JP2009235660A - Fibrous mass bearing catalyst, process for producing the same, and purifier for discharge gas - Google Patents
Fibrous mass bearing catalyst, process for producing the same, and purifier for discharge gas Download PDFInfo
- Publication number
- JP2009235660A JP2009235660A JP2008266195A JP2008266195A JP2009235660A JP 2009235660 A JP2009235660 A JP 2009235660A JP 2008266195 A JP2008266195 A JP 2008266195A JP 2008266195 A JP2008266195 A JP 2008266195A JP 2009235660 A JP2009235660 A JP 2009235660A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- fiber assembly
- fiber
- component layer
- catalyst component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 205
- 238000000034 method Methods 0.000 title claims abstract description 8
- 239000000835 fiber Substances 0.000 claims abstract description 321
- 239000000463 material Substances 0.000 claims abstract description 90
- 239000012784 inorganic fiber Substances 0.000 claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 claims description 47
- 239000002184 metal Substances 0.000 claims description 47
- 239000002245 particle Substances 0.000 claims description 33
- 229910052684 Cerium Inorganic materials 0.000 claims description 32
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 30
- 239000001301 oxygen Substances 0.000 claims description 30
- 238000003860 storage Methods 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 238000000746 purification Methods 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 8
- 239000013618 particulate matter Substances 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 229920000914 Metallic fiber Polymers 0.000 description 4
- JSKUQVBNGZGWIN-UHFFFAOYSA-N [Ce].[Pr] Chemical compound [Ce].[Pr] JSKUQVBNGZGWIN-UHFFFAOYSA-N 0.000 description 4
- 229910052755 nonmetal Inorganic materials 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- -1 sodium Chemical compound 0.000 description 4
- 210000002421 cell wall Anatomy 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- CNRZQDQNVUKEJG-UHFFFAOYSA-N oxo-bis(oxoalumanyloxy)titanium Chemical compound O=[Al]O[Ti](=O)O[Al]=O CNRZQDQNVUKEJG-UHFFFAOYSA-N 0.000 description 2
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2027—Metallic material
- B01D39/2041—Metallic material the material being filamentary or fibrous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0225—Coating of metal substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0407—Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0471—Surface coating material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/202—Alkali metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/908—O2-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
- B01D2255/9205—Porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Geology (AREA)
- Analytical Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Filtering Materials (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Nonwoven Fabrics (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
本発明は、触媒付き繊維集合体、その製造方法及び排ガス用浄化装置に係り、更に詳細には、無機繊維から成る繊維集合体の表面上に酸素吸放出材を含む所定の触媒成分層を備えた触媒付き繊維集合体、その製造方法及びこれを用いた排ガス用浄化装置に関する。 The present invention relates to a fiber assembly with a catalyst, a method for producing the same, and a purification apparatus for exhaust gas. More specifically, a predetermined catalyst component layer including an oxygen storage / release material is provided on the surface of a fiber assembly composed of inorganic fibers. The present invention relates to a fiber assembly with a catalyst, a method for producing the same, and a purification apparatus for exhaust gas using the same.
ディーゼルエンジンから排出されるパティキュレートマター(PM)の低減には、ディーゼルパティキュレートフィルタ(DPF)が用いられている。
DPFとしては、耐熱性に優れたコージェライトや炭化ケイ素などのセラミックスの多孔体を交互目封じハニカム構造体としたものが一般的に使用されている。
このようなDPFにおいては、PMの捕集がセル壁で行われるため、PMがセル壁表面に堆積し、排ガスの圧力損失が急激に上昇する。
そのために、DPFを自己再生する際に、燃料噴射によって600℃以上の過熱燃焼処理を定期的に行うシステムが提案されている(特許文献1及び2参照。)。
A diesel particulate filter (DPF) is used to reduce particulate matter (PM) discharged from the diesel engine.
As the DPF, a honeycomb structure in which ceramic porous bodies such as cordierite and silicon carbide having excellent heat resistance are alternately plugged is generally used.
In such a DPF, since PM is collected on the cell wall, PM accumulates on the cell wall surface, and the pressure loss of the exhaust gas increases rapidly.
For this reason, a system has been proposed in which overheating combustion processing at 600 ° C. or higher is periodically performed by fuel injection when the DPF self-regenerates (see Patent Documents 1 and 2).
また、このようなDPFにおいて、セル壁表面に堆積したPMを白金やセリウムなどを含む触媒を利用して、PMの酸化を容易にし、連続的に酸化除去するシステムも提案されている(特許文献3参照。)。 Also, in such a DPF, a system has been proposed in which PM deposited on the cell wall surface is oxidized and removed continuously by using a catalyst containing platinum, cerium or the like (Patent Document). 3).
一方、DPFとしては、無機繊維(主に耐熱性に優れる炭化ケイ素)を不織布に加工したものも提案されている(特許文献4参照。)。 On the other hand, as DPF, what processed inorganic fiber (mainly silicon carbide excellent in heat resistance) into the nonwoven fabric is also proposed (refer to patent documents 4).
しかしながら、特許文献4に記載のDPFに、従来の触媒スラリーを用いた担持方法で触媒を担持しようとすると、目詰まりなどの不具合が生じてしまうため、無機繊維から成る繊維集合体の表面上に所定の触媒成分層を備えた触媒付き繊維集合体を得ることができていなかった。 However, if a catalyst is loaded on the DPF described in Patent Document 4 by a conventional loading method using a catalyst slurry, problems such as clogging occur, and therefore, on the surface of a fiber assembly made of inorganic fibers. A catalyst-attached fiber assembly having a predetermined catalyst component layer could not be obtained.
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、触媒を利用したフィルタとしての機能が十分に得られる触媒付き繊維集合体、その製造方法、及びこれを用いた排ガス用浄化装置を提供することにある。 The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a catalyst-attached fiber assembly that can sufficiently function as a filter using a catalyst, and a method for producing the same. And providing an exhaust gas purifying apparatus using the same.
本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、酸素吸放出材ゾルを含む触媒成分層形成用材料を、無機繊維から成る繊維集合体に担持し、焼成することなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have carried the catalyst component layer forming material containing the oxygen absorbing / releasing material sol on a fiber assembly made of inorganic fibers and firing it. The inventors have found that the above object can be achieved and have completed the present invention.
即ち、本発明の触媒付き繊維集合体は、無機繊維から成る繊維集合体表面上に、酸素吸放出材を含む触媒成分層を有し、該無機繊維の平均繊維径に対し該触媒成分層の厚みが20%以下であることを特徴とする。 That is, the catalyst-attached fiber assembly of the present invention has a catalyst component layer containing an oxygen storage / release material on the surface of the fiber assembly made of inorganic fibers, and the catalyst component layer has an average fiber diameter of the catalyst component layer. The thickness is 20% or less.
また、本発明の触媒付き繊維集合体の製造方法は、上記本発明の触媒付き繊維集合体の製造方法であって、酸素吸放出材ゾルを含む触媒成分層形成用材料を、無機繊維から成る繊維集合体に担持し、焼成する工程を含むことを特徴とする。 The method for producing a catalyst-attached fiber assembly according to the present invention is a method for producing a catalyst-attached fiber assembly according to the present invention, wherein the catalyst component layer forming material containing an oxygen storage / release material sol is composed of inorganic fibers. It is characterized by including a step of supporting the fiber aggregate and firing.
更に、本発明の排ガス用浄化装置は、上記本発明の触媒付き繊維集合体を備えたことを特徴とする。 Furthermore, the exhaust gas purifying apparatus of the present invention is characterized by comprising the above-described fiber assembly with a catalyst of the present invention.
本発明によれば、酸素吸放出材ゾルを含む触媒成分層形成用材料を、無機繊維から成る繊維集合体に担持し、焼成することなどとしたため、触媒を利用したフィルタとしての機能が十分に得られる触媒付き繊維集合体、その製造方法、及びこれを用いた排ガス用浄化装置を提供することができる。 According to the present invention, the catalyst component layer forming material containing the oxygen absorbing / releasing material sol is supported on the fiber aggregate made of inorganic fibers and fired, and thus the function as a filter using the catalyst is sufficient. The obtained fiber assembly with a catalyst, the manufacturing method thereof, and the exhaust gas purification apparatus using the same can be provided.
以下、本発明の触媒付き繊維集合体について説明する。
上述の如く、本発明の触媒付き繊維集合体は、無機繊維から成る繊維集合体の表面上に、酸素吸放出材を含む触媒成分層を有し、無機繊維の平均繊維径に対し触媒成分層の厚みが20%以下であるものである。
このような構成とすることにより、触媒を利用したフィルタとしての機能を十分に得ることができる。
Hereinafter, the fiber assembly with catalyst of the present invention will be described.
As described above, the catalyst-attached fiber assembly of the present invention has a catalyst component layer containing an oxygen storage / release material on the surface of a fiber assembly made of inorganic fibers, and the catalyst component layer has an average fiber diameter of the inorganic fibers. The thickness is 20% or less.
With such a configuration, a function as a filter using a catalyst can be sufficiently obtained.
無機繊維の平均繊維径に対し触媒成分層の厚みが20%を超える場合には、触媒を利用したフィルタとしての機能を発揮することができない。即ち、触媒成分層が所定の厚みを超えると、繊維集合体を用いることによる比表面積の向上効果が十分に得られない。また、触媒自体の比表面積も低下してしまう。
触媒を利用したフィルタとしての機能を十分に発揮するという観点からは、無機繊維の平均繊維径に対し触媒成分層の厚みが0.01%以上10%以下であることが好ましく、0.01%以上5%以下であることが更に好ましい。
When the thickness of the catalyst component layer exceeds 20% with respect to the average fiber diameter of the inorganic fibers, the function as a filter using the catalyst cannot be exhibited. That is, when the catalyst component layer exceeds a predetermined thickness, the effect of improving the specific surface area due to the use of the fiber assembly cannot be sufficiently obtained. Moreover, the specific surface area of the catalyst itself is also reduced.
From the viewpoint of sufficiently exerting a function as a filter using a catalyst, the thickness of the catalyst component layer is preferably 0.01% or more and 10% or less with respect to the average fiber diameter of the inorganic fibers, More preferably, it is 5% or less.
また、具体的には、無機繊維の平均繊維径が30μmであるときは、触媒成分層の厚みは1〜3%であることが好ましい。また、無機繊維の平均繊維径が15μmであるときは、触媒成分層の厚みは2〜5%であることが好ましい。更に、無機繊維の平均繊維径が3μmであるときは、触媒成分層の厚みは3〜7%であることが好ましい。 Specifically, when the average fiber diameter of the inorganic fibers is 30 μm, the thickness of the catalyst component layer is preferably 1 to 3%. In addition, when the average fiber diameter of the inorganic fibers is 15 μm, the thickness of the catalyst component layer is preferably 2 to 5%. Furthermore, when the average fiber diameter of the inorganic fibers is 3 μm, the thickness of the catalyst component layer is preferably 3 to 7%.
本発明において、「触媒成分層」とは、少なくとも酸素吸放出材を含めば、連続層であるもののみならず非連続層であるものをも含むものである。
従って、例えば触媒成分層が連続層である場合には、触媒成分層の厚みはその厚みを意味する。また、触媒成分層が非連続層である場合には、触媒成分層の各層の厚みを意味する。更に、非連続層が粒状である場合には、その粒径を意味する。
また、このような触媒成分層は、例えば白金などの貴金属やナトリウムなどのアルカリ金属、カルシウムやバリウムなどのアルカリ土類金属等の他の成分を含むものであってもよいが、酸素吸放出材のみから成るものであってもよい。更に、触媒成分層を構成する酸素吸放出材は、例えば無機繊維の表面上に均一分散されて配設されていることが望ましい。
In the present invention, the “catalyst component layer” includes not only a continuous layer but also a discontinuous layer, at least including an oxygen storage / release material.
Therefore, for example, when the catalyst component layer is a continuous layer, the thickness of the catalyst component layer means the thickness. Moreover, when a catalyst component layer is a discontinuous layer, the thickness of each layer of a catalyst component layer is meant. Furthermore, when the discontinuous layer is granular, it means the particle size.
Such a catalyst component layer may contain other components such as noble metals such as platinum, alkali metals such as sodium, and alkaline earth metals such as calcium and barium. It may consist of only. Furthermore, it is desirable that the oxygen storage / release material constituting the catalyst component layer is disposed, for example, uniformly dispersed on the surface of the inorganic fiber.
上記酸素吸放出材としては、例えばセリウム含有酸化物を挙げることができるが、これに限定されるものではない。即ち、プラセオジム含有酸化物、イットリウム含有酸化物、ランタン含有酸化物、マンガン含有酸化物などを挙げることもできる。また、例えばセリウム−プラセオジム含有酸化物などの混合ないし複合化したものを適用することもできる。酸素吸放出性能の観点からは、セリウム−プラセオジム含有酸化物が特に望ましい。 Examples of the oxygen storage / release material include, but are not limited to, cerium-containing oxides. That is, examples thereof include praseodymium-containing oxides, yttrium-containing oxides, lanthanum-containing oxides, manganese-containing oxides, and the like. Further, for example, a mixed or complexed material such as a cerium-praseodymium-containing oxide can be used. From the viewpoint of oxygen storage / release performance, a cerium-praseodymium-containing oxide is particularly desirable.
上記無機繊維としては、例えば金属繊維を挙げることができるが、これに限定されるものではない。即ち、例えば非金属繊維を用いることもできる。
上記金属繊維としては、例えばフェライト系ステンレスなどの耐熱性金属の繊維を挙げることができる。
また、上記非金属繊維としては、例えば炭化ケイ素などの非酸化物やアルミニウム酸化物やアルミニウム−ケイ素酸化物、アルミニウム−チタン酸化物などの酸化物を挙げることができる。
なお、特に限定されるものではないが、無機繊維の平均繊維径は、1〜50μmであることが好ましく、3〜30μmであることがより好ましく、5〜15μmであることが更に好ましい。
平均繊維径が1μm未満である場合には、圧損が悪化する場合があり、50μmを超える場合には、繊維構造体を構成できなくなる場合がある。
As said inorganic fiber, although a metal fiber can be mentioned, for example, it is not limited to this. That is, for example, non-metallic fibers can also be used.
Examples of the metal fibers include heat-resistant metal fibers such as ferritic stainless steel.
Examples of the non-metallic fiber include non-oxides such as silicon carbide, and oxides such as aluminum oxide, aluminum-silicon oxide, and aluminum-titanium oxide.
In addition, although it does not specifically limit, it is preferable that the average fiber diameter of an inorganic fiber is 1-50 micrometers, It is more preferable that it is 3-30 micrometers, It is still more preferable that it is 5-15 micrometers.
When the average fiber diameter is less than 1 μm, the pressure loss may deteriorate, and when it exceeds 50 μm, the fiber structure may not be configured.
更に、上記金属繊維や非金属繊維は適宜組み合わせることもできる。このような無機繊維としては、表面にアルミニウム含有酸化物を含む酸化物層を有する含アルミニウム金属繊維を好適例として挙げることができる。
本発明において、「含アルミニウム金属」とは、アルミニウムを含有している金属である。アルミニウムの含有率が1質量%以上であることが好ましく、5質量%以上であることがより好ましい。例えばR20−5USR鋼材などを好適例として挙げることができる。
Furthermore, the metal fibers and non-metal fibers can be appropriately combined. As such an inorganic fiber, an aluminum-containing metal fiber having an oxide layer containing an aluminum-containing oxide on the surface can be cited as a preferred example.
In the present invention, the “aluminum-containing metal” is a metal containing aluminum. The aluminum content is preferably 1% by mass or more, and more preferably 5% by mass or more. For example, R20-5USR steel can be mentioned as a suitable example.
なお、特に限定されるものではないが、触媒付き繊維集合体の空隙率は50〜95%であることが好ましく、60〜85%であることがより好ましい。空隙率が50%未満の場合には圧損が悪化することがあり、95%を超える場合には、PM捕集が困難になることがある。 In addition, although it does not specifically limit, it is preferable that the porosity of a fiber assembly with a catalyst is 50 to 95%, and it is more preferable that it is 60 to 85%. When the porosity is less than 50%, the pressure loss may deteriorate, and when it exceeds 95%, PM collection may be difficult.
次に、本発明の触媒付き繊維集合体の製造方法について説明する。
上述の如く、本発明の触媒付き繊維集合体の製造方法は、上述した触媒付き繊維集合体を得る方法であって、酸素吸放出材ゾルを含む触媒成分層形成用材料を、無機繊維から成る繊維集合体に担持し、焼成する工程を含む方法である。
このような製法により、目詰まりを生じることなく、無機繊維から成る繊維集合体の表面上に、酸素吸放出材を含む触媒成分層を有し、無機繊維の平均繊維径に対し触媒成分層の厚みが20%以下である所望の触媒付き繊維集合体を得ることができる。
なお、上述した本発明の触媒付き繊維集合体は、本発明の触媒付き繊維集合体の製造方法により製造されたものに必ずしも限定されるものではない。
Next, the manufacturing method of the fiber assembly with a catalyst of this invention is demonstrated.
As described above, the method for producing a catalyst-attached fiber assembly according to the present invention is a method for obtaining the above-described catalyst-attached fiber assembly, and the catalyst component layer forming material containing the oxygen storage / release material sol is made of inorganic fibers. It is a method including a step of carrying on a fiber assembly and firing.
By such a production method, the catalyst component layer containing the oxygen storage / release material is provided on the surface of the fiber assembly made of inorganic fibers without causing clogging, and the catalyst component layer is compared with the average fiber diameter of the inorganic fibers. A desired catalyst-attached fiber assembly having a thickness of 20% or less can be obtained.
In addition, the fiber assembly with a catalyst of this invention mentioned above is not necessarily limited to what was manufactured by the manufacturing method of the fiber assembly with a catalyst of this invention.
上記酸素吸放出材ゾルは、例えば粒子径が好ましくは500nm以下、より好ましくは50〜300nmであり、メジアン径が好ましくは100nm以下、より好ましくは5〜80nm、更に好ましくは10〜60nmであるもの用いることができる。
酸素吸放出剤ゾルの粒子径が500nm以下であると、上述した所望の触媒付き繊維集合体を簡易に作製することができる。また、粒子径が3000nm以上であると、繊維の細孔閉塞を招き、繊維フィルターの役割を果たさなくなる。
また、酸素吸放出材ゾルの粘度は、低いことが好ましい。
ここで、酸素吸放出材ゾルの粒子径やメジアン径は、例えば動的光散乱法により測定できる。
The oxygen storage / release material sol has, for example, a particle diameter of preferably 500 nm or less, more preferably 50 to 300 nm, a median diameter of preferably 100 nm or less, more preferably 5 to 80 nm, and still more preferably 10 to 60 nm. Can be used.
When the particle size of the oxygen absorbing / releasing agent sol is 500 nm or less, the above-described desired catalyst-attached fiber assembly can be easily produced. Further, when the particle diameter is 3000 nm or more, the pores of the fiber are blocked, and the role of the fiber filter is not fulfilled.
The viscosity of the oxygen storage / release material sol is preferably low.
Here, the particle diameter and median diameter of the oxygen storage / release material sol can be measured, for example, by a dynamic light scattering method.
上記酸素吸放出材ゾルとしては、例えばセリウム含有酸化物ゾルを用いることができるが、これに限定されるものではない。即ち、プラセオジム含有酸化物ゾル、イットリウム含有酸化物ゾル、ランタン含有酸化物ゾル、マンガン含有酸化物ゾルなどを用いることもできる。また、例えばセリウム−プラセオジム含有酸化物ゾルなどの混合ないし複合化したものを用いることもできる。酸素吸放出性能の観点からは、セリウム−プラセオジム含有酸化物ゾルを用いることが特に望ましい。 As the oxygen storage / release material sol, for example, a cerium-containing oxide sol can be used, but it is not limited thereto. That is, praseodymium-containing oxide sol, yttrium-containing oxide sol, lanthanum-containing oxide sol, manganese-containing oxide sol, and the like can also be used. In addition, for example, a mixed or complexed cerium-praseodymium-containing oxide sol may be used. From the viewpoint of oxygen absorption / release performance, it is particularly desirable to use a cerium-praseodymium-containing oxide sol.
上記触媒成分層形成用材料としては、酸素吸放出材ゾル以外に他の成分を含有しているもの、酸素吸放出材ゾルのみを含むもののいずれであっても用いることができる。
他の成分としては、白金などの貴金属やナトリウムなどのアルカリ金属、カルシウムやバリウムなどのアルカリ土類金属等を挙げることができるが、これらは溶液や固体、ゾルなどの状態のいずれの状態で含まれていてもよい。
As the material for forming the catalyst component layer, any of those containing other components in addition to the oxygen storage / release material sol and those containing only the oxygen storage / release material sol can be used.
Examples of other components include noble metals such as platinum, alkali metals such as sodium, alkaline earth metals such as calcium and barium, etc., but these are included in any state such as solutions, solids, and sols. It may be.
上記無機繊維から成る繊維集合体としては、例えば金属繊維から成る繊維集合体を用いることができるが、これに限定されるものではない。即ち、例えば非金属繊維から成る繊維集合体を適用することもできる。
上記金属繊維から成る繊維集合体としては、例えばフェライト系ステンレスなどの耐熱性金属の繊維から成る繊維集合体を挙げることができる。
また、上記非金属繊維から成る繊維集合体としては、例えば炭化ケイ素などの非酸化物やアルミニウム−ケイ素酸化物やアルミニウム−チタン酸化物などの酸化物から成る繊維集合体を挙げることができる。
更に、上記金属繊維及び非金属繊維を含む繊維集合体や上記金属繊維から成る繊維集合体及び上記非金属繊維から成る繊維集合体を適宜組み合わせて用いることもできる。
As the fiber assembly composed of the inorganic fibers, for example, a fiber assembly composed of metal fibers can be used, but is not limited thereto. That is, for example, a fiber assembly made of non-metallic fibers can be applied.
Examples of the fiber assembly made of the metal fibers include a fiber assembly made of heat-resistant metal fibers such as ferritic stainless steel.
Examples of the fiber aggregate made of the non-metallic fiber include a fiber aggregate made of a non-oxide such as silicon carbide or an oxide such as aluminum-silicon oxide or aluminum-titanium oxide.
Furthermore, a fiber assembly including the metal fiber and the non-metal fiber, a fiber assembly including the metal fiber, and a fiber assembly including the non-metal fiber may be used in appropriate combination.
更にまた、上記無機繊維においては、金属や非金属は適宜組み合わせることもできる。このような無機繊維としては、表面にアルミニウム含有酸化物を含む酸化物層を有する含アルミニウム金属繊維を好適例として挙げることができる。
このような無機繊維から成る繊維集合体は、例えば含アルミニウム金属から成る繊維集合体を熱処理することなどにより得ることができる。
Furthermore, in the said inorganic fiber, a metal and a nonmetal can also be combined suitably. As such an inorganic fiber, an aluminum-containing metal fiber having an oxide layer containing an aluminum-containing oxide on the surface can be cited as a preferred example.
Such a fiber assembly made of inorganic fibers can be obtained, for example, by heat-treating a fiber assembly made of an aluminum-containing metal.
次に、本発明の排ガス用浄化装置について説明する。
本発明の排ガス用浄化装置は、上述した触媒付き繊維集合体を備えたものである。
このような排ガス用浄化装置は、例えばディーゼルエンジンやガソリンエンジンなどの排ガス流路に配置され、パティキュレートフィルタとして適用することができる。
Next, the exhaust gas purification apparatus of the present invention will be described.
The exhaust gas purifying apparatus of the present invention includes the above-described fiber assembly with a catalyst.
Such an exhaust gas purifying device is disposed in an exhaust gas flow path of a diesel engine or a gasoline engine, for example, and can be applied as a particulate filter.
以下、本発明を実施例及び比較例により更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(実施例1)
<繊維集合体の準備>
フェライト系ステンレス鋼の金属繊維(平均繊維径3μm)を用い、集積機により、繊維を集合させ、更に、拡散接合処理して、繊維集合体を得た。
Example 1
<Preparation of fiber assembly>
Using a ferritic stainless steel metal fiber (average fiber diameter of 3 μm), the fiber was assembled by an accumulator and further subjected to diffusion bonding treatment to obtain a fiber assembly.
<触媒付き繊維集合体の作製>
得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:500nm、メジアン径:70nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは7%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
なお、用いたセリウム含有酸化物ゾルや後述するセリウム含有酸化物の粒子径などは、動的光散乱式粒径分布測定装置(株式会社堀場製作所製、LB−550)を用いて測定した。
<Preparation of catalyst-attached fiber assembly>
The obtained fiber aggregate is immersed in a catalyst component layer forming material containing a cerium-containing oxide sol (particle diameter: 500 nm, median diameter: 70 nm), the fiber aggregate is taken out, and an extra catalyst component layer forming material is taken out. Was removed at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain a catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 7% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
In addition, the particle diameter of the used cerium containing oxide sol and the cerium containing oxide mentioned later etc. were measured using the dynamic light scattering type particle size distribution measuring apparatus (Horiba Ltd. make, LB-550).
(実施例2)
<繊維集合体の準備>
フェライト系ステンレス鋼の金属繊維(平均繊維径15μm)を用い、集積機により、繊維を集合させ、更に、拡散接合処理して、繊維集合体を得た。
(Example 2)
<Preparation of fiber assembly>
Using a ferritic stainless steel metal fiber (average fiber diameter of 15 μm), the fibers were assembled by an accumulator and further subjected to diffusion bonding treatment to obtain a fiber assembly.
<触媒付き繊維集合体の作製>
得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:500nm、メジアン径:70nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは5%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
<Preparation of catalyst-attached fiber assembly>
The obtained fiber aggregate is immersed in a catalyst component layer forming material containing a cerium-containing oxide sol (particle diameter: 500 nm, median diameter: 70 nm), the fiber aggregate is taken out, and an extra catalyst component layer forming material is taken out. Was removed at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain a catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 5% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例3)
<繊維集合体の準備>
フェライト系ステンレス鋼の金属繊維(平均繊維径30μm)を用い、集積機により、繊維を集合させ、更に、拡散接合処理して、繊維集合体を得た。
(Example 3)
<Preparation of fiber assembly>
Using a ferritic stainless steel metal fiber (average fiber diameter of 30 μm), the fiber was assembled by an accumulator and further subjected to diffusion bonding treatment to obtain a fiber assembly.
<触媒付き繊維集合体の作製>
得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:500nm、メジアン径:70nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは3%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。更に、得られた触媒付き繊維集合体の走査型電子顕微鏡(SEM)写真を図1に示す。
<Preparation of catalyst-attached fiber assembly>
The obtained fiber aggregate is immersed in a catalyst component layer forming material containing a cerium-containing oxide sol (particle diameter: 500 nm, median diameter: 70 nm), the fiber aggregate is taken out, and an extra catalyst component layer forming material is taken out. Was removed at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain a catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 3% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%. Furthermore, the scanning electron microscope (SEM) photograph of the obtained fiber assembly with a catalyst is shown in FIG.
(実施例4)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:500nm、メジアン径:70nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは0.01%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
Example 4
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle diameter: 500 nm, median diameter: 70 nm), the fiber assembly was taken out, and an excess catalyst component The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 0.01% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例5)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:500nm、メジアン径:70nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは10%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Example 5)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle diameter: 500 nm, median diameter: 70 nm), the fiber assembly was taken out, and an excess catalyst component The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 10% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例6)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:500nm、メジアン径:70nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは20%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Example 6)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle diameter: 500 nm, median diameter: 70 nm), the fiber assembly was taken out, and an excess catalyst component The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 20% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例7)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:300nm、メジアン径:50nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは4%であった。また、得られた触媒付き繊維集合体の空隙率は50%であった。
(Example 7)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 300 nm, median size: 50 nm), and the fiber assembly was taken out to remove excess catalyst components. The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 4% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 50%.
(実施例8)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:300nm、メジアン径:50nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは4%であった。また、得られた触媒付き繊維集合体の空隙率は95%であった。
(Example 8)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 300 nm, median size: 50 nm), and the fiber assembly was taken out to remove excess catalyst components. The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 4% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 95%.
(実施例9)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:300nm、メジアン径:50nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは4%であった。また、得られた触媒付き繊維集合体の空隙率は60%であった。
Example 9
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 300 nm, median size: 50 nm), and the fiber assembly was taken out to remove excess catalyst components. The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 4% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 60%.
(実施例10)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:300nm、メジアン径:50nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは4%であった。また、得られた触媒付き繊維集合体の空隙率は85%であった。
(Example 10)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 300 nm, median size: 50 nm), and the fiber assembly was taken out to remove excess catalyst components. The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 4% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 85%.
(実施例11)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:50nm、メジアン径:10nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは0.5%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
Example 11
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 50 nm, median size: 10 nm), the fiber assembly was taken out, and an excess catalyst component The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 0.5% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例12)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:300nm、メジアン径:50nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは4%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
Example 12
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 300 nm, median size: 50 nm), and the fiber assembly was taken out to remove excess catalyst components. The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 4% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例13)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:100nm、メジアン径:15nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは1%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Example 13)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 100 nm, median size: 15 nm), the fiber assembly was taken out, and an excess catalyst component The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 1% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例14)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:5nm、メジアン径:5nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは0.05%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Example 14)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 5 nm, median size: 5 nm), and the fiber assembly was taken out to remove excess catalyst components. The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 0.05% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例15)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:80nm、メジアン径:10nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは1%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Example 15)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle diameter: 80 nm, median diameter: 10 nm), the fiber assembly was taken out, and an excess catalyst component The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 1% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例16)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:10nm、メジアン径:2nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは0.1%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Example 16)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 10 nm, median size: 2 nm), the fiber assembly was taken out, and an extra catalyst component The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 0.1% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例17)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:60nm、メジアン径:8nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは1%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Example 17)
<Preparation of catalyst-attached fiber assembly>
The fiber aggregate obtained in Example 2 was immersed in a catalyst component layer forming material containing a cerium-containing oxide sol (particle diameter: 60 nm, median diameter: 8 nm), the fiber aggregate was taken out, and an excess catalyst component The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 1% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例18)
<触媒付き繊維集合体の作製>
実施例3で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:300nm、メジアン径:50nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは1%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Example 18)
<Preparation of catalyst-attached fiber assembly>
The fiber aggregate obtained in Example 3 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle diameter: 300 nm, median diameter: 50 nm), the fiber aggregate was taken out, and an excess catalyst component The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 1% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例19)
<触媒付き繊維集合体の作製>
実施例1で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:300nm、メジアン径:50nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは3%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
Example 19
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 1 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 300 nm, median size: 50 nm), the fiber assembly was taken out, and an excess catalyst component The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 3% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(実施例20)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物ゾル(粒子径:300nm、メジアン径:50nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、室温から100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは2%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Example 20)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a material for forming a catalyst component layer containing a cerium-containing oxide sol (particle size: 300 nm, median size: 50 nm), and the fiber assembly was taken out to remove excess catalyst components. The layer forming material was removed with an air flow, dried at room temperature to 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain the catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 2% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(比較例1)
<触媒付き繊維集合体の作製>
実施例1で得られた繊維集合体を、セリウム含有酸化物(粒子径:3000nm、メジアン径:450nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは50%であった。また、得られた触媒付き繊維集合体の空隙率は60%であった。
(Comparative Example 1)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 1 was immersed in a catalyst component layer forming material containing a cerium-containing oxide (particle diameter: 3000 nm, median diameter: 450 nm), the fiber assembly was taken out, and an excess catalyst component layer The forming material was removed with an air stream, dried at 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain a catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 50% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 60%.
(比較例2)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物(粒子径:3000nm、メジアン径:450nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは40%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Comparative Example 2)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 2 was immersed in a catalyst component layer forming material containing a cerium-containing oxide (particle diameter: 3000 nm, median diameter: 450 nm), the fiber assembly was taken out, and an excess catalyst component layer was obtained. The forming material was removed with an air stream, dried at 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain a catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 40% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(比較例3)
<触媒付き繊維集合体の作製>
実施例3で得られた繊維集合体を、セリウム含有酸化物(粒子径:3000nm、メジアン径:450nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは30%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。更に、得られた触媒付き繊維集合体のSEM写真を図2に示す。
(Comparative Example 3)
<Preparation of catalyst-attached fiber assembly>
The fiber assembly obtained in Example 3 was immersed in a catalyst component layer forming material containing a cerium-containing oxide (particle diameter: 3000 nm, median diameter: 450 nm), the fiber assembly was taken out, and an excess catalyst component layer was obtained. The forming material was removed with an air stream, dried at 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain a catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with a catalyst, the thickness of the catalyst component layer was 30% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%. Furthermore, the SEM photograph of the obtained fiber assembly with a catalyst is shown in FIG.
(比較例4)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物(粒子径:2500nm、メジアン径:450nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは25%であった。また、得られた触媒付き繊維集合体の空隙率は70%であった。
(Comparative Example 4)
<Preparation of catalyst-attached fiber assembly>
The fiber aggregate obtained in Example 2 was immersed in a catalyst component layer forming material containing a cerium-containing oxide (particle diameter: 2500 nm, median diameter: 450 nm), the fiber aggregate was taken out, and an excess catalyst component layer The forming material was removed with an air stream, dried at 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain a catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 25% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 70%.
(比較例5)
<触媒付き繊維集合体の作製>
実施例2で得られた繊維集合体を、セリウム含有酸化物(粒子径:2500nm、メジアン径:450nm)を含む触媒成分層形成用材料に浸漬し、繊維集合体を取り出し、余分な触媒成分層形成用材料を空気流にて除去し、100℃で1時間乾燥し、400℃で1時間焼成して、本例の触媒付き繊維集合体を得た。
得られた触媒付き繊維集合体において、金属繊維の平均繊維径に対し触媒成分層の厚みは25%であった。また、得られた触媒付き繊維集合体の空隙率は96%であった。
各例の触媒付き繊維集合体の仕様を表1示す。
(Comparative Example 5)
<Preparation of catalyst-attached fiber assembly>
The fiber aggregate obtained in Example 2 was immersed in a catalyst component layer forming material containing a cerium-containing oxide (particle diameter: 2500 nm, median diameter: 450 nm), the fiber aggregate was taken out, and an excess catalyst component layer The forming material was removed with an air stream, dried at 100 ° C. for 1 hour, and calcined at 400 ° C. for 1 hour to obtain a catalyst-attached fiber assembly of this example.
In the obtained fiber assembly with catalyst, the thickness of the catalyst component layer was 25% with respect to the average fiber diameter of the metal fibers. Moreover, the porosity of the obtained fiber assembly with a catalyst was 96%.
Table 1 shows the specifications of the fiber assembly with catalyst in each example.
[性能評価]
ディーゼルエンジン(排気量:2500cc、日産自動車株式会社製)の排ガス流路に、各例の触媒付き繊維集合体を用いたDPFを配置し、DPFの出入口の圧力を測定して、圧力損失の値を求めた。表1に120分経過時における各例の圧力損失の値を示す。
[Performance evaluation]
The DPF using the fiber assembly with catalyst of each example is arranged in the exhaust gas flow path of a diesel engine (displacement: 2500 cc, manufactured by Nissan Motor Co., Ltd.), and the pressure at the entrance and exit of the DPF is measured. Asked. Table 1 shows the pressure loss values of the respective examples when 120 minutes have elapsed.
酸素吸放出材ゾルを含む触媒成分層形成用材料を、無機繊維から成る繊維集合体に担持し、焼成して得られた実施例1〜20の触媒付き繊維集合体は、所定の厚みの触媒成分層が形成されていた。また、酸素吸放出材が無機繊維の表面上に均一分散して配設されていた。
一方、従来の酸素吸放出材を含む触媒成分層形成用材料を、無機繊維から成る繊維集合体に担持し、焼成して得られた比較例1〜5の触媒付き繊維集合体は、所定の厚みの触媒成分層を形成することができなかった。また、酸素吸放出材が無機繊維の表面上に偏って配設されていた。
The catalyst-assembled fiber aggregates of Examples 1 to 20 obtained by carrying the catalyst component layer forming material containing the oxygen absorbing / releasing material sol on a fiber aggregate composed of inorganic fibers and calcining the catalyst have a predetermined thickness. A component layer was formed. In addition, the oxygen storage / release material was disposed uniformly dispersed on the surface of the inorganic fiber.
On the other hand, the catalyst-attached layer forming material containing the conventional oxygen storage / release material is supported on a fiber assembly made of inorganic fibers and fired. A catalyst component layer having a thickness could not be formed. In addition, the oxygen storage / release material is disposed unevenly on the surface of the inorganic fiber.
また、表1より、実施例1〜20の触媒付き繊維集合体は、比較例1〜5の触媒付き繊維集合体よりも圧力損失の値が小さいことが分かる。
そして、各例の触媒付き繊維集合体は、同程度のPM除去率であったことから、本発明の範囲に属する実施例1〜20の触媒付き繊維集合体は、触媒を利用したフィルタとしての機能を十分に発揮していることが分かる。
Moreover, it turns out from Table 1 that the value of a pressure loss is smaller than the fiber assembly with a catalyst of Examples 1-20 than the fiber assembly with a catalyst of Comparative Examples 1-5.
And since the fiber assembly with a catalyst of each example was about the same PM removal rate, the fiber assembly with a catalyst of Examples 1-20 which belong to the range of the present invention is as a filter using a catalyst. It turns out that the function is fully demonstrated.
以上、本発明を若干の実施形態及び実施例により詳細に説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。
例えば、上記の実施形態や実施例においては、ディーゼルエンジンやガソリンエンジンの排ガス流路に配置する場合などを例にとって説明したが、これらに限定されるものでないことは言うまでもない。例えば、種々の燃焼装置の排ガス用浄化装置として適用することができる。
As mentioned above, although this invention was demonstrated in detail by some embodiment and an Example, this invention is not limited to these, A various deformation | transformation is possible within the range of the summary of this invention.
For example, in the above-described embodiments and examples, the case where they are arranged in the exhaust gas flow path of a diesel engine or a gasoline engine has been described as an example, but it is needless to say that the present invention is not limited thereto. For example, the present invention can be applied as an exhaust gas purification device for various combustion devices.
Claims (11)
酸素吸放出材ゾルを含む触媒成分層形成用材料を、無機繊維から成る繊維集合体に担持し、焼成する工程を含む、ことを特徴とする触媒付き繊維集合体の製造方法。 A catalyst-attached fiber assembly having a catalyst component layer containing an oxygen storage / release material on the surface of a fiber assembly made of inorganic fibers, wherein the thickness of the catalyst component layer is 20% or less with respect to the average fiber diameter of the inorganic fibers A manufacturing method of
A method for producing a catalyst-attached fiber assembly, comprising a step of supporting and firing a catalyst component layer forming material containing an oxygen storage / release material sol on a fiber assembly made of inorganic fibers.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008266195A JP5453759B2 (en) | 2008-03-05 | 2008-10-15 | FIBER ASSEMBLY WITH CATALYST, ITS MANUFACTURING METHOD, AND EXHAUST GAS PURIFICATION DEVICE |
PCT/JP2009/054065 WO2009110505A1 (en) | 2008-03-05 | 2009-03-04 | Fibrous mass bearing catalyst, process for producing the same, and purifier for discharge gas |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008054487 | 2008-03-05 | ||
JP2008054487 | 2008-03-05 | ||
JP2008266195A JP5453759B2 (en) | 2008-03-05 | 2008-10-15 | FIBER ASSEMBLY WITH CATALYST, ITS MANUFACTURING METHOD, AND EXHAUST GAS PURIFICATION DEVICE |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009235660A true JP2009235660A (en) | 2009-10-15 |
JP5453759B2 JP5453759B2 (en) | 2014-03-26 |
Family
ID=41056058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008266195A Expired - Fee Related JP5453759B2 (en) | 2008-03-05 | 2008-10-15 | FIBER ASSEMBLY WITH CATALYST, ITS MANUFACTURING METHOD, AND EXHAUST GAS PURIFICATION DEVICE |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5453759B2 (en) |
WO (1) | WO2009110505A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011049140A1 (en) * | 2009-10-20 | 2011-04-28 | 株式会社フジコー | Fibrous filter and air purification device |
WO2023166841A1 (en) * | 2022-03-04 | 2023-09-07 | シャープ株式会社 | Filter material, air filter, air conditioner, water filter, and water cleaner |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110975415B (en) * | 2019-11-12 | 2020-08-18 | 南京工业大学 | Integrated filter material, preparation method and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10266827A (en) * | 1997-03-25 | 1998-10-06 | Sintokogio Ltd | Self-heating type exhaust gas purifying catalyst body |
JP2000199174A (en) * | 1999-01-11 | 2000-07-18 | Asahi Chem Ind Co Ltd | Metal yarn and yarn processed article |
JP2007244950A (en) * | 2006-03-14 | 2007-09-27 | Nissan Motor Co Ltd | Particulate filter type exhaust gas cleaning catalyst and particulate filter |
JP2008155198A (en) * | 2006-12-01 | 2008-07-10 | Nissan Motor Co Ltd | Fibrous catalyst |
-
2008
- 2008-10-15 JP JP2008266195A patent/JP5453759B2/en not_active Expired - Fee Related
-
2009
- 2009-03-04 WO PCT/JP2009/054065 patent/WO2009110505A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10266827A (en) * | 1997-03-25 | 1998-10-06 | Sintokogio Ltd | Self-heating type exhaust gas purifying catalyst body |
JP2000199174A (en) * | 1999-01-11 | 2000-07-18 | Asahi Chem Ind Co Ltd | Metal yarn and yarn processed article |
JP2007244950A (en) * | 2006-03-14 | 2007-09-27 | Nissan Motor Co Ltd | Particulate filter type exhaust gas cleaning catalyst and particulate filter |
JP2008155198A (en) * | 2006-12-01 | 2008-07-10 | Nissan Motor Co Ltd | Fibrous catalyst |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011049140A1 (en) * | 2009-10-20 | 2011-04-28 | 株式会社フジコー | Fibrous filter and air purification device |
JP5390630B2 (en) * | 2009-10-20 | 2014-01-15 | 株式会社フジコー | Filter and air purifier |
WO2023166841A1 (en) * | 2022-03-04 | 2023-09-07 | シャープ株式会社 | Filter material, air filter, air conditioner, water filter, and water cleaner |
Also Published As
Publication number | Publication date |
---|---|
JP5453759B2 (en) | 2014-03-26 |
WO2009110505A1 (en) | 2009-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5764120B2 (en) | Honeycomb filter | |
JP4640868B2 (en) | Filter with catalyst, method for manufacturing the same, and exhaust gas purification system | |
WO2009122535A1 (en) | Process for producing honeycomb structure | |
JP5579596B2 (en) | Particulate combustion catalyst, particulate filter and exhaust gas purification device | |
WO2003080219A1 (en) | Filter for exhaust gas decontamination | |
JP4130216B1 (en) | Honeycomb structure | |
JP2022115873A (en) | Catalyst coating gasoline particulate filter and manufacturing method of the same | |
JP2006007117A (en) | Exhaust gas purifying structure and exhaust gas purifying method using it | |
JP5714567B2 (en) | Honeycomb filter | |
JP5453759B2 (en) | FIBER ASSEMBLY WITH CATALYST, ITS MANUFACTURING METHOD, AND EXHAUST GAS PURIFICATION DEVICE | |
JP2012102004A (en) | Honeycomb structured body and exhaust gas purifying apparatus | |
JP2011036742A (en) | Exhaust gas-treating device for internal combustion engine | |
JP4545857B2 (en) | Catalyst and method for producing the same | |
JP5714372B2 (en) | Manufacturing method of honeycomb filter | |
WO2016039325A1 (en) | Honeycomb sintered body and honeycomb filter | |
JP6627813B2 (en) | Method for producing particulate filter with catalyst | |
JP7358157B2 (en) | Complex oxide catalyst, porous composite, and method for producing complex oxide catalyst | |
JP2022128501A (en) | Ceramics madreporite and manufacturing method thereof, and filter for dust collection | |
JP2009072693A (en) | Diesel particulate filter containing porous catalyst | |
WO2009122537A1 (en) | Process for producing honeycomb structure | |
JP5524820B2 (en) | Particulate combustion catalyst, method for producing the same, particulate filter and method for producing the same | |
JP5348930B2 (en) | Particulate combustion catalyst, particulate filter and exhaust gas purification device | |
JP2007275874A (en) | Catalyst and particulate filter type catalyst for cleaning exhaust gas | |
JP6265813B2 (en) | Exhaust purification filter | |
JP5785870B2 (en) | Honeycomb filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5453759 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |