JPS61151095A - Synthesis of diamond - Google Patents

Synthesis of diamond

Info

Publication number
JPS61151095A
JPS61151095A JP59270742A JP27074284A JPS61151095A JP S61151095 A JPS61151095 A JP S61151095A JP 59270742 A JP59270742 A JP 59270742A JP 27074284 A JP27074284 A JP 27074284A JP S61151095 A JPS61151095 A JP S61151095A
Authority
JP
Japan
Prior art keywords
diamond
synthesis
base plate
substrate
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59270742A
Other languages
Japanese (ja)
Other versions
JPH0480876B2 (en
Inventor
Shingo Morimoto
信吾 森本
Eiichi Iizuka
栄一 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59270742A priority Critical patent/JPS61151095A/en
Publication of JPS61151095A publication Critical patent/JPS61151095A/en
Publication of JPH0480876B2 publication Critical patent/JPH0480876B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A base plate on which fine particles of diamond is deposited in dispersion by the vapor-phase method is placed in the diamond synthesis system to give diamond particles of good quality with relatively large diameters and narrow particle size distribution. CONSTITUTION:A base plate with scratch lines in an equal interval is heated up to 700-1,000 deg.C and the system is irradiated with microwaves of 30MHz-10 GHz in an atmosphere containing hydrocarbons under reduced pressure of 10-50Torr for 30-60min to generate plasma state whereby fine particles of diamond of 0.5-1mum diameter are formed on the base plate. The resultant base plate is laminated with a thin film of a diamond synthesis catalyst such Fe, Co, Ni, Cr and another thin film of carbon, then placed in a high- temperature and high-pressure system. The temperature of 1,400-2,000 deg.C and the pressure of 50-60kb are applied to synthesize diamond, then metals are dissolved off with an acid and the unreacting carbon is removed with nitric acid or aqua regia.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は研磨材、切削材等に使用されるダイヤモンド合
成法に関し、特に粒度の揃ったダイヤモンドを得るに適
した合成法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a diamond synthesis method used for abrasive materials, cutting materials, etc., and particularly to a synthesis method suitable for obtaining diamonds with uniform particle size.

従来技術 ダイヤモンド合成法は炭素、触媒からダイヤモンド安定
域の高温、高圧下で合成するいわゆる静圧法と炭化水素
ガスを高周波やマイクロ波等によってプラズマ状態とし
、基板上にダイヤモンドを析出させるいわゆる気相法(
CVD)による方法がある。110者は一般に粒状のダ
イヤモンドあるいはダイヤモンド焼結体が得られ、後者
は一般にnり状のダイヤモンドが得られる。
Conventional diamond synthesis methods include the so-called static pressure method, in which carbon and a catalyst are synthesized at high temperatures and high pressures in the diamond stability range, and the so-called gas phase method, in which hydrocarbon gas is brought into a plasma state using high frequency waves, microwaves, etc., and diamond is deposited on a substrate. (
There is a method using CVD). 110 generally yields granular diamonds or diamond sintered bodies, while the latter generally yields diamond-shaped diamonds.

粒状のダイヤモンドでは大粒のものが望ましく、また粒
度はできるだけ揃ったものがよい、ダイヤモンドの粒を
大きくするために合成系内にダイヤモンドの種子を配置
する方法があり、また粒度を揃えるために種子を規則的
に配置することも提案されている(特開昭59−113
9994 )。規則的配置は例えば触媒となるニッケル
板−ヒに所定間隔で小孔を開け、この中に種子を装入し
、これと炭素板とを重ね合せたものを多数積層して用い
る方法である。この方法によれば粒の揃った比較的大き
なダイヤモンドが得られるが1種子を必要とすること、
種子が大きいと種子と成長層との界面での整合性の点か
ら、耐熱強度に問題が生じ、又微細な種子にすると強度
的に問題は無くなるが、微細な種子の配置に特別の操作
を必要とすることなどが問題である。
For granular diamonds, it is desirable to have large grains, and the grain size should be as uniform as possible.There is a method of placing diamond seeds in the synthesis system to increase the size of diamond grains, and there is also a method of placing diamond seeds in the synthesis system to make the grain size uniform. It has also been proposed to arrange them regularly (Japanese Patent Application Laid-Open No. 113-1983)
9994). The regular arrangement is, for example, a method in which small holes are made at predetermined intervals in a nickel plate serving as a catalyst, seeds are charged into the holes, and a large number of these and carbon plates are laminated. This method yields relatively large diamonds with uniform grains, but requires one seed;
If the seeds are large, there will be a problem with heat resistance strength due to the consistency at the interface between the seeds and the growth layer, and if the seeds are made fine, there will be no problem in terms of strength, but special operations are required to arrange the fine seeds. The problem is what you need.

発明か解決しようとする問題点 本発明は静圧法によるダイヤモンド合成において、ダイ
ヤモンド種子を合成系内に配置する場合のL記の問題点
を解決し、良質(自形)で粒度の巾が狭く、比較的粒度
の大きなダイヤモンド粒を得ることにある。
Problems to be Solved by the Invention The present invention solves the problems listed in L when diamond seeds are placed in the synthesis system in diamond synthesis using the hydrostatic method, and has good quality (euhedral) and narrow particle size range. The objective is to obtain diamond grains with a relatively large grain size.

問題点の解決手段 未発明は気相法と静圧法によるダイヤモンド合成法を組
合せ、先ず気相法によって基板上にダイヤモンドの核等
の微粒子を分散析出させ、この際望ましくは規則的に所
定間隔で析出させ、次にこれを種子として炭素(非ダイ
ヤモンド炭素、黒鉛、以下「炭素」という)とダイヤモ
ンド合成触媒からダイヤモンドを静圧法で合成する方法
である。
The uninvented means of solving the problem is a combination of a diamond synthesis method using a gas phase method and a static pressure method.First, fine particles such as diamond nuclei are precipitated in a dispersed manner on a substrate by the gas phase method, and at this time, preferably, they are deposited regularly at predetermined intervals. This is a method in which diamond is precipitated and then used as a seed to synthesize diamond from carbon (non-diamond carbon, graphite, hereinafter referred to as "carbon") and a diamond synthesis catalyst using a hydrostatic method.

気相法によるダイヤモンド合成は例えばシリコンウェハ
ーを基板とし、炭化水素をマイクロ波等によりプラズマ
状態とし、前記基板にダイヤモンドを析出させるもので
あるが、シリコンウェハーが鏡面状態だと殆んどダイヤ
モンドが析出しない。ところがこのシリコンウェハーに
小さい傷をつけると、その点に先ずダイヤモンドの核か
生成し、それが次第に成長していくことが判明した。
In diamond synthesis using the vapor phase method, for example, a silicon wafer is used as a substrate, hydrocarbons are brought into a plasma state using microwaves, etc., and diamond is deposited on the substrate.However, if the silicon wafer is in a mirror-like state, most diamonds are deposited. do not. However, it was discovered that when a small scratch was made on this silicon wafer, a diamond nucleus was first formed at the scratch, which then gradually grew.

このことはノ1(板」−の望む位置にダイヤモンド粒子
を析出させることかできることになる。
This means that diamond particles can be deposited at desired positions on the plate.

本発明はこの現象を利用したもので、基板に多数の傷を
つけて、先ず気相法でダイヤモンド合成を行ない、所定
の点にダイヤモンドの核等の微粒子を析出させ、これを
種子として静圧法でダイヤモンド合成を行なって種子を
成長させる方法である。
The present invention takes advantage of this phenomenon. First, a large number of scratches are made on a substrate, diamond synthesis is performed using a vapor phase method, fine particles such as diamond nuclei are precipitated at predetermined points, and these are used as seeds to synthesize diamond using a static pressure method. This method uses diamond synthesis to grow seeds.

気相法ダイヤモンド合成は特開昭59−3098に記載
されているように減圧下での炭化水素の熱分解法、アー
ク放電とスパッタリングの技術を組合せて、炭素の正イ
オンビームを生ぜしめ、これを基板に衝突させてダイヤ
モンドを析出させるイオンビーム法、マイクロ波や高周
波で炭化水素と水素ガス等を含む混合ガスをプラズマ状
態にして、加熱されている基板にダイヤモンドを析出す
るマイクロ波法やプラズマ法などが知られている。
As described in Japanese Patent Application Laid-Open No. 59-3098, vapor phase diamond synthesis combines the thermal decomposition of hydrocarbons under reduced pressure, arc discharge, and sputtering techniques to generate a positive carbon ion beam. Ion beam method in which diamond is precipitated by collision with a substrate; Microwave method and plasma in which diamond is precipitated on a heated substrate by turning a mixed gas containing hydrocarbon and hydrogen gas into a plasma state using microwaves or high frequency waves. The law is known.

本発明はこれら公知のいずれの方法も適用できるが、1
例としてマイクロ波法による実施態様を示せば炭化水素
としてはメタン、エタン、プロパン、エチレン、ベンゼ
ン等を用いることができ、これらは水素又は水素と不活
性ガスで希釈して用いられる。基板は通常ダイヤモンド
膜を生成させる場合は熱膨張係数がダイヤモトに近いと
いう理由等によりシリコンウェハーが多く用いられてい
るが、本発明においては基板上にダイヤモンドの微粒子
をつければよいので、特に基板はシリコンに限られない
。ただし核発生を制御しやすいように単結晶などを鏡面
仕上げとしたものがよい。基−板は次に静圧法によるダ
イヤモンド合成に使用するものなので、基板自体をダイ
ヤモンド合成触媒、例えばニッケル、クロム、コバルト
等の金属、これらの合金で構成してもよい。
The present invention can apply any of these known methods, but 1
As an example, in an embodiment using a microwave method, methane, ethane, propane, ethylene, benzene, etc. can be used as the hydrocarbon, and these are used diluted with hydrogen or hydrogen and an inert gas. Usually, silicon wafers are often used as substrates when forming diamond films because their coefficient of thermal expansion is close to that of diamonds, but in the present invention, it is sufficient to attach fine diamond particles to the substrate, so the substrate is It's not limited to silicon. However, to make it easier to control nucleation, it is best to use a single crystal with a mirror finish. Since the substrate is then used for diamond synthesis using the hydrostatic method, the substrate itself may be made of a diamond synthesis catalyst, such as metals such as nickel, chromium, cobalt, or alloys thereof.

基板はダイヤモンド微粒子を析出させたい点を例えば、
ダイヤモンド針で傷をつける。傷は適当な間隔を設けて
ランダムにつけてもよいが、望ましくは等間隔とし、そ
の間隔は次工程である静圧法でダイヤモンドを成長させ
た際、各粒子が接触しない範囲、即ち成長したダイヤモ
ンド粒子の直径以上にする。傷のつけ方はダイヤモンド
針を用いて軽くたたく方法やランダムの場合なら研磨材
の微粒子を投射する等の方法でよく、傷跡は顕微鏡でわ
ずかにわかる程度で効果がある。
For example, the point where you want to deposit diamond fine particles on the substrate is
Make a scratch with a diamond needle. The scratches may be made randomly at appropriate intervals, but preferably they should be at equal intervals, and the intervals should be within the range where each particle does not come into contact with each other when the diamond is grown using the static pressure method in the next step, i.e., the grown diamond particles. The diameter should be greater than or equal to the diameter of The scratches can be made by tapping lightly with a diamond needle, or in the case of random scratches, by projecting fine particles of abrasive material, and it is effective if the scratches are only slightly visible under a microscope.

この基板にマイクロ波でダイヤモンド微粒子を析出させ
るには前記炭化水素含有ガスを用い、減圧下でガスをプ
ラズマ状態とすると共に基板を加熱して行なう。マイク
ロ波は300 MHz〜10 G&の範囲、減圧は10
〜50Torr、基板温度は700〜1000°Cの範
囲が適当である。析出の時間は1本発明では核となる微
粒子を析出させればよいので、30分以上あれば十分で
ある。その上限は特に制限ないが、基板の傷の点景外の
析出を防ぎ、また経済性を考慮すれば1時間以下がよい
。こうしてダイヤモンドの0.5 p、 m〜1牌m程
度の微粒子が析出する。
In order to deposit diamond fine particles onto this substrate using microwaves, the hydrocarbon-containing gas is used, the gas is brought into a plasma state under reduced pressure, and the substrate is heated. Microwave ranges from 300 MHz to 10 G&, vacuum 10
-50 Torr, and the substrate temperature is suitably in the range of 700-1000°C. In the present invention, the time required for precipitation is 30 minutes or more, since it is sufficient to precipitate the fine particles that serve as the core. The upper limit is not particularly limited, but it is preferably 1 hour or less in order to prevent scratches on the substrate from being deposited outside the background and in consideration of economic efficiency. In this way, fine particles of diamond of about 0.5 p.m to 1 tile m are precipitated.

次にこの基板を用い静圧法によりダイヤモトを合成する
。合成はシリコンウェハー等ダイヤモンド合成触媒以外
の基板を用いる場合には基板のダイヤモンド微粒子側に
ダイヤモンドの合成触媒の薄い板を重ね、さらにその上
に炭素の薄い板を重ね、これらを多数積層して、高温、
高圧装置に装填して行なう。この場合、触媒金属と炭素
とを粉末にして混合し、成形体とし、それを基板と交互
に多数積層したものでもよい。またダイヤモンド触媒金
属板にダイヤモンド微粒子を析出させたものでは、その
板と炭素板とを交互に多数積層して用いればよい。合成
触媒は公知の鉄、コバルト、二・ンケル、クロム、タン
タル等及び合金を用いることができ、温度は1400〜
2000℃、圧力は50〜80Kbの範囲が適当である
Next, using this substrate, diamond is synthesized by the static pressure method. For synthesis, when using a substrate other than a diamond synthesis catalyst such as a silicon wafer, a thin plate of diamond synthesis catalyst is layered on the diamond fine particle side of the substrate, and a thin plate of carbon is layered on top of that, and a large number of these are stacked. high temperature,
Load it into a high-pressure device. In this case, the catalytic metal and carbon may be powdered and mixed to form a molded body, and a large number of molded bodies may be laminated alternately with the substrate. Further, in the case of a diamond catalyst metal plate on which diamond fine particles are deposited, a large number of such plates and carbon plates may be stacked alternately. As the synthesis catalyst, known iron, cobalt, nitrogen, chromium, tantalum, etc. and alloys can be used, and the temperature is 1400~1400~
A temperature of 2000° C. and a pressure of 50 to 80 Kb are suitable.

合成後は常法に従って、金属を酸等で溶解、除去し、さ
らに未反応黒鉛は硫・硝酸、王水などで処理して除去す
る。
After synthesis, metals are dissolved and removed using acids, etc., and unreacted graphite is removed by treatment with sulfur, nitric acid, aqua regia, etc., according to conventional methods.

本発明においては予じめ分散配置されているダイヤモン
ドの微粒子が主として成長するので、成長が容易で粗大
種子のものに較べて組織が均一であり、特に微粒子が規
則的に配置されているものではこの傾向が強い。
In the present invention, since fine diamond particles that have been dispersed in advance are mainly grown, the growth is easy and the structure is more uniform than that of coarse seeds, especially when the fine particles are regularly arranged. This tendency is strong.

気相法によるダイヤモンドの析出では析出条件を制御す
ることにより、ダイヤモンドの結晶面を選1R成長させ
ることができる。即ち、基板温度を高目にすれば、ダイ
ヤモンド結晶の(III)面をfp先的に成長した粒と
なり、反対に低目の温度にすると (100)面が優先
的に成長した粒となる。これら停一定の面が成長したダ
イヤモンド析出基板を用いて、静圧法でダイヤモンドを
合成すれば同様に前記の結晶面が優先的に成長した粒と
なる。即ち、本発明方法によりダイヤモンドの特定の結
晶面を選捩成長させることができる利点がある。
In the deposition of diamond by the vapor phase method, by controlling the deposition conditions, the diamond crystal plane can be selectively grown in 1R. That is, if the substrate temperature is set high, the grains will grow fp first on the (III) plane of the diamond crystal, and on the other hand, if the substrate temperature is set low, the grains will grow preferentially on the (100) plane. If diamond is synthesized by the static pressure method using a diamond precipitation substrate on which these crystal planes have grown, grains will similarly be obtained in which the crystal planes described above have grown preferentially. That is, the method of the present invention has the advantage that a specific crystal plane of diamond can be selectively torsionally grown.

実施例 直径25−■、厚さO,1mmのシリコンウェハー鏡面
上にダイヤモンド針で縦横0.5+sm間隔に点状の傷
をつけた。傷つけは、高さ10cmの所から、 100
 gのダイヤモンド粒が落下した時程度の力で行なえば
良い。
EXAMPLE Dotted scratches were made with a diamond needle on the mirror surface of a silicon wafer having a diameter of 25 mm and a thickness of 0.1 mm at intervals of 0.5+ sm in length and width. The damage is 100% from a height of 10cm.
It is sufficient to use the same force as when a diamond grain of g is dropped.

この基板を用い、マイクロ波により次の条件でダイヤモ
ンドの析出をさせた。
Using this substrate, diamond was deposited using microwaves under the following conditions.

圧力    : 30Torr ガス組成  :CH,1%、H299%(容量)基板温
度  =850°C マイクロ波 : 2.450迅 時間    :30分間 反応後取り出したウェハー面上には約0.5 p−tn
の大きさのダイヤモンド粒が基板の傷を設けた点に2〜
5個析出していた。
Pressure: 30 Torr Gas composition: CH, 1%, H2 99% (volume) Substrate temperature = 850°C Microwave: 2.450 Time: Approximately 0.5 p-tn on the wafer surface taken out after 30 minutes of reaction
A diamond grain of size 2 ~
Five pieces were precipitated.

このウェハーを用い、次のようにして静圧法によりダイ
ヤモンドを合成した。
Using this wafer, diamond was synthesized by the static pressure method as follows.

直径25mm、厚さ0.25a+mのNi −Fe合金
(Ni30重量%)板を触媒とし、これを前記シリコン
ウェハーのダイヤモンド析出面側に重ね、さらにその上
に直径25+5I11、厚さ1.On+mの黒鉛板を重
ねた。これら三層構造のものを26組積み重ね、ベルト
型高圧装置に装填した。
A Ni-Fe alloy (Ni 30% by weight) plate with a diameter of 25 mm and a thickness of 0.25 a+m is used as a catalyst, and this is stacked on the diamond precipitation surface side of the silicon wafer, and a plate with a diameter of 25+5I11 and a thickness of 1. On+m graphite plates were stacked. Twenty-six sets of these three-layer structures were stacked and loaded into a belt-type high-pressure device.

合成条件は圧力を52Kbにした後、1450°Cに昇
温し、 2分保持した。その後30分かけて5aKb迄
徐々に昇圧した。その後温度を下げてか゛ら大気圧にし
、生成物を取り出した。
The synthesis conditions were as follows: After the pressure was set to 52 Kb, the temperature was raised to 1450°C and held for 2 minutes. Thereafter, the pressure was gradually increased to 5aKb over 30 minutes. Thereafter, the temperature was lowered to atmospheric pressure and the product was taken out.

生成物は上水と硫・硝酸を用い、常法に従い、ダイヤモ
ンドを抽出した。なお、生成物の処理前に破砕し、積層
断面におけるダイヤモンドの分散状態を顕微鏡で観察す
ると多くの粒子は約0.5mmの間隔で存在しており、
予じめ析出させておいた微粒子が成長したものと思われ
る。このダイヤモンド粒子は中心に微小な点塊(約5ル
)を有し、平滑表面を持ち自形の整ったものが殆んどで
平均粒径は350JL111.その大部分は300〜4
00piの範囲にあり、通常の方法に較ベバラツキの小
さいものであった。この粒子中に存在する点塊は気相法
で析出したダイヤモンド種子と思われる0種子は前記の
ようにシリコンウェハーの傷の位置に2〜l/個存在し
ていたが、静圧法合成ではこれらが1体となるか或いは
その中の一つが優先的に成長したものと思われる。
Diamonds were extracted from the product using tap water, sulfur and nitric acid according to a conventional method. In addition, when the product is crushed before processing and the state of diamond dispersion in the laminated cross section is observed under a microscope, many particles are present at intervals of about 0.5 mm.
It seems that the fine particles that were precipitated in advance grew. These diamond particles have a small dot (approximately 5 µl) in the center, have a smooth surface, are well-shaped, and have an average particle size of 350JL111. Most of them are 300-4
It was in the range of 00 pi, and the variation was small compared to the conventional method. The point clusters present in these particles are thought to be diamond seeds precipitated by the vapor phase method, and as mentioned above, 2 to 1 seeds were present at the scratch position of the silicon wafer, but in the static pressure method synthesis, these seeds were not found. It seems that either there was one body, or one of them grew preferentially.

実施例2 基板温度を820〜830℃と少し下げた外は実施例1
と同様にしてシリコンウェハー上にダイヤモ5個所定の
位置に析出した。
Example 2 Example 1 except that the substrate temperature was slightly lowered to 820-830°C.
In the same manner as above, five diamonds were deposited at predetermined positions on a silicon wafer.

このウェハーを用い、触媒をコバルトに代えた外は実施
例1と同様にウェハー、コバルト板、黒鉛板を積み重ね
た。
Using this wafer, the wafer, cobalt plate, and graphite plate were stacked in the same manner as in Example 1 except that the catalyst was replaced with cobalt.

合成条件は55Kb、 1500℃で2分間保持後、2
0分で58Kbに昇圧した。以下は実施例1と同様にし
てダイヤモンド粒子を抽出した。得られたダイヤモンド
は (100)及び(111)面が成長した結晶で、合
成時間が短かかったため平均粒径は約200 g rr
rで、大部分が150〜250μ層の範囲にあった。
The synthesis conditions were 55Kb, held at 1500℃ for 2 minutes, and then
The pressure was increased to 58 Kb in 0 minutes. Diamond particles were extracted in the same manner as in Example 1. The resulting diamond was a crystal with (100) and (111) planes grown, and because the synthesis time was short, the average grain size was approximately 200 g rr.
r, and the majority were in the range of 150-250μ layers.

実施例3 基板温度を870〜880℃とやや高くした外は実施例
1と同様にしてダイヤモンドを析出させたところ、(1
11)面が発達したダイヤモンド結晶が得られた。
Example 3 Diamond was deposited in the same manner as in Example 1 except that the substrate temperature was slightly higher at 870 to 880°C.
11) A diamond crystal with developed surfaces was obtained.

この基板を用い、触媒としてNi−Cr合金(Ni80
重量%)を用いた外は実施例1と同様にして積層体を構
成した。
Using this substrate, Ni-Cr alloy (Ni80
A laminate was constructed in the same manner as in Example 1 except that % by weight) was used.

ダイヤモンド合成条件は53Kb、1480℃で2分保
持した後、30分で57Kb迄昇圧した。実施例1と同
様にしてダイヤモンドを抽出した結果(+11)面が支
配的な8−6面体のプロ・ンキーなダイヤモンドが得ら
れた。その平均粒径は280 g mで大部分が250
〜300 p−mの範囲にあり、バラツキの狭いもので
あった。
The diamond synthesis conditions were 53 Kb, held at 1480° C. for 2 minutes, and then raised to 57 Kb in 30 minutes. As a result of extracting diamond in the same manner as in Example 1, an oct-hexahedral diamond with a predominant (+11) plane was obtained. Its average particle size is 280 g m, mostly 250 g m
~300 p-m, with narrow variation.

発明の効果 本発明によればダイヤモンド合成において種子の配置、
特に規則的配置が容易であり、これによって粒度が比較
的大きく、かつ揃ったダイヤモンド粒が得られる。
Effects of the Invention According to the present invention, placement of seeds in diamond synthesis,
In particular, it is easy to arrange the diamond grains regularly, which results in relatively large and uniform diamond grains.

Claims (1)

【特許請求の範囲】 炭素及びダイヤモンド合成触媒から高温、 高圧下でダイヤモンドを合成する方法において、基板上
に気相法によりダイヤモンド微粒子を分散析出させ、こ
の基板を前記ダイヤモンド合成系内に配置することを特
徴とするダイヤモンド合成法。
[Claims] A method for synthesizing diamond from carbon and a diamond synthesis catalyst at high temperature and high pressure, comprising dispersing and precipitating diamond fine particles on a substrate by a vapor phase method, and placing this substrate in the diamond synthesis system. A diamond synthesis method featuring
JP59270742A 1984-12-24 1984-12-24 Synthesis of diamond Granted JPS61151095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59270742A JPS61151095A (en) 1984-12-24 1984-12-24 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59270742A JPS61151095A (en) 1984-12-24 1984-12-24 Synthesis of diamond

Publications (2)

Publication Number Publication Date
JPS61151095A true JPS61151095A (en) 1986-07-09
JPH0480876B2 JPH0480876B2 (en) 1992-12-21

Family

ID=17490338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59270742A Granted JPS61151095A (en) 1984-12-24 1984-12-24 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS61151095A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138395A (en) * 1985-12-09 1987-06-22 Kyocera Corp Preparation of diamond film
US4871581A (en) * 1987-07-13 1989-10-03 Semiconductor Energy Laboratory Co., Ltd. Carbon deposition by ECR CVD using a catalytic gas
US5183685A (en) * 1987-07-13 1993-02-02 Semiconductor Energy Laboratory Co., Ltd. Diamond film deposition by ECR CVD using a catalyst gas
US5270114A (en) * 1987-03-30 1993-12-14 Crystallume High thermal conductivity diamond/non-diamond composite materials
US5271971A (en) * 1987-03-30 1993-12-21 Crystallume Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
US5273825A (en) * 1987-03-30 1993-12-28 Crystallume Article comprising regions of high thermal conductivity diamond on substrates
US5275798A (en) * 1986-07-11 1994-01-04 Kyocera Corporation Method for producing diamond films
US5284709A (en) * 1987-03-30 1994-02-08 Crystallume Diamond materials with enhanced heat conductivity
US5328761A (en) * 1990-10-05 1994-07-12 Sumitomo Electric Industries, Ltd. Diamond-coated hard material, throwaway insert and a process for the production thereof
US5487945A (en) * 1992-11-09 1996-01-30 North Carolina State University Diamond films on nondiamond substrates
US5503104A (en) * 1995-03-27 1996-04-02 General Electric Company Synthetic diamond product
US5633088A (en) * 1987-03-30 1997-05-27 Crystallume Diamond film and solid particle composite structure and methods for fabricating same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138395A (en) * 1985-12-09 1987-06-22 Kyocera Corp Preparation of diamond film
US5275798A (en) * 1986-07-11 1994-01-04 Kyocera Corporation Method for producing diamond films
US5270114A (en) * 1987-03-30 1993-12-14 Crystallume High thermal conductivity diamond/non-diamond composite materials
US5271971A (en) * 1987-03-30 1993-12-21 Crystallume Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
US5273825A (en) * 1987-03-30 1993-12-28 Crystallume Article comprising regions of high thermal conductivity diamond on substrates
US5284709A (en) * 1987-03-30 1994-02-08 Crystallume Diamond materials with enhanced heat conductivity
US5304424A (en) * 1987-03-30 1994-04-19 Crystallume High thermal conductivity diamond/non-diamond composite materials
US5633088A (en) * 1987-03-30 1997-05-27 Crystallume Diamond film and solid particle composite structure and methods for fabricating same
US5183685A (en) * 1987-07-13 1993-02-02 Semiconductor Energy Laboratory Co., Ltd. Diamond film deposition by ECR CVD using a catalyst gas
US4871581A (en) * 1987-07-13 1989-10-03 Semiconductor Energy Laboratory Co., Ltd. Carbon deposition by ECR CVD using a catalytic gas
US5330802A (en) * 1987-07-13 1994-07-19 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD of carbonaceous films on substrate having reduced metal on its surface
US5328761A (en) * 1990-10-05 1994-07-12 Sumitomo Electric Industries, Ltd. Diamond-coated hard material, throwaway insert and a process for the production thereof
US5487945A (en) * 1992-11-09 1996-01-30 North Carolina State University Diamond films on nondiamond substrates
US5503104A (en) * 1995-03-27 1996-04-02 General Electric Company Synthetic diamond product

Also Published As

Publication number Publication date
JPH0480876B2 (en) 1992-12-21

Similar Documents

Publication Publication Date Title
CN1053455C (en) A method of making an abrasive compact
Khmelnitskiy Prospects for the synthesis of large single-crystal diamonds
JPS61151095A (en) Synthesis of diamond
RU2006134708A (en) SYNTHESIS OF SUPERABRASIVE PARTICLES WITH ADJUSTABLE PLACEMENT OF CRYSTAL GRAINS
JPS63153275A (en) Diamond coated alumina
JP2013067549A (en) Method for forming thin film
WO2010062419A2 (en) Diamond bodies grown on sic substrates and associated methods
US7435296B1 (en) Diamond bodies grown on SiC substrates and associated methods
JPH0624898A (en) Thin multilayer cvd diamond film
JP3452665B2 (en) Method for synthesizing diamond single crystal and single crystal diamond
US5268201A (en) Composite diamond grain and method for production thereof
JPS62119B2 (en)
JPH0253396B2 (en)
JPH07326553A (en) Diamond wafer and its manufacture
JPH05195224A (en) Method of obtaining thickly adhered diamond coating film by using intermediate screen made of metal
JPS61201698A (en) Diamond film and its production
JP2686970B2 (en) Membrane diamond manufacturing method
JPH06271398A (en) Formation of diamond single crystal film
JPS6344719B2 (en)
JPH01103987A (en) Method for synthesizing diamond by vapor phase method
JPS631280B2 (en)
JPS61270372A (en) Formation of artificial diamond film by deposition
JPH03205399A (en) Formation of diamond crystal
JPH0269310A (en) Compound diamond grain and its production
JPS62202898A (en) Production of diamond film