会社 Cubic boron nitride polycrystalline substance and heat sink using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055078A (en) * 2012-09-11 2014-03-27 Sumitomo Electric Ind Ltd Cubic boron nitride composition polycrystalline material and manufacturing method thereof, cutting tool and abrasion tool
JP2015205789A (en) * 2014-04-18 2015-11-19 住友電気工業株式会社 Cubic crystal boron nitride polycrystalline body, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic crystal boron nitride polycrystalline body
KR102401386B1 (en) * 2017-10-20 2022-05-25 엘리먼트 씩스 (유케이) 리미티드 Polycrystalline cubic boron nitride body
KR20200057044A (en) * 2017-10-20 2020-05-25 엘리먼트 씩스 (유케이) 리미티드 Polycrystalline cubic boron nitride body
JP2020537627A (en) * 2017-10-20 2020-12-24 エレメント シックス (ユーケイ) リミテッド Cubic boron nitride polycrystal
JP7082663B2 (en) 2017-10-20 2022-06-08 エレメント シックス (ユーケイ) リミテッド Cubic boron nitride polycrystal
CN112384319A (en) * 2018-07-03 2021-02-19 住友电工硬质合金株式会社 Cutting insert and method of manufacturing the same
US11319255B2 (en) 2020-03-18 2022-05-03 Sumitomo Electric Hardmetal Corp. Composite sintered material and tool using same
WO2021186617A1 (en) 2020-03-18 2021-09-23 住友電工ハードメタル株式会社 Compound sintered compact and tool using same
KR20220143140A (en) 2020-03-18 2022-10-24 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Composite sintered compact and tool using same
WO2023012857A1 (en) 2021-08-02 2023-02-09 住友電工ハードメタル株式会社 Cubic boron nitride polycrystalline substance and heat sink using same
US11845658B2 (en) 2021-08-02 2023-12-19 Sumitomo Electric Hardmetal Corp. Polycrystalline cubic boron nitride and heatsink using the same
KR20240026231A (en) 2021-08-02 2024-02-27 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride polycrystal and heat sink using it

Also Published As

Publication number Publication date
JP4061374B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP2008019164A (en) Superfine particulate cubic boron nitride sintered compact
CN107207364B (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
JP5838289B2 (en) Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof
WO2018066261A1 (en) Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool
WO2019244894A1 (en) Polycrystalline cubic boron nitride and production method therefor
WO2018066319A1 (en) Method for producing diamond polycrystal, diamond polycrystal, cutting tool, wear-resistant tool, and grinding tool
KR100567279B1 (en) Cubic system boron nitride sintered body cutting tool
JP3877677B2 (en) Heat resistant diamond composite sintered body and its manufacturing method
CN110204337B (en) Preparation method of boron carbide ceramic material for aerospace gyroscope bearing and boron carbide ceramic material
JP4061374B2 (en) Method for producing ultrafine particle cBN sintered body
JP2004168554A (en) High-purity high-hardness ultrafine diamond particle sintered compact and its manufacturing process
CN110933945B (en) Diamond polycrystal and tool comprising same
JP3882078B2 (en) Manufacturing method of high purity ultrafine cubic boron nitride sintered body
JP3223275B2 (en) Method for producing cubic boron nitride sintered body
JP2000042807A (en) Precision cutting tool
JP2014141359A (en) Sialon-base sintered compact
WO2021059700A1 (en) Polycrystal cubic crystal boron nitride and tool
JP2013052488A (en) Polishing machine for polishing diamond material and method of polishing diamond material
JP2628668B2 (en) Cubic boron nitride sintered body
JP5678421B2 (en) Powder for translucent alumina, method for producing the same, and method for producing translucent alumina sintered body using the same
JPH11322310A (en) Cubic boron nitride polycrystalline abrasive grain and its production
JPH01184033A (en) Production of cubic boron nitride
JP2001322884A (en) Coated cubic boron nitride sintered compact
JPS62108716A (en) Production of cubic boron nitride
JPH06279115A (en) Production of diamond sintered compact

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Ref document number: 4061374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term