JPS59184791A - Vapor phase synthesis of diamond - Google Patents

Vapor phase synthesis of diamond

Info

Publication number
JPS59184791A
JPS59184791A JP58057043A JP5704383A JPS59184791A JP S59184791 A JPS59184791 A JP S59184791A JP 58057043 A JP58057043 A JP 58057043A JP 5704383 A JP5704383 A JP 5704383A JP S59184791 A JPS59184791 A JP S59184791A
Authority
JP
Japan
Prior art keywords
diffusion layer
diamond
filament
surface diffusion
phase synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58057043A
Other languages
Japanese (ja)
Other versions
JPS631280B2 (en
Inventor
Noribumi Kikuchi
菊池 則文
Takayuki Shingyouchi
新行内 隆之
Hiroaki Yamashita
山下 博明
Akio Nishiyama
昭雄 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58057043A priority Critical patent/JPS59184791A/en
Publication of JPS59184791A publication Critical patent/JPS59184791A/en
Publication of JPS631280B2 publication Critical patent/JPS631280B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Abstract

PURPOSE:To synthesize artificial diamond having complete crystalline property on the diffusion layer by charging a base body having a surface diffusion layer into a reaction furnace, specifying the distance between the diffusion layer and a filament, and temperature condition, and flowing a regulated gaseous reaction mixture. CONSTITUTION:Over one kinds among C, N, and B are diffused on the surface of a base material comprising a metal (or alloy) of 4a, 5a, or 6a. Said surface treated base material is charged in a reaction furnace, and a filament comprising W, Ta, Mo, or graphite is positioned at a position separated 0.5-3cm apart from the surface-diffusion layer of the base material. In this state, a gaseous reaction mixture having regulated proportion of CH4/H2 to 0.001-0.05 is flowed through said filament to collide with the surface diffusion layer. The reaction is carried out by maintaining the temp. of the surface of the diffusion layer at 500-1,200 deg.C, and the temp. of the filament at 1,800-2,500 deg.C. By this method, particles or film of artificial diamond having complete crystalline property are formed on the surface diffusion layer.

Description

【発明の詳細な説明】 この発明は、気相合成法にてダイヤモンドヲ粒状あるい
は膜状に析出せしめる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for depositing diamond in the form of granules or films using a vapor phase synthesis method.

ダイヤモンドは、現存する物質の中で最も硬く、かつ熱
伝導性および電気絶縁性にもすぐれた材料であることか
ら、工業的に有用な制t1として、その使用分野は広範
囲にわたっている。
Since diamond is the hardest material in existence and has excellent thermal conductivity and electrical insulation, it is used in a wide range of fields as an industrially useful material.

また、ダイヤモンドには、天然に産出するもののほかに
、超高圧合成装置を用い、超高圧発生容器内に黒鉛粉末
を触媒と共に入れ、温度:1600℃以上、圧カニ60
kb以上の高温高圧下で反応略せ、黒鉛をダイヤモンド
に相変態さぜることによって製造された人工ダイヤモン
ドがある。この人工ダイヤモンドは、原料粉末の粒度や
反応時間全制御することにより種々の粒度のものが札1
ら植、るが、装置自体が大型となるばかりでなく、1回
の生産量にも限界があるため、生産性の点で問題があシ
、どうしてもコスト制となるのを寸ぬがれることかでき
ない。このほか、ダイヤモンドの合成法[ば、火薬の爆
発による衝撃力を利用して、黒鉛をダイヤモンドに変換
する方法があるが、この方法によって製造された人工ダ
イヤモンドは、前記の超高圧合成法によシ製造されたも
のに比して多少安価ではあるが、結晶性が完全なものを
得ることが困難であシ、したがって特性上問題があるも
のである。
In addition to naturally occurring diamonds, we also use ultra-high pressure synthesis equipment to produce diamonds. Graphite powder is placed together with a catalyst in an ultra-high pressure generation container at a temperature of 1,600°C or higher and a pressure of 60°C.
There is an artificial diamond produced by subjecting graphite to phase transformation into diamond through a reaction at high temperatures and pressures exceeding 1,000 kb. This artificial diamond can be made with various particle sizes by fully controlling the particle size of the raw material powder and the reaction time.
However, not only is the equipment itself large-sized, but there is a limit to the amount of production per time, so there is a problem in terms of productivity, and it is inevitable that the cost system will be used. I can't do it. In addition, there is a method of synthesizing diamonds [for example, a method of converting graphite into diamond by using the impact force from the explosion of gunpowder, but the artificial diamonds produced by this method cannot be produced by the ultra-high pressure synthesis method described above. Although it is somewhat cheaper than those manufactured in China, it is difficult to obtain one with perfect crystallinity, and therefore there are problems in terms of properties.

そこで、本発明者等は、上述のような観点から、大型の
プレス装置などを用いることなく、かつ結晶性の完全な
人工ダイヤモンドを高い生産性で、コスト安く製造すべ
く研究を行なった結果、ダイヤモンドが析出される基体
として、元素周期律表の4a、5a、および6a族金属
のうちのいずれか、またはこれらの金属を主成分とする
合金で構成された基体部材の表面に1通常の表面炭化法
、表面窒化法、あるいは表面硼化法にて、炭素(C)。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research in order to manufacture perfectly crystalline artificial diamonds with high productivity and at low cost without using large press equipment, etc. As a result, As a substrate on which diamond is deposited, a normal surface is formed on the surface of a substrate member made of one of the metals of groups 4a, 5a, and 6a of the periodic table of elements, or an alloy mainly composed of these metals. Carbon (C) by carbonization, surface nitridation, or surface boronization.

窒素(N)、および硼素(B)のうちの1種筐たは2種
以上全拡散させて形成した表面拡散層を有する表面処理
基体部A’A’ k用い、気相合成法にて、前記基体部
材の表面拡散層から0.5〜3 c1n離れた位置に、
VJ 、 Ta、 Mo、あるいは黒鉛からなるフィラ
メントヲ位置させた状態で、CH4とH2との容量割合
、すなわちOH4/Hzk 0.001〜0.05 V
C調整した混合反応ガス全前記フィラメント’1通過し
て前記表面拡散層に当るように流しながら、前記の表面
拡散層の温度二500〜1200℃、およびフィラメン
トの温度:1800〜2500℃の条件で反応を行なわ
しめると、前記表面拡散層上に結晶性が完全なダイヤモ
ンドが粒状あるいは膜状に形成されるようになるという
知見’ir:45jたのである。
Using a surface-treated base part A'A'k having a surface diffusion layer formed by completely diffusing one or more of nitrogen (N) and boron (B), by a vapor phase synthesis method, At a position 0.5 to 3 c1n away from the surface diffusion layer of the base member,
With a filament made of VJ, Ta, Mo, or graphite positioned, the capacity ratio of CH4 and H2, that is, OH4/Hzk 0.001 to 0.05 V
C. While flowing the adjusted mixed reaction gas so as to pass through the filament and hit the surface diffusion layer, the temperature of the surface diffusion layer is 2500 to 1200 °C, and the temperature of the filament is 1800 to 2500 °C. It was discovered that when the reaction was carried out, diamond with perfect crystallinity was formed in the form of grains or films on the surface diffusion layer.

なお、この発明の方法において、上記表面拡散層とフィ
ラメントとの距離が0.5〜3 cmのs((包囲内に
おいて比較的小さい場合に、ダイヤモンドの析出核の密
度が高くなり、この析出核が横に密に並ぶため膜状とな
シ、一方前記の離間距離が犬きくなると粒状となるので
ある。また、上記表面拡散層はダイヤモンド核を速い反
応で均一に析出でせるのに不可欠のものであシ、シたが
って、この表面拡散が存在しない場合には、ダイヤモン
ドの析出はきわめて遅くなり、所望の速度で均一にダイ
ヤモンド核を析出させることができないものである。
In addition, in the method of the present invention, when the distance between the surface diffusion layer and the filament is relatively small within the surrounding area, the density of diamond precipitation nuclei becomes high; Because they are arranged side by side densely, they are film-like, but when the separation distance becomes too large, they become granular.In addition, the surface diffusion layer is essential for uniformly precipitating diamond nuclei with a fast reaction. Therefore, if this surface diffusion does not exist, the precipitation of diamond will be extremely slow and it will not be possible to uniformly precipitate diamond nuclei at the desired rate.

つきVC,この発明の方法において、製造条件を上記の
通シに限定した理由を説明する。
VC, the reason why the manufacturing conditions are limited to the above-mentioned conditions in the method of the present invention will be explained.

(a)  フィラメントの温度 フィラメントはメタン(CH4)f分解すると同時に、
この結果形成されたCとH2とを活性化し、ダイヤモン
ド形成に寄与するものと考えられるが、その温度が18
00℃未満では反応ガスの活性化が十分に行なわれず、
一方その温度が2500℃を越えると熱輻射が大きくな
りすぎ、いずれの場合も、ダイヤモンドの形成が不十分
となることから、フィラメント温度t1800〜250
0℃と定めた。
(a) Temperature of the filament The filament decomposes methane (CH4), and at the same time,
It is thought that the C and H2 formed as a result are activated and contribute to diamond formation, but the temperature is 18
Below 00°C, the reaction gas is not activated sufficiently,
On the other hand, if the temperature exceeds 2500°C, thermal radiation becomes too large, and in either case, diamond formation becomes insufficient.
The temperature was set at 0°C.

(b)表面拡散層の温度 表面拡散層の温度は、フィラメントからの輻射熱と部第
2自体の加熱温度により決剪るが、この温度が500℃
未満ではダイヤモンドの析出速度が遅く、一方1200
℃を越えた温度ではダイヤモンドの析出が行われないこ
とから、その温+wh500〜1200℃と定めた。
(b) Temperature of the surface diffusion layer The temperature of the surface diffusion layer is determined by the radiant heat from the filament and the heating temperature of the second part itself.
Below 1200, the diamond precipitation rate is slow;
Since diamond does not precipitate at a temperature exceeding .degree. C., the temperature was set at 500 to 1200.degree. C. above that temperature.

(C)  混合反応ガスにおけるCH4/H2の割合こ
の割合が0001未満では、ダイヤモンドの生成速度が
著しく遅く、一方この割合が0.05 全越えると、ダ
イヤモンド中に黒鉛が混在するようになることから、C
H4/H2の割合を0001〜0.05と定めた。
(C) Ratio of CH4/H2 in the mixed reaction gas If this ratio is less than 0001, the rate of diamond formation is extremely slow, while if this ratio exceeds 0.05, graphite will be mixed in the diamond. , C
The ratio of H4/H2 was determined to be 0001 to 0.05.

(d)  基体部材の表面拡散層とフイラメノ!・間の
距離 この距tflが0.5cm未満になると、フィラメント
の輻射熱によシ表面拡散層温度が1200℃を越えて高
くなりすぎ、ダイヤモンドの析出が行なわれないように
なシ、一方この距離が3mを越えて犬きくなると、ダイ
ヤモンド核の形成密度が急激に低下するようになること
から、その距離ケ05〜3cmと定めた。
(d) Surface diffusion layer of base member and filament!・Distance between If this distance tfl is less than 0.5 cm, the temperature of the surface diffusion layer will exceed 1200°C due to the radiant heat of the filament, and diamond precipitation will not occur. When the distance exceeds 3 m, the density of diamond nucleus formation decreases rapidly, so the distance was set at 05 to 3 cm.

また、この発明の方法を実施するに際して、反応雰囲気
は、5〜100 torrの範囲内の圧力の真空2メ囲
気とするのが好1しく、これi’t 5 torr未満
の圧力てはダイヤモンドの析出速度がきわめて遅く、一
方100 torrを越えた圧力にすると黒鉛が混在す
るようになるという理由によるものである。
Further, when carrying out the method of the present invention, the reaction atmosphere is preferably a 2-m vacuum atmosphere with a pressure within the range of 5 to 100 torr, and a pressure less than 5 torr is preferable. This is because the precipitation rate is extremely slow, and on the other hand, if the pressure exceeds 100 torr, graphite will be mixed in.

なお、この発明の方法によって合成されたダイヤモンド
は、不可避不純物としてフィラメント構成成分であるW
、Mo、あるいはTaなどを1〜10原子係の範囲で含
有する場合があるが、この程度の不純物含有量ハダイヤ
モンド特性に何らの悪影響も及ぼすものではない。
Note that the diamond synthesized by the method of this invention contains W, which is a filament constituent, as an unavoidable impurity.
, Mo, Ta, etc. may be contained in the range of 1 to 10 atoms, but such an impurity content does not have any adverse effect on the diamond properties.

つきに、この発明の方法を実施例によシ具体的に説明す
る。
At the end, the method of the present invention will be specifically explained using examples.

実施例 それぞれ第1表に示される成分組成を有し、かつIOm
mx厚さ:2叫の寸法をもった基体部側を用意し、この
基体部拐の表面に、同じく第1表に示される表面処理法
、すなわちガス表面炭化法。
Each of the examples had the component composition shown in Table 1, and IOm
A base part having dimensions of mx thickness: 2 mx is prepared, and the surface of this base part is treated with the surface treatment method shown in Table 1, that is, the gas surface carbonization method.

ガス表面窒化法、固体表面炭化法、および固体表面硼化
法のいずれかを用い、通常の条件で第1表に示される平
均層厚の表面拡散層を形成し、ついで、この結果の表面
処理基体部Ay+の表面拡散層」二に同じく第1表に示
される条件で、ダイヤモンド形成のための気相合成反応
を施すことによって、本発明法1〜10および比較法1
〜7をそれぞれ実施し、実施後、その表面に形成された
合成ダイヤモンドの平均層厚を測定すると共に、その状
態を観察した。これらの結果を第1表に合せて示した。
A surface diffusion layer having an average layer thickness shown in Table 1 is formed under normal conditions using one of the gas surface nitriding method, solid surface carbonization method, and solid surface boriding method, and then the resulting surface treatment is performed. The surface diffusion layer of the base portion Ay+ was subjected to a gas phase synthesis reaction for diamond formation under the conditions also shown in Table 1, thereby forming methods 1 to 10 of the present invention and comparative method 1.
- 7 were carried out, and after the execution, the average layer thickness of the synthetic diamond formed on the surface was measured and the state thereof was observed. These results are also shown in Table 1.

なお、比較法1〜7は、いずれもダイヤモンド形成のた
めの気相合成条件がこの発明の範囲から外れた条件(第
1表に※印を付した条件がこの発明の範囲から外れた条
件である)で実施したものである。
In addition, Comparative Methods 1 to 7 are all conducted under conditions where the gas phase synthesis conditions for diamond formation are outside the scope of this invention (the conditions marked with * in Table 1 are outside the scope of this invention). This was carried out at

第1表(で示される結果から、本発明法1〜10におい
ては、いずれも良好な状態でダイヤモンドを合成される
のに対して、比較法1〜7においては、いずれの場合も
満足するダイヤモンド合成は行なわれないことが明らか
である。
From the results shown in Table 1, it can be seen that in all methods 1 to 10 of the present invention, diamonds were synthesized in good condition, whereas in comparative methods 1 to 7, diamonds were synthesized in satisfactory condition in all cases. It is clear that no synthesis takes place.

なお、本発明法1〜10によって合成されたダイヤモン
ト’l−J、いずれも天然ダイヤモンドと同等の硬さと
電気抵抗を示すものであった。
Note that all of the diamond 'l-J synthesized by methods 1 to 10 of the present invention exhibited hardness and electrical resistance equivalent to those of natural diamond.

」二連のように、この発明の方法によれば、大型の装置
を用いることなく、かつ生産性の高い状態で、結晶性の
完全な人工ダイヤモンドを、基体部拐の表面拡散層」二
に粒状あるいは膜状の形で合成することがでキ、シたが
って、ダイヤモンドを粒状に合成した場合には、これを
部材表面から機械的にかき落して粉末状とし、砥石や研
摩′)12、あるいは粉末冶金用原料粉末などとして用
いることができ、寸だ、膜状に形成する場合にば、基体
部拐を、iM )Lf′:耗性や耐候性が要求される各
種の工具部拐、あるいは熱伝導性や電気絶縁性が要求さ
れるICやLSIなどとしてもよく、さらに絶縁膜や、
I3.P、およびMなどの成分とのドープと合せて半導
体膜などとしての用途にも適用することができるなど工
業」1有用な効果がもたらされるのである。
According to the method of the present invention, a completely crystalline artificial diamond can be grown into a surface diffusion layer of a substrate without using large-scale equipment and with high productivity. Diamond can be synthesized in the form of granules or films. Therefore, when diamond is synthesized in the form of granules, it is mechanically scraped off from the surface of the component to form a powder, and then polished with a whetstone or polished. Alternatively, it can be used as a raw material powder for powder metallurgy, and when formed into a thin film, it can be used as a base material. Alternatively, it may be used as an IC or LSI that requires thermal conductivity or electrical insulation, and may also be an insulating film,
I3. In combination with doping with components such as P and M, it can be applied to applications such as semiconductor films, etc., thereby bringing about useful effects in industry.

出願人 三菱金属株式会社 代理人 富 1)和 夫 外1名 手続補正書(自利 昭和58年9月2日 特許庁長官  若 杉 和 夫  殿 1、事件の表示 特願昭58−57043  号 2発明の名称 ダイヤモンドの気4目合成法 3 補正をする者 4代理 人 IJ珂すi 東京都千代1111区神+11.l錦町−
丁1]23番地自   発 (1)  明細書、第7頁、発明の詳細な説明の項、第
1行、 15〜1.00 torrの範囲内の圧力」とあるを、
「ビラニ一式真空訓で5〜100 torrの範囲内の
圧力(この圧力はダイヤフラム式真空計で測定した場合
の01〜10torrに相当、以下圧力はピラニ一式真
空計で測定した圧力で示す)」と訂正する。
Applicant: Mitsubishi Metals Co., Ltd. Agent: Tomi 1) Written amendment by Kazuo and one other person (Jiri, September 2, 1981, Kazuo Wakasugi, Commissioner of the Japan Patent Office, 1, Patent Application No. 57043-1982, Patent Application No. 57043, Patent Application No. 58-57043) Name of the invention Diamond Qi 4 eye synthesis method 3 Person making the amendment 4 Representative IJ Kasui Tokyo Chiyo 1111-ku Kami+11.l Nishikicho-
1] No. 23 Sponsored (1) Specification, page 7, Detailed Description of the Invention, line 1, ``Pressure within the range of 15 to 1.00 torr''
"Pressure within the range of 5 to 100 torr using a Virani set vacuum gauge (this pressure corresponds to 01 to 10 torr when measured with a diaphragm type vacuum gauge, hereinafter the pressure will be expressed as the pressure measured with a Pirani set vacuum gauge)" correct.

以上that's all

Claims (1)

【特許請求の範囲】 元素周期律表の4a、5a、および6a族金属のうちの
いずれか、またはこれら金属を主成分とする合金で構成
され、かつ炭素、窒素、および硼素のうちの1種または
2種以上を拡散させた表面拡散層を有する表面処理基体
部制を反応炉内に装入し、前記基体部第2の表面拡散層
と、W 、 Ta、 Mo。 あるいは黒鉛からなるフィラメントとの間隔を05〜3
礪に保持した状態で、CH4/H2の割合を0001〜
0.05の範囲内に調整した混合反応ガス金反応炉内に
流しながら、前記表面拡散層の温度: 500〜120
0℃、およびフィラメント温度 1800〜2500℃
の条例て気相合成反応を行なわしめることにより前記表
面拡散層上にダイヤモンドを粒状あるいは膜状に析出せ
しめること全特徴とするダイヤモンドの気相合成法。
[Scope of Claims] Consisting of any of the metals of Groups 4a, 5a, and 6a of the Periodic Table of the Elements, or an alloy containing these metals as a main component, and one of carbon, nitrogen, and boron. Alternatively, a surface-treated substrate structure having a surface diffusion layer in which two or more species are diffused is charged into a reactor, and the second surface diffusion layer of the substrate portion and W, Ta, Mo. Or, the distance between the filament made of graphite is 05~3
While holding it in a bowl, change the CH4/H2 ratio from 0001 to
While flowing the mixed reaction gas adjusted within the range of 0.05 into the gold reactor, the temperature of the surface diffusion layer: 500 to 120
0℃, and filament temperature 1800-2500℃
A method for vapor phase synthesis of diamond, characterized in that diamond is precipitated in the form of granules or a film on the surface diffusion layer by carrying out a vapor phase synthesis reaction.
JP58057043A 1983-04-01 1983-04-01 Vapor phase synthesis of diamond Granted JPS59184791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057043A JPS59184791A (en) 1983-04-01 1983-04-01 Vapor phase synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057043A JPS59184791A (en) 1983-04-01 1983-04-01 Vapor phase synthesis of diamond

Publications (2)

Publication Number Publication Date
JPS59184791A true JPS59184791A (en) 1984-10-20
JPS631280B2 JPS631280B2 (en) 1988-01-12

Family

ID=13044413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057043A Granted JPS59184791A (en) 1983-04-01 1983-04-01 Vapor phase synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS59184791A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101493A (en) * 1984-10-23 1986-05-20 ジヨ−ジ ガ−ゲリ− マ−クル Cubic carbide
JPS61106494A (en) * 1984-10-29 1986-05-24 Kyocera Corp Member coated with diamond and its production
US4925701A (en) * 1988-05-27 1990-05-15 Xerox Corporation Processes for the preparation of polycrystalline diamond films
FR2790267A1 (en) * 1999-02-25 2000-09-01 Suisse Electronique Microtech Deposition of a diamond layer on a refractory transition metal component
CN112195369A (en) * 2020-11-06 2021-01-08 西安稀有金属材料研究院有限公司 Corrosion-resistant high-strength neutron shielding alloy material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101493A (en) * 1984-10-23 1986-05-20 ジヨ−ジ ガ−ゲリ− マ−クル Cubic carbide
JPS61106494A (en) * 1984-10-29 1986-05-24 Kyocera Corp Member coated with diamond and its production
JPH0566358B2 (en) * 1984-10-29 1993-09-21 Kyocera Corp
US4925701A (en) * 1988-05-27 1990-05-15 Xerox Corporation Processes for the preparation of polycrystalline diamond films
FR2790267A1 (en) * 1999-02-25 2000-09-01 Suisse Electronique Microtech Deposition of a diamond layer on a refractory transition metal component
CN112195369A (en) * 2020-11-06 2021-01-08 西安稀有金属材料研究院有限公司 Corrosion-resistant high-strength neutron shielding alloy material and preparation method thereof

Also Published As

Publication number Publication date
JPS631280B2 (en) 1988-01-12

Similar Documents

Publication Publication Date Title
JP2562442B2 (en) Composite powder particles, manufacturing method and manufacturing apparatus
JPS6196016A (en) Amorphous metal alloy powder, bulky object and synthesis thereof by solid phase decomposition reaction
US4225355A (en) Amorphous boron-carbon alloy in bulk form and methods of making the same
JPH1179846A (en) Silicon carbide formed product
JPS59184791A (en) Vapor phase synthesis of diamond
CN111455346A (en) Preparation method of diamond coating on surface of cobalt-free hard alloy material
JP3452665B2 (en) Method for synthesizing diamond single crystal and single crystal diamond
JPS61151095A (en) Synthesis of diamond
JPS62119B2 (en)
EP1460040B1 (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same
JPS59184792A (en) Vapor phase synthesis of diamond
EP0892092A1 (en) Surface enriched diamond
JP2949827B2 (en) Wurtzite-type boron carbonitride powder and method for producing the same
JPH0477612B2 (en)
JPS5824501B2 (en) Method for manufacturing tungsten carbide coating layer
JP2799849B2 (en) Diamond synthesis by chemical vapor deposition
JPH0438685B2 (en)
JPS59164606A (en) Method for synthesizing diamond
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor
JPS6227004B2 (en)
JPH0699144B2 (en) Agglomerate composed of boron, carbon and nitrogen and method for producing the same
JPH01255630A (en) Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy
JPH024932A (en) Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy
JPH02217394A (en) Massive body of crystalline silicon nitride
JPH0310562B2 (en)