JPS62202898A - Production of diamond film - Google Patents

Production of diamond film

Info

Publication number
JPS62202898A
JPS62202898A JP4496586A JP4496586A JPS62202898A JP S62202898 A JPS62202898 A JP S62202898A JP 4496586 A JP4496586 A JP 4496586A JP 4496586 A JP4496586 A JP 4496586A JP S62202898 A JPS62202898 A JP S62202898A
Authority
JP
Japan
Prior art keywords
substrate
diamond film
hydrocarbon
metal
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4496586A
Other languages
Japanese (ja)
Other versions
JPH0725635B2 (en
Inventor
Shinichi Koriyama
慎一 郡山
Hiroshi Aida
比呂史 会田
Koichi Yamaguchi
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4496586A priority Critical patent/JPH0725635B2/en
Publication of JPS62202898A publication Critical patent/JPS62202898A/en
Publication of JPH0725635B2 publication Critical patent/JPH0725635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase the nucleation density and produce a homogeneous and dense diamond film, by introducing a mixed gas of a hydrocarbon and H2 into a reaction vessel containing a substrate having uniformly dotted metal (compound) and activating the hydrocarbon. CONSTITUTION:A metal, e.g. Ti, or a compound thereof, e.g. TiB2, having >=800 deg.C melting point is uniformly dotted on the surface of a substrate in forming a film to give 10<5>-10<11> particles having 0.005-5mum particle size/cm<2>. The resultant substrate is then placed in a reaction vessel and a mixed gas of a hydrocarbon gas, e.g. CH4, C2H2, C2H4, etc., and H2 gas at 0.005-0.15 mixing ratio is introduced into the reaction vessel. The substrate is then heated at 500-1,300 deg.C and plasma is simultaneously generated by irradiation with electron rays, high frequency, microwaves, etc., to activate the hydrocarbon and form the aimed diamond film on the substrate.

Description

【発明の詳細な説明】 (発明の分野) 本発明はダイヤモンド膜の製造方法に関し、より詳細に
は、核発生密度を高め、高速にダイヤモンド膜を成長さ
せ得るダイヤモンド膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a method for manufacturing a diamond film, and more particularly, to a method for manufacturing a diamond film that can increase the nucleation density and grow the diamond film at high speed.

(従来技術) 近年、ダイヤモンドは高価な装置を利用して超高圧、超
高温下で合成されるようになったが、他方、高硬度並び
に耐摩耗性に優れた切削部材や耐摩耗部材など、更に広
範な用途に答えると共に、効率的にダイヤモンドを合成
するために化学気相合成法が研究されている。
(Prior art) In recent years, diamond has been synthesized under ultra-high pressure and ultra-high temperature using expensive equipment. Chemical vapor phase synthesis is being researched in order to respond to a wider range of applications and to efficiently synthesize diamond.

この化学気相合成法は、炭化水素と水素との混合ガスを
反応槽内に導入し、電子線照射、高周波、マイクロ波等
によりプラズマを発生させて炭化水素を、活性状態にし
てプラズマを発生させて加熱された基板上にダイヤモン
ドを析出させる方法である。
In this chemical vapor phase synthesis method, a mixed gas of hydrocarbons and hydrogen is introduced into a reaction tank, and plasma is generated using electron beam irradiation, high frequency waves, microwaves, etc. to activate the hydrocarbons and generate plasma. In this method, diamond is deposited on a heated substrate.

(発明が解決しようとする問題点) このような化学気相合成法によって、平滑な基板表面に
ダイヤモンドを析出させる際、初期において、まず基板
表面に核を生成させる必要がある。
(Problems to be Solved by the Invention) When depositing diamond on a smooth substrate surface using such a chemical vapor phase synthesis method, it is necessary to initially generate nuclei on the substrate surface.

しかしながら従来の方法によれば、この核発生工程での
条件設定が難しく、時間を要し、しかも発生した核の密
度が低く、不均一なために、膜状に成長する段階で膜の
厚みが不均一となり易く、緻密な膜が得難いという欠点
があり、膜強度が低下し、切削工具等に用いた場合、寿
命が短い等の問題があった。
However, according to the conventional method, it is difficult to set the conditions for this nucleation process, it takes time, and the density of the generated nuclei is low and non-uniform, so the thickness of the film is small at the stage of growing into a film. There are disadvantages in that it tends to be non-uniform and it is difficult to obtain a dense film, the film strength decreases, and when used in cutting tools etc., there are problems such as short life.

(発明の目的) 本発明は前述の問題点を解消することを目的とするもの
で、詳細には初期の核発生工程においてダイヤモンドの
核発生を短時間で且つ高密度で発生させることによって
ダイヤモンドの成長速度を速め、均一で緻密なダイヤモ
ンド膜を得るための製造方法を提供することを目的とす
るものである。
(Objective of the Invention) The present invention aims to solve the above-mentioned problems, and specifically, it is an object of the present invention to solve the above-mentioned problems. The purpose of this invention is to provide a manufacturing method for increasing the growth rate and obtaining a uniform and dense diamond film.

(問題点を解決するための手段) 即ち、本発明によれば反応槽内に金属もしくはその金属
化合物を均一に点在した基板を配置して該基板を500
乃至1300℃に加熱した後、該反応槽内に炭化水素と
水素との混合ガスを導入するとともに炭化水素を活性化
させて、該基板表面にダイヤモンドを成膜させることを
特徴とするダイヤモンド膜の製造方法が提供される。
(Means for Solving the Problems) That is, according to the present invention, a substrate on which metals or metal compounds thereof are uniformly dotted is placed in a reaction tank, and the substrate is
After heating the substrate to 1300°C, a mixed gas of hydrocarbon and hydrogen is introduced into the reaction tank and the hydrocarbon is activated to form a diamond film on the surface of the substrate. A manufacturing method is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

ダイヤモンドの化学気相成長法は、混合ガスとして炭化
水素と水素を用いるもので、活性化された水素により炭
化水素ガスを分解し、SP″結合を有するカーボンを選
択的に基板表面に析出させるところに特徴を有する。
The chemical vapor deposition method for diamond uses hydrocarbon and hydrogen as a mixed gas.The activated hydrogen decomposes the hydrocarbon gas and selectively deposits carbon with SP'' bonds on the substrate surface. It has the following characteristics.

そこで、基板表面におけるダイヤモンド膜の生成過程を
第1図(a)乃至(c)に示す。初期において第1図(
a)に示すように炭化水素が熱分解され、励起状態とな
った炭素原子のうちsp″結合したもののみが基板1表
面にダイヤモンド核2として析出する。
Therefore, the process of forming a diamond film on the substrate surface is shown in FIGS. 1(a) to 1(c). In the early stage, Figure 1 (
As shown in a), hydrocarbons are thermally decomposed, and among the excited carbon atoms, only sp'' bonded atoms are deposited as diamond nuclei 2 on the surface of the substrate 1.

次に、一定の量の核が生じると、第1図(b)に示すよ
うに、生成された核2を中心にダイヤモンド3が析出し
、言わば島状として成長する。さらに成長が進むと第1
図(c)に示すように、隣接する島同志が重なり、最終
的には、ダイヤモンド膜3を形成する。 上述の過程に
おいて、第1図(a)の核発生過程は、条件設定が難し
く、しかも基板の表面状態に極めて影響され易いため、
核発生にバラツキが生じ易く、膜として不均一なものに
なり易い。この核発生のメカニズムは今だ明らかにされ
てはいないが、その要因の1つとして、プラズマ中のイ
オン又は電子と基板との相関作用が挙げられる。
Next, when a certain amount of nuclei are generated, as shown in FIG. 1(b), diamonds 3 are precipitated around the generated nuclei 2 and grow in a so-called island shape. If growth continues, the first
As shown in Figure (c), adjacent islands overlap and eventually form a diamond film 3. In the above-mentioned process, the nucleation process shown in FIG. 1(a) is difficult to set conditions and is extremely susceptible to the surface condition of the substrate.
Nucleation tends to vary, and the film tends to be non-uniform. Although the mechanism of this nucleation has not yet been clarified, one of the factors is the interaction between ions or electrons in the plasma and the substrate.

本発明は、上記のダイヤモンド膜の生成過程のうちその
初期において、基板表面に金属もしくはその金属化合物
を均一に点在させることによって、その周辺にダイヤモ
ンドが効率的に生成されるという新規知見に基づく。
The present invention is based on the novel finding that by uniformly dotting the surface of a substrate with metal or its metal compound at the initial stage of the diamond film formation process, diamond can be efficiently formed around the substrate surface. .

ダイヤモンドの気相合成の機構については各種の議論が
なされている。その中で、基板がダイヤモンドやCBN
と同じもしくは酷似した結晶構造の場合は、ダイヤモン
ドが容易に発生することが知られている。また、基板の
種類によっても、同一のCvD条件であってもダイヤモ
ンドの発生に差異が生じることから、基板の表面状態が
ダイヤモンドの発生、特に核発生に大きく寄与している
ことが予想される。
Various discussions have been made regarding the mechanism of diamond vapor phase synthesis. Among them, the substrate is diamond or CBN.
It is known that diamond is easily formed when the crystal structure is the same or very similar to that of diamond. Further, since diamond generation differs depending on the type of substrate even under the same CvD conditions, it is expected that the surface condition of the substrate greatly contributes to diamond generation, especially nucleation.

基板表面における反応機構の条件としては■炭化水素ガ
スの分解と水素の引抜き反応■sp’結晶の凍結■sp
’結晶以外の除去(エツチング)の3つが考えられ、こ
れらの反応には炭化水素イオン、水素イオン、水素ラジ
カル電子の化学種が関与している。ここで、基板表面に
前述の金属もしくは金属化合物を核剤として点在させる
と、基板と核在との間に電気伝導度、誘電率等の差によ
り電界が生じ、プラズマ中に存在するイオンまたは電子
の基板表面との相互作用が核剤の周囲において顕著とな
っていると考えられる。このことはエツチング条件で核
剤の周囲の基板、例えばSiが特に強くエツチングされ
ることで確認された。この相互作用の差がダイヤモンド
の核発生に大きく寄与すると思われる。
The conditions for the reaction mechanism on the substrate surface are: ■ Hydrocarbon gas decomposition and hydrogen abstraction reaction ■ Freezing of sp' crystal ■ sp
'Three types of removal (etching) of substances other than crystals are considered, and these reactions involve the chemical species of hydrocarbon ions, hydrogen ions, and hydrogen radical electrons. Here, when the above-mentioned metal or metal compound is dotted on the surface of the substrate as a nucleating agent, an electric field is generated between the substrate and the nucleating agent due to the difference in electrical conductivity, dielectric constant, etc. It is thought that the interaction of electrons with the substrate surface is significant around the nucleating agent. This was confirmed by the fact that the substrate surrounding the nucleating agent, such as Si, was etched particularly strongly under the etching conditions. It is thought that this difference in interaction greatly contributes to diamond nucleation.

即ち、核剤の存在によって核剤周辺でプラズマが非常に
強められ、■の反応によって、炭化水素ガスの分解が盛
んになりカーボンが析出するとともにそれと同時に■の
sp’結晶の凍結が生じダイヤモンドが生成される。カ
ーボンが析出する初期においては電界が強いので■の分
解速度が速く、SP2結晶(グラファイト)が生成する
。これは、核発生初期においては核剤周辺で炭化水素ガ
スの分解速度が激しく、sp”結晶の析出速度が■のエ
ツチング速度を上回っているためである。析出が進行し
ていくと初期に比べ、カーボン発生場所とその周辺との
電気伝導度または誘電率等の差が小さくなるので、電界
が弱くなる。この時、■の反応による炭化水素ガスの分
解が抑えられ、■の反応によってsp’結晶以外の物質
、例えばsp”結晶のエツチングが十分おこなわれるの
で最終的にSP3結晶のみが成長し、ダイヤモンドとし
て成長する。
In other words, the presence of the nucleating agent greatly intensifies the plasma around the nucleating agent, and due to the reaction (2), the decomposition of hydrocarbon gas becomes active and carbon is precipitated, and at the same time, the sp' crystal (2) freezes and diamonds are formed. generated. At the initial stage of carbon precipitation, the electric field is strong, so the decomposition rate of (1) is fast, and SP2 crystals (graphite) are formed. This is because at the early stage of nucleation, the decomposition rate of hydrocarbon gas is rapid around the nucleating agent, and the precipitation rate of sp'' crystals exceeds the etching rate of , the electric field becomes weaker because the difference in electrical conductivity or dielectric constant between the carbon generation site and its surroundings becomes smaller.At this time, the decomposition of hydrocarbon gas due to the reaction (■) is suppressed, and the reaction (■) causes sp' Since materials other than crystals, such as sp'' crystals, are sufficiently etched, only SP3 crystals eventually grow and grow as diamonds.

この時、■の炭化水素の分解速度が■のエツチング速度
より大きいとSPz結晶が残存し易くなり、グラファイ
ト化する。この分解速度は核剤の大きさおよび量にも大
きく左右される。
At this time, if the decomposition rate of hydrocarbons in (2) is higher than the etching rate in (2), SPz crystals tend to remain and become graphitized. The rate of decomposition is also highly dependent on the size and amount of the nucleating agent.

このようなことから核剤としては初期段階において、基
板との間に電気伝導度に差を生じること、ダイヤモンド
生成時の基板の表面温度より高い融点を有すること、■
の反応でのエツチングによって消滅しない程の大きさを
有することが重要となる。
For this reason, as a nucleating agent, at the initial stage, there is a difference in electrical conductivity between it and the substrate, and it has a melting point higher than the surface temperature of the substrate during diamond formation.
It is important to have a size large enough to not be erased by etching in the reaction.

よって本発明によれば、核剤である金属および金属酸化
物が成膜時800℃以上、特に1000℃以上の融点を
有することが必要であり、さらに、その粒子径が0.0
05 μm乃至5 p m s特に0.05 p m乃
至1IJI11であることが望ましい。融点が800℃
より低いと、基板表面で溶融してしまい、核剤として機
能しないかまたはエツチングされる。粒子径がo、oo
sμ曽より小さいとエツチングにより消滅し易くなり、
5μmよりも大きいと核発生効率が悪く、膜生成後の密
着性が悪(なる。
Therefore, according to the present invention, it is necessary that the metal and metal oxide serving as the nucleating agent have a melting point of 800° C. or higher, especially 1000° C. or higher during film formation, and furthermore, the particle size thereof must be 0.0° C. or higher.
05 μm to 5 p m s, particularly 0.05 p m to 1 IJI11. Melting point is 800℃
If it is lower, it will melt on the substrate surface and will not function as a nucleating agent or will be etched. Particle size is o, oo
If it is smaller than sμ, it will easily disappear due to etching,
If it is larger than 5 μm, the nucleation efficiency is poor and the adhesion after film formation is poor.

また、核剤は基板表面で適度の量で点在させることが重
要である。即ち、核在の量が多いと前述の■の分解速度
が大となり過ぎ、グラファイトが析出し易くなるか、ま
たは均一に存在する場合は相互作用の差が生じなくなり
、核剤として機能しなくなる。よって本発明によれば用
いる材質によっても多少異なるがおよそ10’乃至10
目個/aaの範囲で点在させるのが望ましい。
Further, it is important to scatter the nucleating agent on the substrate surface in an appropriate amount. That is, if the amount of nucleation is large, the decomposition rate of the above-mentioned (2) becomes too high, and graphite tends to precipitate, or if it exists uniformly, no difference in interaction occurs, and it does not function as a nucleating agent. Therefore, according to the present invention, it is approximately 10' to 10' although it varies somewhat depending on the material used.
It is desirable to scatter the particles within a range of 1/aa.

本発明において基板を配置する際に基板に点在させる金
属もしくは金属化合物としては、周期律表においてTi
、Zr、HfのIVa族、 V、Nb、TaのVa族、
Cr、Mo、−のVla族+Mn等の■a族、Fe、 
Co、 Ni等の■族から選ばれる金属単体またはこれ
らの複合体、金属化合物としてはCrCl3+FeC1
z+CoC1,、NiC1+FeC1,等の塩化物、F
eS、 CrS等の硫化物、TiBz。
In the present invention, the metal or metal compound dotted on the substrate when arranging the substrate includes Ti in the periodic table.
, Zr, IVa group of Hf, Va group of V, Nb, Ta,
Cr, Mo, - Vla group + Mn etc. a group, Fe,
Single metals selected from group Ⅰ such as Co and Ni, or complexes thereof, and metal compounds such as CrCl3+FeC1
Chlorides such as z+CoC1, NiC1+FeC1, F
Sulfides such as eS and CrS, TiBz.

TaBzJJz+NtB等のホウ化物、Ti5iz、V
Siz+CrSi*+MoS i z等のケイ化物、T
tC+ LCz+ TaC+ Cr5Cz+ MnC+
NiC等の炭化物、TiN+ TaN、 CrN、 F
ezN等の窒化物、Tto!、 Zr0z+ V!O1
+ WO3,Mn0z+ F’ezO=、 NiO等の
酸化物の他KFe(SO4−)z等の硫酸塩、FrCa
HsOw等の金属含有有機物などが挙げられ、それ自体
で800℃以上の融点を有するか、もしくは成膜時、雰
囲気によって還元され、例えば炭化物として800℃以
上の融点の化合物となって基板上に残存するようなもの
が選択される。
Borides such as TaBzJJz+NtB, Ti5iz, V
Silicides such as Siz+CrSi*+MoS iz, T
tC+ LCz+ TaC+ Cr5Cz+ MnC+
Carbide such as NiC, TiN+ TaN, CrN, F
Nitride such as ezN, Tto! , Zr0z+V! O1
+ WO3, Mn0z+ F'ezO=, oxides such as NiO, sulfates such as KFe(SO4-)z, FrCa
Examples include metal-containing organic substances such as HsOw, which either have a melting point of 800°C or higher by themselves, or are reduced by the atmosphere during film formation, and remain on the substrate as a carbide, for example, as a compound with a melting point of 800°C or higher. Those that do are selected.

この核剤を基板表面に点在させる手段としては油、水ま
たはアルコール等の揮発性有機液体を媒体として分散さ
せ、基板に塗布する他、分散メッキ、スプレー塗布ある
いは界面活性剤を添加して分散状態を良好にして塗布す
る他、PVD、CVD等の薄膜技術により、基板表面に
薄膜を形成させた後、エツチング技術により点在させる
ことができる。
This nucleating agent can be dotted on the substrate surface by dispersing it in a volatile organic liquid such as oil, water, or alcohol as a medium and applying it to the substrate, or by dispersion plating, spray coating, or adding a surfactant. In addition to being coated in a good condition, it is also possible to form a thin film on the surface of the substrate using a thin film technique such as PVD or CVD, and then scatter it using an etching technique.

本発明によれば、前述したようにして核剤を点在した基
板を、反応槽内に配置させ、CHa、 CJz。
According to the present invention, a substrate dotted with a nucleating agent as described above is placed in a reaction tank, and CHa, CJz.

C2H*、CJi等の炭化水素ガスと、水素ガスとの混
合ガスを導入する。 そして基体を500乃至1300
度の温度に加熱するとともに、電子線照射、高周波、マ
イクロ波等によってプラズマ発生させる。
A mixed gas of a hydrocarbon gas such as C2H* or CJi and hydrogen gas is introduced. And the base is 500 to 1300
At the same time, plasma is generated by electron beam irradiation, high frequency waves, microwaves, etc.

なお、炭化水素と水素との混合比率(C,H−/Hz)
は0.005乃至0.15、特に0.Ol乃至0.05
に設定される。
In addition, the mixing ratio of hydrocarbon and hydrogen (C, H-/Hz)
is 0.005 to 0.15, especially 0. Ol~0.05
is set to

本発明を次の例で説明する。    ゛実施例 基板としてシリコンを用いて、第1表に示す表面処理を
行い下記条件のマイクロ波プラズマCVD法によってダ
イヤモンド膜を設けた。
The invention is illustrated by the following example. Example Using silicon as a substrate, the surface treatment shown in Table 1 was carried out, and a diamond film was formed by microwave plasma CVD under the following conditions.

マイクロ波出力      400賀 圧力            25Torrc1./H
z           3/100時間      
     1 hr その時、基板の表面に第1表に示す金属粉末もしくはそ
の金属化合物粉末を塗布した後、成膜を行った。
Microwave output: 400 Torrc Pressure: 25 Torrc1. /H
z 3/100 hours
1 hr At that time, the metal powder or metal compound powder shown in Table 1 was applied to the surface of the substrate, and then a film was formed.

1時間の成膜後に、核発生状況を顕微鏡にて観察した。After 1 hour of film formation, the state of nucleation was observed using a microscope.

また、基板表面におけるダイヤモンドの占有率を求め、
その値を核から膜への成長速度の目安とした。結果を第
1表に示す。
Also, find the occupancy rate of diamond on the substrate surface,
This value was used as a guideline for the growth rate from the nucleus to the membrane. The results are shown in Table 1.

第1表から明らかなように核剤が残存しない場合、1時
間後でも、5%の占有率しかないのに対し、本発明の方
法によれば、核発生速度を確実に向上させることができ
、それによって占有率を20%以上、中には90%以上
に上げることができた。
As is clear from Table 1, when no nucleating agent remains, the occupancy rate is only 5% even after one hour, whereas the method of the present invention can reliably improve the nucleation rate. As a result, we were able to increase the occupancy rate to over 20%, and in some cases over 90%.

また、基板として5iJ4¥を焼結体およびSiC質焼
結体を用いて同様の実験を行いほぼ同様の結果が得られ
た。
Further, similar experiments were conducted using a 5iJ4 sintered body and a SiC sintered body as substrates, and almost the same results were obtained.

(発明の効果) 上述した通り、本発明のダイヤモンド膜の製造方法は基
板表面に予め金属粉末、もしくは金属化合物を点在させ
ることによって、ダイヤモンド生成における初期の核発
生を短時間で均−且つ、緻密化することができ、それに
よって膜成長を速め、均一な膜厚の緻密なダイヤモンド
膜を得ることができる。
(Effects of the Invention) As described above, the method for manufacturing a diamond film of the present invention uniformizes the initial nucleation during diamond formation in a short time by dotting the surface of the substrate with metal powder or a metal compound in advance. The diamond film can be densified, thereby speeding up film growth and obtaining a dense diamond film with a uniform thickness.

このようなダイヤモンド膜は、切削工具の表面被覆とし
て工具の長寿命化を計ることができ1、また、ヒートシ
ンク用として優れた熱伝導性を付与することが可能とな
る。
Such a diamond film can be used as a surface coating of a cutting tool to extend the life of the tool1, and can also be used as a heat sink to provide excellent thermal conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(c)はダイヤモンド膜の生成過程を
示した図である。 1・・・基板 2・・・ダイヤモンド核 3・・・ダイヤモンド膜
FIGS. 1(a) to 1(c) are diagrams showing the process of forming a diamond film. 1...Substrate 2...Diamond core 3...Diamond film

Claims (3)

【特許請求の範囲】[Claims] (1)反応槽内に金属もしくはその金属化合物を均一に
点在した基板を配置して該基板を500乃至1300℃
に加熱した後、該反応槽内に炭化水素と水素との混合ガ
スを導入するとともに炭化水素を活性化させて、該基板
表面にダイヤモンドを成膜させることを特徴とするダイ
ヤモンド膜の製造方法。
(1) Place a substrate uniformly dotted with metal or its metal compound in a reaction tank and heat the substrate to 500 to 1300°C.
1. A method for producing a diamond film, which comprises heating the substrate to a temperature of 100.degree. C., and then introducing a mixed gas of hydrocarbon and hydrogen into the reaction tank and activating the hydrocarbon to form a diamond film on the surface of the substrate.
(2)前記金属もしくは金属化合物が、成膜時に融点が
800℃以上の金属もしくは金属化合物として基板上に
点在する特許請求の範囲第1項記載のダイヤモンド膜の
製造方法。
(2) The method for producing a diamond film according to claim 1, wherein the metal or metal compound is dotted on the substrate as a metal or metal compound having a melting point of 800° C. or higher during film formation.
(3)前記金属もしくは金属化合物が成膜時に0.00
5乃至5μmの粒子または膜として基板表面に点在する
特許請求の範囲第1項または第2項記載のダイヤモンド
膜の製造方法。
(3) The metal or metal compound has a concentration of 0.00 at the time of film formation.
A method for producing a diamond film according to claim 1 or 2, wherein the diamond film is scattered on the surface of the substrate as particles or films of 5 to 5 μm.
JP4496586A 1986-02-28 1986-02-28 Diamond film manufacturing method Expired - Lifetime JPH0725635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4496586A JPH0725635B2 (en) 1986-02-28 1986-02-28 Diamond film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4496586A JPH0725635B2 (en) 1986-02-28 1986-02-28 Diamond film manufacturing method

Publications (2)

Publication Number Publication Date
JPS62202898A true JPS62202898A (en) 1987-09-07
JPH0725635B2 JPH0725635B2 (en) 1995-03-22

Family

ID=12706193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4496586A Expired - Lifetime JPH0725635B2 (en) 1986-02-28 1986-02-28 Diamond film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0725635B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262467A (en) * 1987-04-18 1988-10-28 Sumitomo Electric Ind Ltd Formation of hard diamondlike carbon film with satisfactory adhesion
JPS649892A (en) * 1987-07-01 1989-01-13 Showa Denko Kk Method for synthesizing diamond by vapor process
JPH01239092A (en) * 1987-12-17 1989-09-25 General Electric Co <Ge> Production of diamond
JPH02208981A (en) * 1989-02-09 1990-08-20 Canon Inc Formation of josephson junction device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262467A (en) * 1987-04-18 1988-10-28 Sumitomo Electric Ind Ltd Formation of hard diamondlike carbon film with satisfactory adhesion
JPS649892A (en) * 1987-07-01 1989-01-13 Showa Denko Kk Method for synthesizing diamond by vapor process
JPH01239092A (en) * 1987-12-17 1989-09-25 General Electric Co <Ge> Production of diamond
JPH02208981A (en) * 1989-02-09 1990-08-20 Canon Inc Formation of josephson junction device

Also Published As

Publication number Publication date
JPH0725635B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
US20060222850A1 (en) Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
TWI718800B (en) Method of diamond nucleation and structure formed thereof
JPH0624898A (en) Thin multilayer cvd diamond film
JPS62138395A (en) Preparation of diamond film
JPS62202897A (en) Production of diamond
JPH09124395A (en) Multilayer system comprising diamond layer, interfacial layer and metallic substrate and method for obtaining these layers
JPS62202898A (en) Production of diamond film
Lee et al. Some novel aspects of nanocrystalline diamond nucleation and growth by direct current plasma assisted chemical vapor deposition
Tzeng et al. Graphene induced diamond nucleation on tungsten
Roy et al. Crystallization of diamond below 1 atm from carbon–metal mixtures
JPH01157412A (en) Substrate with diamond film
JPH0811719B2 (en) Diamond film manufacturing method
JPS61201698A (en) Diamond film and its production
JPH0723279B2 (en) Diamond film manufacturing method
JPH0448757B2 (en)
KR930011165B1 (en) Apparatus for adhering diamond film on the plate and processing method thereof
JPH0794081B2 (en) Hard carbon coated parts
JP2585342B2 (en) Diamond vapor phase synthesis
KR100280116B1 (en) Method for producing diamond with liquid organic compound as precursor
JP3160399B2 (en) Diamond film manufacturing method
JPH0518794B2 (en)
JPS6369973A (en) Production of cubic boron nitride film
Nayak et al. Electron beam activated plasma chemical vapour deposition of polycrystalline diamond films
JPH02239191A (en) Multilayer diamond film and its production
JPH04160074A (en) Diamond porous body and its production