JPH01184033A - Production of cubic boron nitride - Google Patents

Production of cubic boron nitride

Info

Publication number
JPH01184033A
JPH01184033A JP63007575A JP757588A JPH01184033A JP H01184033 A JPH01184033 A JP H01184033A JP 63007575 A JP63007575 A JP 63007575A JP 757588 A JP757588 A JP 757588A JP H01184033 A JPH01184033 A JP H01184033A
Authority
JP
Japan
Prior art keywords
boron nitride
pressure
temperature
cbn
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63007575A
Other languages
Japanese (ja)
Other versions
JPH0477612B2 (en
Inventor
Minoru Akaishi
實 赤石
Nobuo Yamaoka
山岡 信夫
Taku Kawasaki
卓 川崎
Hiroaki Tanji
丹治 宏彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Denki Kagaku Kogyo KK filed Critical National Institute for Research in Inorganic Material
Priority to JP63007575A priority Critical patent/JPH01184033A/en
Publication of JPH01184033A publication Critical patent/JPH01184033A/en
Publication of JPH0477612B2 publication Critical patent/JPH0477612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Abstract

PURPOSE:To efficiently produce cubic boron nitride by treating pyrolytic boron nitride in which a hexagon scaly hexagonal boron nitride particle is random- oriented and the interlaminar distance of the c-axial direction is regulated to a specified range under high temp. and high pressure without using a catalyst. CONSTITUTION:Pyrolytic boron nitride (BN) having such a structure that a hexagon scaly hexagonal boron nitride (hBN) particle is random orientated in a state intactly deposited from a vapor phase and having interlaminor distance (d 002) of the c-axial direction not larger than 3.35Angstrom , density not smaller than 2.18g/cm<3>, size of a crystalline particle of the c-axial direction not smaller than 100Angstrom and 99.995% purity is synthesized. Cubic boron nitride (cBN) is produced by treating this pyrolytic BN at the temp. not lower than 1,500 deg.C at the pressure not lower than 0.05 million atm. without using a catalyst. This cBN is utilized as the heat sink of an electron device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は立方晶窒化ほう素(CON)の無触媒直接転換
法による製造方法、特に原料の低圧相窒化ほう素として
熱分解窒化ほう素(P−BN)を用いる方法に関するも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing cubic boron nitride (CON) by a non-catalytic direct conversion method, and in particular to a method for producing cubic boron nitride (CON) using pyrolytic boron nitride (CON) as the raw material low-pressure phase boron nitride. The present invention relates to a method using P-BN).

(従来の技術) 窒化ほう素の高圧相であるCBNはダイヤモンドに次ぐ
硬さ、および熱伝導率を有し、また化学的に安定である
ことから、鉄系金属の機械加工用工具および半導体デバ
イスの放熱基板としての利用が進められている。
(Prior art) CBN, which is a high-pressure phase of boron nitride, has hardness and thermal conductivity second only to diamond, and is chemically stable, so it is used as tools for machining ferrous metals and semiconductor devices. Its use as a heat dissipation substrate is progressing.

普通CBNは窒化ほう素(BN)の低圧相である六方晶
BN (hBN)もしくは乱層構造BN(tllN)を
高圧高温処理することにより得られるが、転換のための
圧力、温度条件として例えば6,5万気圧、2100℃
以上の非常に厳しい条件が要求されるため、工業的には
触媒を用いて転換条件を4〜5万気圧、1500℃程度
の比較的穏やかなものとすることが行われている。この
方法により単結晶型のCBN粒子が生成され、そのまま
砥石などの研削工具の砥粒として用いられている。また
、微細なCBN粒子を高圧、高温下に焼結すると切削工
具用焼結体が得られるが、CBNは単体では焼結しにく
いため金属やセラミックスなどの結合助剤と混合して焼
結する必要がある。現在工業的に利用されているCBN
はそのほとんどが上述の方法で製造されているが、触媒
の取込みおよび焼結用結合助剤の存在がCBN本来の特
性を低下させるという問題があり、このため触媒および
焼結助剤を用いない無触媒直接転換法(以下、直接法)
により、CBHの粒子および焼結体の製造をより穏やか
な条件下に実現することが望まれている。直接法による
C、B Nは微細粒子から構成された多結晶体で、高硬
度、高純度、高熱伝導性、高靭性などの特徴が期待され
、工具材料、放熱基板として優れた特性を発揮するもの
と期待される。
CBN is usually obtained by treating hexagonal BN (hBN) or turbostratic BN (tllN), which is a low-pressure phase of boron nitride (BN), at high pressure and high temperature. , 50,000 atm, 2100℃
Because the above-mentioned very severe conditions are required, industrially, catalysts are used to make the conversion conditions relatively mild, such as 40,000 to 50,000 atm and about 1,500°C. By this method, single-crystal CBN particles are produced and are used as they are as abrasive grains for grinding tools such as whetstones. Additionally, a sintered body for cutting tools can be obtained by sintering fine CBN particles under high pressure and high temperature, but since CBN is difficult to sinter by itself, it is mixed with a bonding agent such as metal or ceramics before sintering. There is a need. CBN currently used industrially
Most of them are manufactured by the above-mentioned method, but there is a problem that the incorporation of catalyst and the presence of a binding aid for sintering deteriorate the inherent properties of CBN, and therefore, CBN is manufactured without using a catalyst or a sintering aid. Non-catalytic direct conversion method (hereinafter referred to as direct method)
Therefore, it is desired to realize the production of CBH particles and sintered bodies under milder conditions. C, BN produced by the direct method is a polycrystalline substance composed of fine particles, and is expected to have characteristics such as high hardness, high purity, high thermal conductivity, and high toughness, and exhibits excellent properties as a tool material and a heat dissipation substrate. It is expected that

これまでに報告されている直接法によるCBNの製造法
としては次の文献がある。
The following literature has been published as a method for producing CBN by a direct method that has been reported so far.

文献i)若槻ら:“シンセシス・オプ・ポリクリスタラ
イン・キュービック・ボロン・ナイトライド”、「マテ
リアルス・リサーチ・プルチン(Materials 
Re5earch Bulletin) J 、  7
.999〜文献ii)市瀬ら:“シンセシス・オプ・ポ
リクリスタライン・キュービック・ボロン・ナイトライ
ド(V)”、rプロシーデインゲス・オプ・フォース・
インターナショナル・コンファレンス・オブ・ハイ・プ
レッシャ(Proceedings of 4thIn
ternational Conference on
 lligh Pressure) 4436〜440
 (1974) 文献iii )コリガン、特開昭54−33510号公
報文献iには、低結晶性のBNを出発原料として125
0°C以上の温度および60kbar (約6万気圧)
以上の圧力で処理することにより「ランプ(lump)
 J状CBNが得られたことが報告されている。しかし
、この例では)120が触媒として作用した可能性が指
摘され(福長修「立方晶窒化ホウ素の合成と応用」。
Literature i) Wakatsuki et al.: “Synthesis of Polycrystalline Cubic Boron Nitride”, “Materials Research
Research Bulletin) J, 7
.. 999~Reference ii) Ichise et al.: “Synthesis op Polycrystalline Cubic Boron Nitride (V)”, rProsedinges Op Force.
International Conference of High Pressure (Proceedings of 4thIn
International Conference on
lligh Pressure) 4436-440
(1974) Document iii) Corrigan, JP-A-54-33510 Document i, 125
Temperatures above 0°C and 60kbar (approximately 60,000 atmospheres)
By processing at higher pressures, "lump"
It has been reported that J-shaped CBN was obtained. However, in this example, it has been pointed out that 120 may have acted as a catalyst (Osamu Fukunaga, "Synthesis and Applications of Cubic Boron Nitride").

セラミックデータブック “85.431〜436 (
1985)参照)、tた追試例も無く、不明な点が多い
Ceramic Data Book “85.431-436 (
(1985)), there are no follow-up examples, and there are many unclear points.

文献iiでは、熱分解窒化ほう素(PBNあるいはP−
BNと略記される)を出発原料とし1800〜1900
°Cの温度および69kbar (約6.9万気圧)の
圧力で直接転換する方法が試みられているが、完全なC
BNへの転換は達成されていない。
In document ii, pyrolytic boron nitride (PBN or P-
(abbreviated as BN) as a starting material and 1800 to 1900
Direct conversion at a temperature of 69 kbar (about 69,000 atm) has been attempted;
Conversion to BN has not been achieved.

文献iiiには、P−BNの成形体を1800℃以上の
温度および50kbar以上の圧力で高温高圧処理する
ことにより、CBN焼結体が得られることが報告されて
いる。上述の他にも触媒を使用せずにCBNを製造する
方法に関する報告は数例あるが、それらはいずれも、例
えば、1800℃以上の温度あるいは60kbar以上
の圧力といった厳しい条件下での高温高圧処理によりC
BNを製造する方法であり、工業的生産には不適当であ
る。
Document III reports that a CBN sintered body can be obtained by subjecting a P-BN compact to high-temperature, high-pressure treatment at a temperature of 1800° C. or higher and a pressure of 50 kbar or higher. In addition to the above, there are several reports on methods for producing CBN without using catalysts, but all of them involve high-temperature, high-pressure treatment under severe conditions, such as temperatures of 1800°C or higher or pressures of 60 kbar or higher. By C
This is a method for producing BN, and is unsuitable for industrial production.

一方、上述の文献iiの方法では原料としてP−BNを
使用している。P−BNとは化学気相蒸着(CVD)法
により製造された低圧相窒化ほう素であり、るつぼある
いは板などの形状で市販されている。従来のP−BNは
完全な六方晶ではなく、いわゆる乱層構造突あり、C軸
方向の眉間距離もhBNよりも太きく 3.40人程度
であり、また密度が約2.lO〜2.18 g /cm
3、結晶子の大きさが50〜100人、純度が99.9
9%以上である(文献iiでは、これをU−PBNと呼
んでいる)。また、従来の他のP−BNとしは、上述の
1l−PBNを米国特許第3.578.403号明細書
に開示されている方法に従って、不活性雰囲気下に22
50°C以上の温度および5000psi (340気
圧)以上の圧力で熱間圧縮することにより得られるC軸
方向の眉間距離が3.33人、密度が2.28g/cm
” 、純度が99.99%以上のP−BNがある(文献
市ではこれをR−PBNと呼んでいる)。文献iiには
、文献iiと同様に上述の一般的なP−BN (II−
PBNおよびR−PBN )を直接高温高圧処理してC
BN焼結体を製造する場合において、このP−BNが焼
結を阻害する不純物を殆ど含まないために強固なCBN
焼結体が製造可能であることが述べられており、この場
合の高温高圧処理条件は特許請求の範囲中には1800
℃以上の温度および50kbar (約5万気圧)以上
の圧力とされているが、発明の詳細な説明の記載に従え
ば約1800℃〜2000°Cまたはそれ以上の温度お
よび60kbar以上とされている。また実施例の記載
に従えば1580℃。
On the other hand, the method of the above-mentioned document ii uses P-BN as a raw material. P-BN is low-pressure phase boron nitride manufactured by chemical vapor deposition (CVD), and is commercially available in the form of a crucible or a plate. Conventional P-BN is not a perfect hexagonal crystal, but has a so-called turbostratic structure, the distance between the eyebrows in the C-axis direction is wider than hBN (about 3.40 people), and the density is about 2. lO~2.18 g/cm
3. Crystallite size is 50-100, purity is 99.9
It is 9% or more (this is called U-PBN in Document II). In addition, as for other conventional P-BN, the above-mentioned 1l-PBN was prepared in accordance with the method disclosed in U.S. Pat.
The glabellar distance in the C-axis direction obtained by hot compression at a temperature of 50°C or higher and a pressure of 5000 psi (340 atmospheres) or higher is 3.33 people, and the density is 2.28 g/cm.
”, there is P-BN with a purity of 99.99% or higher (this is called R-PBN in Literature City). In Literature ii, similar to Literature ii, there is P-BN with a purity of 99.99% or more. −
PBN and R-PBN) are directly treated at high temperature and high pressure to
When producing a BN sintered body, this P-BN contains almost no impurities that inhibit sintering, making it a strong CBN.
It is stated that a sintered body can be manufactured, and the high temperature and high pressure treatment conditions in this case are in the claims.
℃ or more and a pressure of 50 kbar (approximately 50,000 atmospheres) or more, but according to the detailed description of the invention, it is said to be a temperature of about 1800 °C to 2000 °C or more and a pressure of 60 kbar or more. . Also, according to the description in Examples, the temperature is 1580°C.

65kbar (約6.5万気圧)では30分間処理し
てもCBNの転換が起こらず(実施例4.試験4A) 
、2100°C以上および65kbar以上の厳しい高
温高圧処理条件が必要である。従って、文献iiiの方
法は工業的生産には不適当である。
At 65 kbar (approximately 65,000 atm), no conversion of CBN occurred even after treatment for 30 minutes (Example 4. Test 4A)
, severe high-temperature and high-pressure processing conditions of 2100° C. or higher and 65 kbar or higher are required. Therefore, the method of document iii is unsuitable for industrial production.

(発明が解決しようとする問題点) 本発明の目的は、直接転換法によるCBNの合成を従来
方法より低温・低圧の条件下に可能ならしめ、従来方法
では工業的生産性が低いために実用化されていなかった
高純度CONを効率的に製造し、CBN本来の特性が発
揮されるCBNの粒子またはその焼結体を得ることにあ
る。
(Problems to be Solved by the Invention) The purpose of the present invention is to make it possible to synthesize CBN by a direct conversion method under conditions of lower temperature and lower pressure than the conventional method. The purpose of the present invention is to efficiently produce high-purity CON that has not been purified, and to obtain CBN particles or sintered bodies thereof that exhibit the original characteristics of CBN.

(問題点を解決するための手段) 本発明者等はCBHの無触媒直接転換法による製造方法
、特に原料として使用するP−BN、すなわち低圧相窒
化ほう素である六方晶窒化ほう素の合成方法、およびこ
の原料の特性とCBNの転換条件との関係について検討
した結果、熱間圧縮などの後処理を行わすとも結晶性が
極めて高く、はぼ完全な六方晶窒化ほう素の結晶構造を
有する高純度窒化ほう素をCVD法により合成する技術
を見出すとともに、これを原料とすることによって、従
来よりも穏やかな高温高圧条件下にCBNへの転換が可
能となることを見出し、本発明に至ったものである。
(Means for Solving the Problems) The present inventors have developed a method for producing CBH using a non-catalytic direct conversion method, in particular the synthesis of P-BN used as a raw material, that is, hexagonal boron nitride, which is low-pressure phase boron nitride. As a result of studying the relationship between the method, the characteristics of this raw material, and the conversion conditions of CBN, we found that even after post-treatment such as hot compression, the crystallinity is extremely high and the crystal structure of hexagonal boron nitride is almost perfect. In addition to discovering a technology to synthesize high-purity boron nitride using the CVD method, we also discovered that by using this as a raw material, it was possible to convert it to CBN under conditions of higher temperature and higher pressure that were milder than before. This is what we have come to.

本発明において原料として使用する低圧相窒化ほう素で
あるP−BNはCVD法によって合成されるが、従来の
CVD法BNであるP−BNとは異なり、六方晶BNに
特有の六角鱗片状微粒子がランダムに配向した微構造を
有し、R−PBNの受けているような熱間圧縮処理を受
けていない、CvDされたままの状態において、C軸方
向の眉間距離が3.35Å以下であり、密度が2.18
g/am3より大きく、C軸方向の結晶子の大きさが1
000Å以上であり、かつ純度が99.995%以上と
いう特性を有する。
P-BN, which is the low-pressure phase boron nitride used as a raw material in the present invention, is synthesized by the CVD method, but unlike P-BN, which is the conventional CVD method BN, it has hexagonal scale-like fine particles unique to hexagonal BN. It has a randomly oriented microstructure, and the glabellar distance in the C-axis direction is 3.35 Å or less in the CvD state without being subjected to hot compression treatment like R-PBN. , density is 2.18
g/am3 and the crystallite size in the C-axis direction is 1
000 Å or more and has a purity of 99.995% or more.

(作 用) 従来のP−BNはCVD法によって製造される配向性の
低圧相窒化ほう素の連続膜からなり、積層構造をもった
厚さ数園程度の板などとして市販されている。CVD法
によるP−BNの製造は、例えば米国特許第3.152
,006号明細書に開示されているように、三塩化ほう
素(BCl s)などのハロゲン化ほう素ガスとアンモ
ニアガスとを原料とし、50Torr以下の減圧下に1
400〜2300°Cの温度で、黒鉛などの基材の表面
上に低圧相窒化ほう素を気相から析出させることにより
行われている。このような従来のP−BNの特性は、文
献iiiにも記載されているように、純度99.99十
%、密度2.10〜2.18g/cm3で、かつ選択配
向性がC軸方向で50〜100°とかなり高度に配向し
ており、しかも乱層構造という結晶性の低い結晶構造を
有するものであった。
(Function) Conventional P-BN consists of a continuous film of oriented low-pressure phase boron nitride produced by the CVD method, and is commercially available as a laminated plate with a thickness of about a few inches. The production of P-BN by the CVD method is described, for example, in U.S. Patent No. 3.152.
As disclosed in the specification of No. 006, boron halide gas such as boron trichloride (BCl s) and ammonia gas are used as raw materials, and 1
It is carried out by depositing low-pressure phase boron nitride from the gas phase on the surface of a substrate such as graphite at a temperature of 400 to 2300°C. As described in literature iii, the characteristics of conventional P-BN include a purity of 99.990%, a density of 2.10 to 2.18 g/cm3, and a preferential orientation in the C-axis direction. It was found to be highly oriented at an angle of 50 to 100 degrees, and to have a turbostratic crystal structure with low crystallinity.

これに対し、本発明に用いるP−BNは例えば圧力2T
orr以下、温度1950’C以上、蒸着速度100 
urn/hr以下において、特に原料であるBCf3お
よびN113ガスを高流速の具体的には100 m7秒
以上のジェット流として基材上に吹きつけることによっ
て製造される。この条件は、従来のP−BNの製造条件
と比較して、高温かつ蒸着速度が小さく、しかも原料ガ
スをジェット状に吹きつける点に特徴がある。
On the other hand, P-BN used in the present invention has a pressure of 2T, for example.
orr or less, temperature 1950'C or more, deposition rate 100
It is produced by spraying BCf3 and N113 gases, which are raw materials, onto the substrate at a high flow rate, specifically, as a jet flow of 100 m7 seconds or more, at a flow rate of 100 m7 seconds or less. Compared to conventional P-BN manufacturing conditions, these conditions are characterized by high temperature and low deposition rate, and in that the raw material gas is blown in a jet shape.

これらの条件が一つでも満たされていない場合には、即
ち、温度が低かったり、蒸着速度が早すぎたり、あるい
は原料ガス流速が遅すぎると、本発明方法の原料として
使用できる高結晶性BNは得られず、従来型のP−BN
、即ち乱層構造でかつ配向したBNLか得られない。一
般にP−BNは通常のhBNとは異なり製造原料がガス
であるので、原料ガスの純度を上げることにより容易に
高純度のものを得ることができる。
If even one of these conditions is not met, that is, if the temperature is too low, the deposition rate is too fast, or the raw material gas flow rate is too slow, highly crystalline BN that can be used as a raw material in the method of the present invention is not obtained, and the conventional P-BN
In other words, BNL with a turbostratic structure and an oriented structure cannot be obtained. In general, P-BN differs from normal hBN in that the raw material for production is gas, and thus high purity can be easily obtained by increasing the purity of the raw material gas.

従来のP−BNは上述の理由により例えば99.99%
以上の高い純度であったが、C軸方向の層間距離は3.
40Å以上と大きく結晶性は低かった。一方、米国特許
第3.578.403号明細書に開示されている方法に
従い、従来のP−BNを不活性雰囲気下に2250°C
以上の温度および5000psi (340気圧)以上
の圧力で熱間圧縮することにより高結晶性のP−ON’
が得られるが、この方法では熱処理温度が2250°C
以上と高く、かつP−BNが圧力媒体である黒鉛と接し
ているために、P−BNが分解してほう素が生成したり
、黒鉛からの炭素などのような不純物の混入が生じたり
するので、生成するP−BNの純度が低下する。
Conventional P-BN is, for example, 99.99% for the reasons mentioned above.
Although the purity was as high as above, the interlayer distance in the C-axis direction was 3.
The crystallinity was large, more than 40 Å, and low. Meanwhile, according to the method disclosed in U.S. Pat. No. 3,578,403, conventional P-BN was heated at 2250°C under an inert atmosphere.
Highly crystalline P-ON' can be obtained by hot compression at temperatures above 5,000 psi (340 atm) and above.
However, in this method, the heat treatment temperature is 2250°C.
This is high, and since P-BN is in contact with graphite, which is a pressure medium, P-BN decomposes to produce boron, and impurities such as carbon from graphite are mixed in. Therefore, the purity of the generated P-BN decreases.

このような処理を受けたP−BN(R−PBN)は高度
に配向し、選択配向性がC軸方向で2〜0°と高く、そ
の微構造は積層構造である。
P-BN (R-PBN) subjected to such treatment is highly oriented, has a high selective orientation of 2 to 0 degrees in the C-axis direction, and has a microstructure of a laminated structure.

このような従来のP−BN(U−PBNおよびR−PB
N)に対し、先に述べた条件で作られる本発明方法の原
料であるP−BNは、先ず、その微構造が配向した積層
構造ではなく、六方晶BHの六角鱗片状粒子がほぼ完全
にランダムに配向した構造で、配向性はC軸方向で10
0°以上となり殆ど認められない、またその結晶性がC
v口されたままの状態ですでに高(、C軸方向の層間距
離が3.35Å以下であり、密度が2、18 g /C
m3よりも大きく、C軸方向の結晶子の大・きさが10
00Å以上であり、かつ遊離のほう素および炭素などを
含まず、純度が99.995%以上であって高純度であ
る。以上の点が本発明方法の原料であるP−BNと従来
のP−BNとの相違点である。
Such conventional P-BNs (U-PBN and R-PB
In contrast to N), P-BN, which is the raw material for the method of the present invention produced under the conditions described above, has a microstructure that is not an oriented layered structure, but has almost completely hexagonal scale-like particles of hexagonal BH. It has a randomly oriented structure, and the orientation is 10 in the C-axis direction.
It is more than 0° and hardly recognized, and its crystallinity is C
Even in the state where it was opened, it was already high (the interlayer distance in the C-axis direction was 3.35 Å or less, and the density was 2.18 g/C
m3, and the crystallite size in the C-axis direction is 10
00 Å or more, does not contain free boron or carbon, and has a purity of 99.995% or more, which is high purity. The above points are the differences between P-BN, which is the raw material for the method of the present invention, and conventional P-BN.

本発明の原料とは異なる原料を使用して触媒を使用せず
にCBNを製造する場合には、例えば文献山の実施例の
ように、2100°C以上の温度および65kbar以
上の圧力のような厳しい条件下での高温高圧処理が必要
であって工業生産に適さないが、本発明方法の原料を用
いると例えば1500〜2100℃および5〜6万気圧
のような生産性に優れた温度圧力条件で触媒を使用せず
にCBNの製造が可能となる。
When producing CBN without using a catalyst using raw materials different from those of the present invention, for example, as in the examples of the literature pile, temperatures of over 2100°C and pressures of over 65 kbar may be used. Although high-temperature and high-pressure treatment under severe conditions is necessary and is not suitable for industrial production, when the raw material of the present invention method is used, temperature and pressure conditions with excellent productivity such as 1500 to 2100°C and 50,000 to 60,000 atmospheres can be achieved. This makes it possible to produce CBN without using a catalyst.

このような穏やかな条件でもCBNへの直接転換−が可
能になるのは次の理由によると考えられる。
The reason why direct conversion to CBN is possible even under such mild conditions is believed to be as follows.

先ず、従来のP−BNと本発明の原料であるP−BNの
大きな差異としては、構造上の異方性の有無がある。
First, a major difference between conventional P-BN and P-BN, which is the raw material of the present invention, is the presence or absence of structural anisotropy.

低圧相BNからCBNへの転換は、低圧相の大方晶型B
Nの(001)面内に六角網面を形成する形で配列され
たBおよびN原子が互いに逆方向に面外にシフトするこ
とにより起こると考えられるが、ここで原料の低圧相B
Nが配向していると、たとえ静水圧的に圧力が加えられ
たとしても、転換に有効に作用するのは配向面に垂直な
圧力成分のみとなる。
The conversion from low-pressure phase BN to CBN is caused by the large-gonal crystal form B of the low-pressure phase.
This is thought to occur when B and N atoms, which are arranged in the (001) plane of N to form a hexagonal net plane, shift out of the plane in opposite directions, and here the low-pressure phase B of the raw material
When N is oriented, even if pressure is applied hydrostatically, only the pressure component perpendicular to the oriented plane will effectively act on the conversion.

これに対し、本発明の原料であるP−BNは配向性が無
いので、圧力成分が有効に利用でき、これが転換条件を
穏やかにする一つの理由になっていると思われる。次に
、原料である低圧相窒化ほう素の結晶性が低い場合(U
−PBN)に該低圧相窒化ほう素をCONに転換するに
は、厳しい高温高圧処理条件が必要であり、その理由は
先ず低結晶性の無秩序な原子配置から結晶性の高いhP
Nの状態に変化し、しかる後にCBNに転換すると考え
られ、この第1段階の結晶性の高い状態への変化には極
めて大きいエネルギーが必要であるからであると考えら
れる。また、原料である低圧相窒化ほう素の純度が低い
場合(R−PBN) 、結晶格子内の所々に存在する不
純物原子は、低圧相窒化ほう素がCBNへ転換する際の
ほう素原子および窒素原子の移動を妨げる障害物として
作用し、このため厳しい高温高圧処理条件が必要になる
と考えられる。
On the other hand, since P-BN, which is the raw material of the present invention, has no orientation, the pressure component can be used effectively, and this is thought to be one of the reasons why the conversion conditions are mild. Next, if the low-pressure phase boron nitride that is the raw material has low crystallinity (U
In order to convert the low-pressure phase boron nitride into CON (-PBN), severe high-temperature and high-pressure treatment conditions are required.
It is thought that the state changes to N and then to CBN, and this first stage change to a highly crystalline state requires an extremely large amount of energy. In addition, when the raw material low-pressure phase boron nitride has low purity (R-PBN), impurity atoms present here and there in the crystal lattice are boron atoms and nitrogen atoms when the low-pressure phase boron nitride is converted to CBN. It is thought that it acts as an obstacle that prevents the movement of atoms, and therefore requires severe high-temperature, high-pressure treatment conditions.

本発明方法の原料であるP−BNは、円板あるいは粉末
に加工され、ベルト型高温高圧発生装置内に充填される
。その後、まず圧力を、続いて温度を上昇させ、所要の
温度・圧力で一定時間保持して高温高圧処理を行う。こ
の際、保持する温度、圧力および時間は、好ましくはそ
れぞれ1500〜2100°C15〜6万気圧および3
0分〜2時間である。処理後は先ず温度を、続いて圧力
をそれぞれ室温および1気圧まで戻し、装置内から高温
高圧処理によって製造されたCONを取り出す。得られ
たCBNは、従来の触媒を使用せずに製造されたCBN
と比べて穏やかな温度、圧力条件で製造されている。
P-BN, which is a raw material for the method of the present invention, is processed into a disk or powder and filled into a belt-type high-temperature and high-pressure generator. Thereafter, the pressure is first increased, then the temperature is increased, and the required temperature and pressure are maintained for a certain period of time to perform high-temperature and high-pressure treatment. At this time, the holding temperature, pressure and time are preferably 1500 to 2100°C, 150,000 to 60,000 atm, and 30,000 atm, respectively.
It is 0 minutes to 2 hours. After the treatment, first the temperature and then the pressure are returned to room temperature and 1 atm, respectively, and the CON produced by the high temperature and high pressure treatment is taken out from the apparatus. The resulting CBN is CBN produced without the use of conventional catalysts.
Manufactured under milder temperature and pressure conditions than

本発明においては、このようにして優れた特性を有する
CBNを生成する生産性に優れた製造方法を達成するこ
とができた。
In this way, the present invention was able to achieve a highly productive manufacturing method that produces CBN with excellent properties.

(実施例) 次に、本発明を実施例について説明する。(Example) Next, the present invention will be explained with reference to examples.

実蓋貫土二■ 純度99.999%のBCj!+ガスと純度99.99
9%のアンニモアガスとの混合ガスを、圧力2 Tor
r、温度1950℃、蒸着速度80 u m/hrの条
件下に、200 m7秒のガス流速で黒鉛基材上に吹き
つけて1.1 mm厚のBN膜を得た。このBN膜を基
材から離型し、電子顕微鏡で観察したところ、数μm程
度の大きさの六角鱗片形の粒子がランダムに配向した構
造をしていることが分かった。生成したBNのC軸方向
の層間距離およびC軸方向の結晶子の大きさをX線回折
で測定した結果それぞれ3.34人および1000Å以
上であった。またC軸方向の選択配向性は120゜であ
った。密度をアルキメデス法で測定した結果2.20 
g /cm 3であり、純度を化学分析で測定した結果
99.998%であった。生成したBN膜を円板に加工
して原料に用い、ベルト型高温高圧発生装置を用いて表
1に示す温度、圧力条件にて1時間高温高圧処理を行っ
た。生成物はいずれもC88粒子が緻密に凝集した強固
な焼結体であり、X線回折測定を行った結果、CON以
外の結晶相は同定されなかった。
99.999% purity BCj! +Gas and purity 99.99
The mixed gas with 9% annimore gas was heated to a pressure of 2 Torr.
A BN film with a thickness of 1.1 mm was obtained by spraying onto a graphite substrate at a gas flow rate of 200 m7 seconds under conditions of a temperature of 1950° C. and a deposition rate of 80 μm/hr. When this BN film was released from the base material and observed under an electron microscope, it was found that it had a structure in which hexagonal scale-shaped particles of about several μm in size were randomly oriented. The interlayer distance in the C-axis direction and the crystallite size in the C-axis direction of the produced BN were measured by X-ray diffraction and were found to be 3.34 Å and 1000 Å or more, respectively. The preferred orientation in the C-axis direction was 120°. Result of density measured by Archimedes method: 2.20
g/cm 3 , and the purity was determined by chemical analysis to be 99.998%. The produced BN film was processed into a disk and used as a raw material, and subjected to high temperature and high pressure treatment for 1 hour under the temperature and pressure conditions shown in Table 1 using a belt type high temperature and high pressure generator. All of the products were strong sintered bodies in which C88 particles were densely aggregated, and as a result of X-ray diffraction measurement, no crystal phase other than CON was identified.

此lけ[L二」 市販のP−BN成形体のC軸方向の層間距離およびC軸
方向の結晶子の大きさをX線回折で測定した結果それぞ
れ3.42人および80人であり、密度をアルキメデス
法で測定した結果2.12g/am’であり、純度を化
学分析で測定した結果99.990%であった。
This [L2] The interlayer distance in the C-axis direction and the crystallite size in the C-axis direction of a commercially available P-BN molded body were measured by X-ray diffraction, and the results were 3.42 and 80, respectively. The density was measured by Archimedes method and was 2.12 g/am', and the purity was measured by chemical analysis and found to be 99.990%.

また電子顕微鏡により観察したところ、P−BN板の厚
さ方向に垂直な面が積重なった積層構造をしていること
が分かった。このP−BN成形体を円板に加工して原料
に用い、ベルト型高温高圧発生装置を用いて表1に示す
ように実施例1〜12とそれぞれ等しい温度、圧力条件
にて1時間高温高圧処理を行った。生成物は温度、圧力
条件によって、表1に示すように、未変換のP−BN成
形体、hBNとCBHの脆い塊状の混合物、強固なCB
N焼結体などの種々の形態であった。
Further, when observed using an electron microscope, it was found that the P-BN plate had a laminated structure in which planes perpendicular to the thickness direction were stacked. This P-BN molded body was processed into a disk and used as a raw material, and was heated under high temperature and high pressure for 1 hour under the same temperature and pressure conditions as in Examples 1 to 12 using a belt type high temperature and high pressure generator as shown in Table 1. processed. Depending on the temperature and pressure conditions, the products can vary depending on the temperature and pressure conditions, as shown in Table 1.
They were in various forms such as N sintered bodies.

実施班長 実施例1〜12と同じP−BNを円板に加工して原料に
用い、ベルト型高温高圧発生装置を用いて、1750°
Cおよび5.4万気圧の温度・圧力条件にて30分間高
温高圧処理を行った。生成物はC88粒子が緻密に凝集
した強固な焼結体であり、密度は3.48 g /Cl
113であり、CBN以外の結晶相は同定されなかった
。二〇〇〇N焼結体の常温における熱伝導率を定常性熱
伝導率測定装置(理学電気■製、 TS−Lλ8550
型)を用いて測定した結果9.5讐/Clll−にであ
った。
Implementation Team Leader The same P-BN as in Examples 1 to 12 was processed into a disk and used as a raw material, and using a belt type high temperature and high pressure generator,
High temperature and high pressure treatment was performed for 30 minutes under the temperature and pressure conditions of C and 54,000 atm. The product is a strong sintered body of densely aggregated C88 particles, with a density of 3.48 g/Cl
113, and no crystal phase other than CBN was identified. The thermal conductivity of the 2000N sintered body at room temperature was measured using a steady thermal conductivity measuring device (manufactured by Rigaku Denki, TS-Lλ8550).
The result was 9.5 ni/Clll-.

実施U 実施例1〜12と同じP−BNを円板に加工して原料に
用い、ベルト型高温高圧発生装置を用いて、1700℃
および5.5万気圧の温度・圧力条件にて2時間高温高
圧処理を行った。生成物はC88粒子が緻密に凝集した
強固な焼結体であり、密度は3.46 g /cut’
であり、CBN以外の結晶相は同定されなかった。この
CBNの微小ヌープ硬度を測定したところ、3500k
g/mm”であった。
Implementation U The same P-BN as in Examples 1 to 12 was processed into a disk and used as a raw material, and heated to 1700°C using a belt type high temperature and high pressure generator.
Then, high temperature and high pressure treatment was performed for 2 hours at a temperature and pressure condition of 55,000 atm. The product is a strong sintered body of densely aggregated C88 particles, with a density of 3.46 g/cut'
Therefore, no crystal phase other than CBN was identified. When we measured the micro Knoop hardness of this CBN, it was found to be 3500k.
g/mm".

実施■旦二U 実施例1〜12と同じP−BNを粉砕して表2に示す平
均粒径の粉末を得た。これをベルト型高温高圧発生装置
を用いて表2に示す条件にて高温高圧処理を行った結果
、CBN塊体現体られた。このCBN塊体現体易に粉砕
され、表2に示す平均粒径のC88粒子となった。X線
回折でこのC88粒子を測定した結果、CBN以外の結
晶相は同定されなかった。
Implementation ■DanjiU The same P-BN as in Examples 1 to 12 was pulverized to obtain powders having the average particle diameter shown in Table 2. This was subjected to high-temperature and high-pressure treatment using a belt-type high-temperature and high-pressure generator under the conditions shown in Table 2, and as a result, a CBN mass was formed. This CBN mass was easily ground into C88 particles having the average particle size shown in Table 2. As a result of measuring this C88 particle by X-ray diffraction, no crystal phase other than CBN was identified.

また、電子顕微鏡でこのC88粒子の微構造を観察した
ところ、C88粒子は不規則な形状をしており、多結晶
体であることが分かった。
Further, when the microstructure of the C88 particles was observed using an electron microscope, it was found that the C88 particles had an irregular shape and were polycrystalline.

ル較皿U二■ 比較例1〜12と同じP−BNを粉砕して表2に示す平
均粒径の粉末を得た。これをベルト型高温高圧発生装置
を用いて表2に示す条件にて高温高圧処理を行った結果
、生成物は脆い現体であった。この生成物をX線回折で
測定した結果、生成物は表2に示すように未変換のP−
BN粉末、 hBN粉末あるいはhBN粉末と微量のC
BN粉末との混合物であった。
Comparative Plate U2 The same P-BN as in Comparative Examples 1 to 12 was pulverized to obtain powder having the average particle size shown in Table 2. This was subjected to high-temperature and high-pressure treatment using a belt-type high-temperature and high-pressure generator under the conditions shown in Table 2. As a result, the product was a brittle solid. As a result of measuring this product by X-ray diffraction, the product was found to be unconverted P-
BN powder, hBN powder or hBN powder and a trace amount of C
It was a mixture with BN powder.

(発明の効果) 本発明によれば、CBNを生産性に優れた高温高圧処理
条件にて製造することができる。本発明により製造され
たCBNは、電子装置のヒートシンクあるいは難削材の
機械加工用の工具として極めて有効に利用できるもので
ある。
(Effects of the Invention) According to the present invention, CBN can be manufactured under high temperature and high pressure treatment conditions with excellent productivity. CBN produced according to the present invention can be extremely effectively used as a heat sink for electronic devices or as a tool for machining difficult-to-cut materials.

Claims (1)

【特許請求の範囲】 1、触媒を使用せずに熱分解窒化ほう素を高温高圧で処
理することにより立方晶窒化ほう素を製造するに当り、 前記熱分解窒化ほう素が、気相から析出されたままの状
態において、六角鱗片状の六方晶窒化ほう素粒子がラン
ダム配向した構造を有し、c軸方向の層間距離(d00
2)が3.35Å以下であり、密度が2.18g/cm
^3より大きく、c軸方向の結晶子の大きさが1000
Å以上であり、かつ純度が99.995%以上であり、
前記高温高圧の条件が1500℃以上の温度および5万
気圧以上の圧力である ことを特徴とする立方晶窒化ほう素の製造方法。
[Claims] 1. In producing cubic boron nitride by treating pyrolytic boron nitride at high temperature and high pressure without using a catalyst, the pyrolytic boron nitride is precipitated from a gas phase. In the state as it is, it has a structure in which hexagonal scale-like hexagonal boron nitride particles are randomly oriented, and the interlayer distance in the c-axis direction (d00
2) is 3.35 Å or less, and the density is 2.18 g/cm
larger than ^3, and the crystallite size in the c-axis direction is 1000
Å or more, and the purity is 99.995% or more,
A method for producing cubic boron nitride, characterized in that the high temperature and high pressure conditions are a temperature of 1500° C. or higher and a pressure of 50,000 atmospheres or higher.
JP63007575A 1988-01-19 1988-01-19 Production of cubic boron nitride Granted JPH01184033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007575A JPH01184033A (en) 1988-01-19 1988-01-19 Production of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007575A JPH01184033A (en) 1988-01-19 1988-01-19 Production of cubic boron nitride

Publications (2)

Publication Number Publication Date
JPH01184033A true JPH01184033A (en) 1989-07-21
JPH0477612B2 JPH0477612B2 (en) 1992-12-08

Family

ID=11669607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007575A Granted JPH01184033A (en) 1988-01-19 1988-01-19 Production of cubic boron nitride

Country Status (1)

Country Link
JP (1) JPH01184033A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233510A (en) * 1989-03-06 1990-09-17 Showa Denko Kk Hexagonal plate of cubic boron nitride and synthesis thereof
JPH0365234A (en) * 1989-08-04 1991-03-20 Res Dev Corp Of Japan Manufacturing of cubic system boron nitride
JPH0578106A (en) * 1989-12-08 1993-03-30 Rhone Poulenc Chim Monodisperse hexagonal boron nitride showing very high purity level in respect of metal and oxygen and its preparation
JPH1126661A (en) * 1997-07-01 1999-01-29 Denki Kagaku Kogyo Kk Radiation spacer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188194A (en) * 1976-10-29 1980-02-12 General Electric Company Direct conversion process for making cubic boron nitride from pyrolytic boron nitride
US4289503A (en) * 1979-06-11 1981-09-15 General Electric Company Polycrystalline cubic boron nitride abrasive and process for preparing same in the absence of catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188194A (en) * 1976-10-29 1980-02-12 General Electric Company Direct conversion process for making cubic boron nitride from pyrolytic boron nitride
US4289503A (en) * 1979-06-11 1981-09-15 General Electric Company Polycrystalline cubic boron nitride abrasive and process for preparing same in the absence of catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233510A (en) * 1989-03-06 1990-09-17 Showa Denko Kk Hexagonal plate of cubic boron nitride and synthesis thereof
JPH0365234A (en) * 1989-08-04 1991-03-20 Res Dev Corp Of Japan Manufacturing of cubic system boron nitride
JPH0578106A (en) * 1989-12-08 1993-03-30 Rhone Poulenc Chim Monodisperse hexagonal boron nitride showing very high purity level in respect of metal and oxygen and its preparation
JPH1126661A (en) * 1997-07-01 1999-01-29 Denki Kagaku Kogyo Kk Radiation spacer

Also Published As

Publication number Publication date
JPH0477612B2 (en) 1992-12-08

Similar Documents

Publication Publication Date Title
US5106392A (en) Multigrain abrasive particles
JPH02212362A (en) Preparation of polycrystalline cubic system boron nitride/ceramic composite massive material and product therefrom
JPH01184033A (en) Production of cubic boron nitride
US5106792A (en) CBN/CBN composite masses and their preparation
JP4061374B2 (en) Method for producing ultrafine particle cBN sintered body
JPH0510282B2 (en)
JPH0478335B2 (en)
JP2000042807A (en) Precision cutting tool
JPH0365234A (en) Manufacturing of cubic system boron nitride
JP2721525B2 (en) Cubic boron nitride sintered body and method for producing the same
JPS62108716A (en) Production of cubic boron nitride
JPH02164433A (en) Manufacture of polycrystalline cubic boron nitride particles
JP2614870B2 (en) Manufacturing method of polycrystalline diamond sintered body
JP2628668B2 (en) Cubic boron nitride sintered body
JP3023435B2 (en) High purity silicon carbide sintered body and method for producing the same
JPH11335175A (en) Cubic boron nitride sintered compact
JPS59184791A (en) Vapor phase synthesis of diamond
JP2672681B2 (en) Method for producing cubic boron nitride
JPH11322310A (en) Cubic boron nitride polycrystalline abrasive grain and its production
JPS62108713A (en) Production of cubic boron nitride
JPS62108717A (en) Production of cubic boron nitride
JPS62108707A (en) Production of cubic boron nitride
JPH04161240A (en) Wurtzite-type boron nitride and carbon powder and its manufacture
JPH0432033B2 (en)
JPS6395162A (en) High pressure phase boron nitirde base composite material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 16