JPH0365234A - Manufacturing of cubic system boron nitride - Google Patents

Manufacturing of cubic system boron nitride

Info

Publication number
JPH0365234A
JPH0365234A JP1201416A JP20141689A JPH0365234A JP H0365234 A JPH0365234 A JP H0365234A JP 1201416 A JP1201416 A JP 1201416A JP 20141689 A JP20141689 A JP 20141689A JP H0365234 A JPH0365234 A JP H0365234A
Authority
JP
Japan
Prior art keywords
boron nitride
pressure
cbn
rbn
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1201416A
Other languages
Japanese (ja)
Other versions
JPH08189B2 (en
Inventor
Masaharu Suzuki
正治 鈴木
Hiroaki Tanji
丹治 宏彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Denki Kagaku Kogyo KK filed Critical Research Development Corp of Japan
Priority to JP1201416A priority Critical patent/JPH08189B2/en
Publication of JPH0365234A publication Critical patent/JPH0365234A/en
Publication of JPH08189B2 publication Critical patent/JPH08189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a highly pure cubic system boron nitride or its sintered product by incorporating a diamond-shaped boron nitride into a low-pressure phase boron nitride at the time of producing the cubic system boron nitride by subjecting the low pressure phase boron nitride to a static, noncatalytic treatment at an ultra-high pressure and temp. CONSTITUTION:The low pressure phase boron nitride (hBN and/or tBN) contg. a diamond-shaped boron nitride (rBN) is processed into a disk plate or powder. It is then filled in a belt type high temp. producing device and, after that, first pressure and then temp. is raised to attain the desired high temp. and pressure. At such high temp. and pressure, a treatment is performed for a predetermined time. After treatment, at first, the temp. and then the pressure is reduced back to room temp. and 1atm, respectively, and the cubic system boron nitride (cBN) produced by the high temp. and pressure treatment is removed from the device. When the low pressure phase boron nitride contg. rBN is treated at a high temp. and pressure, rBN is first converted into cBN in a short time by nondiffusing transition and hBN or tBN is then incorporated into the cBN particles as they grow and thereby converted into cBN. Thus, highly pure cBN particles are obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 窒化ほう素の高圧相である立方晶窒化ほう素C以下r 
CBN Jで示す)は、ダイヤモンドに次ぐ硬さと熱伝
導率を有し、また化学的に安定であることから、鉄系金
属の機械加工用工具や半導体デバイスの放熱基板として
の利用が進められている。
[Detailed description of the invention] (Industrial application field) Cubic boron nitride, which is a high-pressure phase of boron nitride,
CBN (denoted as J) has hardness and thermal conductivity second only to diamond, and is chemically stable, so it is being used as a tool for machining ferrous metals and as a heat dissipation substrate for semiconductor devices. There is.

本発明は、低圧相窒化ほう素から触媒を用いない静的高
温高圧法によってcBNを得るための製造方法に関する
ものである。
The present invention relates to a production method for obtaining cBN from low-pressure phase boron nitride by a static high-temperature and high-pressure method without using a catalyst.

(従来の技術) 一般にcBNは、窒化ほう素の低圧相である六方晶BN
 (以下r hBN Jで示す)もしくは乱層構造BN
(以下r tBN Jで示す)をcBNの熱力学安定条
件下に保持することによって得られる。 cBNの熱力
学安定条件を得る方法として、静的高圧高温処理を用い
る場合には転換圧力と温度条件を例えば6.5万気圧、
2100℃以上の非常に厳しい条件が要求される。その
ため、工業的には触媒を用いて転換条件を4〜5万気圧
、1500°C程度の比較的穏やかな条件とすることが
行われている。この方法により単結晶型のcBN粒子が
生成され、そのまま砥石などの研削工具の砥粒として用
いられている。
(Prior art) In general, cBN is hexagonal BN, which is a low-pressure phase of boron nitride.
(hereinafter referred to as r hBN J) or turbostratic structure BN
(hereinafter referred to as r tBN J) is obtained by maintaining cBN under thermodynamically stable conditions. As a method for obtaining thermodynamic stability conditions for cBN, when static high pressure and high temperature treatment is used, the conversion pressure and temperature conditions are set to, for example, 65,000 atm.
Extremely strict conditions of 2100°C or higher are required. Therefore, industrially, a catalyst is used to set the conversion conditions to relatively mild conditions of 40,000 to 50,000 atm and about 1,500°C. By this method, single-crystal cBN particles are produced and are used as they are as abrasive grains for grinding tools such as whetstones.

一方、微細なcBN粒子を高圧、高温下に焼結すると切
削工具用焼結体が得られるが、cBNは単体では焼結し
にくいため金属やセラ4ツクスなどの結合助剤と混合し
て焼結する必要がある。現在工業的に利用されているc
BNはそのほとんが上述の方法で製造されているが、触
媒の取り込みおよび焼結助剤の存在がcBN本来の特性
を低下させるという欠点があり、このため触媒および焼
結助剤を用いない無触媒直接転換法(以下、「直接法j
という)により、cBNの粒子および焼結体の製造を、
より穏やかな条件下に実現することが望まれている。直
接法によるcBNは微細粒子から構成された多結晶体で
あり、高硬度、高純度、光熱伝導性、高靭性などの特長
を有するので、工具材料、放熱基板として優れた性能を
発揮するものと期待されるからである。
On the other hand, if fine cBN particles are sintered under high pressure and high temperature, a sintered body for cutting tools can be obtained, but since cBN is difficult to sinter by itself, it is mixed with a bonding agent such as metal or ceramics and sintered. need to be tied. Currently used industrially c
Although BN is mostly produced by the methods described above, it has the disadvantage that the incorporation of catalysts and the presence of sintering aids reduce the inherent properties of cBN, and for this reason cBN is produced without the use of catalysts and sintering aids. Catalytic direct conversion method (hereinafter referred to as “direct method
) to produce cBN particles and sintered bodies,
It is hoped that this will be achieved under milder conditions. cBN produced by the direct method is a polycrystalline substance composed of fine particles, and has features such as high hardness, high purity, photothermal conductivity, and high toughness, so it is expected to exhibit excellent performance as a tool material and a heat dissipation substrate. This is because it is expected.

直接法によるcBNの製造法としては次の文献が従来既
知である。
The following literature is conventionally known as a method for producing cBN by a direct method.

文献l)マテリアルズ・リサーチ・プルチン(Mate
rials Re5earch Bulletin)。
Literature l) Materials Research Pluchin (Mate
Rials Research Bulletin).

7.999−1004 (1972) 文献2)特開昭54−33510号公報文献1)には、
低結晶性の窒化ほう素を出発原料として1250°C以
上の温度および60kbar以上の圧力で処理すること
により「ランプ(lump) J状cBNが得られたこ
とが示されている。しかし、この例ではHアOが触媒と
して作用した可能性が指摘され(福長脩「立方晶窒化ほ
う素の台底と応用」、セラミックデータブック°85.
431−436 (1985)参照)、また追試例もな
く、不明な点が多い。
7.999-1004 (1972) Document 2) JP-A-54-33510 Document 1)
It has been shown that "lump" J-shaped cBN was obtained by processing low-crystalline boron nitride as a starting material at temperatures above 1250 °C and pressures above 60 kbar. However, this example It was pointed out that HO may have acted as a catalyst (Osamu Fukunaga, "The base of cubic boron nitride and its applications", Ceramic Data Book °85.
431-436 (1985)), and there are no follow-up exam examples, so there are many unknown points.

文献2)には、熱分解窒化ほう素の成型体を1800°
C以上の温度および50kbar以上の圧力で高温高圧
処理して、eBN焼結体を製造することが開示されてい
る。
Reference 2) describes a molded body of pyrolytic boron nitride heated at 1800°.
It is disclosed that an eBN sintered body is produced by high-temperature and high-pressure treatment at a temperature of 50 kbar or more and a pressure of 50 kbar or more.

この他にも触媒を使用せずに静的高温高圧処理でcBN
を製造する報告は数例あるが、それらはいずれも、1s
oo″C以上の温度と60kbar以上の圧力といった
厳しい条件下での高温高圧処理が必要であり、工業的生
産には不適当である。
In addition, cBN is produced by static high-temperature and high-pressure treatment without using a catalyst.
There are several reports on manufacturing 1s
It requires high-temperature, high-pressure treatment under severe conditions such as a temperature of 0.0''C or more and a pressure of 60 kbar or more, making it unsuitable for industrial production.

一方、他の立方晶窒化ほう素の製造法として、特公昭6
0−2245号公報には原料として菱面体窒化ほう素(
rBN)を用い室温下、衝撃波加圧でeBNを得る方法
が開示されているが、文中に述べられているように逆転
換を抑えるためには放熱材として金属粉を80重量%以
上も加える必要があり、生産効率が非常に悪いばかりか
、cBN単一成分からなる焼結体を得るこそもできず、
この放熱材の配合がcBN本来の特性を低下させるとい
う欠点を持っている。また、立方晶窒化ほう素にウルツ
鉱型の窒化ほう素を副生させないためには、原料として
rBNのみからなる低圧相窒化ほう素を用いる必要があ
る。しかし、rBNは特殊な条件下においてのみその合
成が可能な低圧相窒化ほう素であるため、高価でその入
手が困難でありrBNのみからなる低圧相窒化ほう素を
用いることには多(の問題点があった。
On the other hand, as another method for producing cubic boron nitride,
No. 0-2245 discloses rhombohedral boron nitride (
A method of obtaining eBN using shock wave pressurization at room temperature using (rBN) is disclosed, but as stated in the text, it is necessary to add 80% by weight or more of metal powder as a heat dissipation material in order to suppress reverse conversion. Not only is the production efficiency very low, but it is also impossible to obtain a sintered body made of cBN as a single component.
This composition of heat dissipating material has the drawback of deteriorating the inherent properties of cBN. Further, in order to prevent wurtzite boron nitride from being produced as a by-product in cubic boron nitride, it is necessary to use low-pressure phase boron nitride consisting only of rBN as a raw material. However, since rBN is a low-pressure phase boron nitride that can be synthesized only under special conditions, it is expensive and difficult to obtain, and there are many problems with using low-pressure phase boron nitride consisting only of rBN. There was a point.

(発明が解決しようとする課題) 直接法によるeBNO合戒を合成よりも低温・低圧の条
件下に可能ならしめ、工業的生産性が低いためにこれま
で実用化が困難であった高純度のeBNの粒子またはそ
の焼結体を得ることが本発明の目的である。
(Problem to be solved by the invention) It is possible to synthesize eBNO using a direct method under lower temperature and lower pressure conditions than synthesis, and to produce high-purity eBNO, which has been difficult to put into practical use due to low industrial productivity. It is an object of the present invention to obtain particles of eBN or sintered bodies thereof.

発明者らは直接法によるcBNの製造方法、特に原料と
して使用する低圧相窒化ほう素の種類とcBNへの転換
条件との関係について種々検討した結果、従来の原料に
少量のrBNを加えたものを用いることにより、意外に
も従来より著しく穏やかな高温高圧条件下にcBNへの
転換が可能となることを見いだし、本発明に至ったもの
である。
The inventors investigated various methods for producing cBN by a direct method, especially the relationship between the type of low-pressure phase boron nitride used as a raw material and the conditions for conversion to cBN. It has been unexpectedly discovered that by using cBN, conversion to cBN becomes possible under conditions of high temperature and high pressure that are significantly milder than conventional conditions, leading to the present invention.

(課題を解決するための手段) すなわち、本発明は、低圧相窒化ほう素を触媒を使用せ
ず静的超高圧高温で処理して立方晶窒化ほう素を製造す
るにあたり、低圧相窒化ほう素が菱面体窒化ほう素を含
むことを特長とする立方晶窒化ほう素の製造方法である
(Means for Solving the Problem) That is, the present invention provides a method for producing cubic boron nitride by statically treating low-pressure phase boron nitride at ultra-high pressure and high temperature without using a catalyst. This is a method for producing cubic boron nitride, characterized in that it contains rhombohedral boron nitride.

以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.

本発明において原料として使用するrBNを含む低圧相
窒化ほう素は例えば以下の様な方法によって準備される
The low-pressure phase boron nitride containing rBN used as a raw material in the present invention is prepared, for example, by the following method.

1 ) hsN及び/又はtBNの粒子にrRNの粒子
を加え混合したもの 2 ) hBN及び/又はtBNの板にrBNの板を接
触させたもの 3 ) CVD法などで熱分解窒化ほう素を合成する際
に、条件を厳選してhBN及び/又はtBNとrBNを
析出させたもの ここにhBNおよびtBNの粒子、板等は工業的に広く
生産されている物質であり、容易に入手することができ
る。
1) A mixture of hsN and/or tBN particles with rRN particles 2) An rBN plate in contact with an hBN and/or tBN plate 3) Pyrolytic boron nitride is synthesized by CVD method etc. In this case, hBN and/or tBN and rBN are precipitated under carefully selected conditions.Here, hBN and tBN particles, plates, etc. are substances that are widely produced industrially and are easily available. .

一方、rBN粒子は例えば特公昭60−2244号公報
に記載されているように酸素を含むほう素化合物とシア
ンガスとの反応により合成することができる。
On the other hand, rBN particles can be synthesized, for example, by a reaction between an oxygen-containing boron compound and cyan gas, as described in Japanese Patent Publication No. 60-2244.

rBN板はrBN粒子を加圧成型することによっても、
また、例えば特公昭64−3948号公報に記載されて
いるように、ほう素源ガスと窒素源ガスを加熱気体上に
供給し沈積させる方法によっても合成することができる
The rBN plate can also be produced by pressure molding rBN particles.
Alternatively, as described in Japanese Patent Publication No. 64-3948, for example, it can be synthesized by a method in which a boron source gas and a nitrogen source gas are supplied onto a heated gas and deposited.

hBN及び/又はtBNと共にrBNを析出させた熱分
解窒化ほう素は、例えば特公昭64−3948号公報の
実施例2に記載されている方法によって合成することが
でき、また、析出した熱分解窒化ほう素中のhBN、 
tBN、 rBN相互の比率は、その公報中で述べられ
ているように、加熱基体の表面温度を1700″Cを越
えるような範囲まで変化させることにより調整できる。
Pyrolytic boron nitride in which rBN is precipitated together with hBN and/or tBN can be synthesized, for example, by the method described in Example 2 of Japanese Patent Publication No. 64-3948. hBN in boron,
The mutual ratio of tBN and rBN can be adjusted by varying the surface temperature of the heated substrate to a range exceeding 1700''C, as stated in that publication.

本発明で用いる低圧窒化ほう素のrBNの含有率は1〜
40%が適当である。 rBNの含有率が1%未満では
、原料全体をcBNに転換するのに長時間を要するため
、その効果がほとんどなく、またその含有率を大きくす
ると前述したように他の低圧窒化ほう素に較べ入手が困
難なrBNを多く必要とすることから経済性が低下する
The rBN content of the low-pressure boron nitride used in the present invention is 1 to
40% is appropriate. If the content of rBN is less than 1%, it takes a long time to convert the entire raw material into cBN, so there is almost no effect, and as mentioned above, when the content is increased, it is less effective than other low-pressure boron nitrides. Since a large amount of rBN, which is difficult to obtain, is required, economical efficiency decreases.

本発明方法に係わる以上の原料は、円板あるいは粉末に
加工され、ベルト型高温発生装置に充填される。その後
、まず圧力を続いて温度を上昇させ、所望の温度・圧力
で一定時間保持して高温高圧処理を行う。この際、保持
する温度、圧力および時間は、好ましくはそれぞれ17
00〜2050″C15〜6.5万気圧および5分−3
時間である。処理後はまず温度を、続いて圧力をそれぞ
れ室温および1気圧まで戻し、装置内から高温高圧処理
で製造されたcBNを取り出す。得られたcBNは従来
の触媒を使用せずに製造されたcBNと同様の優れた特
性を持っており、本発明により従来に較べて生産性の高
い穏やかな高温高圧条件下で優れた特性を持つeBNの
製造を行うことができる。
The above-mentioned raw materials related to the method of the present invention are processed into disks or powder and filled into a belt-type high temperature generator. Thereafter, the pressure is first increased and then the temperature is increased, and the desired temperature and pressure are maintained for a certain period of time to perform high-temperature and high-pressure treatment. At this time, the holding temperature, pressure and time are preferably 17
00~2050″C15~65,000 atm and 5 minutes-3
It's time. After the treatment, first the temperature and then the pressure are returned to room temperature and 1 atm, respectively, and the cBN produced by the high temperature and high pressure treatment is taken out from inside the apparatus. The obtained cBN has the same excellent properties as cBN produced without using conventional catalysts, and the present invention allows it to exhibit excellent properties under mild high temperature and high pressure conditions with higher productivity than before. You can manufacture eBNs that you have.

(作 用) 従来、cBNの原料として用いられる低圧相窒化ほう素
は、入手の容易さや価格の面からhBN及び/又はtB
Nが広く使われた。しかし、これら従来の原料では例え
ば文献2)の実施例のように、温度2100℃以上およ
び圧力65kbar以上のように厳しい高温高圧処理が
必要であって工業生産に適さない、しかし、この従来原
料に前述した方法で少量のrBNを含ませた本発明の原
料を用いると、例えば1700〜2050°Cおよび5
〜6.5万気圧の生産性に優れた温度圧力条件で触媒を
使用せずにcBNの製造が可能となる。
(Function) Conventionally, low-pressure phase boron nitride, which has been used as a raw material for cBN, has been used as hBN and/or tB due to its ease of availability and price.
N was widely used. However, these conventional raw materials require severe high-temperature, high-pressure treatment at a temperature of 2100°C or higher and a pressure of 65 kbar or higher, as in the example in Document 2), making them unsuitable for industrial production. When using the raw material of the present invention containing a small amount of rBN by the method described above, for example, 1700 to 2050 °C and 5
It becomes possible to produce cBN without using a catalyst under temperature and pressure conditions with excellent productivity of ~65,000 atm.

このような穏やかな条件でcBNへの直接転換が可能に
なるのは次のような理由によると思われる。
The reason why direct conversion to cBN is possible under such mild conditions is believed to be as follows.

本発明の原料はその中にrBNを含む。The raw material of the present invention contains rBN therein.

rBNは、hBNおよびtBNとは異なる結晶構造を持
つ。
rBN has a different crystal structure than hBN and tBN.

すなわち、hBNはほう素と窒素が交互に結合して形成
される六角網目層の積み重なりの周期がABABAB−
−−一の二層周期であり、また、tBNは層の積み重な
りが不規則で周期性がないのに反し、それらhBNある
いはtBNに対して、rBNはその周期がABCABC
ABC−−−一の三層周期である。
In other words, in hBN, the period of stacking hexagonal network layers formed by alternately bonding boron and nitrogen is ABABAB-
--1 two-layer period, and while tBN has irregular layer stacking and no periodicity, rBN has a period of ABCABC in contrast to hBN or tBN.
ABC---one three-layer period.

cBNは、<llb方向から見れば積層の周期はrBN
と同じABCABCABC−−−一の三層周期を持ち、
このような結晶構造の類似性からrBNの六角網目層の
眉間を圧縮し、六角網目を構成する原子を交互にその平
面から少し移動させることによってcBNの構造に転換
することが可能と考えられる。
When cBN is viewed from <llb direction, the stacking period is rBN
has the same three-layer period as ABCABCABC---1,
Due to this similarity in crystal structure, it is thought that it is possible to convert the structure of rBN to cBN by compressing the glabella of the hexagonal network layer and alternately moving the atoms that make up the hexagonal network a little from the plane.

この転換はBN構成原子相互の位置の入れ換えなしに起
こるいわゆる無拡散転移である。
This conversion is a so-called diffusion-free transition that occurs without exchanging the positions of the BN constituent atoms.

これに対しhBNあるいtBNをcBNに転換しようと
すれば、二層周期の積層構造をくずし、三層周期の積層
構造に変えるいわゆる拡散転移過程が必要である。
On the other hand, in order to convert hBN or tBN to cBN, a so-called diffusion transition process is required to break down the two-layer periodic laminated structure and change it to a three-layer periodic laminated structure.

一般に、無拡散転移は拡散転移に較べ容易にまた短時間
に起こると考えられる。
Generally, non-diffusion transition is thought to occur more easily and in a shorter time than diffusion transition.

本発明の原料を1700〜2050℃および5〜6,5
万気圧の条件で高温高圧処理した場合、まずrBNが短
時間の内に無拡散転移によりcBHに転換すると考えら
れる0次に、同条件下ではそれ単一では転換を起こさな
いhBNあるいはtBNもすでに転換しそれに接してい
るcBN粒子の成長に伴ってその中に取り込まれてcB
Nに転換して、最終的には原料全体がcBHに転換する
ものと思われる。
The raw materials of the present invention were heated to 1700-2050℃ and 5-6.5℃.
When treated at high temperature and high pressure under conditions of 10,000 atmospheric pressures, rBN is thought to convert into cBH within a short period of time through a non-diffusion transition.Secondly, under the same conditions, hBN or tBN, which do not undergo conversion on their own, have already been converted into cBH. As the cBN particles in contact with it convert and grow, cB is incorporated into them.
It is believed that the entire raw material is converted to N and finally to cBH.

(実施例) 次に、本発明を実施例と比較例をあげた表1に基いてさ
らに具体的に説明する。
(Example) Next, the present invention will be explained in more detail based on Table 1 showing Examples and Comparative Examples.

表  1 実施例1−12 特公昭60−2244号公報に開示の方法で、気化させ
た酸化ほう素にシアン化水素を反応させ、太さ約1藁ク
ロンのrBNの針状結晶を合成した。このrRNウィス
カーを粉砕し、市販のhBN粉末と表1に示す比率で混
合した。
Table 1 Example 1-12 According to the method disclosed in Japanese Patent Publication No. 60-2244, vaporized boron oxide was reacted with hydrogen cyanide to synthesize needle-like crystals of rBN with a thickness of about 1 karon. The rRN whiskers were ground and mixed with commercially available hBN powder at the ratio shown in Table 1.

これらの混合粉末を加圧成形し、円板を得てベルト型高
温高圧発生装置を用いて表1に示す温度、圧力条件にて
所定の時間、高温高圧処理を行った。
These mixed powders were pressure-molded to obtain a disc, which was subjected to high-temperature and high-pressure treatment for a predetermined period of time under the temperature and pressure conditions shown in Table 1 using a belt-type high-temperature and high-pressure generator.

処理後の試料について粉末X線回折測定を行い、試料中
のcBNの重量%を、あらかじめ作製しておいた検量線
から求めた。
Powder X-ray diffraction measurement was performed on the sample after treatment, and the weight percent of cBN in the sample was determined from a calibration curve prepared in advance.

比較例1−12 cBNの原料として市販のhBlllのみからなる粉末
を成形した円板を用いた以外は、実施例1−12と同様
な条件で実施した。
Comparative Example 1-12 Comparative Example 1-12 was carried out under the same conditions as in Example 1-12, except that a disk formed from a powder made only of commercially available hBll was used as the raw material for cBN.

実施例13−16 特公昭64−3948号公報の実施例1の方法で、BI
J3ガスとアンモニアガスを加熱した基板に吹き付け、
基板の表面温度を1600°C1圧力を5 torrに
保って熱分解窒化ほう素板を得た。得られた試料につい
てX線回折測定で生成物の同定を行ったところrBNか
ら構成されていた。
Example 13-16 BI
Spray J3 gas and ammonia gas onto the heated board,
A pyrolytic boron nitride plate was obtained by maintaining the surface temperature of the substrate at 1600° C. and the pressure at 5 torr. The product of the obtained sample was identified by X-ray diffraction measurement and was found to be composed of rBN.

これを薄板の円板に切り出し、市販のhBNおよびtB
Nからなる熱分解窒化ほう素薄円板と交互に重ね合わせ
ることで、表1中に示すようにrBN 薄板の重量%が
様々に異なる円板を作製した。
This was cut into thin discs, and commercially available hBN and tB were used.
By alternately stacking thin disks of pyrolytic boron nitride made of N, disks with various weight percentages of rBN thin plates were produced as shown in Table 1.

この円板をeBNの原料とし、ベルト型高温高圧発生装
置を用いて表1に示す温度、圧力条件にて所定の時間、
高温高圧処理を行った。
This disk was used as a raw material for eBN, and was heated for a predetermined time under the temperature and pressure conditions shown in Table 1 using a belt-type high temperature and high pressure generator.
High temperature and high pressure treatment was performed.

処理後の試料について粉末X線回折測定を行い、試料中
のcBNの重量%を、あらかじめ作製しておいた検量線
から求めた。
Powder X-ray diffraction measurement was performed on the sample after treatment, and the weight percent of cBN in the sample was determined from a calibration curve prepared in advance.

実施例17−20 特公昭64−3948号公報の実施例2の方法で、BC
Isガスとアンモニアガスを加熱した基板に吹き付け、
基板の表面温度を調整することで、表1に示す種々のr
BN含有率を持つ熱分解窒化ほう素板を得た。
Example 17-20 By the method of Example 2 of Japanese Patent Publication No. 64-3948, BC
Spray Is gas and ammonia gas onto the heated substrate,
By adjusting the surface temperature of the substrate, various r values shown in Table 1 can be achieved.
A pyrolytic boron nitride plate with BN content was obtained.

これを円板に切り出しcBNの原料とし、ベルト型高温
高圧発生装置を用いて表1に示す温度、圧力条件にて所
定の時間、高温高圧処理を行った。
This was cut into disks, used as raw materials for cBN, and subjected to high temperature and high pressure treatment for a predetermined period of time under the temperature and pressure conditions shown in Table 1 using a belt type high temperature and high pressure generator.

処理後の試料について粉末X線回折測定を行い、試料中
のcBNの重量%を、あらかじめ作製しておいた検量線
から求めた。
Powder X-ray diffraction measurement was performed on the sample after treatment, and the weight percent of cBN in the sample was determined from a calibration curve prepared in advance.

比較例13−20 cBNの原料として市販のhBNおよびtBNのみから
なる熱分解窒化ほう素円板を用いた以外は、実施例13
−20と同様な条件で実施した。
Comparative Example 13-20 Example 13 except that commercially available pyrolytic boron nitride discs made only of hBN and tBN were used as raw materials for cBN.
It was carried out under the same conditions as -20.

(発明の効果) 本発明によれば、触媒を用いない直接法によるcBNの
合成を、従来の原料に少量のrBNを加えたものを原料
として準備し、これを原料とすることにより、従来より
も著しく穏やかな高温高圧条件下で行えるため、今まで
は工業的生産性が低いために実用化されていなかった高
純度のcBNの粒子またはその焼結体を得ることができ
るという効果がある。
(Effects of the Invention) According to the present invention, cBN can be synthesized by a direct method without using a catalyst by preparing a raw material obtained by adding a small amount of rBN to a conventional raw material and using this as a raw material. Since this process can also be carried out under extremely mild conditions of high temperature and high pressure, it is possible to obtain high-purity cBN particles or sintered bodies thereof, which have not been put to practical use due to low industrial productivity.

Claims (1)

【特許請求の範囲】[Claims] 1、低圧相窒化ほう素を、触媒を使用せず静的超高圧高
温で処理して立方晶窒化ほう素を製造するにあたり、低
圧相窒化ほう素が菱面体窒化ほう素を含むことを特徴と
する立方晶窒化ほう素の製造方法。
1. In producing cubic boron nitride by processing low-pressure phase boron nitride at static ultra-high pressure and high temperature without using a catalyst, the low-pressure phase boron nitride is characterized in that it contains rhombohedral boron nitride. A method for producing cubic boron nitride.
JP1201416A 1989-08-04 1989-08-04 Method for producing cubic boron nitride Expired - Fee Related JPH08189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201416A JPH08189B2 (en) 1989-08-04 1989-08-04 Method for producing cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201416A JPH08189B2 (en) 1989-08-04 1989-08-04 Method for producing cubic boron nitride

Publications (2)

Publication Number Publication Date
JPH0365234A true JPH0365234A (en) 1991-03-20
JPH08189B2 JPH08189B2 (en) 1996-01-10

Family

ID=16440722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201416A Expired - Fee Related JPH08189B2 (en) 1989-08-04 1989-08-04 Method for producing cubic boron nitride

Country Status (1)

Country Link
JP (1) JPH08189B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513787A (en) * 1999-11-19 2003-04-15 デ ビアス インダストリアル ダイアモンズ (プロプライエタリイ)リミテッド Cubic boron nitride cluster

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643948B2 (en) * 1985-03-04 1989-01-24 Shingijutsu Kaihatsu Jigyodan
JPH01184033A (en) * 1988-01-19 1989-07-21 Natl Inst For Res In Inorg Mater Production of cubic boron nitride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643948B2 (en) * 1985-03-04 1989-01-24 Shingijutsu Kaihatsu Jigyodan
JPH01184033A (en) * 1988-01-19 1989-07-21 Natl Inst For Res In Inorg Mater Production of cubic boron nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513787A (en) * 1999-11-19 2003-04-15 デ ビアス インダストリアル ダイアモンズ (プロプライエタリイ)リミテッド Cubic boron nitride cluster

Also Published As

Publication number Publication date
JPH08189B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JP4106574B2 (en) Cubic boron nitride sintered body and method for producing the same
JP2590413B2 (en) Method for producing translucent high-purity cubic boron nitride sintered body
JPS595547B2 (en) Method for manufacturing cubic boron nitride sintered body
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
US5106792A (en) CBN/CBN composite masses and their preparation
JPH0365234A (en) Manufacturing of cubic system boron nitride
JPH0478335B2 (en)
JPS61117107A (en) Amorphous boron niride powder and its preparation
JPH01184033A (en) Production of cubic boron nitride
JPH0345561A (en) Sintered material of cubic boron nitride and production thereof
EP0402672A2 (en) Process for preparing polycrystalline cubic boron nitride and resulting product
JP3223275B2 (en) Method for producing cubic boron nitride sintered body
JP2672681B2 (en) Method for producing cubic boron nitride
JP2628668B2 (en) Cubic boron nitride sintered body
JPH0594B2 (en)
JP2000042807A (en) Precision cutting tool
JPH02164433A (en) Manufacture of polycrystalline cubic boron nitride particles
JPH04300300A (en) Unsupported sintered cubic integrally bonded boron nitride/diamond molding and method of manufacuring same
JPH0455144B2 (en)
JPH07121835B2 (en) Cubic boron nitride coating
JPS62108716A (en) Production of cubic boron nitride
JPH02164774A (en) Cubic boron nitride sintered body and production thereof
JPH04161240A (en) Wurtzite-type boron nitride and carbon powder and its manufacture
Pullum et al. Microstructural analysis of a cubic boron nitride ceramic
JP2938500B2 (en) Method for producing raw material for cubic boron nitride sintered body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees