JP2014050808A - Exhaust gas cleaning filter - Google Patents

Exhaust gas cleaning filter Download PDF

Info

Publication number
JP2014050808A
JP2014050808A JP2012197709A JP2012197709A JP2014050808A JP 2014050808 A JP2014050808 A JP 2014050808A JP 2012197709 A JP2012197709 A JP 2012197709A JP 2012197709 A JP2012197709 A JP 2012197709A JP 2014050808 A JP2014050808 A JP 2014050808A
Authority
JP
Japan
Prior art keywords
catalyst
dpf
exhaust purification
filter
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012197709A
Other languages
Japanese (ja)
Other versions
JP5844704B2 (en
Inventor
Takeshi Mori
武史 森
Chiaki Seki
千晶 関
Takeshi Matsumoto
武史 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012197709A priority Critical patent/JP5844704B2/en
Publication of JP2014050808A publication Critical patent/JP2014050808A/en
Application granted granted Critical
Publication of JP5844704B2 publication Critical patent/JP5844704B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning filter including an Ag-based catalyst, the exhaust gas cleaning filter enabling contact property of a catalyst and PM to be improved, and thereby capable of effectively cleaning PM by a small catalyst supporting amount.SOLUTION: The exhaust gas cleaning filter includes: a filter body which has pores having an average pore diameter of 20-35 μm, thereby having a rugged surface; and a catalyst coating film that is supported on a surface of the filter body and comprises an Ag-based catalyst cleaning a captured particulate substance, where a supported amount of the Ag-based catalyst is 10-45 g/L per a unit volume of the filter body, thereby the catalyst coating film is supported in a rugged state along the ruggedness of a surface of the filter body. A surface of the catalyst coating film is observed by enlarging the same by 3,000 times, and a surface observation image including the pores of the average pore diameter is obtained. The obtained surface observation image is three dimensionally processed to obtain dimensional image information. A surface area of a surface of the catalyst coating film calculated based on the three dimensional image information is 2,300-2,950 μm.

Description

本発明は、排気浄化フィルタに関する。詳しくは、内燃機関から排出される排気中の粒子状物質を捕捉して浄化する排気浄化フィルタに関する。   The present invention relates to an exhaust purification filter. Specifically, the present invention relates to an exhaust gas purification filter that captures and purifies particulate matter in exhaust gas discharged from an internal combustion engine.

自動車等に搭載される内燃機関、特に圧縮着火式内燃機関においては、排出される排気中に多量の粒子状物質が含まれることが知られている。この粒子状物質(Particulate Matter、以下「PM」という。)は、人体に有害であり、エミッション規制対象物質である。そのため、通常、PMを捕捉する排気浄化フィルタとしてのDPF(Diesel Particulate Filter)が内燃機関の排気通路に設けられている。   In an internal combustion engine mounted on an automobile or the like, in particular, a compression ignition type internal combustion engine, it is known that a large amount of particulate matter is contained in the exhaust gas discharged. This particulate matter (Particulate Matter, hereinafter referred to as “PM”) is harmful to the human body and is an emission-regulated substance. Therefore, a DPF (Diesel Particulate Filter) as an exhaust gas purification filter that captures PM is usually provided in the exhaust passage of the internal combustion engine.

上記DPFでは、捕捉されたPMが次第に堆積する。すると、DPFの上流側と下流側との間で差圧が生じ、出力の低下や燃費の悪化を招く。そのため、上記DPFには、PMがある程度堆積した段階で、堆積したPMを燃焼除去するための触媒が担持されるのが一般的である。   In the DPF, trapped PM gradually accumulates. Then, a differential pressure is generated between the upstream side and the downstream side of the DPF, leading to a decrease in output and a deterioration in fuel consumption. For this reason, the DPF generally carries a catalyst for burning and removing the deposited PM when PM is accumulated to some extent.

上記触媒としては、PMに対して特に優れた浄化活性を示すAg系触媒が知られている。このAg系触媒は、活性酸素の放出によりPMを燃焼するAgを含有し、PMとの接触性がPMの浄化率に大きく影響する特性を有する。そのため、このAg系触媒とPMの接触性を向上させる技術が種々提案されている。   As said catalyst, the Ag type catalyst which shows the especially outstanding purification | cleaning activity with respect to PM is known. This Ag-based catalyst contains Ag that burns PM by releasing active oxygen, and has a characteristic that the contact property with PM greatly affects the PM purification rate. For this reason, various techniques for improving the contact between the Ag-based catalyst and PM have been proposed.

例えば、Ag系触媒中にTiO等の針状物質を含有させることで、触媒層内に所定の大きさの空隙を形成する技術が提案されている(特許文献1参照)。この技術によれば、触媒層中の空隙内にPMを侵入させることができるため、フィルタの表面にPMが層状に堆積するのを抑制できる。ひいては、Ag系触媒とPMの良好な接触状態を確保(即ち、大きな接触面積を確保)でき、従来に比して効率良くPMを浄化できるとされている。 For example, a technique has been proposed in which a needle-shaped substance such as TiO 2 is contained in an Ag-based catalyst to form a void having a predetermined size in the catalyst layer (see Patent Document 1). According to this technique, since PM can be penetrated into the voids in the catalyst layer, PM can be prevented from being deposited in a layered manner on the surface of the filter. As a result, it is said that a good contact state between the Ag-based catalyst and PM can be ensured (that is, a large contact area can be ensured), and PM can be purified more efficiently than in the past.

また例えば、クエン酸等を用いた微細発泡法によりAg系触媒をDPFに担持させることで、Ag系触媒の被覆率を向上させる技術が提案されている(特許文献2参照)。この技術によれば、DPFの表面をAg系触媒で十分に被覆できるため、Ag系触媒とPMの良好な接触状態を確保でき、従来に比して効率良くPMを浄化できるとされている。   In addition, for example, a technique for improving the coverage of an Ag-based catalyst by supporting an Ag-based catalyst on a DPF by a fine foaming method using citric acid or the like has been proposed (see Patent Document 2). According to this technique, since the surface of the DPF can be sufficiently covered with the Ag-based catalyst, a good contact state between the Ag-based catalyst and the PM can be secured, and the PM can be purified more efficiently than in the past.

また例えば、DPFのセル壁を構成する各セラミック粒子自体の表面を、個別に触媒層で被覆する技術が提案されている(特許文献3参照)。この技術では、触媒とPMの接触性の向上を目的とした技術ではないものの、結果として、触媒とPMの接触性が改善される。   Further, for example, a technique has been proposed in which the surface of each ceramic particle constituting the cell wall of the DPF is individually covered with a catalyst layer (see Patent Document 3). Although this technique is not a technique aimed at improving the contact between the catalyst and PM, as a result, the contact between the catalyst and PM is improved.

特開2011−36742号公報JP 2011-36742 A 特開2010−264359号公報JP 2010-264359 A 特許第4275406号公報Japanese Patent No. 4275406

しかしながら特許文献1の技術では、PMとの良好な接触性が重要なAg系触媒において針状構造を形成するのは理想的であるものの、実際には、針状物質を含有させることで形成した触媒層中の空隙内に、PMを侵入させて燃焼させるのは容易ではなかった。具体的には、触媒層上にPMの所謂ケーキ層が形成され、これにより、触媒層中の空隙内に侵入できるPMが少量となる結果、触媒とPMの良好な接触性が確保できないおそれがあった。   However, in the technique of Patent Document 1, although it is ideal to form a needle-like structure in an Ag-based catalyst in which good contact with PM is important, in reality, it is formed by containing a needle-like substance. It was not easy to infiltrate PM into the voids in the catalyst layer and burn it. Specifically, a so-called cake layer of PM is formed on the catalyst layer, and as a result, the amount of PM that can enter into the voids in the catalyst layer becomes small, so that good contact between the catalyst and PM may not be ensured. there were.

また特許文献2の技術では、触媒によってDPFの表面の被覆率を向上させることが重要となるものの、被覆率を向上させるためには、触媒の担持量(ウォッシュコートWC量)を増やす必要があった。そのため、多量の触媒によりDPFの細孔が触媒層中に埋没する結果、触媒とPMの良好な接触性が確保できないおそれがあった。   In the technique of Patent Document 2, it is important to improve the coverage of the DPF surface with a catalyst. However, in order to improve the coverage, it is necessary to increase the amount of catalyst supported (the amount of washcoat WC). It was. Therefore, as a result of the DPF pores being buried in the catalyst layer by a large amount of catalyst, there is a possibility that good contact between the catalyst and PM cannot be ensured.

また特許文献3の技術では、DPFのセル壁を構成する各セラミック粒子自体の表面を、個別に触媒層で被覆するため、触媒の担持量(ウォッシュコート量)が過大となる。その一方では、PMは、DPFの排気流入側の表面と、当該表面近傍の細孔内にしか侵入できないことが本出願人の調査により判明していることから、セル壁内部の触媒はPMの燃焼に寄与し得ず、触媒の有効活用の観点で好ましいとは言えなかった。また、この技術では、製造工程が煩雑化するという問題もあった。   In the technique of Patent Document 3, since the surface of each ceramic particle itself constituting the cell wall of the DPF is individually covered with a catalyst layer, the amount of catalyst supported (wash coat amount) becomes excessive. On the other hand, since it has been found by the applicant's investigation that PM can only enter the surface on the exhaust inflow side of the DPF and the pores in the vicinity of the surface, the catalyst inside the cell wall is PM. It could not contribute to combustion, and was not preferable from the viewpoint of effective utilization of the catalyst. In addition, this technique has a problem that the manufacturing process becomes complicated.

本発明は上記に鑑みてなされたものであり、その目的は、Ag系触媒を備える排気浄化フィルタにおいて、少ない触媒担持量で触媒とPMの接触性を向上でき、PMを効率良く浄化できる排気浄化フィルタを提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to provide an exhaust purification filter equipped with an Ag-based catalyst, which can improve the contact between the catalyst and PM with a small amount of catalyst supported, and can effectively purify PM. To provide a filter.

上記目的を達成するため本発明に係る排気浄化フィルタ(例えば、後述の排気浄化フィルタ1,2)は、内燃機関の排気通路に設けられ、前記内燃機関の排気中の粒子状物質(例えば、後述のPM5)を捕捉して浄化する排気浄化フィルタであって、平均細孔径が20〜35μmの細孔(例えば後述の細孔13,23)を有することで表面が凹凸状のフィルタ本体(例えば、後述のDPF11,21)と、当該フィルタ本体の表面に担持され且つ捕捉した粒子状物質を浄化するAg系触媒からなる触媒被膜(例えば、後述の触媒被膜12,22)と、を備え、前記Ag系触媒の担持量が、前記フィルタ本体の単位容量あたり10〜45g/Lであることにより、前記触媒被膜が、前記フィルタ本体の表面の凹凸に沿って凹凸状に担持されており、前記触媒被膜の表面を3000倍に拡大観察して、前記平均細孔径の細孔を含む表面観察画像(例えば、後述の図11)を取得し、これを3次元処理して得られた3次元画像情報に基づいて算出された前記触媒被膜の表面の表面積が、2300〜2950μmであることを特徴とする。 In order to achieve the above object, an exhaust purification filter (for example, exhaust purification filters 1 and 2 described later) according to the present invention is provided in an exhaust passage of the internal combustion engine, and particulate matter (for example, described later) in the exhaust of the internal combustion engine. PM5) is an exhaust purification filter that captures and purifies the filter body, and has an average pore diameter of 20 to 35 μm (for example, pores 13 and 23 to be described later) so that the surface of the filter body is uneven (for example, DPF 11 and 21), which will be described later, and a catalyst film (for example, catalyst films 12 and 22 which will be described later) made of an Ag-based catalyst that purifies the particulate matter supported and trapped on the surface of the filter body. When the loading amount of the system catalyst is 10 to 45 g / L per unit volume of the filter main body, the catalyst coating is supported unevenly along the unevenness of the surface of the filter main body. The surface of the catalyst coating was magnified 3000 times to obtain a surface observation image including pores having the average pore diameter (for example, FIG. 11 described later), and obtained by three-dimensionally processing this image 3 The surface area of the surface of the catalyst coating calculated based on the dimensional image information is 2300-2950 μm 2 .

本発明では、平均細孔径が20〜35μmの細孔を有することで表面が凹凸状のフィルタ本体上に、従来よりも少ない担持量(ウォッシュコートWC量)10〜45g/Lで、Ag系触媒を担持させる。これにより、本発明に係る排気浄化フィルタは、Ag系触媒からなる触媒被膜がフィルタ本体の表面の凹凸に沿って凹凸状に担持され、フィルタ本体の細孔による凹凸が維持される。また、触媒被膜の表面を3000倍に拡大観察して、平均細孔径の細孔を含む表面観察画像を取得し、これを3次元処理して得られた3次元画像情報に基づいて算出された触媒被膜の表面の表面積(以下、「モルフォロジー指数」という。)が、従来よりも大きい2300〜2950μmとなっている。
本発明によれば、PMとの接触性がPMの浄化率に大きく影響する特性を有するAg系触媒を備える排気浄化フィルタにおいて、従来よりも少ない触媒担持量で、従来よりも大きなモルフォロジー指数が得られる。従って、触媒とPMの接触性を向上(接触面積を大きく)でき、PMを効率良く燃焼して浄化できる。ひいては、排気浄化フィルタの再生速度を向上でき、再生時間を短縮できるため、再生による燃費及びEMの悪化や、触媒の熱劣化を抑制できる。
In the present invention, an Ag-based catalyst having a pore having an average pore diameter of 20 to 35 μm and having a surface with an uneven surface and having a smaller supported amount (wash coat WC amount) of 10 to 45 g / L than before. Is supported. Thus, in the exhaust purification filter according to the present invention, the catalyst coating made of an Ag-based catalyst is supported in an uneven shape along the unevenness of the surface of the filter body, and the unevenness due to the pores of the filter body is maintained. In addition, the surface of the catalyst coating was magnified 3000 times to obtain a surface observation image including pores having an average pore diameter, and this was calculated based on the three-dimensional image information obtained by three-dimensional processing. The surface area (hereinafter referred to as “morphological index”) of the surface of the catalyst coating is 2300-2950 μm 2 which is larger than the conventional one.
According to the present invention, in an exhaust purification filter including an Ag-based catalyst having a characteristic that the contact property with PM greatly affects the PM purification rate, a larger morphological index than the conventional one can be obtained with a smaller amount of supported catalyst. It is done. Therefore, the contact property between the catalyst and PM can be improved (the contact area can be increased), and PM can be efficiently burned and purified. As a result, since the regeneration speed of the exhaust purification filter can be improved and the regeneration time can be shortened, deterioration of fuel consumption and EM due to regeneration and thermal deterioration of the catalyst can be suppressed.

この場合、前記Ag系触媒が、凸形状を有する凸状材を含有し、前記凸状材の担持量が、前記フィルタ本体の単位容量あたり5〜45g/Lであることが好ましい。   In this case, it is preferable that the Ag-based catalyst contains a convex material having a convex shape, and the amount of the convex material supported is 5 to 45 g / L per unit capacity of the filter body.

この発明では、Ag系触媒中に凸状材を含有させ、当該凸状材の担持量を5〜45g/Lとする。これにより、フィルタ本体表面の凹凸に沿って凹凸状に形成された触媒被膜の表面上に、さらに微細な凹凸形状を形成できる。そのため、より大きなモルフォロジー指数が得られ、触媒とPMの接触性をより向上でき、上記発明の効果を高めることができる。   In this invention, a convex material is contained in the Ag-based catalyst, and the amount of the convex material supported is 5 to 45 g / L. Thereby, a finer uneven shape can be formed on the surface of the catalyst coating formed in an uneven shape along the unevenness of the filter body surface. Therefore, a larger morphological index can be obtained, the contact property between the catalyst and PM can be further improved, and the effect of the invention can be enhanced.

この場合、前記凸状材が、針状構造、フラワー状構造、板状構造又は皿状構造を有することが好ましい。   In this case, it is preferable that the convex material has a needle-like structure, a flower-like structure, a plate-like structure, or a dish-like structure.

この発明では、Ag系触媒中に、針状構造、フラワー状構造、板状構造又は皿状構造を有する凸状材を含有させる。これにより、上記発明の効果が確実に発揮される。   In the present invention, a convex material having a needle-like structure, a flower-like structure, a plate-like structure or a dish-like structure is contained in the Ag-based catalyst. Thereby, the effect of the said invention is exhibited reliably.

この場合、前記凸状材が、酸素放出能を備える酸素放出材を含むことが好ましい。   In this case, it is preferable that the convex material includes an oxygen releasing material having an oxygen releasing ability.

この発明では、Ag系触媒中に含有させる凸状材として、酸素放出能を備える酸素放出材を含むものとする。これにより、活性酸素の放出によるPM燃焼を促進でき、より効率良くPMを浄化できる。   In this invention, the oxygen releasing material provided with oxygen releasing ability shall be included as a convex material contained in Ag type catalyst. Thereby, PM combustion by discharge | release of active oxygen can be accelerated | stimulated and PM can be purified more efficiently.

この場合、前記フィルタ本体のセル形状が、4〜8角形のうちのいずれかであり、前記フィルタ本体のセル数が、1平方インチあたり200〜400セルであることが好ましい。   In this case, it is preferable that the cell shape of the filter main body is any one of 4-8 octagons, and the number of cells of the filter main body is 200-400 cells per square inch.

この発明では、フィルタ本体のセル形状を4〜8角形のうちのいずれかとし、フィルタ本体のセル数を1平方インチあたり200〜400セルとする。即ち、セル形状を多角形状とし、セル数を多くする。これにより、より大きなモルフォロジー指数が得られ、触媒とPMの接触面積を大きくできるため、上記の各発明の効果を高めることができる。   In the present invention, the cell shape of the filter body is any one of 4 to 8 squares, and the number of cells of the filter body is 200 to 400 cells per square inch. That is, the cell shape is a polygonal shape and the number of cells is increased. Thereby, a larger morphological index can be obtained, and the contact area between the catalyst and PM can be increased, so that the effects of the above-described inventions can be enhanced.

本発明によれば、Ag系触媒を備える排気浄化フィルタにおいて、少ない触媒担持量で触媒とPMの接触性を向上でき、PMを効率良く浄化できる排気浄化フィルタを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, in the exhaust gas purification filter provided with Ag type catalyst, the contact property of a catalyst and PM can be improved with a small catalyst carrying amount, and the exhaust gas purification filter which can purify PM efficiently can be provided.

PMが堆積したDPF表面の断面観察画像である。It is a cross-sectional observation image of the DPF surface where PM deposited. Ag系触媒のPM燃焼メカニズムを説明するための図である。It is a figure for demonstrating the PM combustion mechanism of Ag type catalyst. DPF表面の細孔による凹凸に沿って凹凸状に形成された本実施形態の触媒被膜を示す断面図である。It is sectional drawing which shows the catalyst film of this embodiment formed in uneven | corrugated shape along the unevenness | corrugation by the pore of the DPF surface. DPF表面の細孔による凹凸に沿って凹凸状に形成され、且つその表面に微細な凹凸が形成された本実施形態の触媒被膜を示す断面図である。It is sectional drawing which shows the catalyst film of this embodiment formed in uneven | corrugated shape along the unevenness | corrugation by the pore of a DPF surface, and the fine unevenness | corrugation was formed in the surface. フラワー状構造を有する凸状材の拡大観察画像であるIt is an enlarged observation image of a convex material having a flower-like structure 板状構造及び皿状構造を有する凸状材の拡大観察画像である。It is an enlarged observation image of a convex material having a plate-like structure and a dish-like structure. モルフォロジー指数と2分間再生速度との関係を示す図である。It is a figure which shows the relationship between a morphology index and a 2-minute reproduction | regeneration speed. 比較例1の排気浄化フィルタにおける触媒表面の表面観察画像(250倍画像)である。4 is a surface observation image (250 times image) of a catalyst surface in an exhaust purification filter of Comparative Example 1; 比較例2の排気浄化フィルタにおける触媒表面の表面観察画像(200倍画像)である。10 is a surface observation image (200-fold image) of a catalyst surface in an exhaust purification filter of Comparative Example 2. 実施例1の排気浄化フィルタにおける触媒表面の表面観察画像(200倍画像)である。2 is a surface observation image (200-fold image) of a catalyst surface in the exhaust gas purification filter of Example 1. FIG. 実施例1の排気浄化フィルタにおける触媒表面の表面観察画像(3000倍画像)である。2 is a surface observation image (3000 times image) of a catalyst surface in the exhaust gas purification filter of Example 1. FIG. DPFの平均細孔径と2分間再生速度との関係を示す図である。It is a figure which shows the relationship between the average pore diameter of DPF, and a 2 minute regeneration speed. 触媒の担持量と2分間再生速度との関係を示す図である。It is a figure which shows the relationship between the load of a catalyst, and a 2 minute regeneration speed. 針状CeOを含有するAg系触媒からなる触媒被膜の担持量を100g/Lとした排気浄化フィルタについて、表面近傍を断面観察して得られた断面観察画像である。For needle-shaped exhaust gas purifying filter that the amount of supported catalyst film made of Ag-based catalyst was 100 g / L containing CeO 2, a cross-sectional observation image obtained with near-surface and cross-sectional observation. 針状CeOを含有するAg含有触媒からなる触媒被膜の担持量を30g/Lとした排気浄化フィルタについて、表面近傍を断面観察して得られた断面観察画像である。For needle-shaped exhaust gas purifying filter that the amount of supported catalyst film made of Ag-containing catalyst containing CeO 2 was 30 g / L, a cross-sectional observation image obtained with near-surface and cross-sectional observation.

以下、本発明の実施形態について図面を参照しながら詳しく説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第一実施形態に係る排気浄化フィルタは、例えばディーゼルエンジン等の内燃機関の排気通路に設けられ、内燃機関の排気中のPMを捕捉して浄化する。本実施形態に係る排気浄化フィルタは、フィルタ本体としてのDPFと、DPFの表面に担持されたAg系触媒からなる触媒被膜と、を備える。   The exhaust purification filter according to the first embodiment of the present invention is provided in an exhaust passage of an internal combustion engine such as a diesel engine, for example, and captures and purifies PM in the exhaust of the internal combustion engine. The exhaust purification filter according to the present embodiment includes a DPF as a filter main body and a catalyst coating made of an Ag-based catalyst supported on the surface of the DPF.

本実施形態のDPFは、三次元網目構造を有し、炭化珪素やコージェライト等の多孔質材料から形成される。また、PM捕集能を有する発泡金属や発泡セラミックス又は金属やセラミックス繊維を重ね合わせた不織布、ウォールフロータイプのフィルタ等、如何なる形態でも使用可能である。これらのうち、ウォールフロータイプのハニカム構造のフィルタが、捕集効率及び触媒とPMの接触性の観点から好ましく用いられる。   The DPF of the present embodiment has a three-dimensional network structure and is formed from a porous material such as silicon carbide or cordierite. Further, any form such as foam metal or foam ceramic having PM collecting ability, a nonwoven fabric in which metals and ceramic fibers are superimposed, a wall flow type filter, or the like can be used. Among these, a wall flow type honeycomb structure filter is preferably used from the viewpoint of collection efficiency and contact between the catalyst and PM.

本実施形態のDPFは、触媒とPMの接触面積を大きくできる観点から、セル形状が4〜8角形のうちのいずれかであることが好ましい。また、同様の観点から、セル数が1平方インチあたり200〜400セルであることが好ましい。セル数が200セル未満であると、触媒とPMの接触面積を十分確保できず、400セルを超えると、セルにPMが目詰まりして圧損の上昇に繋がる。   In the DPF of this embodiment, the cell shape is preferably any one of 4 to 8 octagons from the viewpoint of increasing the contact area between the catalyst and the PM. From the same viewpoint, the number of cells is preferably 200 to 400 cells per square inch. When the number of cells is less than 200 cells, a sufficient contact area between the catalyst and PM cannot be ensured. When the number exceeds 400 cells, PM is clogged in the cells, leading to an increase in pressure loss.

また本実施形態のDPFは、平均細孔径(気孔径)が20〜35μmの細孔を有する。また、これらの細孔を有することで、その表面が凹凸状に形成されている。これにより、後述するような大きなモルフォロジー指数が得られる。またこれにより、PN規制をクリヤでき、十分な機械的強度を有するDPFが得られる。   Further, the DPF of this embodiment has pores having an average pore diameter (pore diameter) of 20 to 35 μm. Moreover, the surface is formed in uneven | corrugated shape by having these pores. Thereby, a large morphological index as described later is obtained. Thereby, PN regulation can be cleared, and a DPF having sufficient mechanical strength can be obtained.

ここで、図1は、PMが堆積したDPF表面の断面観察画像である。図1に示すように、PMは、DPFの排気流入側の表面と、当該表面近傍の極浅い細孔内にしか侵入できない。具体的には、図1に示すように、PMのDPF表面への侵入深さは平均35μmである。従って、触媒とPMの接触性を向上させるためには、DPF表面近傍における触媒とPMの接触性が重要であると言える。そこで本実施形態では、後述するようにDPF表面近傍の3次元画像を解析して表面積の指標であるモルフォロジー指数を算出し、これを従来よりも大きな値に設定することにより、PM燃焼性能を向上させるものである。   Here, FIG. 1 is a cross-sectional observation image of the DPF surface on which PM is deposited. As shown in FIG. 1, PM can only enter the surface on the exhaust inflow side of the DPF and the extremely shallow pores in the vicinity of the surface. Specifically, as shown in FIG. 1, the average penetration depth of PM into the DPF surface is 35 μm. Therefore, in order to improve the contact property between the catalyst and the PM, it can be said that the contact property between the catalyst and the PM in the vicinity of the DPF surface is important. Therefore, in this embodiment, as will be described later, a three-dimensional image in the vicinity of the DPF surface is analyzed to calculate a morphological index as a surface area index, and this is set to a larger value than before, thereby improving PM combustion performance. It is something to be made.

本実施形態の触媒被膜は、触媒金属としてAgを主体的に含有するAg系触媒からなる。Ag系触媒は、現状、PMの燃焼に最も有効な触媒であり、Pt等の他の貴金属系触媒よりも低温でPMを燃焼できる。例えば、PMとの接触性が良好であれば、200℃以下からPMを着火させることができ、400℃でPMの燃焼を完了させることができる。   The catalyst coating of the present embodiment is composed of an Ag-based catalyst mainly containing Ag as a catalyst metal. An Ag-based catalyst is currently the most effective catalyst for burning PM, and can burn PM at a lower temperature than other noble metal-based catalysts such as Pt. For example, if the contact property with the PM is good, the PM can be ignited from 200 ° C. or less, and the combustion of the PM can be completed at 400 ° C.

ここで、Ag系触媒のPM燃焼メカニズムを、図2を参照しながら説明する。
図2は、Ag系触媒のPM燃焼メカニズムを説明するための図であり、詳しくは、Ag/CeZrOの表面状態を模式的に示した図である。
ここで、Ag系触媒では、表面近傍のAgは、酸化雰囲気下ではAgOとして存在し、還元雰囲気下ではAgメタルとして存在することが分かっている。そして、AgOは、酸素脱離エネルギーが最も小さく、PMの燃焼に対して最も有効な化合物であるとされている。
Here, the PM combustion mechanism of the Ag-based catalyst will be described with reference to FIG.
FIG. 2 is a diagram for explaining the PM combustion mechanism of the Ag-based catalyst, and more specifically, a diagram schematically showing the surface state of Ag / CeZrO 2 .
Here, in the Ag-based catalyst, it is known that Ag near the surface exists as Ag 2 O in an oxidizing atmosphere and as Ag metal in a reducing atmosphere. Ag 2 O has the lowest oxygen desorption energy and is considered to be the most effective compound for PM combustion.

図2に示すように、酸素放出能を有する触媒担体としてのCeZrOから、表面付近のAgメタル(図2においてAgと表示されている粒子を意味する)に酸素が供給されると、Agメタルは活性種であるAgO(図2においてAgと表示されている粒子とOと表示されている粒子を意味する)に変換される。そして、このAgOは、PMと反応することによりAgメタルに戻るものの、直ちにCeZrOからの酸素がAgメタルに供給される結果、常に表面付近のAgは、AgOの状態で存在する。
従って、このAg系触媒は、表面付近に存在する活性種AgOの作用によって、低温下で効率良くPMを燃焼除去できる。
As shown in FIG. 2, when oxygen is supplied from CeZrO 2 as a catalyst carrier having oxygen releasing ability to Ag metal in the vicinity of the surface (meaning particles displayed as Ag 0 in FIG. 2), Ag The metal is converted into Ag 2 O which is an active species (meaning particles indicated as Ag + and particles indicated as O * in FIG. 2). Then, the Ag 2 O, although returns to Ag metal by reacting with PM, results immediately oxygen from CeZrO 2 is supplied to the Ag metal, always Ag near the surface is present in the form of Ag 2 O .
Therefore, this Ag-based catalyst can efficiently burn and remove PM at a low temperature by the action of the active species Ag 2 O present near the surface.

本実施形態のAg系触媒は、触媒金属としてのAgを担持する触媒担体として、酸素放出能を有する酸化物や複合酸化物が好ましく使用される。具体的には、CeOやCeZrOが好ましく使用される。これにより、酸素放出能を有する酸化物や複合酸化物から放出される酸素によって、上記AgOの安定性が確保される。 In the Ag-based catalyst of the present embodiment, an oxide or composite oxide having oxygen releasing ability is preferably used as a catalyst carrier that supports Ag as a catalyst metal. Specifically, CeO 2 or CeZrO 2 is preferably used. Thereby, the stability of Ag 2 O is ensured by the oxygen released from the oxide or composite oxide having oxygen releasing ability.

酸素放出能を有する複合酸化物としては、ペロブスカイト型、スピネル型、ルチル型、デラフォサイト型、マグネトプランバイト型、イルメナイト型、及びフルオライト型からなる群より選択される少なくとも1種を用いることができる。これらの中でも、酸素放出能の観点から、フルオライト型の複合酸化物が好ましく用いられる。
また、複合酸化物は、アルカリ土類金属元素、遷移金属元素、第12族元素、及び第13族元素からなる群より選択される少なくとも2種以上を構成元素として含むことにより、構成元素の価数を変化させて酸素の吸収及び放出を行うものが好ましい。
また、複合酸化物が酸素放出能を有するために、多原子価を持つ元素が少なくとも1種含まれていることが好ましい。具体的には、Zr、V、Cr、Mn、Fe、Co、Cu、Nb、Ta、Mo、W、Ce、Pr、Sm、Eu、Tb、Yb、Pt、Pd、Rh、Ir、Ru等の遷移金属元素が少なくとも1種含まれていることが好ましい。酸素放出は、複合酸化物を構成する元素の価数の変化に応じて、電荷のバランスを保つために複合酸化物の格子中の酸素が脱離する現象である。このため、Agとの組合せによる酸素放出能の観点から、上記遷移金属元素のうち、Ce、Zr、Pr、La、及びYが特に好ましい。
As the complex oxide having oxygen releasing ability, at least one selected from the group consisting of perovskite type, spinel type, rutile type, delafossite type, magnetoplumbite type, ilmenite type, and fluorite type should be used. Can do. Among these, a fluorite-type complex oxide is preferably used from the viewpoint of oxygen releasing ability.
In addition, the composite oxide contains at least two kinds selected from the group consisting of alkaline earth metal elements, transition metal elements, Group 12 elements, and Group 13 elements as constituent elements. What absorbs and discharge | releases oxygen by changing a number is preferable.
In addition, since the composite oxide has an oxygen releasing ability, it is preferable that at least one element having a polyvalence is included. Specifically, Zr, V, Cr, Mn, Fe, Co, Cu, Nb, Ta, Mo, W, Ce, Pr, Sm, Eu, Tb, Yb, Pt, Pd, Rh, Ir, Ru, etc. It is preferable that at least one transition metal element is contained. Oxygen release is a phenomenon in which oxygen in the lattice of the composite oxide is desorbed in order to maintain a charge balance in accordance with a change in the valence of the elements constituting the composite oxide. For this reason, Ce, Zr, Pr, La, and Y are particularly preferable among the above transition metal elements from the viewpoint of oxygen releasing ability in combination with Ag.

また、本実施形態のAg系触媒は、Ru、Pd、及びPtからなる群より選択される少なくとも1種の貴金属を、Agとともに上記触媒担体に共担持するものであってもよい。   Further, the Ag-based catalyst of the present embodiment may be one in which at least one noble metal selected from the group consisting of Ru, Pd, and Pt is co-supported on the catalyst carrier together with Ag.

本実施形態では、Ag系触媒の担持量が、DPFの単位容量あたり10〜45g/Lである。これにより、Ag系触媒からなる触媒被膜が、DPFの表面全体を被覆するように形成されると同時に、DPF表面の凹凸に沿って凹凸状に形成される。図3は、DPF表面の細孔による凹凸に沿って凹凸状に形成された本実施形態の触媒被膜を示す断面図である。図3から、本実施形態の排気浄化フィルタ1では、DPF11表面の細孔13による凹凸が、触媒被膜12中に埋没することなく維持されていることが分かる。   In this embodiment, the supported amount of the Ag-based catalyst is 10 to 45 g / L per unit capacity of DPF. As a result, a catalyst film made of an Ag-based catalyst is formed so as to cover the entire surface of the DPF, and at the same time, is formed in an uneven shape along the unevenness of the DPF surface. FIG. 3 is a cross-sectional view showing the catalyst coating of the present embodiment formed in an uneven shape along the unevenness due to the pores on the DPF surface. From FIG. 3, it can be seen that in the exhaust purification filter 1 of this embodiment, the irregularities due to the pores 13 on the surface of the DPF 11 are maintained without being buried in the catalyst coating 12.

また、本実施形態のAg系触媒は、凸形状を有する凸状材を含有することが好ましい。凸状材は、上述の酸化物や複合酸化物等の触媒担体であってよい。凸状材をAg系触媒中に含有させることで、フィルタ本体表面の凹凸に沿って凹凸状に形成された触媒被膜の表面上に、さらに微細な凹凸形状が形成される。図4は、DPF表面の細孔による凹凸に沿って凹凸状に形成され、且つその表面に微細な凹凸が形成された本実施形態の触媒被膜を示す断面図である。図4から、本実施形態の排気浄化フィルタ2では、DPF21表面の細孔23による凹凸に沿って凹凸状に形成された触媒被膜22の表面上に、微細な凹凸が形成されていることが分かる。   The Ag-based catalyst of the present embodiment preferably contains a convex material having a convex shape. The convex material may be a catalyst carrier such as the above-mentioned oxide or composite oxide. By including the convex material in the Ag-based catalyst, a finer uneven shape is formed on the surface of the catalyst film formed in an uneven shape along the unevenness of the surface of the filter body. FIG. 4 is a cross-sectional view showing the catalyst coating of the present embodiment, which is formed in an uneven shape along the unevenness due to the pores on the DPF surface, and in which fine unevenness is formed on the surface. From FIG. 4, it can be seen that in the exhaust purification filter 2 of the present embodiment, fine irregularities are formed on the surface of the catalyst coating 22 that is irregularly formed along the irregularities formed by the pores 23 on the surface of the DPF 21. .

凸状材としては、針状構造、フラワー状構造、板状構造又は皿状構造を有することが好ましい。ここで、図5は、フラワー状構造を有する凸状材の拡大観察画像である。また、図6は、板状構造及び皿状構造を有する凸状材の拡大観察画像である。これらの構造を有する凸状材をAg系触媒中に含有させることで、上記の微細な凹凸形状が確実に形成される。   The convex material preferably has a needle-like structure, a flower-like structure, a plate-like structure, or a dish-like structure. Here, FIG. 5 is an enlarged observation image of a convex material having a flower-like structure. FIG. 6 is an enlarged observation image of a convex material having a plate-like structure and a dish-like structure. By including the convex material having these structures in the Ag-based catalyst, the above-described fine uneven shape can be reliably formed.

また、凸状材は、酸素放出能を備える酸素放出材を含むことが好ましい。酸素放出材としては、Ceを含むものが好ましく、例えばCeOやCeZrOが挙げられる。また、酸素放出材を被膜担持したものを用いることもできる。これら酸素放出能を有する凸状材をAg系触媒中に含有させることで、Ag系触媒の活性酸素の放出によるPM燃焼が促進される。 Moreover, it is preferable that a convex material contains the oxygen releasing material provided with oxygen releasing ability. As the oxygen release material, a material containing Ce is preferable, and examples thereof include CeO 2 and CeZrO 2 . Moreover, what carried | supported the oxygen releasing material the film can also be used. By containing the convex material having the oxygen releasing ability in the Ag-based catalyst, PM combustion due to the release of active oxygen from the Ag-based catalyst is promoted.

凸状材の担持量は、DPFの単位容量あたり5〜45g/Lであることが好ましい。凸状材の担持量がこの範囲内であることにより、上記の微細な凹凸形状がより確実に形成される。   The carrying amount of the convex material is preferably 5 to 45 g / L per unit capacity of the DPF. When the carrying amount of the convex material is within this range, the fine concave and convex shape is more reliably formed.

上述したように、本実施形態の触媒被膜は、DPFの表面全体を被覆するように形成されていると同時に、DPF表面の凹凸に沿って凹凸状に形成されている。そして、触媒被膜の表面を3000倍に拡大観察して、平均細孔径の細孔を含む表面観察画像を取得し、これを3次元処理して得られた3次元画像情報に基づいて算出された触媒被膜の表面の表面積が、2300〜2950μmである。このようにして算出された表面積を、「モルフォロジー指数」と定義する。このモルフォロジー指数は、触媒形状を高倍率で表面観察することで、触媒形状の微細な凹凸構造を考慮して算出された表面積であり、触媒とPMの接触性を判断する新たな指標である。
なお、本実施形態では、触媒は被膜担持されているため、触媒とPMの接触面積はDPFの表面形状に大きく依存する。
As described above, the catalyst coating of the present embodiment is formed so as to cover the entire surface of the DPF, and at the same time, is formed in an uneven shape along the unevenness of the DPF surface. Then, the surface of the catalyst coating was magnified 3000 times to obtain a surface observation image including pores having an average pore diameter, and calculated based on three-dimensional image information obtained by three-dimensional processing. The surface area of the surface of the catalyst coating is 2300-2950 μm 2 . The surface area calculated in this way is defined as “morphological index”. This morphological index is a surface area calculated in consideration of the fine uneven structure of the catalyst shape by observing the surface of the catalyst shape at a high magnification, and is a new index for judging the contact property between the catalyst and PM.
In the present embodiment, since the catalyst is supported on the film, the contact area between the catalyst and the PM greatly depends on the surface shape of the DPF.

上記のモルフォロジー指数の算出方法の詳細は、次の通りである。
例えば日立製作所製の走査型電子顕微鏡装置「Miniscope(登録商標) TM3000」を用いて、排気浄化フィルタの触媒被膜の表面を3000倍に拡大して3次元観察を実施する。具体的には、予め分かっているDPFの平均細孔径の細孔を探し出し、当該細孔を含む表面観察画像(例えば、後述の図11)を撮影した後、3D化処理を行ってその3次元画像を取得する。このとき、観察面が極力平らとなるような画像を抽出すると同時に、装置ソフト付帯のフラット補正を行い、より高精度の3次元画像を得ることが好ましい。次いで、細孔はDPF全体に均一に分布しているものとして、取得した3次元画像情報に基づいて装置ソフト付帯の表面積算出を行い、触媒形状表面の表面積を算出する。
なお、上記装置は、4分割されて配置された反射電子検出器を備え、これらの検出器により取得した各信号を用いて4方向の表面形状を計算するため、試料傾斜、視野位置合わせを行うことなく3次元情報を取得できるようになっている。
The details of the calculation method of the morphological index are as follows.
For example, using a scanning electron microscope apparatus “Minscope (registered trademark) TM3000” manufactured by Hitachi, Ltd., the surface of the catalyst coating of the exhaust purification filter is magnified 3000 times to perform three-dimensional observation. Specifically, a pore having an average pore diameter of DPF known in advance is searched, and a surface observation image including the pore (for example, FIG. 11 described later) is photographed, and then the 3D processing is performed to obtain the three-dimensional image. Get an image. At this time, it is preferable to extract an image that makes the observation surface as flat as possible, and at the same time, perform flat correction of the apparatus software incidental to obtain a more accurate three-dimensional image. Next, assuming that the pores are uniformly distributed throughout the DPF, the surface area of the device software incidental surface is calculated based on the acquired three-dimensional image information, and the surface area of the catalyst-shaped surface is calculated.
The apparatus includes a backscattered electron detector arranged in four parts, and performs sample tilt and visual field alignment in order to calculate the surface shape in four directions using each signal acquired by these detectors. 3D information can be acquired without any problem.

上述したように、本実施形態の触媒被膜のモルフォロジー指数は、2300〜2950μmの範囲内である。モルフォロジー指数が2300μm未満であると、PMが侵入可能な細孔を形成できなくなり、2950μmを超えると、DPFの機械的強度不足や触媒被膜の剥離が発生する。 As described above, the morphological index of the catalyst coating of the present embodiment is in the range of 2300-2950 μm 2 . When the morphological index is less than 2300 μm 2 , pores into which PM can enter cannot be formed, and when it exceeds 2950 μm 2 , the mechanical strength of the DPF is insufficient and the catalyst coating is peeled off.

なお、モルフォロジー指数の下限値は、後述する実施例及び比較例のモルフォロジー指数と再生速度との関係を示す図7において、曲線の傾きが2300μmで変化していることから求められる。
また、モルフォロジー指数の上限値は、後述する実施例及び比較例の結果に基づいて、最も表面積が大きくなる態様である、DPFの細孔径が最大の35μmで且つフラワー構造の凸状材を含有させたときの表面積を算出することで求められる。
具体的には、DPFの細孔径が23μmである実施例1の触媒被膜の表面積(モルフォロジー指数)が2534μmであり、実施例1に対してCeZrOを針状CeOに変更した実施例3の触媒被膜の表面積が2582μmであることから、DPFの細孔径が23μmである場合において、針状CeOに変えて最も表面積を増大できるフラワー構造の凸状材を含有させたときの触媒被膜の表面積は、その形状から接触面積が8倍になると推測されるため、2534+(2582−2534)×8=2922μmと算出される。
次いで、DPFの細孔径が23μmのときの触媒被膜の表面積2534μmとDPFの細孔径が30μmのときの触媒被膜の表面積2552μmとに基づいた線形式から、DPFの細孔径が最大の35μmのときの表面積が2.6826×35+2471.9=2566μmと算出され、この算出結果と上記算出結果に基づいて、DPFの細孔径が最大の35μmで且つフラワー構造の凸状材を含有させたときの表面積は、2566×2922/2534≒2950μmと求められる。
The lower limit value of the morphological index is obtained from the fact that the slope of the curve changes at 2300 μm 2 in FIG. 7 showing the relationship between the morphological index and the regeneration speed in Examples and Comparative Examples described later.
In addition, the upper limit of the morphological index is an aspect in which the surface area is the largest, based on the results of Examples and Comparative Examples described later, and the DPF has a maximum pore diameter of 35 μm and contains a convex material having a flower structure. It is calculated | required by calculating the surface area at the time.
Specifically, the surface area (morphological index) of the catalyst coating of Example 1 in which the pore size of DPF is 23 μm is 2534 μm 2 , and Example 3 in which CeZrO 2 is changed to needle-like CeO 2 with respect to Example 1 Since the surface area of the catalyst film is 2582 μm 2 , when the pore size of the DPF is 23 μm, the catalyst film when a convex material having a flower structure that can increase the surface area most instead of acicular CeO 2 is contained. The surface area is estimated to be 2534+ (2582−5344) × 8 = 2922 μm 2 because the contact area is estimated to be 8 times from the shape.
Next, from the linear form based on the surface area 2534 μm 2 of the catalyst coating when the pore size of the DPF is 23 μm and the surface area of the catalyst coating 2552 μm 2 when the pore size of the DPF is 30 μm, the maximum pore size of the DPF is 35 μm. When the surface area is calculated as 2.6826 × 35 + 2471.9 = 2565 μm 2, and based on this calculation result and the above calculation result, the DPF has a maximum pore diameter of 35 μm and contains a convex material having a flower structure Is determined to be 2566 × 2922 / 2534≈2950 μm 2 .

本実施形態では、触媒担体にAgを担持させる方法として、ディッピング法の他、クエン酸等を用いた微細発泡法が好ましく採用される。
ディッピング法では、例えば、Ag系触媒の構成材料を所定量含むスラリーを湿式粉砕等により作製し、作製したスラリー中にDPFを浸漬させた後、DPFを引き上げて所定の温度条件で焼成を行うことにより、DPFにAg系触媒を担持させることができる。
また、微細発泡法では、上記のようにして作製したスラリー中に、クエン酸等の有機酸を添加することにより、焼成時に触媒粒子を発泡させ、分散させる。これにより、触媒粒子がDPF全体に分散担持され、DPF表面にAg系触媒を均一に担持させることができる。
In the present embodiment, as a method for supporting Ag on the catalyst carrier, a fine foaming method using citric acid or the like is preferably employed in addition to the dipping method.
In the dipping method, for example, a slurry containing a predetermined amount of a constituent material of an Ag-based catalyst is prepared by wet pulverization or the like. After the DPF is immersed in the prepared slurry, the DPF is pulled up and fired at a predetermined temperature condition. Thus, an Ag-based catalyst can be supported on the DPF.
In the fine foaming method, an organic acid such as citric acid is added to the slurry produced as described above to foam and disperse the catalyst particles during firing. Thereby, the catalyst particles are dispersed and supported on the entire DPF, and the Ag-based catalyst can be uniformly supported on the surface of the DPF.

上記の構成を備える本実施形態によれば、以下の効果が奏される。
本実施形態では、平均細孔径が20〜35μmの細孔を有することで表面が凹凸状のDPF上に、従来よりも少ない担持量(ウォッシュコートWC量)10〜45g/Lで、Ag系触媒を担持させた。これにより、本実施形態に係る排気浄化フィルタは、Ag系触媒からなる触媒被膜がDPFの表面の凹凸に沿って凹凸状に担持され、DPFの細孔による凹凸が維持される。また、モルフォロジー指数が、従来よりも大きい2300〜2950μmとなっている。
本実施形態によれば、PMとの接触性がPMの浄化率に大きく影響する特性を有するAg系触媒を備える排気浄化フィルタにおいて、従来よりも少ない触媒担持量で、従来よりも大きなモルフォロジー指数が得られる。従って、触媒とPMの接触性を向上(接触面積を大きく)でき、PMを効率良く燃焼して浄化できる。ひいては、排気浄化フィルタの再生速度を向上でき、再生時間を短縮できるため、再生による燃費及びEMの悪化や、触媒の熱劣化を抑制できる。
According to the present embodiment having the above configuration, the following effects can be obtained.
In this embodiment, an Ag-based catalyst having a pore with an average pore diameter of 20 to 35 μm and having a surface with an uneven surface and a smaller supported amount (wash coat WC amount) of 10 to 45 g / L than conventional ones. Was supported. Thereby, in the exhaust purification filter according to the present embodiment, the catalyst coating made of an Ag-based catalyst is supported in an uneven shape along the unevenness of the surface of the DPF, and the unevenness due to the pores of the DPF is maintained. Moreover, the morphology index is 2300-2950 μm 2 which is larger than the conventional one.
According to the present embodiment, in an exhaust purification filter including an Ag-based catalyst having a characteristic that the contact property with PM greatly affects the PM purification rate, a larger morphological index than the conventional one is obtained with a smaller catalyst loading than the conventional one. can get. Therefore, the contact property between the catalyst and PM can be improved (the contact area can be increased), and PM can be efficiently burned and purified. As a result, since the regeneration speed of the exhaust purification filter can be improved and the regeneration time can be shortened, deterioration of fuel consumption and EM due to regeneration and thermal deterioration of the catalyst can be suppressed.

また本実施形態では、Ag系触媒中に凸状材を含有させ、当該凸状材の担持量を5〜45g/Lとした。これにより、DPF表面の凹凸に沿って凹凸状に形成された触媒被膜の表面上に、さらに微細な凹凸形状を形成できる。そのため、より大きなモルフォロジー指数が得られ、触媒とPMの接触性をより向上でき、上記の効果を高めることができる。   Moreover, in this embodiment, the convex material was contained in the Ag-based catalyst, and the amount of the convex material supported was 5 to 45 g / L. Thereby, a finer uneven shape can be formed on the surface of the catalyst coating formed in an uneven shape along the unevenness of the DPF surface. Therefore, a larger morphological index can be obtained, the contact property between the catalyst and PM can be further improved, and the above effect can be enhanced.

また本実施形態では、Ag系触媒中に、針状構造、フラワー状構造、板状構造又は皿状構造を有する凸状材を含有させた。これにより、上記の効果が確実に発揮される。   In this embodiment, the Ag-based catalyst contains a convex material having a needle-like structure, a flower-like structure, a plate-like structure, or a dish-like structure. Thereby, said effect is exhibited reliably.

また本実施形態では、Ag系触媒中に含有させる凸状材として、酸素放出能を備える酸素放出材を含むものとした。これにより、活性酸素の放出によるPM燃焼を促進でき、より効率良くPMを浄化できる。   Moreover, in this embodiment, the oxygen releasing material provided with oxygen releasing ability was included as the convex material contained in Ag type catalyst. Thereby, PM combustion by discharge | release of active oxygen can be accelerated | stimulated and PM can be purified more efficiently.

また本実施形態では、DPFのセル形状を4〜8角形のうちのいずれかとし、DPFのセル数を1平方インチあたり200〜400セルとした。即ち、セル形状を多角形状とし、セル数を多くした。これにより、より大きなモルフォロジー指数が得られ、触媒とPMの接触面積を大きくできるため、上記の各効果を高めることができる。   In the present embodiment, the cell shape of the DPF is any one of 4-8 octagons, and the number of DPF cells is 200-400 cells per square inch. That is, the cell shape is a polygonal shape and the number of cells is increased. Thereby, since a larger morphological index is obtained and the contact area between the catalyst and PM can be increased, each of the above effects can be enhanced.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

次に本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to these examples.

<実施例1>
[1.7質量%Pd50質量%Ag/CeZrO、触媒被膜担持量=25g/L、フィルタ平均細孔径23μm]
市販の特級試薬である、硝酸銀、硝酸パラジウム、CeZrO(阿南化成製、Ce/Zr=2/8)及び水を、所定の組成となるように秤量して混合した。次いで、これをエバポレータにて減圧乾固し、200℃×2時間乾燥させた後、700℃×2時間の大気焼成を行うことにより、触媒粉末Aを得た。
<Example 1>
[1.7% by mass Pd 50% by mass Ag / CeZrO 2 , catalyst coating load = 25 g / L, filter average pore diameter 23 μm]
Commercially available special grade silver nitrate, palladium nitrate, CeZrO 2 (manufactured by Anan Kasei, Ce / Zr = 2/8), and water were weighed and mixed so as to have a predetermined composition. Next, this was dried under reduced pressure using an evaporator, dried at 200 ° C. for 2 hours, and then fired in the atmosphere at 700 ° C. for 2 hours to obtain catalyst powder A.

上記のようにして得た触媒粉末A、市販のSiOゾル及び水を、所定の組成となるように秤量して混合した。そこに、φ2mmのZrボールを、容器に対して50%の量混入し、ボールミルにて3日間、湿式粉砕を行うことにより、スラリーAを得た。 Catalyst powder A obtained as described above, commercially available SiO 2 sol and water were weighed and mixed so as to have a predetermined composition. Thereto, a Zr ball having a diameter of 2 mm was mixed in an amount of 50% with respect to the container, and wet pulverization was performed in a ball mill for 3 days to obtain slurry A.

上記のようにして得たスラリーAに、触媒量に対して4倍量のクエン酸を添加し、十分混合することでクエン酸を溶解させた。次いで、これをSiC製DPF(平均細孔径23μm、セル数1平方インチあたり300セル、セル形状4角形)にディッピング担持させた後、700℃×2時間の焼成を行った。これにより、実施例1の排気浄化フィルタを得た。なお、触媒の担持量は、25g/Lとなるように調製した。   To the slurry A obtained as described above, 4 times the amount of citric acid relative to the amount of catalyst was added and mixed thoroughly to dissolve the citric acid. Subsequently, this was dipped on SiC DPF (average pore diameter 23 μm, 300 cells per square inch, cell shape quadrangular), and then fired at 700 ° C. for 2 hours. Thereby, the exhaust gas purification filter of Example 1 was obtained. The catalyst loading was adjusted to be 25 g / L.

<実施例2>
[1.7質量%Pd50質量%Ag/CeZrO、触媒被膜担持量=25g/L、フィルタ平均細孔径30μm]
平均細孔径が30μmのSiC製DPF(セル数及びセル形状は実施例1と同一)を使用した以外は、実施例1と同様の操作を行った。これにより、実施例2の排気浄化フィルタを得た。なお、触媒の担持量は、25g/Lとなるように調製した。
<Example 2>
[1.7% by mass Pd 50% by mass Ag / CeZrO 2 , catalyst coating load = 25 g / L, filter average pore diameter 30 μm]
The same operation as in Example 1 was performed, except that a DPF made of SiC having an average pore diameter of 30 μm (the number of cells and the cell shape were the same as in Example 1) was used. As a result, an exhaust purification filter of Example 2 was obtained. The catalyst loading was adjusted to be 25 g / L.

<実施例3>
[1.7質量%Pd50質量%Ag/針状CeO、触媒被膜担持量=25g/L、フィルタ平均細孔径23μm]
先ず、市販の特級試薬である、硝酸セリウム、シュウ酸及び水を、所定の組成となるよう秤量して混合した。次いで、混合溶液を室温で24時間静置した後、その上澄み液を取り除いて、100℃×24時間乾燥させた。乾燥させて得られた前駆体を、300℃×6時間焼成し、次いで400℃まで30分間かけて昇温した後、400℃×3時間焼成した。これにより、針状CeO粉末を得た。
<Example 3>
[1.7% by mass Pd 50% by mass Ag / needle-like CeO 2 , catalyst coating load = 25 g / L, filter average pore diameter 23 μm]
First, cerium nitrate, oxalic acid and water, which are commercially available special grade reagents, were weighed and mixed so as to have a predetermined composition. Next, the mixed solution was allowed to stand at room temperature for 24 hours, and then the supernatant was removed and dried at 100 ° C. for 24 hours. The precursor obtained by drying was fired at 300 ° C. for 6 hours, then heated to 400 ° C. over 30 minutes, and then fired at 400 ° C. for 3 hours. Thereby, acicular CeO 2 powder was obtained.

上記のようにして得た針状CeO粉末と、市販の特級試薬である、硝酸銀、硝酸パラジウム及び水を、所定の組成となるように秤量して混合した。次いで、これをエバポレータにて減圧乾固し、200℃×2時間乾燥させた後、700℃×2時間の大気焼成を行うことにより、触媒粉末Bを得た。 The needle-like CeO 2 powder obtained as described above and commercially available special grade silver nitrate, palladium nitrate and water were weighed and mixed so as to have a predetermined composition. Next, this was dried under reduced pressure with an evaporator, dried at 200 ° C. for 2 hours, and then subjected to air baking at 700 ° C. for 2 hours to obtain catalyst powder B.

上記のようにして得た触媒粉末B、市販のSiOゾル及び水を、所定の組成となるように秤量して混合した。そこに、φ10mmのZrボールを100g混入し、ボールミルにて1時間、湿式粉砕を行うことにより、スラリーBを得た。 Catalyst powder B obtained as described above, commercially available SiO 2 sol and water were weighed and mixed so as to have a predetermined composition. Thereto, 100 g of a φ10 mm Zr ball was mixed, and wet pulverization was performed for 1 hour in a ball mill to obtain slurry B.

上記のようにして得たスラリーBに、触媒量に対して4倍量のクエン酸を添加し、十分混合することでクエン酸を溶解させた。次いで、これを、実施例1で使用したものと同じSiC製DPFにディッピング担持させた後、700℃×2時間の焼成を行った。これにより、実施例3の排気浄化フィルタを得た。なお、触媒の担持量は、25g/Lとなるように調製した。   To the slurry B obtained as described above, 4 times the amount of citric acid relative to the amount of catalyst was added and mixed thoroughly to dissolve the citric acid. Next, this was dipped on the same SiC DPF as used in Example 1, and then fired at 700 ° C. for 2 hours. As a result, an exhaust purification filter of Example 3 was obtained. The catalyst loading was adjusted to be 25 g / L.

<比較例1>
[1.7質量%Pd50質量%Ag/CeZrO、触媒担持量=25g/L、フィルタ平均細孔径23μm]
市販の特級試薬である、硝酸銀、硝酸パラジウム、CeZrO(阿南化成製、Ce/Zr=2/8)及び水を、所定の組成となるように秤量して混合した。次いで、これをエバポレータにて減圧乾固し、200℃×2時間乾燥させた後、700℃×2時間の大気焼成を行うことにより、触媒粉末Cを得た。
<Comparative Example 1>
[1.7% by mass Pd 50% by mass Ag / CeZrO 2 , catalyst loading amount = 25 g / L, filter average pore diameter 23 μm]
Commercially available special grade silver nitrate, palladium nitrate, CeZrO 2 (manufactured by Anan Kasei, Ce / Zr = 2/8), and water were weighed and mixed so as to have a predetermined composition. Next, this was dried under reduced pressure with an evaporator, dried at 200 ° C. for 2 hours, and then subjected to air baking at 700 ° C. for 2 hours to obtain catalyst powder C.

上記のようにして得た触媒粉末C、市販のSiOゾル及び水を、所定の組成となるように秤量して混合した。そこに、φ10mmのZrボールを100g混入し、ボールミルにて12時間、湿式粉砕を行うことにより、スラリーCを得た。 Catalyst powder C obtained as described above, commercially available SiO 2 sol and water were weighed and mixed so as to have a predetermined composition. Thereto, 100 g of φ10 mm Zr balls were mixed, and wet pulverization was performed in a ball mill for 12 hours to obtain slurry C.

上記のようにして得たスラリーCを、実施例1で使用したものと同じSiC製DPFにディッピング担持させた後、700℃×2時間の焼成を行った。これにより、比較例1の排気浄化フィルタを得た。なお、触媒の担持量は、25g/Lとなるように調製した。   The slurry C obtained as described above was dipped on the same SiC DPF as used in Example 1, and then fired at 700 ° C. for 2 hours. As a result, an exhaust purification filter of Comparative Example 1 was obtained. The catalyst loading was adjusted to be 25 g / L.

<比較例2>
[1.7質量%Pd50質量%Ag/CeZrO、触媒担持量=80g/L、フィルタ平均細孔径23μm]
触媒の担持量が80g/Lとなるように調製した以外は、実施例1と同様の操作を行った。これにより、比較例2の排気浄化フィルタを得た。
<Comparative example 2>
[1.7% by mass Pd 50% by mass Ag / CeZrO 2 , catalyst loading = 80 g / L, filter average pore diameter 23 μm]
The same operation as in Example 1 was performed except that the amount of the catalyst supported was 80 g / L. As a result, an exhaust purification filter of Comparative Example 2 was obtained.

<比較例3>
[1.7質量%Pd50質量%Ag/CeZrO、触媒担持量=25g/L、フィルタ平均細孔径16μm]
平均細孔径が16μmのSiC製DPF(セル数及びセル形状は実施例1と同一)を使用した以外は、実施例1と同様の操作を行った。これにより、比較例3の排気浄化フィルタを得た。
<Comparative Example 3>
[1.7% by mass Pd 50% by mass Ag / CeZrO 2 , catalyst loading = 25 g / L, filter average pore diameter 16 μm]
The same operation as in Example 1 was performed except that a DPF made of SiC having an average pore diameter of 16 μm (the number of cells and the cell shape were the same as in Example 1) was used. As a result, an exhaust purification filter of Comparative Example 3 was obtained.

<比較例4>
[1.4質量%Pt/Al、触媒被膜担持、フィルタ平均細孔径23μm]
市販の特級試薬である、ジニトロジアンミン白金硝酸溶液、Al及び水を、所定の組成となるように秤量して混合した。以後、比較例1と同様の操作を行った。これにより、比較例4の排気浄化フィルタを得た。
<Comparative Example 4>
[1.4% by mass Pt / Al 2 O 3 , catalyst coating supported, filter average pore diameter 23 μm]
A commercially available special grade reagent, dinitrodiammine platinum nitrate solution, Al 2 O 3 and water, were weighed and mixed so as to have a predetermined composition. Thereafter, the same operation as in Comparative Example 1 was performed. As a result, an exhaust purification filter of Comparative Example 4 was obtained.

<比較例5>
[1.4質量%Pt/Al、触媒被膜担持、フィルタ平均細孔径23μm]
市販の特級試薬である、ジニトロジアンミン白金硝酸溶液、Al及び水を、所定の組成となるように秤量して混合した。以後、実施例1と同様の操作を行った。これにより、比較例5の排気浄化フィルタを得た。
<Comparative Example 5>
[1.4% by mass Pt / Al 2 O 3 , catalyst coating supported, filter average pore diameter 23 μm]
A commercially available special grade reagent, dinitrodiammine platinum nitrate solution, Al 2 O 3 and water, were weighed and mixed so as to have a predetermined composition. Thereafter, the same operation as in Example 1 was performed. As a result, an exhaust purification filter of Comparative Example 5 was obtained.

<比較例6>
[1.7質量%Pd50質量%Ag/CeZrO、触媒被膜担持量=25g/L、フィルタ平均細孔径36μm]
平均細孔径が36μmのSiC製DPF(セル数及びセル形状は実施例1と同一)を使用した以外は、実施例1と同様の操作を行った。これにより、比較例6の排気浄化フィルタを得た。なお、触媒の担持量は、25g/Lとなるように調製した。
<Comparative Example 6>
[1.7% by mass Pd 50% by mass Ag / CeZrO 2 , catalyst coating load = 25 g / L, filter average pore diameter 36 μm]
The same operation as in Example 1 was performed except that a DPF made of SiC having an average pore diameter of 36 μm (the number of cells and the cell shape were the same as in Example 1) was used. As a result, an exhaust purification filter of Comparative Example 6 was obtained. The catalyst loading was adjusted to be 25 g / L.

<比較例7>
[1.7質量%Pd50質量%Ag/CeZrO、触媒担持量=9g/L、フィルタ平均細孔径23μm]
触媒の担持量が9g/Lとなるように調製した以外は、実施例1と同様の操作を行った。これにより、比較例7の排気浄化フィルタを得た。
<Comparative Example 7>
[1.7% by mass Pd 50% by mass Ag / CeZrO 2 , catalyst loading = 9 g / L, filter average pore diameter 23 μm]
The same operation as in Example 1 was performed except that the amount of the catalyst supported was 9 g / L. As a result, an exhaust purification filter of Comparative Example 7 was obtained.

<比較例8>
[1.7質量%Pd50質量%Ag/CeZrO、触媒担持量=47g/L、フィルタ平均細孔径23μm]
触媒の担持量が47g/Lとなるように調製した以外は、実施例1と同様の操作を行った。これにより、比較例8の排気浄化フィルタを得た。
<Comparative Example 8>
[1.7% by mass Pd 50% by mass Ag / CeZrO 2 , catalyst loading = 47 g / L, filter average pore diameter 23 μm]
The same operation as in Example 1 was performed except that the amount of catalyst supported was adjusted to 47 g / L. Thereby, an exhaust purification filter of Comparative Example 8 was obtained.

<評価>
各実施例及び比較例で得た排気浄化フィルタについて、以下の算出方法に従ってモルフォロジー指数を算出した。また、各排気浄化フィルタについて、以下の評価方法に従って再生速度の評価を実施した。
<Evaluation>
For the exhaust purification filters obtained in each of the examples and comparative examples, the morphology index was calculated according to the following calculation method. In addition, the regeneration speed of each exhaust purification filter was evaluated according to the following evaluation method.

[モルフォロジー指数]
日立製作所製の走査型電子顕微鏡装置「Miniscope(登録商標) TM3000」を用いて、各排気浄化フィルタの触媒被膜の表面を3000倍に拡大して3次元観察を実施した。具体的には、予め分かっているDPFの平均細孔径の細孔を探し出し、当該細孔を含む表面観察画像を撮影した後、3D化処理を行ってその3次元画像を取得した。このとき、観察面が極力平らとなるような画像を抽出すると同時に、装置ソフト付帯のフラット補正を行い、より高精度の3次元画像を得た。次いで、細孔はDPF全体に均一に分布しているものとして、取得した3次元画像情報に基づいて装置ソフト付帯の表面積算出を行い、触媒被膜表面の表面積を算出した。
[Morphological index]
Using a scanning electron microscope apparatus “Miniscope (registered trademark) TM3000” manufactured by Hitachi, Ltd., the surface of the catalyst coating of each exhaust purification filter was magnified 3000 times to perform three-dimensional observation. Specifically, a pore having an average pore diameter of DPF known in advance was searched, a surface observation image including the pore was photographed, and then a 3D process was performed to obtain a three-dimensional image. At this time, an image in which the observation surface was as flat as possible was extracted, and at the same time, the flat correction of the apparatus software was performed to obtain a more accurate three-dimensional image. Next, assuming that the pores are uniformly distributed throughout the DPF, the surface area of the apparatus software incidental surface was calculated based on the acquired three-dimensional image information, and the surface area of the catalyst coating surface was calculated.

[再生速度]
各排気浄化フィルタのTPサイズ(15cc)を準備し、これらに、実機から採取したPMを吸引捕集させた。その後、フィルタ入口温度を500℃、フィルタ内部温度を530℃に設定した後、11%のO、150ppmのNO及びNバランスガスからなるモデルガスを、空間速度SV=100000h−1で各排気浄化フィルタに導入し、再生を行った。再生開始から2分間のPM除去量である再生速度mg/分を測定した。
[Playback speed]
TP sizes (15 cc) for each exhaust purification filter were prepared, and PM collected from the actual machine was collected by suction. Then, after setting the filter inlet temperature to 500 ° C. and the filter internal temperature to 530 ° C., each model gas composed of 11% O 2 , 150 ppm NO and N 2 balance gas is exhausted at a space velocity SV = 100000h −1. It was introduced into the purification filter and regenerated. The regeneration rate mg / min, which is the amount of PM removed for 2 minutes from the start of regeneration, was measured.

図7は、各実施例及び比較例の評価結果に基づいた、モルフォロジー指数と2分間再生速度との関係を示す図である。図7では、横軸がモルフォロジー指数(μm)を表し、縦軸が2分間再生速度(mg/秒)を表している。
図7に示すように、実施例1〜3の排気浄化フィルタは、比較例1〜5の排気浄化フィルタに比べて、再生速度が格段に大きいことが分かった。その理由について、以下に詳細に説明する。
FIG. 7 is a diagram showing the relationship between the morphology index and the 2-minute regeneration speed based on the evaluation results of the examples and comparative examples. In FIG. 7, the horizontal axis represents the morphology index (μm 2 ), and the vertical axis represents the 2 minute regeneration rate (mg / second).
As shown in FIG. 7, the exhaust purification filters of Examples 1 to 3 were found to have a significantly higher regeneration speed than the exhaust purification filters of Comparative Examples 1 to 5. The reason will be described in detail below.

先ず、比較例1の排気浄化フィルタは、従来公知のディッピング法によりAg系触媒をDPFに担持させたものであり、また、実施例1等に比べて湿式粉砕時間が短く、ミリングによるボール径も大きいため触媒粒子径が大きい。ここで、図8は、比較例1の排気浄化フィルタにおける触媒表面の表面観察画像である。図8から明らかであるように、比較例1の排気浄化フィルタでは、触媒の担持が不均一であり、触媒によるDPFの被覆率が低い。そのため、モルフォロジー指数が小さく、触媒とPMの接触面積が小さいため、小さな再生速度しか得られない。   First, the exhaust gas purification filter of Comparative Example 1 is a filter in which an Ag-based catalyst is supported on a DPF by a conventionally known dipping method, and the wet pulverization time is shorter than that of Example 1 and the ball diameter by milling is also reduced. The catalyst particle size is large because it is large. Here, FIG. 8 is a surface observation image of the catalyst surface in the exhaust purification filter of Comparative Example 1. FIG. As is clear from FIG. 8, in the exhaust purification filter of Comparative Example 1, the catalyst is not uniformly supported, and the DPF coverage by the catalyst is low. Therefore, since the morphological index is small and the contact area between the catalyst and PM is small, only a low regeneration rate can be obtained.

比較例2の排気浄化フィルタは、クエン酸による発泡法(微細発泡法)によりAg系触媒をDPFに分散担持させたものであり、また、実施例1等と同様に湿式粉砕時間が長く、ミリングによるボール径も小さいため触媒粒子径が小さい。ただし、触媒の担持量が80g/Lで多過ぎるものである。ここで、図9は、比較例2の排気浄化フィルタにおける触媒表面の表面観察画像である。図9から明らかであるように、比較例2の排気浄化フィルタでは、触媒の担持量が多過ぎるため、DPF表面の細孔の過半数が触媒被膜中に埋没している。そのため、触媒とPMの接触面積は比較例1より大きいものの、DPF表面の細孔による凹凸を有効に利用できていないため、モルフォロジー指数が実施例より小さく、実施例に比べると再生速度は小さい。   The exhaust purification filter of Comparative Example 2 is a filter in which an Ag-based catalyst is dispersed and supported on DPF by a citric acid foaming method (fine foaming method). Due to the small ball diameter, the catalyst particle diameter is small. However, the catalyst loading is 80 g / L, which is too much. Here, FIG. 9 is a surface observation image of the catalyst surface in the exhaust purification filter of Comparative Example 2. As is clear from FIG. 9, in the exhaust purification filter of Comparative Example 2, since the amount of catalyst supported is too large, the majority of the pores on the DPF surface are buried in the catalyst coating. Therefore, although the contact area between the catalyst and PM is larger than that of Comparative Example 1, the unevenness due to the pores on the DPF surface cannot be used effectively, so the morphological index is smaller than that of the example and the regeneration rate is lower than that of the example.

比較例3の排気浄化フィルタは、実施例1の排気浄化フィルタに対して、DPFの平均細孔径をより小さな16μmとしたものである。この排気浄化フィルタのモルフォロジー指数は、上述の方法に従って算出すると2397μmであったが、細孔径が16μmの細孔にPMは侵入できないことを考慮して、細孔を含まない表面観察画像を取得し、これを3次元処理化することで触媒被膜の表面積を算出した。DPFの平均細孔径が16μmと小さく、PMが細孔内に十分に侵入できないことからも分かるように、算出されたモルフォロジー指数は小さく、触媒とPMの接触面積が小さいため、小さな再生速度しか得られない。 The exhaust purification filter of Comparative Example 3 has a smaller average pore diameter of DPF of 16 μm than the exhaust purification filter of Example 1. The morphological index of this exhaust purification filter was 2397 μm 2 when calculated according to the above method, but taking into account that PM cannot penetrate into pores having a pore diameter of 16 μm, a surface observation image not containing pores is obtained. Then, the surface area of the catalyst coating was calculated by three-dimensionally processing this. As can be seen from the fact that the average pore diameter of DPF is as small as 16 μm and PM cannot sufficiently penetrate into the pores, the calculated morphological index is small and the contact area between the catalyst and PM is small, so only a low regeneration rate is obtained. I can't.

比較例4の排気浄化フィルタは、従来のディッピング法によりPt系触媒をDPFに担持させたものであり、比較例5の排気浄化フィルタは、クエン酸による発泡法(微細発泡法)によりPt系触媒をDPFに担持させたものである。DPFの平均細孔径と触媒の担持量は実施例1と同一である。ここで、これらPt系触媒は、排気中のNOからNOを生成させ、生成したNOによりPMの燃焼を促進するものである。即ち、Agが活性酸素を放出することでPMを燃焼するAg系触媒とはPM燃焼メカニズムが相違し、Pt系触媒では触媒とPMの接触性はそれほど重要ではない。そのため、微細発泡法により調製された比較例5の排気浄化フィルタのモルフォロジー指数が比較例4のそれと比べて飛躍的に大きく、実施例と同レベルであっても、NO生成能の向上により再生速度は若干大きくなるのみであり、大きな変化は見られない。 The exhaust purification filter of Comparative Example 4 has a Pt catalyst supported on the DPF by a conventional dipping method, and the exhaust purification filter of Comparative Example 5 has a Pt catalyst by a foaming method (fine foaming method) using citric acid. Is supported on a DPF. The average pore diameter of the DPF and the amount of the supported catalyst are the same as those in Example 1. Here, these Pt-based catalysts generate NO 2 from NO in the exhaust, and promote combustion of PM by the generated NO 2 . That is, the PM combustion mechanism is different from the Ag-based catalyst that burns PM by releasing active oxygen from Ag, and the contact property between the catalyst and PM is not so important in the Pt-based catalyst. Therefore, the morphological index of the exhaust purification filter of Comparative Example 5 prepared by the micro-foaming method is remarkably larger than that of Comparative Example 4, and even if it is at the same level as the Example, it is regenerated by improving the NO 2 generation ability. The speed is only slightly increased and no significant change is seen.

これに対して実施例1の排気浄化フィルタは、比較例5の排気浄化フィルタに対して、Pt系触媒をAg系触媒に変更したものであると同時に、比較例2の排気浄化フィルタに対して、触媒の担持量を少なくしたものである。ここで、図10及び図11は、実施例1の排気浄化フィルタにおける触媒表面の表面観察画像である(図10が200倍画像、図11が3000倍画像)。図10及び図11から明らかであるように、DPF表面の細孔による凹凸に対して、薄く満遍なく触媒が被膜担持されている。即ち、DPF表面の細孔による凹凸に沿って、触媒被膜が凹凸状に形成されており、DPF表面の細孔による凹凸形状が維持されている。そのため、実施例1のモルフォロジー指数は比較例と比べて大きなものとなっている。これにより、実施例1の排気浄化フィルタでは、PMが細孔内に侵入でき、触媒とPMの接触面積が大きいため、大きな再生速度が得られる。   In contrast, the exhaust purification filter of Example 1 is obtained by changing the Pt-based catalyst to an Ag-based catalyst with respect to the exhaust purification filter of Comparative Example 5, and at the same time, compared with the exhaust purification filter of Comparative Example 2. The amount of catalyst supported is reduced. Here, FIGS. 10 and 11 are surface observation images of the catalyst surface in the exhaust purification filter of Example 1 (FIG. 10 is a 200 × image, FIG. 11 is a 3000 × image). As is clear from FIGS. 10 and 11, the catalyst is supported thinly and uniformly on the irregularities caused by the pores on the DPF surface. That is, the catalyst film is formed in an uneven shape along the unevenness due to the pores on the DPF surface, and the uneven shape due to the pores on the DPF surface is maintained. Therefore, the morphology index of Example 1 is larger than that of the comparative example. Thereby, in the exhaust purification filter of Example 1, PM can penetrate | invade in a pore, and since the contact area of a catalyst and PM is large, a big regeneration speed is obtained.

また実施例2の排気浄化フィルタは、実施例1の排気浄化フィルタに対して、DPFの平均細孔径をより大きな30μmとしたものである。そのため、実施例2のモルフォロジー指数は、実施例1よりも大きなものとなっている。これにより、DPFの細孔内へPMがより侵入し易くなり、触媒とPMの接触面積がより大きくなるため、より大きな再生速度が得られる。   In addition, the exhaust purification filter of Example 2 has a larger average pore diameter of DPF of 30 μm than the exhaust purification filter of Example 1. Therefore, the morphology index of Example 2 is larger than that of Example 1. This makes it easier for PM to penetrate into the pores of the DPF, and the contact area between the catalyst and PM becomes larger, so that a higher regeneration speed can be obtained.

また実施例3の排気浄化フィルタは、実施例1の排気浄化フィルタに対して、CeZrOを針状CeOに変更したものである。即ち、実施例3の排気浄化フィルタでは、触媒中に凸状材としての針状CeOを含有させたため、DPF表面の凹凸に沿って凹凸状に形成された触媒被膜の表面に、さらに微細な凹凸形状が形成されている。そのため、実施例3のモルフォロジー指数は、実施例2よりもさらに大きなものとなっている。これにより、触媒とPMの接触面積がさらに大きくなり、さらに大きな再生速度が得られる。 Further, the exhaust purification filter of Example 3 is obtained by changing CeZrO 2 to needle-like CeO 2 with respect to the exhaust purification filter of Example 1. That is, in the exhaust purification filter of Example 3, since the needle-like CeO 2 as the convex material was contained in the catalyst, the surface of the catalyst coating formed in a concavo-convex shape along the concavo-convex shape of the DPF surface was further finer. An uneven shape is formed. Therefore, the morphology index of Example 3 is larger than that of Example 2. As a result, the contact area between the catalyst and PM is further increased, and a higher regeneration speed can be obtained.

以上説明したように、本実施例及び比較例の評価結果から、DPFの細孔による凹凸に沿って触媒被膜を凹凸状に形成(即ち、細孔による凹凸を維持)し、この細孔内にPMを侵入させて触媒とPMの接触性を向上させることで、PMを効率良く浄化できることが確認された。また、触媒中に凸状材を含有させて触媒被膜の表面にさらに微細な凹凸形状を形成することで、さらにPMを効率良く浄化できることが確認された。   As described above, from the evaluation results of this example and the comparative example, the catalyst film is formed in an uneven shape along the unevenness due to the pores of the DPF (that is, the unevenness due to the pores is maintained), It was confirmed that PM can be efficiently purified by infiltrating PM to improve the contact property between the catalyst and PM. Moreover, it was confirmed that PM can be more efficiently purified by incorporating a convex material in the catalyst to form a finer irregular shape on the surface of the catalyst coating.

次に、図12は、各実施例及び比較例の評価結果に基づいた、DPFの平均細孔径と2分間再生速度との関係を示す図である。図12では、横軸がDPFの平均細孔径(μm)を表し、縦軸が2分間再生速度(mg/秒)を表している。
図12に示すように、DPFの平均細孔径が大きくなるに従い、再生速度が大きくなることが分かった。また、DPFの平均細孔径が20μm以上となると、再生速度が20mg/分を超えるようになり好ましいことが分かった。これは、DPFの平均細孔径が20μm以上となると、PMが細孔内に十分に侵入できるようになるためである。
また、DPFの平均細孔径が30μmで再生速度は最大となる一方で、平均細孔径が35μmを超えて36μmになるとDPFの強度が低下し、評価実施後にDPFが粉砕してしまうことが分かった。
以上の結果から、DPF平均細孔径の好ましい範囲は、20〜35μmであることが確認された。
Next, FIG. 12 is a diagram showing the relationship between the average pore diameter of DPF and the regeneration rate for 2 minutes based on the evaluation results of the examples and comparative examples. In FIG. 12, the horizontal axis represents the average pore diameter (μm) of the DPF, and the vertical axis represents the regeneration rate (mg / second) for 2 minutes.
As shown in FIG. 12, it was found that the regeneration rate increases as the average pore size of the DPF increases. It was also found that when the average pore size of the DPF was 20 μm or more, the regeneration rate exceeded 20 mg / min. This is because when the average pore diameter of the DPF is 20 μm or more, PM can sufficiently enter the pores.
Further, it was found that, while the average pore diameter of the DPF is 30 μm, the regeneration speed becomes maximum, while when the average pore diameter exceeds 35 μm and becomes 36 μm, the strength of the DPF is reduced and the DPF is crushed after the evaluation. .
From the above results, it was confirmed that the preferable range of the DPF average pore diameter is 20 to 35 μm.

次に、図13は、各実施例及び比較例の評価結果に基づいた、触媒の担持量と2分間再生速度との関係を示す図である。図13では、横軸が触媒被膜の担持量(g/L)を表し、縦軸が2分間再生速度(mg/秒)を表している。
図13に示すように、触媒の担持量が少なくなるに従い、再生速度が大きくなり、担持量は45g/L以下が好ましいことが分かった。これは、触媒の担持量が多過ぎると、DPF表面の細孔が触媒被膜中に埋没してしまうためである。
また、触媒の担持量が25g/Lで再生速度は最大となり、担持量は10g/L以上が好ましいことが分かった。これは、触媒の担持量が少な過ぎると、触媒被膜による被覆率が低下するためである。
以上の結果から、触媒担持量の好ましい範囲は、10〜45g/Lであることが確認された。
Next, FIG. 13 is a diagram showing the relationship between the amount of catalyst supported and the 2-minute regeneration rate based on the evaluation results of the examples and comparative examples. In FIG. 13, the horizontal axis represents the amount (g / L) of the catalyst film supported, and the vertical axis represents the regeneration rate (mg / second) for 2 minutes.
As shown in FIG. 13, it was found that the regeneration rate increased as the catalyst loading decreased, and the loading was preferably 45 g / L or less. This is because the pores on the surface of the DPF are buried in the catalyst coating when the amount of the catalyst supported is too large.
It was also found that the regeneration rate was maximum when the catalyst loading was 25 g / L, and the loading was preferably 10 g / L or more. This is because if the amount of the catalyst supported is too small, the coverage by the catalyst coating is lowered.
From the above results, it was confirmed that the preferred range of the catalyst loading was 10 to 45 g / L.

ここで、図14は、針状CeOを含有するAg系触媒からなる触媒被膜の担持量を100g/Lとした排気浄化フィルタについて、表面近傍を断面観察して得られた断面観察画像である。また、図15は、針状CeOを含有するAg含有触媒からなる触媒被膜の担持量を30g/Lとした排気浄化フィルタについて、表面近傍を断面観察して得られた断面観察画像である。
図14に示すように、触媒被膜の担持量が多過ぎると、DPF表面の細孔が触媒被膜中に埋没する結果、PMは触媒被膜の最表面部分としか接触できない。これに対して、図15に示すように、触媒被膜の担持量が適量であると、DPF表面の細孔による凹凸形状を維持しつつ、その表面上に触媒被膜が凹凸状に形成される結果、触媒被膜とPMの接触性が向上することが確認された。
Here, FIG. 14 is a cross-sectional observation image obtained by observing a cross section of the vicinity of the surface of an exhaust purification filter in which the supported amount of a catalyst coating made of an Ag-based catalyst containing acicular CeO 2 is 100 g / L. . FIG. 15 is a cross-sectional observation image obtained by cross-sectional observation of the vicinity of the surface of an exhaust purification filter in which the supported amount of a catalyst coating made of an Ag-containing catalyst containing acicular CeO 2 is 30 g / L.
As shown in FIG. 14, when the amount of the catalyst coating is too large, the pores on the surface of the DPF are buried in the catalyst coating, so that PM can contact only the outermost surface portion of the catalyst coating. On the other hand, as shown in FIG. 15, when the supported amount of the catalyst film is an appropriate amount, the catalyst film is formed in an uneven shape on the surface while maintaining the uneven shape by the pores on the DPF surface. It was confirmed that the contact property between the catalyst coating and PM was improved.

1,2…排気浄化フィルタ
11,21…DPF(フィルタ本体)
12,22…触媒被膜
13,23…細孔
5…PM(粒子状物質)
1, 2 ... Exhaust gas purification filter 11, 21 ... DPF (filter body)
12, 22 ... Catalyst coating 13, 23 ... Pore 5 ... PM (particulate matter)

Claims (5)

内燃機関の排気通路に設けられ、前記内燃機関の排気中の粒子状物質を捕捉して浄化する排気浄化フィルタであって、
平均細孔径が20〜35μmの細孔を有することで表面が凹凸状のフィルタ本体と、当該フィルタ本体の表面に担持され且つ捕捉した粒子状物質を浄化するAg系触媒からなる触媒被膜と、を備え、
前記Ag系触媒の担持量が、前記フィルタ本体の単位容量あたり10〜45g/Lであることにより、前記触媒被膜が、前記フィルタ本体の表面の凹凸に沿って凹凸状に担持されており、
前記触媒被膜の表面を3000倍に拡大観察して、前記平均細孔径の細孔を含む表面観察画像を取得し、これを3次元処理して得られた3次元画像情報に基づいて算出された前記触媒被膜の表面の表面積が、2300〜2950μmであることを特徴とする排気浄化フィルタ。
An exhaust purification filter that is provided in an exhaust passage of an internal combustion engine and captures and purifies particulate matter in the exhaust of the internal combustion engine,
A filter body having an uneven surface with an average pore diameter of 20 to 35 μm, and a catalyst coating made of an Ag-based catalyst that purifies the particulate matter supported and captured on the surface of the filter body. Prepared,
When the amount of the Ag-based catalyst supported is 10 to 45 g / L per unit volume of the filter body, the catalyst coating is supported in an uneven shape along the surface unevenness of the filter body,
The surface of the catalyst coating was magnified 3000 times to obtain a surface observation image including pores having the average pore diameter, and was calculated based on three-dimensional image information obtained by three-dimensional processing. An exhaust purification filter, wherein the surface area of the catalyst coating is 2300-2950 μm 2 .
前記Ag系触媒が、凸形状を有する凸状材を含有し、
前記凸状材の担持量が、前記フィルタ本体の単位容量あたり5〜45g/Lであることを特徴とする請求項1記載の排気浄化フィルタ。
The Ag-based catalyst contains a convex material having a convex shape,
The exhaust purification filter according to claim 1, wherein the carrying amount of the convex material is 5 to 45 g / L per unit capacity of the filter body.
前記凸状材が、針状構造、フラワー状構造、板状構造又は皿状構造を有することを特徴とする請求項2記載の排気浄化フィルタ。   The exhaust purification filter according to claim 2, wherein the convex material has a needle-like structure, a flower-like structure, a plate-like structure, or a dish-like structure. 前記凸状材が、酸素放出能を備える酸素放出材を含むことを特徴とする請求項2又は3記載の排気浄化フィルタ。   The exhaust purification filter according to claim 2 or 3, wherein the convex material includes an oxygen release material having an oxygen release capability. 前記フィルタ本体のセル形状が、4〜8角形のうちのいずれかであり、
前記フィルタ本体のセル数が、1平方インチあたり200〜400セルであることを特徴とする請求項1から4いずれか記載の排気浄化フィルタ。
The cell shape of the filter body is any one of 4-8 octagons,
The exhaust purification filter according to any one of claims 1 to 4, wherein the number of cells of the filter body is 200 to 400 cells per square inch.
JP2012197709A 2012-09-07 2012-09-07 Exhaust purification filter Expired - Fee Related JP5844704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197709A JP5844704B2 (en) 2012-09-07 2012-09-07 Exhaust purification filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197709A JP5844704B2 (en) 2012-09-07 2012-09-07 Exhaust purification filter

Publications (2)

Publication Number Publication Date
JP2014050808A true JP2014050808A (en) 2014-03-20
JP5844704B2 JP5844704B2 (en) 2016-01-20

Family

ID=50609813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197709A Expired - Fee Related JP5844704B2 (en) 2012-09-07 2012-09-07 Exhaust purification filter

Country Status (1)

Country Link
JP (1) JP5844704B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026351A1 (en) * 2000-09-29 2002-04-04 Ibiden Co., Ltd. Catalyst-carrying filter
JP2002242655A (en) * 2001-02-15 2002-08-28 Ibiden Co Ltd Filter for collecting particulate in exhaust gas
WO2003068394A1 (en) * 2002-02-15 2003-08-21 Ict Co., Ltd. Catalyst for clarifying exhaust emission from internal combustion engine, method for preparation thereof, and method for clarifying exhaust emission from internal combustion engine
JP2005152774A (en) * 2003-11-25 2005-06-16 Cataler Corp Particulate filter catalyst and its manufacturing method
WO2007116715A1 (en) * 2006-03-31 2007-10-18 Kabushiki Kaisha Toyota Chuo Kenkyusho High-contact structure for solid-particle, high-contact structure base for solid particle, and processes for producing these
JP2007296518A (en) * 2006-04-07 2007-11-15 Honda Motor Co Ltd Catalyst and device for cleaning exhaust gas
JP2007313443A (en) * 2006-05-26 2007-12-06 Toyota Central Res & Dev Lab Inc Exhaust gas cleaning apparatus
JP2008510604A (en) * 2004-08-21 2008-04-10 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for coating wall flow filter with fine solid, filter obtained by the method and use thereof
JP2009262101A (en) * 2008-04-28 2009-11-12 Honda Motor Co Ltd Method of manufacturing oxidation catalyst device for purification of exhaust gas
JP2011036742A (en) * 2009-08-06 2011-02-24 Honda Motor Co Ltd Exhaust gas-treating device for internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026351A1 (en) * 2000-09-29 2002-04-04 Ibiden Co., Ltd. Catalyst-carrying filter
JP2002242655A (en) * 2001-02-15 2002-08-28 Ibiden Co Ltd Filter for collecting particulate in exhaust gas
WO2003068394A1 (en) * 2002-02-15 2003-08-21 Ict Co., Ltd. Catalyst for clarifying exhaust emission from internal combustion engine, method for preparation thereof, and method for clarifying exhaust emission from internal combustion engine
JP2005152774A (en) * 2003-11-25 2005-06-16 Cataler Corp Particulate filter catalyst and its manufacturing method
JP2008510604A (en) * 2004-08-21 2008-04-10 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for coating wall flow filter with fine solid, filter obtained by the method and use thereof
WO2007116715A1 (en) * 2006-03-31 2007-10-18 Kabushiki Kaisha Toyota Chuo Kenkyusho High-contact structure for solid-particle, high-contact structure base for solid particle, and processes for producing these
JP2007296518A (en) * 2006-04-07 2007-11-15 Honda Motor Co Ltd Catalyst and device for cleaning exhaust gas
JP2007313443A (en) * 2006-05-26 2007-12-06 Toyota Central Res & Dev Lab Inc Exhaust gas cleaning apparatus
JP2009262101A (en) * 2008-04-28 2009-11-12 Honda Motor Co Ltd Method of manufacturing oxidation catalyst device for purification of exhaust gas
JP2011036742A (en) * 2009-08-06 2011-02-24 Honda Motor Co Ltd Exhaust gas-treating device for internal combustion engine

Also Published As

Publication number Publication date
JP5844704B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
US9708946B2 (en) Diesel particulate filter and exhaust gas purification device
JP6016916B2 (en) Diesel particulate filter and exhaust gas purification device
JP5764120B2 (en) Honeycomb filter
JP5519181B2 (en) Exhaust gas purification device for internal combustion engine
JP2007296518A (en) Catalyst and device for cleaning exhaust gas
JP2011255270A (en) Catalyst for purifying exhaust gas
JP6526847B1 (en) Exhaust gas purification catalyst and method for producing the same
JP5146752B2 (en) Method for producing exhaust gas purification catalyst
JP5974850B2 (en) Particulate filter with catalyst
JP2017100073A (en) Catalyst for exhaust purification
JP5742625B2 (en) Particulate filter with catalyst
JP5844704B2 (en) Exhaust purification filter
JP6523496B1 (en) Exhaust gas purification catalyst and method for producing the same
JP6627813B2 (en) Method for producing particulate filter with catalyst
JP2009072693A (en) Diesel particulate filter containing porous catalyst
JP6617181B1 (en) Exhaust gas purification catalyst
JP6194699B2 (en) Manufacturing method of particulate filter with catalyst
JP2009235660A (en) Fibrous mass bearing catalyst, process for producing the same, and purifier for discharge gas
JP6265813B2 (en) Exhaust purification filter
JP4706217B2 (en) Diesel particulate filter
JP2008178766A (en) Particulate filter
WO2021059883A1 (en) Exhaust-gas-purifying catalyst production method
JP5942812B2 (en) Particulate filter with catalyst
JP6526846B1 (en) Exhaust gas purification catalyst and method for producing the same
JP6076936B2 (en) Exhaust purification filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151119

R150 Certificate of patent or registration of utility model

Ref document number: 5844704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees