WO2011049140A1 - Fibrous filter and air purification device - Google Patents

Fibrous filter and air purification device Download PDF

Info

Publication number
WO2011049140A1
WO2011049140A1 PCT/JP2010/068515 JP2010068515W WO2011049140A1 WO 2011049140 A1 WO2011049140 A1 WO 2011049140A1 JP 2010068515 W JP2010068515 W JP 2010068515W WO 2011049140 A1 WO2011049140 A1 WO 2011049140A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous filter
titanium dioxide
fibers
dioxide film
filter
Prior art date
Application number
PCT/JP2010/068515
Other languages
French (fr)
Japanese (ja)
Inventor
久人 原賀
友彦 樋口
宏 吉永
英昭 永吉
陽平 梅田
Original Assignee
株式会社フジコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジコー filed Critical 株式会社フジコー
Priority to CN201080047392.7A priority Critical patent/CN102574036B/en
Priority to JP2011537287A priority patent/JP5390630B2/en
Priority to KR1020127010024A priority patent/KR101351485B1/en
Publication of WO2011049140A1 publication Critical patent/WO2011049140A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2041Metallic material the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/93Toxic compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light

Definitions

  • the present invention relates to a fibrous filter and an air cleaner. Specifically, for example, the present invention relates to a fibrous filter having a photocatalytic function capable of detoxifying pollutants, antibacterial, and sterilizing, and an air cleaner using such a fibrous filter.
  • the “photocatalytic function” is a catalyst that is excited when irradiated with light energy larger than the band gap energy of its conduction band and valence band, and generates an electron-hole pair to cause oxidation and reduction reactions. This means the function of the substance (photosemiconductor substance).
  • photocatalysts using titanium dioxide (TiO 2 ) in particular are inexpensive, excellent in chemical stability, and have high catalytic activity. Due to their powerful organic substance decomposing activity, At the same time, it can decompose toxic substances such as endotoxin, which is an outer cell wall component of Gram-negative bacteria, and toxins produced by bacteria (for example, verotoxin produced by pathogenic E. coli), and the photocatalyst itself is harmless to the human body. Has the advantage of being.
  • titanium dioxide Since titanium dioxide exhibits photocatalytic activity only under ultraviolet irradiation, it cannot exhibit sufficient catalytic activity under room light containing almost no ultraviolet component. Therefore, titanium dioxide doped with atoms such as nitrogen, carbon and sulfur in the crystal lattice has been proposed as a photocatalyst exhibiting photocatalytic activity under visible light irradiation. In particular, sulfur-doped titanium dioxide absorbs light in the visible light region. It is known that it has a high coefficient and high catalytic activity under visible light (for example, see Patent Document 3).
  • Patent Document 4 discloses that a porous ceramic body carrying titanium oxide is irradiated with ultraviolet rays, and the malodor of gas is removed by the photocatalytic action of titanium oxide.
  • the photocatalyst layer was formed in the surface of the porous ceramics filter by dipping (dipping) in the photocatalyst coating liquid (for example, refer patent document 4 and patent document 5).
  • reference numeral 101 denotes a porous ceramic filter
  • reference numeral 102 denotes a dipping layer
  • reference numeral 103 denotes a crack
  • the present invention was devised in view of the above points, and an object thereof is to provide a fibrous filter capable of improving the strength of the photocatalyst layer and an air cleaner using such a fibrous filter. Is.
  • a fibrous filter body composed of fibers having a diameter of 50 ⁇ m to 500 ⁇ m and having a porosity of 50% to 90%, and a surface of the fiber. And a titanium dioxide film formed by thermal spraying technology.
  • a fibrous filter main body composed of fibers having a diameter of 50 ⁇ m to 500 ⁇ m and a porosity of 50% to 90%;
  • the fiber is composed of aluminum fibers having a diameter of 50 ⁇ m to 500 ⁇ m, the basis weight is 500 g / m 2 to 10,000 g / m 2 , and the porosity is 50% to 90%.
  • a filter main body, a fibrous filter having a titanium dioxide film on which 0.1 to 10% by mass of an antibacterial metal is supported and formed on the surface of the fiber by a thermal spraying technique, and a light applied to the fibrous filter A light source for irradiating the light source.
  • the titanium dioxide film was formed by thermal spraying technology, the titanium dioxide film was formed on the fiber surface so that the titanium dioxide particles pierced, and the upper layer was partially sintered by thermal spraying heat. In this state, the titanium dioxide film is formed, so that cracking is hardly generated and durability can be improved.
  • the titanium dioxide film on the surface of the fibrous filter body is in such a state that the titanium dioxide particles pierce the surface of the fibrous filter body, and the anchor effect provides high adhesion between the fibrous filter body and the titanium dioxide film.
  • the titanium dioxide film that is realized and laminated on the upper layer realizes high adhesion by partially sintering the titanium dioxide particles.
  • the diameter of the fiber which comprises a fibrous filter main body is less than 50 micrometers, the intensity
  • the diameter of the fiber constituting the fibrous filter body exceeds 500 ⁇ m, the amount of fiber occupying in the fixed space is too large. And, since the fiber is excessively present in the fixed space, the existence region of the titanium dioxide film cannot be sufficiently secured, and the ratio of the titanium dioxide film in the fixed space becomes too small. It becomes difficult to fully exhibit the photocatalytic function. Therefore, the diameter of the fibers constituting the fibrous filter body is set to 50 ⁇ m to 500 ⁇ m. It is desirable that the fiber constituting the fibrous filter body has a diameter of 100 ⁇ m to 200 ⁇ m.
  • the porosity of the fibrous filter body is less than 50%, the air resistance becomes too large to make it difficult for air to pass through the fibrous filter body, and the harmful substance (degradable substance) and the titanium dioxide film come into contact with each other. It becomes difficult to do. This means that when the fibrous filter body is used for an air cleaner, it becomes difficult to sufficiently perform the function as an air cleaner.
  • the porosity of the fibrous filter main body exceeds 90%, the amount of fibers occupying in the fixed space is too small.
  • the porosity of the fibrous filter body is set to 50% to 90%.
  • the porosity of the fibrous filter body is preferably 60% to 80%.
  • titanium dioxide has anatase type and rutile type crystal structures, and it is known that anatase type titanium dioxide exhibits a higher photocatalytic function than rutile type titanium dioxide. Yes. Therefore, a high photocatalytic function can be realized by forming a titanium dioxide film so that the anatase crystal structure is 70% by mass or more.
  • anatase-type titanium dioxide is generally more expensive than rutile-type titanium dioxide, it is preferable to use rutile-type titanium dioxide when importance is placed on cost.
  • the crystal lattice of titanium dioxide is doped with sulfur, carbon, nitrogen, etc., or carries a sensitizer which is at least one compound selected from metal complexes or metal salts such as iron, copper, chromium, nickel.
  • a sensitizer which is at least one compound selected from metal complexes or metal salts such as iron, copper, chromium, nickel.
  • the antibacterial action is further enhanced by supporting an antibacterial metal (for example, Ag, Cu, Ni, Co, Zn, etc.) on the titanium dioxide film.
  • an antibacterial metal for example, Ag, Cu, Ni, Co, Zn, etc.
  • the basis weight of the fibrous filter body is less than 500 g / m 2 , the amount of fibers per unit area is too small. And considering that the titanium dioxide film is formed on the surface of the fiber, the amount of fiber is too small, the amount of film formation of the titanium dioxide film per unit area is not sufficient, and the photocatalytic function of the titanium dioxide film is It will be difficult to fully demonstrate. On the other hand, when the basis weight of the fibrous filter main body exceeds 10,000 g / m 2 , the amount of fibers per unit area is too large.
  • the basis weight of the fibrous filter body as a 500g / m 2 ⁇ 10000g / m 2.
  • the basis weight of the fibrous filter main body is preferably 500 g / m 2 to 3000 g / m 2 .
  • the fibers constituting the fibrous filter body include metal fibers (for example, aluminum fibers, stainless steel fibers, nickel fibers), inorganic fibers (for example, glass fibers, carbon fibers, alumina fibers, ceramic fibers, rock fibers, slugs). Fiber), organic fiber (for example, plastic fiber) and the like.
  • metal fibers for example, aluminum fibers, stainless steel fibers, nickel fibers
  • inorganic fibers for example, glass fibers, carbon fibers, alumina fibers, ceramic fibers, rock fibers, slugs. Fiber
  • organic fiber for example, plastic fiber
  • Examples of the light source for irradiating the fibrous filter with light include a black light emitting ultraviolet light, an ultraviolet LED lamp, a visible light LED lamp, a fluorescent lamp, an incandescent lamp, a cold cathode tube (CCFL: Cold Cathode Fluorescent Lamp). It is done.
  • a black light emitting ultraviolet light an ultraviolet LED lamp, a visible light LED lamp, a fluorescent lamp, an incandescent lamp, a cold cathode tube (CCFL: Cold Cathode Fluorescent Lamp). It is done.
  • the strength of the photocatalyst layer is increased by reducing the cracking of the titanium dioxide film and improving the durability.
  • FIG. 1A is a schematic diagram for explaining an example of a fibrous filter to which the present invention is applied.
  • the fibrous filter shown here is formed on the fibrous filter body 1 and the surface of the fibrous filter body 1. And a titanium dioxide film formed thereon.
  • the fibrous filter body 1 is composed of aluminum fibers having a diameter of 50 ⁇ m to 500 ⁇ m (hereinafter, the aluminum fibers constituting the fibrous filter body 1 are referred to as “aluminum fibers”), and the basis weight is 500 g. / M 2 to 10000 g / m 2 and the porosity is 50% to 90%.
  • the titanium dioxide film is formed by causing the titanium dioxide particles 2 that are photocatalyst particles to collide with the surface of the fibrous filter body using a thermal spraying technique.
  • a spraying temperature variable high-speed spraying device described in JP-A-2005-68457 can be used.
  • the titanium dioxide film of the present embodiment is formed by causing the titanium dioxide particles 2 to collide with the fibrous filter body 1 using a thermal spraying technique, the titanium dioxide film is formed on the surface of the aluminum fiber.
  • a titanium dioxide film is formed in such a manner that the particles 2 pierce (see the titanium dioxide particles indicated by symbol g in FIG. 1 (a)), and high adhesion between the aluminum fibers and the titanium dioxide particles 2 due to the anchor effect. Can be realized.
  • the titanium dioxide particles 2 are partially sintered by the heat during thermal spraying (see the titanium dioxide particles indicated by the symbol h in FIG. 1 (a)), thereby high adhesion between the titanium dioxide particles 2. Can be realized.
  • the gap between the aluminum fibers is extremely short compared to the diameter of the hole in the conventional porous ceramic filter (corresponding to the gap between the aluminum fibers). For this reason, the distance between the harmful substance (substance to be decomposed) that passes through the fibrous filter and the titanium dioxide film is short, the harmful substance easily comes into contact with the titanium dioxide film, and the distance between the harmful substance and the titanium dioxide film is short. Therefore, the concentration gradient of harmful substances increases and the mobility of harmful substances increases. Therefore, compared with the case where a porous ceramic filter is used, the fibrous filter of the first embodiment can be expected to improve gas decomposition performance.
  • Tables 1 and 2 show the results of the acetaldehyde decomposition test using the “filter having a photocatalyst layer formed by dipping on a porous ceramic filter” and the acetaldehyde decomposition test using the fibrous filter of the first embodiment. Results are shown.
  • Table 1 shows the decrease in acetaldehyde concentration over time, and a decomposition test of acetaldehyde using a “filter having a photocatalyst layer formed by dipping on a porous ceramic filter” (indicated by symbol i in Table 1).
  • 80 ppm of acetaldehyde decreased in 4 hours
  • 90 ppm in 2 hours Acetaldehyde is reduced.
  • Carbon dioxide is generated by the decomposition of acetaldehyde.
  • Table 2 shows the generation of carbon dioxide over time.
  • "Filter with a photocatalyst layer formed by dipping on a porous ceramic filter” In the acetaldehyde decomposition test (denoted by symbol i in Table 2) using 130, 130 ppm of carbon dioxide was generated in 2 hours, whereas the decomposition of acetaldehyde using the fibrous filter of the first embodiment In the test (indicated by symbol j in Table 2), 150 ppm of carbon dioxide is generated in 2 hours.
  • Table 3 shows the results of a decomposition test of formaldehyde (indicated by symbol m in Table 3) and a result of a decomposition test of acetaldehyde (indicated by symbol n in Table 3) using a “filter having a photocatalytic layer formed by dipping on a porous ceramic filter”. Show). Specifically, the relationship between time and concentration is shown.
  • Table 4 shows the results of the decomposition test of formaldehyde (indicated by symbol m in Table 4) and the results of the decomposition test of acetaldehyde (indicated by symbol n in Table 4) using the fibrous filter of the first embodiment. Show. Specifically, the relationship between time and concentration is shown.
  • the fibrous filter of the first embodiment clearly has improved gas decomposition performance compared to “a filter in which a photocatalyst layer is formed by dipping on a porous ceramic filter”. I understand that.
  • the fibrous filter of the first embodiment is superior in decomposition performance (gas decomposition) and durability as compared with “a filter in which a photocatalyst layer is formed by dipping on a porous ceramic filter”.
  • the fibrous filter of the first embodiment can be manufactured extremely thin, a fibrous filter of approximately 1 mm to 7 mm can be realized, and “a porous ceramic filter having a thickness of 10 mm or more” Compared with a “filter having a photocatalyst layer formed by dipping”, it is excellent in space saving. Furthermore, since it is thin, it is excellent in workability.
  • the description is given by taking aluminum fiber as an example, but the material of the fibrous filter main body does not necessarily need to be an aluminum material, and is a metal such as copper, nickel, titanium, and stainless steel. It may be made of a material, and may be made of a non-metallic material such as glass as long as the fibrous filter body can be formed.
  • Second Embodiment> Another example of the fibrous filter to which the present invention is applied has a fibrous filter body 1 and a titanium dioxide film formed on the surface of the fibrous filter body 1 (see FIG. 1A). This point is the same as in the first embodiment described above.
  • the titanium dioxide film of the present embodiment carries 1% by mass of Ag.
  • the fibrous filter body 1 is made of aluminum fibers having a diameter of 50 ⁇ m to 500 ⁇ m, has a basis weight of 500 g / m 2 to 10000 g / m 2 , and has a porosity as in the first embodiment. Is 50% to 90%.
  • the titanium dioxide film is formed by colliding the titanium dioxide particles 2 that are photocatalyst particles and the Ag particles that are antibacterial materials against the surface of the fibrous filter body using a thermal spraying technique.
  • the spraying temperature variable type high-speed spraying device described in Japanese Patent Application Laid-Open No. 2005-68457 can be used, as in the first embodiment described above. It is.
  • the titanium dioxide particles 2 and the antibacterial metal are caused to collide with the surface of the fibrous filter body by using a thermal spraying technique, thereby simultaneously forming the titanium dioxide film.
  • the case where Ag particles are carried is described as an example.
  • the Ag particles can be supported on the titanium dioxide film, and the Ag particles may be supported by any method.
  • the particles such as Ag may be supported by colliding titanium dioxide particles, on which the particles such as Ag are initially attached to the surface thereof, with the surface of the fibrous filter body using a thermal spraying technique.
  • Ag ions or the like may be supported by an ultraviolet light deposition method or the like.
  • Table 5-1 shows the results of the acetaldehyde decomposition test (indicated by symbol a in Table 5-1) using the “filter having a photocatalyst layer formed by dipping on a porous ceramic filter”, and the second embodiment.
  • the results of a decomposition test of acetaldehyde using the fibrous filter (indicated by symbol b in Table 5-1) are shown. Specifically, the relationship between time and concentration is shown.
  • the fibrous filter of the second embodiment is capable of decomposing acetaldehyde, which is a type of VOC, into water and carbon dioxide to a low concentration (about one billionth). I understand that there is.
  • the antibacterial metal supported by the titanium dioxide film is not necessarily Ag, and other antibacterial metals may be used. Also good.
  • the fibrous filter to which the present invention is applied includes a fibrous filter body 1 and a titanium dioxide film formed on the surface of the fibrous filter body 1 (see FIG. 1A). This point is the same as in the first embodiment described above. Note that the titanium dioxide film of the present embodiment carries 12.5% by mass of zeolite (an example of an adsorbent).
  • the fibrous filter body 1 is made of aluminum fibers having a diameter of 50 ⁇ m to 500 ⁇ m, has a basis weight of 500 g / m 2 to 10000 g / m 2 , and has a porosity as in the first embodiment. Is 50% to 90%.
  • the titanium dioxide film is formed by colliding the titanium dioxide particles 2 that are photocatalyst particles and the zeolite that is the adsorbent with the surface of the fibrous filter body using a thermal spraying technique.
  • the spraying temperature variable type high-speed spraying device described in Japanese Patent Application Laid-Open No. 2005-68457 can be used, as in the first embodiment described above. It is.
  • the titanium dioxide particles 2 and the adsorbent are made to collide with the surface of the fibrous filter body using a thermal spraying technique, so that the zeolite is simultaneously formed with the titanium dioxide film.
  • the zeolite can be supported on the titanium dioxide film, and the zeolite may be supported by any method.
  • the adsorbent supported by the titanium dioxide film is not necessarily zeolite, and other materials such as apatite and activated carbon are used. It may be an adsorbent.
  • FIG. 2 is a schematic diagram for explaining an example of an air purifier to which the present invention is applied.
  • the air purifier 10 shown here has a fan 11 disposed below the inside thereof, and an ultraviolet LED above the fan 11.
  • a lamp 12 is disposed, and a fibrous filter 13 is disposed further above the ultraviolet LED lamp 12.
  • the fan 11 is configured to be able to blow air upward, and when the fan 11 rotates, an air flow is formed such that air is sucked from below the air cleaner 10 and exhausted from above.
  • the ultraviolet LED lamp 12 is configured to be able to irradiate light having a wavelength of 365 nm toward the fibrous filter 13, and the photocatalytic function of the fibrous filter 13 is exhibited by the light from the ultraviolet LED lamp 12. .
  • the fibrous filter 13 uses the fibrous filter of the above-described second embodiment.
  • air containing bacteria, viruses, VOC gas, and harmful gas is sucked from below by the intake action caused by the rotation of the fan 11.
  • the sucked air passes through the fibrous filter 13 so that bacteria, viruses, VOC gas and harmful gas are decomposed and sterilized, and exhausted from above as clean air.
  • Table 6 shows the results of an ammonia decomposition test using an “ionic air cleaner” (indicated by symbol c in Table 6) and the results of an ammonia decomposition test using the air cleaner of the fourth embodiment. (Indicated by d in Table 6). Specifically, the relationship between time and concentration is shown.
  • Table 7 shows the result of a decomposition test of acetaldehyde using an “ionic air cleaner” (indicated by symbol c in Table 7) and the result of a decomposition test of acetaldehyde using the air cleaner of the fourth embodiment. (Indicated by symbol d in Table 7). Specifically, the relationship between time and concentration is shown.
  • the air cleaner of the fourth embodiment can decompose ammonia, which is an odor component, and acetaldehyde, which is a kind of VOC, to a low concentration.
  • FIG. 3 is a schematic view for explaining another example of the air cleaner to which the present invention is applied.
  • the air cleaner 10 shown here has a fan 11 disposed below the inside thereof, and above the fan 11.
  • a visible light LED lamp 14 is disposed, and a fibrous filter 13 is disposed further above the visible light LED lamp 14.
  • the fan 11 is configured to be able to blow air upward, and by rotating the fan 11, an air flow is formed such that air is sucked from below the air cleaner 10 and exhausted from above. This is the same as the fourth embodiment described above.
  • the visible light LED lamp 14 is configured to be able to irradiate light having a wavelength of 415 nm toward the fibrous filter 13, and the photocatalytic function of the fibrous filter 13 is exhibited by the light from the visible light LED lamp 14. It becomes.
  • the fibrous filter 13 uses the fibrous filter of the above-described second embodiment.
  • air containing bacteria, viruses, VOC gas, and harmful gas is sucked from below by the intake action caused by the rotation of the fan 11.
  • the sucked air passes through the fibrous filter 13 so that bacteria, viruses, VOC gas and harmful gas are decomposed and sterilized, and exhausted from above as clean air.
  • Table 8 shows the result of the ammonia decomposition test using the “ionic air cleaner” (indicated by symbol e in Table 8) and the result of the ammonia decomposition test using the air cleaner of the fifth embodiment. (Indicated by symbol f in Table 8). Specifically, the relationship between time and concentration is shown.
  • Table 9 shows the results of the acetaldehyde decomposition test using the “ionic air cleaner” (indicated by symbol e in Table 9) and the results of the acetaldehyde decomposition test using the air cleaner of the fifth embodiment. (Indicated by symbol f in Table 9). Specifically, the relationship between time and concentration is shown.
  • the air cleaner of the fifth embodiment can decompose ammonia, which is an odor component, and acetaldehyde, which is a kind of VOC, to a low concentration.
  • the air cleaner of the fifth embodiment can be realized at a low cost.
  • FIG. 4A is a schematic diagram for explaining still another example of an air cleaner to which the present invention is applied.
  • the air cleaner shown here has a dust collection filter 15 disposed therein, and is a dust collector.
  • a photocatalytic filter portion 16 is disposed adjacent to the filter 15, and the fan 11 is disposed on the opposite side of the photocatalytic filter portion 16 from the dust collection filter 15.
  • the fan 11 is configured so as to form an air flow such as intake from the dust collection filter 15 side by rotating.
  • the photocatalytic filter portion 16 is configured by surrounding a black light 18 with a fibrous filter 13 and a reflecting plate 17.
  • the fibrous filter 13 uses the fibrous filter of the second embodiment described above, and the black light 18 emits a UV sterilization line having a wavelength of 254 nm and a UV ozone ray having a wavelength of 185 nm. It is configured.
  • the air containing the bacteria, virus, VOC gas, and harmful gas is supplied to the photocatalytic filter unit 16 as the fan 11 rotates.
  • the photocatalyst filter part 16 by passing through the fibrous filter 13, bacteria, viruses, VOC gas and harmful gas are decomposed and sterilized, and exhausted as clean air.
  • Table 10 shows the results of the ammonia decomposition test using the “ion + deodorizing filter type air cleaner” (indicated by the symbol p in Table 10) and the ammonia decomposition test using the “activated carbon type air cleaner”.
  • the results (indicated by symbol q in Table 10) and the results of the ammonia decomposition test using the air cleaner of the sixth embodiment (indicated by symbol r in Table 10) are shown. Specifically, the relationship between time and concentration is shown.
  • Table 11 shows the results of the acetaldehyde decomposition test using “ion + deodorizing filter type air purifier” (indicated by “p” in Table 11) and the results of the acetaldehyde decomposition test using “activated carbon type air purifier”. (Shown by symbol q in Table 11) and the results of the acetaldehyde decomposition test using the air cleaner of the sixth embodiment (shown by symbol r in Table 11). Specifically, the relationship between time and concentration is shown.
  • the air cleaner of the sixth embodiment can decompose ammonia, which is an odor component, and acetaldehyde, which is a kind of VOC, to a low concentration.
  • a dust collection filter 15 is disposed in the interior thereof, and the photocatalytic filter section is adjacent to the dust collection filter 15 as in the sixth embodiment. 16 is disposed, and the fan 11 is disposed on the opposite side of the photocatalytic filter portion 16 from the dust collection filter 15 (see FIG. 4A).
  • the fan 11 is configured in such a manner that when it rotates, an air flow is formed such that air is sucked from the dust collection filter 15 side, which is the same as in the sixth embodiment.
  • the photocatalytic filter portion 16 is configured by surrounding a black light 18 with a fibrous filter 13 and a reflecting plate 17.
  • the fibrous filter 13 uses the fibrous filter of the second embodiment described above, and the black light 18 is configured to emit UV ultraviolet light having a wavelength of 365 nm.
  • the air containing the bacteria, virus, VOC gas, and harmful gas is supplied to the photocatalytic filter unit 16 as the fan 11 rotates.
  • the photocatalyst filter part 16 by passing through the fibrous filter 13, bacteria, viruses, VOC gas and harmful gas are decomposed and sterilized, and exhausted as clean air.
  • Table 12 shows the results of the acetaldehyde decomposition test using the air cleaner according to the sixth embodiment (indicated by symbol s in Table 12) and the acetaldehyde decomposition test using the air cleaner according to the seventh embodiment. (Indicated by t in Table 12). Specifically, the relationship between time and concentration is shown.
  • Tables 13 and 14 show the results of a complete decomposition performance test of VOC (acetaldehyde / toluene) using the air cleaner of the seventh embodiment.
  • the symbol u represents acetaldehyde
  • the symbol v in Table 13 represents carbon dioxide
  • the symbol u in Table 14 represents toluene
  • the symbol v in Table 14 represents carbon dioxide.
  • the air cleaner of the seventh embodiment decomposes ammonia, which is an odor component, and acetaldehyde, which is a kind of VOC, to a low concentration at a higher speed than the air cleaner of the sixth embodiment. It can be seen that it is possible. Moreover, it turns out that the decomposition
  • a dust collection filter 15 is disposed in the interior thereof, and the photocatalytic filter section is adjacent to the dust collection filter 15 as in the sixth embodiment. 16 is disposed, and the fan 11 is disposed on the opposite side of the photocatalytic filter portion 16 from the dust collection filter 15 (see FIG. 4A).
  • the fan 11 is configured in such a manner that when it rotates, an air flow is formed such that air is sucked from the dust collection filter 15 side, which is the same as in the sixth embodiment.
  • the photocatalytic filter portion 16 is configured by a cold cathode tube 19 surrounded by a fibrous filter 13.
  • the fibrous filter 13 uses the fibrous filter of the second embodiment described above, and the cold cathode tube 19 is configured to emit a germicidal line having a wavelength of 365 nm.
  • the air containing the bacteria, virus, VOC gas, and harmful gas is supplied to the photocatalytic filter unit 16 as the fan 11 rotates.
  • the photocatalyst filter part 16 by passing through the fibrous filter 13, bacteria, viruses, VOC gas and harmful gas are decomposed and sterilized, and exhausted as clean air.
  • Table 15 shows a case where a commercially available air cleaner equipped with a photocatalyst is used (indicated by reference characters C and D in Table 15) and a case where the air cleaner according to the eighth embodiment is used (reference symbol E in Table 15).
  • the result of the floating bacteria count after the air purifier is operated is shown. Specifically, after spraying Bacillus subtilis in a 1000 L container, the air purifier is operated, and the number of bacteria is measured by sucking the air in the container with a pump.
  • the air purifier according to the eighth embodiment has an extremely high decomposition and sterilization function of Bacillus subtilis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Filtering Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Disclosed are: a fibrous filter which can improve the strength of a photocatalyst layer; and an air purification device utilizing the fibrous filter. Titanium dioxide particles (2) are thermally sprayed onto a fibrous filter main body (1) that comprises aluminum fibers each having a diameter of 50 to 500 μm and has an areal fiber weight of 500 to 10000 g/m2 and a void ratio of 50 to 90%. In this manner, a titanium dioxide coating film containing an anatase-type crystal structure at a ratio of 70 mass% or more can be formed.

Description

繊維状フィルター及び空気清浄機Fibrous filter and air purifier
 本発明は繊維状フィルター及び空気清浄機に関する。詳しくは、例えば、汚染物質の無害化、抗菌、及び殺菌を行うことが可能な光触媒機能を有する繊維状フィルター及びこうした繊維状フィルターを利用した空気清浄機に係るものである。 The present invention relates to a fibrous filter and an air cleaner. Specifically, for example, the present invention relates to a fibrous filter having a photocatalytic function capable of detoxifying pollutants, antibacterial, and sterilizing, and an air cleaner using such a fibrous filter.
 高齢化社会の進展により、免疫力の低下した高齢者の全人口に占める割合が増加傾向にあり、それに伴って、院内感染や食中毒等の予防の観点から、医療現場や食品生産及び加工現場における衛生管理の強化が喫緊の課題となっている。こうした社会的背景を受けて、様々な抗菌加工製品が開発されており、近年、抗菌加工への光触媒機能の利用が特に注目を集めている。 With the progress of an aging society, the proportion of elderly people with reduced immunity in the total population is increasing, and accordingly, from the viewpoint of prevention of nosocomial infections, food poisoning, etc., in the medical field, food production and processing field Strengthening hygiene management is an urgent issue. In response to this social background, various antibacterial processed products have been developed, and in recent years, the use of the photocatalytic function for antibacterial processing has attracted particular attention.
 ここで、「光触媒機能」とは、その伝導帯と価電子帯のバンドギャップエネルギーより大きな光エネルギーが照射されると励起状態となり、電子-正孔対を生成して酸化及び還元反応を引き起こす触媒物質(光半導体物質)が有する機能を意味している。 Here, the “photocatalytic function” is a catalyst that is excited when irradiated with light energy larger than the band gap energy of its conduction band and valence band, and generates an electron-hole pair to cause oxidation and reduction reactions. This means the function of the substance (photosemiconductor substance).
 光触媒の中でも、特に二酸化チタン(TiO)を用いた光触媒は、安価で、化学的安定性に優れ、かつ高い触媒活性を有しており、その強力な有機物分解活性により、細菌の菌体と同時にグラム陰性菌の細胞壁外壁成分であるエンドトキシンや細菌が産生する毒素(例えば、病原性大腸菌が産生するベロ毒素)等の有害物質を併せて分解することができ、しかも光触媒自体は人体に無害であるという利点を有している。 Among photocatalysts, photocatalysts using titanium dioxide (TiO 2 ) in particular are inexpensive, excellent in chemical stability, and have high catalytic activity. Due to their powerful organic substance decomposing activity, At the same time, it can decompose toxic substances such as endotoxin, which is an outer cell wall component of Gram-negative bacteria, and toxins produced by bacteria (for example, verotoxin produced by pathogenic E. coli), and the photocatalyst itself is harmless to the human body. Has the advantage of being.
 そのため、二酸化チタンを用いた光触媒の研究及び応用が行われており、食品容器、建材等の抗菌加工に二酸化チタン光触媒が広く用いられている(例えば、特許文献1及び特許文献2参照。)。 Therefore, research and application of photocatalysts using titanium dioxide are being conducted, and titanium dioxide photocatalysts are widely used for antibacterial processing of food containers, building materials, etc. (see, for example, Patent Document 1 and Patent Document 2).
 なお、二酸化チタンは紫外線照射下でしか光触媒活性を発現しないために、紫外線成分を殆ど含まない室内光の下では充分な触媒活性を発現することができないこととなる。そのため、窒素、炭素、硫黄等の原子を結晶格子中にドープした二酸化チタンが、可視光照射下で光触媒活性を発現する光触媒として提案されており、特に硫黄ドープ二酸化チタンは、可視光領域における吸光係数が高く、可視光で高い触媒活性を有していることが知られている(例えば、特許文献3参照。)。 Since titanium dioxide exhibits photocatalytic activity only under ultraviolet irradiation, it cannot exhibit sufficient catalytic activity under room light containing almost no ultraviolet component. Therefore, titanium dioxide doped with atoms such as nitrogen, carbon and sulfur in the crystal lattice has been proposed as a photocatalyst exhibiting photocatalytic activity under visible light irradiation. In particular, sulfur-doped titanium dioxide absorbs light in the visible light region. It is known that it has a high coefficient and high catalytic activity under visible light (for example, see Patent Document 3).
 ところで、従来、光触媒をセラミックス多孔質体に担持させた光触媒フィルターが、空調機、空気清浄機、水処理装置等に応用されている。
 例えば、特許文献4には、セラミックス多孔質体に酸化チタンを担持させたものに紫外線を照射し、酸化チタンの光触媒作用によって気体の悪臭を除去することが記載されている。
By the way, conventionally, a photocatalytic filter in which a photocatalyst is supported on a ceramic porous body is applied to an air conditioner, an air purifier, a water treatment device, and the like.
For example, Patent Document 4 discloses that a porous ceramic body carrying titanium oxide is irradiated with ultraviolet rays, and the malodor of gas is removed by the photocatalytic action of titanium oxide.
 なお、従来の光触媒フィルターでは、光触媒コーティング液にディッピング(漬け込み)することによって、多孔質セラミックスフィルターの表面に光触媒層が形成されていた(例えば、特許文献4及び特許文献5参照。)。 In addition, in the conventional photocatalyst filter, the photocatalyst layer was formed in the surface of the porous ceramics filter by dipping (dipping) in the photocatalyst coating liquid (for example, refer patent document 4 and patent document 5).
特開2007-51263号公報JP 2007-51263 A 特開2006-346651号公報JP 2006-346651 A 特開2004-143032号公報JP 2004-143032 A 特開平3-157125号公報Japanese Patent Laid-Open No. 3-157125 特開2005-349309号公報JP 2005-349309 A
 しかしながら、ディッピングによって形成された光触媒層(ディッピング層)は緻密であるために、フィルターに小さな曲げ応力が加えられた場合であってもクラックが生じやすかった(図1(b)参照)。なお、図1(b)中符号101は多孔質セラミックスフィルター、符号102はディッピング層、符号103はクラックを示している。 However, since the photocatalyst layer (dipping layer) formed by dipping is dense, cracks are likely to occur even when a small bending stress is applied to the filter (see FIG. 1B). In FIG. 1B, reference numeral 101 denotes a porous ceramic filter, reference numeral 102 denotes a dipping layer, and reference numeral 103 denotes a crack.
 本発明は以上の点に鑑みて創案されたものであって、光触媒層の強度の向上を図ることができる繊維状フィルター及びこうした繊維状フィルターを利用した空気清浄機を提供することを目的とするものである。 The present invention was devised in view of the above points, and an object thereof is to provide a fibrous filter capable of improving the strength of the photocatalyst layer and an air cleaner using such a fibrous filter. Is.
 上記の目的を達成するために、本発明に係る繊維状フィルターでは、直径が50μm~500μmの繊維から構成され、空隙率が50%~90%である繊維状フィルター本体と、前記繊維の表面に溶射技術により成膜された二酸化チタン皮膜とを備える。 In order to achieve the above object, in the fibrous filter according to the present invention, a fibrous filter body composed of fibers having a diameter of 50 μm to 500 μm and having a porosity of 50% to 90%, and a surface of the fiber. And a titanium dioxide film formed by thermal spraying technology.
 また、上記の目的を達成するために、本発明に係る空気清浄機では、直径が50μm~500μmの繊維から構成され、空隙率が50%~90%である繊維状フィルター本体と、前記繊維の表面に溶射技術により成膜された二酸化チタン皮膜を有する繊維状フィルターと、該繊維状フィルターに光を照射する光源とを備える。 In order to achieve the above object, in the air cleaner according to the present invention, a fibrous filter main body composed of fibers having a diameter of 50 μm to 500 μm and a porosity of 50% to 90%; A fibrous filter having a titanium dioxide film formed on the surface by a thermal spraying technique, and a light source for irradiating the fibrous filter with light.
 更に、本発明に係る空気清浄機では、直径が50μm~500μmのアルミニウム繊維から構成され、目付量が500g/m~10000g/mであり、空隙率が50%~90%である繊維状フィルター本体と、前記繊維の表面に溶射技術により成膜されると共に、0.1質量%~10質量%の抗菌金属が担持された二酸化チタン皮膜を有する繊維状フィルターと、該繊維状フィルターに光を照射する光源とを備える。 Furthermore, in the air cleaner according to the present invention, the fiber is composed of aluminum fibers having a diameter of 50 μm to 500 μm, the basis weight is 500 g / m 2 to 10,000 g / m 2 , and the porosity is 50% to 90%. A filter main body, a fibrous filter having a titanium dioxide film on which 0.1 to 10% by mass of an antibacterial metal is supported and formed on the surface of the fiber by a thermal spraying technique, and a light applied to the fibrous filter A light source for irradiating the light source.
 ここで、二酸化チタン皮膜が溶射技術により成膜されたことによって、繊維の表面には二酸化チタン粒子が突き刺さる様にして二酸化チタン皮膜が成膜され、その上層には溶射熱により部分焼結が生じた状態で二酸化チタン皮膜が成膜されることとなり、割れが生じにくく、耐久性の向上を図ることができる。 Here, since the titanium dioxide film was formed by thermal spraying technology, the titanium dioxide film was formed on the fiber surface so that the titanium dioxide particles pierced, and the upper layer was partially sintered by thermal spraying heat. In this state, the titanium dioxide film is formed, so that cracking is hardly generated and durability can be improved.
 即ち、繊維状フィルター本体表面の二酸化チタン皮膜は、二酸化チタン粒子が繊維状フィルター本体の表面に突き刺さる様な状態をなしており、アンカー効果によって繊維状フィルター本体と二酸化チタン皮膜との高い密着性が実現し、また、その上層に積層される二酸化チタン皮膜については、二酸化チタン粒子同士が部分焼結することによって高い密着性を実現するのである。 That is, the titanium dioxide film on the surface of the fibrous filter body is in such a state that the titanium dioxide particles pierce the surface of the fibrous filter body, and the anchor effect provides high adhesion between the fibrous filter body and the titanium dioxide film. The titanium dioxide film that is realized and laminated on the upper layer realizes high adhesion by partially sintering the titanium dioxide particles.
 また、繊維状フィルター本体を構成する繊維の直径が50μm未満では、繊維状フィルター本体の強度が充分では無く、溶射技術による二酸化チタン皮膜の成膜が困難であり、歩留まりの低下が懸念される。
 一方で、繊維状フィルター本体を構成する繊維の直径が500μmを越えると、一定空間内に占める繊維量が多すぎることとなる。そして、一定空間内に繊維が過剰に存在することで、二酸化チタン皮膜の存在領域を充分に確保することができず、一定空間内の二酸化チタン皮膜の割合が小さくなりすぎて、二酸化チタン皮膜の光触媒機能を充分に発揮することが困難となる。
 そのため、繊維状フィルター本体を構成する繊維の直径を50μm~500μmとしている。なお、繊維状フィルター本体を構成する繊維の直径が100μm~200μmである方が望ましい。
Moreover, if the diameter of the fiber which comprises a fibrous filter main body is less than 50 micrometers, the intensity | strength of a fibrous filter main body is not enough, and the film-forming of the titanium dioxide film by a thermal spraying technique is difficult, and there exists a concern about the fall of a yield.
On the other hand, if the diameter of the fiber constituting the fibrous filter body exceeds 500 μm, the amount of fiber occupying in the fixed space is too large. And, since the fiber is excessively present in the fixed space, the existence region of the titanium dioxide film cannot be sufficiently secured, and the ratio of the titanium dioxide film in the fixed space becomes too small. It becomes difficult to fully exhibit the photocatalytic function.
Therefore, the diameter of the fibers constituting the fibrous filter body is set to 50 μm to 500 μm. It is desirable that the fiber constituting the fibrous filter body has a diameter of 100 μm to 200 μm.
 更に、繊維状フィルター本体の空隙率が50%未満では、空気抵抗が大きくなりすぎて繊維状フィルター本体を空気が通過することが困難となり、有害物質(被分解物質)と二酸化チタン皮膜とが接触し難くなる。このことは、繊維状フィルター本体を空気清浄機に利用する場合に、空気清浄機としての機能を充分に果たすことが困難になることを意味する。
 一方で、繊維状フィルター本体の空隙率が90%を越えると、一定空間内に占める繊維量が少なすぎることとなる。そして、繊維の表面に二酸化チタン皮膜が成膜されることを考慮すると、繊維量が少なすぎることで、一定空間内に占める二酸化チタン皮膜の成膜量が充分ではなく、二酸化チタン皮膜の光触媒機能を充分に発揮することが困難となる。
 そのため、繊維状フィルター本体の空隙率を50%~90%としている。なお、繊維状フィルター本体の空隙率は60%~80%である方が望ましい。
Furthermore, when the porosity of the fibrous filter body is less than 50%, the air resistance becomes too large to make it difficult for air to pass through the fibrous filter body, and the harmful substance (degradable substance) and the titanium dioxide film come into contact with each other. It becomes difficult to do. This means that when the fibrous filter body is used for an air cleaner, it becomes difficult to sufficiently perform the function as an air cleaner.
On the other hand, when the porosity of the fibrous filter main body exceeds 90%, the amount of fibers occupying in the fixed space is too small. And considering that a titanium dioxide film is formed on the surface of the fiber, the amount of fibers is too small, so the amount of film formation of the titanium dioxide film in a certain space is not sufficient, and the photocatalytic function of the titanium dioxide film It is difficult to fully exhibit the above.
Therefore, the porosity of the fibrous filter body is set to 50% to 90%. The porosity of the fibrous filter body is preferably 60% to 80%.
 ところで、二酸化チタンはアナターゼ(Anatase)型とルチル(Rutile)型の結晶構造を有し、アナターゼ型の二酸化チタンの方が、ルチル型の二酸化チタンよりも、高い光触媒機能を示すことが知られている。そのため、アナターゼ型結晶構造が70質量%以上となる様に二酸化チタン皮膜を成膜することによって、高い光触媒機能を実現することができる。但し、アナターゼ型の二酸化チタンはルチル型の二酸化チタンと比較すると、一般に高価であるために、コスト面を重視する場合には、ルチル型の二酸化チタンを採用する方が好ましい。 By the way, titanium dioxide has anatase type and rutile type crystal structures, and it is known that anatase type titanium dioxide exhibits a higher photocatalytic function than rutile type titanium dioxide. Yes. Therefore, a high photocatalytic function can be realized by forming a titanium dioxide film so that the anatase crystal structure is 70% by mass or more. However, since anatase-type titanium dioxide is generally more expensive than rutile-type titanium dioxide, it is preferable to use rutile-type titanium dioxide when importance is placed on cost.
 なお、二酸化チタンの結晶格子中に硫黄、炭素、窒素等をドープしたり、鉄、銅、クロム、ニッケル等の金属錯体または金属塩から選ばれる少なくとも一種類の化合物である増感剤を担持したりすることによって、可視光応答型の二酸化チタンが実現し、こうした可視光応答型の二酸化チタンを採用することもできる。 The crystal lattice of titanium dioxide is doped with sulfur, carbon, nitrogen, etc., or carries a sensitizer which is at least one compound selected from metal complexes or metal salts such as iron, copper, chromium, nickel. As a result, visible light responsive titanium dioxide is realized, and such visible light responsive titanium dioxide can be employed.
 また、二酸化チタン皮膜に抗菌金属(例えば、Ag、Cu、Ni、Co、Zn等)が担持されることによって、抗菌作用がより一層高まることとなる。なお、抗菌金属が少なすぎると抗菌効果が発揮できず、また、抗菌金属が多すぎても抗菌効果が却って低下してしまう。従って、二酸化チタン皮膜には0.1質量%~10質量%の抗菌金属が担持された方が好ましい。 In addition, the antibacterial action is further enhanced by supporting an antibacterial metal (for example, Ag, Cu, Ni, Co, Zn, etc.) on the titanium dioxide film. In addition, when there are too few antibacterial metals, an antibacterial effect cannot be exhibited, and even if there are too many antibacterial metals, an antibacterial effect will decline on the contrary. Therefore, it is preferable that 0.1% by mass to 10% by mass of the antibacterial metal is supported on the titanium dioxide film.
 ところで、繊維状フィルター本体の目付量が500g/m未満では、単位面積当たりの繊維量が少なすぎることとなる。そして、繊維の表面に二酸化チタン皮膜が成膜されることを考慮すると、繊維量が少なすぎることで、単位面積当たりの二酸化チタン皮膜の成膜量が充分ではなく、二酸化チタン皮膜の光触媒機能を充分に発揮することが困難となる。
 一方で、繊維状フィルター本体の目付量が10000g/mを越えると、単位面積当たりの繊維量が多すぎることとなる。そして、単位面積に繊維が過剰に存在することで、二酸化チタン皮膜の存在領域を充分に確保することができず、単位面積当たりの二酸化チタン皮膜の割合が小さくなりすぎて、二酸化チタン皮膜の光触媒機能を充分に発揮することが困難となる。
 そのため、繊維状フィルター本体の目付量を500g/m~10000g/mとしている。なお、繊維状フィルター本体の目付量が500g/m~3000g/mである方が望ましい。
By the way, if the basis weight of the fibrous filter body is less than 500 g / m 2 , the amount of fibers per unit area is too small. And considering that the titanium dioxide film is formed on the surface of the fiber, the amount of fiber is too small, the amount of film formation of the titanium dioxide film per unit area is not sufficient, and the photocatalytic function of the titanium dioxide film is It will be difficult to fully demonstrate.
On the other hand, when the basis weight of the fibrous filter main body exceeds 10,000 g / m 2 , the amount of fibers per unit area is too large. And, since the fiber exists in the unit area excessively, the existence area of the titanium dioxide film cannot be secured sufficiently, and the ratio of the titanium dioxide film per unit area becomes too small, and the photocatalyst of the titanium dioxide film It becomes difficult to perform the function sufficiently.
Therefore, the the basis weight of the fibrous filter body as a 500g / m 2 ~ 10000g / m 2. The basis weight of the fibrous filter main body is preferably 500 g / m 2 to 3000 g / m 2 .
 なお、繊維状フィルター本体を構成する繊維としては、金属繊維(例えば、アルミニウム繊維、ステンレス繊維、ニッケル繊維等)、無機繊維(例えば、ガラス繊維、炭素繊維、アルミナ繊維、セラミック繊維、岩石繊維、スラッグ繊維等)、有機繊維(例えば、プラスチック繊維)等が挙げられる。 The fibers constituting the fibrous filter body include metal fibers (for example, aluminum fibers, stainless steel fibers, nickel fibers), inorganic fibers (for example, glass fibers, carbon fibers, alumina fibers, ceramic fibers, rock fibers, slugs). Fiber), organic fiber (for example, plastic fiber) and the like.
 また、繊維状フィルターに光を照射する光源としては、紫外線を発光するブラックライト、紫外線LEDランプ、可視光LEDランプ、蛍光灯、白熱電灯、冷陰極管(CCFL:Cold Cathode Fluorescent Lamp)等が挙げられる。 Examples of the light source for irradiating the fibrous filter with light include a black light emitting ultraviolet light, an ultraviolet LED lamp, a visible light LED lamp, a fluorescent lamp, an incandescent lamp, a cold cathode tube (CCFL: Cold Cathode Fluorescent Lamp). It is done.
 本発明を適用した繊維状フィルター及び空気清浄機では、二酸化チタン皮膜の割れを低減し、耐久性の向上が実現することによって、光触媒層の高強度化が実現する。 In the fibrous filter and the air cleaner to which the present invention is applied, the strength of the photocatalyst layer is increased by reducing the cracking of the titanium dioxide film and improving the durability.
光触媒層の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of a photocatalyst layer. 本発明を適用した空気清浄機の一例を説明するための模式図である。It is a mimetic diagram for explaining an example of an air cleaner to which the present invention is applied. 本発明を適用した空気清浄機の他の一例を説明するための模式図である。It is a schematic diagram for demonstrating another example of the air cleaner to which this invention is applied. 本発明を適用した空気清浄機の更に他の一例を説明するための模式図である。It is a schematic diagram for demonstrating another example of the air cleaner to which this invention is applied.
 以下、発明を実施するための形態(以下、「実施の形態」と称する。)について、図面を参酌しながら説明を行う。なお、説明は以下の順序で行う。
1.第1の実施の形態(繊維状フィルター(1)について)
2.第2の実施の形態(繊維状フィルター(2)について)
3.第3の実施の形態(繊維状フィルター(3)について)
4.第4の実施の形態(空気清浄機(1)について)
5.第5の実施の形態(空気清浄機(2)について)
6.第6の実施の形態(空気清浄機(3)について)
7.第7の実施の形態(空気清浄機(4)について)
8.第8の実施の形態(空気清浄機(5)について)
Hereinafter, modes for carrying out the invention (hereinafter referred to as “embodiments”) will be described with reference to the drawings. The description will be given in the following order.
1. 1st Embodiment (about a fibrous filter (1))
2. Second Embodiment (Fibrous Filter (2))
3. Third Embodiment (Fibrous Filter (3))
4). 4th Embodiment (about an air cleaner (1))
5. 5th Embodiment (about an air cleaner (2))
6). Sixth embodiment (about air cleaner (3))
7). 7th Embodiment (about an air cleaner (4))
8). Eighth embodiment (about air cleaner (5))
<1.第1の実施の形態>
 図1(a)は本発明を適用した繊維状フィルターの一例を説明するための模式図であり、ここで示す繊維状フィルターは、繊維状フィルター本体1と、繊維状フィルター本体1の表面に成膜された二酸化チタン皮膜とを有する。
<1. First Embodiment>
FIG. 1A is a schematic diagram for explaining an example of a fibrous filter to which the present invention is applied. The fibrous filter shown here is formed on the fibrous filter body 1 and the surface of the fibrous filter body 1. And a titanium dioxide film formed thereon.
 繊維状フィルター本体1は、直径が50μm~500μmのアルミニウム製の繊維から構成されており(以下、繊維状フィルター本体1を構成するアルミニウム製の繊維を「アルミニウム繊維」と称する)、目付量が500g/m~10000g/mであり、空隙率が50%~90%である。 The fibrous filter body 1 is composed of aluminum fibers having a diameter of 50 μm to 500 μm (hereinafter, the aluminum fibers constituting the fibrous filter body 1 are referred to as “aluminum fibers”), and the basis weight is 500 g. / M 2 to 10000 g / m 2 and the porosity is 50% to 90%.
 二酸化チタン皮膜は、光触媒粒子である二酸化チタン粒子2を溶射技術を用いて繊維状フィルター本体の表面に衝突させることで成膜されている。なお、二酸化チタン皮膜の成膜には、例えば、特開2005-68457号公報に記載された溶射温度可変型の高速溶射装置を用いることができる。 The titanium dioxide film is formed by causing the titanium dioxide particles 2 that are photocatalyst particles to collide with the surface of the fibrous filter body using a thermal spraying technique. For the formation of the titanium dioxide film, for example, a spraying temperature variable high-speed spraying device described in JP-A-2005-68457 can be used.
 ここで、本実施の形態の二酸化チタン皮膜は、溶射技術を利用して、二酸化チタン粒子2を繊維状フィルター本体1に衝突させることで成膜しているために、アルミニウム繊維の表面に二酸化チタン粒子2が突き刺さる様にして二酸化チタン皮膜が形成されることとなり(図1(a)中の符号gで示す二酸化チタン粒子を参照)、アンカー効果によってアルミニウム繊維と二酸化チタン粒子2との高い密着性を実現することができる。
 また、二酸化チタン粒子2同士については、溶射の際の熱によって部分焼結がなされ(図1(a)中の符号hで示す二酸化チタン粒子を参照)、それによって二酸化チタン粒子2同士の高い密着性を実現することができる。
 従って、ディッピングによって形成された光触媒層と比較すると、繊維状フィルター本体1に曲げ応力が加えられた場合であってもクラックが生じにくく、光触媒層(二酸化チタン皮膜)の強度の向上が実現できる。
Here, since the titanium dioxide film of the present embodiment is formed by causing the titanium dioxide particles 2 to collide with the fibrous filter body 1 using a thermal spraying technique, the titanium dioxide film is formed on the surface of the aluminum fiber. A titanium dioxide film is formed in such a manner that the particles 2 pierce (see the titanium dioxide particles indicated by symbol g in FIG. 1 (a)), and high adhesion between the aluminum fibers and the titanium dioxide particles 2 due to the anchor effect. Can be realized.
In addition, the titanium dioxide particles 2 are partially sintered by the heat during thermal spraying (see the titanium dioxide particles indicated by the symbol h in FIG. 1 (a)), thereby high adhesion between the titanium dioxide particles 2. Can be realized.
Therefore, as compared with the photocatalyst layer formed by dipping, even when bending stress is applied to the fibrous filter body 1, cracks are hardly generated, and the strength of the photocatalyst layer (titanium dioxide film) can be improved.
 また、アルミニウム繊維同士の間隙が、従来の多孔質セラミックスフィルターにおける孔部の径(アルミニウム繊維同士の間隙に相当)と比較すると、極めて短く構成されている。そのために、繊維状フィルターを通過する有害物質(被分解物質)と二酸化チタン皮膜との距離が短く、有害物質が二酸化チタン皮膜に接しやすく、更には、有害物質と二酸化チタン皮膜との距離が短い故に有害物質の濃度勾配が大きく成り、有害物質の移動度合が大きくなる。
 従って、多孔質セラミックスフィルターを用いた場合と比較すると、第1の実施の形態の繊維状フィルターは、ガス分解性能の向上が期待できる。
In addition, the gap between the aluminum fibers is extremely short compared to the diameter of the hole in the conventional porous ceramic filter (corresponding to the gap between the aluminum fibers). For this reason, the distance between the harmful substance (substance to be decomposed) that passes through the fibrous filter and the titanium dioxide film is short, the harmful substance easily comes into contact with the titanium dioxide film, and the distance between the harmful substance and the titanium dioxide film is short. Therefore, the concentration gradient of harmful substances increases and the mobility of harmful substances increases.
Therefore, compared with the case where a porous ceramic filter is used, the fibrous filter of the first embodiment can be expected to improve gas decomposition performance.
 表1及び表2に「多孔質セラミックスフィルターにディッピングにより光触媒層を形成したフィルター」を用いたアセトアルデヒドの分解試験の結果と、第1の実施の形態の繊維状フィルターを用いたアセトアルデヒドの分解試験の結果を示している。 Tables 1 and 2 show the results of the acetaldehyde decomposition test using the “filter having a photocatalyst layer formed by dipping on a porous ceramic filter” and the acetaldehyde decomposition test using the fibrous filter of the first embodiment. Results are shown.
 具体的には、表1には時間経過によるアセトアルデヒド濃度の減少を示しており、「多孔質セラミックスフィルターにディッピングにより光触媒層を形成したフィルター」を用いたアセトアルデヒドの分解試験(表1中符号iで示す)では4時間で80ppmのアセトアルデヒドが減少しているのに対して、第1の実施の形態の繊維状フィルターを用いたアセトアルデヒドの分解試験(表1中符号jで示す)では2時間で90ppmのアセトアルデヒドが減少している。 Specifically, Table 1 shows the decrease in acetaldehyde concentration over time, and a decomposition test of acetaldehyde using a “filter having a photocatalyst layer formed by dipping on a porous ceramic filter” (indicated by symbol i in Table 1). In FIG. 4, 80 ppm of acetaldehyde decreased in 4 hours, whereas in the decomposition test of acetaldehyde using the fibrous filter of the first embodiment (indicated by symbol j in Table 1), 90 ppm in 2 hours. Acetaldehyde is reduced.
 また、アセトアルデヒドが分解されることによって二酸化炭素が発生することとなるが、表2には時間経過による二酸化炭素の発生を示しており、「多孔質セラミックスフィルターにディッピングにより光触媒層を形成したフィルター」を用いたアセトアルデヒドの分解試験(表2中符号iで示す)では2時間で130ppmの二酸化炭素が発生しているのに対して、第1の実施の形態の繊維状フィルターを用いたアセトアルデヒドの分解試験(表2中符号jで示す)では2時間で150ppmの二酸化炭素が発生している。 Carbon dioxide is generated by the decomposition of acetaldehyde. Table 2 shows the generation of carbon dioxide over time. "Filter with a photocatalyst layer formed by dipping on a porous ceramic filter" In the acetaldehyde decomposition test (denoted by symbol i in Table 2) using 130, 130 ppm of carbon dioxide was generated in 2 hours, whereas the decomposition of acetaldehyde using the fibrous filter of the first embodiment In the test (indicated by symbol j in Table 2), 150 ppm of carbon dioxide is generated in 2 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3に「多孔質セラミックスフィルターにディッピングにより光触媒層を形成したフィルター」を用いたホルムアルデヒドの分解試験の結果(表3中符号mで示す)及びアセトアルデヒドの分解試験の結果(表3中符号nで示す)を示している。具体的には時間と濃度との関係を示している。 Table 3 shows the results of a decomposition test of formaldehyde (indicated by symbol m in Table 3) and a result of a decomposition test of acetaldehyde (indicated by symbol n in Table 3) using a “filter having a photocatalytic layer formed by dipping on a porous ceramic filter”. Show). Specifically, the relationship between time and concentration is shown.
 また、表4に第1の実施の形態の繊維状フィルターを用いたホルムアルデヒドの分解試験の結果(表4中符号mで示す)及びアセトアルデヒドの分解試験の結果(表4中符号nで示す)を示している。具体的には時間と濃度との関係を示している。 Table 4 shows the results of the decomposition test of formaldehyde (indicated by symbol m in Table 4) and the results of the decomposition test of acetaldehyde (indicated by symbol n in Table 4) using the fibrous filter of the first embodiment. Show. Specifically, the relationship between time and concentration is shown.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~表4の結果から、「多孔質セラミックスフィルターにディッピングにより光触媒層を形成したフィルター」と比較して、第1の実施の形態の繊維状フィルターは、明らかにガス分解性能が向上していることが分かる。 From the results of Tables 1 to 4, the fibrous filter of the first embodiment clearly has improved gas decomposition performance compared to “a filter in which a photocatalyst layer is formed by dipping on a porous ceramic filter”. I understand that.
 この様に、第1の実施の形態の繊維状フィルターは、「多孔質セラミックスフィルターにディッピングにより光触媒層を形成したフィルター」と比較して、分解性能(ガス分解)及び耐久性において優れている。 Thus, the fibrous filter of the first embodiment is superior in decomposition performance (gas decomposition) and durability as compared with “a filter in which a photocatalyst layer is formed by dipping on a porous ceramic filter”.
 また、第1の実施の形態の繊維状フィルターは極めて薄く製造することができるため、概ね1mm~7mmの繊維状フィルターを実現することができ、10mm以上の厚さを有する「多孔質セラミックスフィルターにディッピングにより光触媒層を形成したフィルター」と比較すると、省スペース性においても優れている。更に、薄いが故に加工性にも優れている。 In addition, since the fibrous filter of the first embodiment can be manufactured extremely thin, a fibrous filter of approximately 1 mm to 7 mm can be realized, and “a porous ceramic filter having a thickness of 10 mm or more” Compared with a “filter having a photocatalyst layer formed by dipping”, it is excellent in space saving. Furthermore, since it is thin, it is excellent in workability.
 ここで、本実施の形態では、アルミニウム繊維を例に挙げて説明を行っているが、繊維状フィルター本体の素材については必ずしもアルミニウム材料である必要は無く、銅、ニッケル、チタン、ステンレス等の金属材料から構成されていても良く、また、繊維状フィルター本体を構成することができるのであれば、ガラス等の非金属材料から構成されていても良い。 Here, in the present embodiment, the description is given by taking aluminum fiber as an example, but the material of the fibrous filter main body does not necessarily need to be an aluminum material, and is a metal such as copper, nickel, titanium, and stainless steel. It may be made of a material, and may be made of a non-metallic material such as glass as long as the fibrous filter body can be formed.
<2.第2の実施の形態>
 本発明を適用した繊維状フィルターの他の例では、繊維状フィルター本体1と、繊維状フィルター本体1の表面に成膜された二酸化チタン皮膜とを有する(図1(a)参照)。この点は、上記した第1の実施の形態と同様である。なお、本実施の形態の二酸化チタン皮膜は、1質量%のAgを担持している。
<2. Second Embodiment>
Another example of the fibrous filter to which the present invention is applied has a fibrous filter body 1 and a titanium dioxide film formed on the surface of the fibrous filter body 1 (see FIG. 1A). This point is the same as in the first embodiment described above. The titanium dioxide film of the present embodiment carries 1% by mass of Ag.
 繊維状フィルター本体1は、上記した第1の実施の形態と同様に、直径が50μm~500μmのアルミニウム繊維から構成されており、目付量が500g/m~10000g/mであり、空隙率が50%~90%である。 The fibrous filter body 1 is made of aluminum fibers having a diameter of 50 μm to 500 μm, has a basis weight of 500 g / m 2 to 10000 g / m 2 , and has a porosity as in the first embodiment. Is 50% to 90%.
 二酸化チタン皮膜は、光触媒粒子である二酸化チタン粒子2と抗菌材料であるAg粒子とを溶射技術を用いて繊維状フィルター本体の表面に衝突させることで成膜されている。なお、二酸化チタン皮膜の成膜には、例えば、特開2005-68457号公報に記載された溶射温度可変型の高速溶射装置を用いることができる点は、上記した第1の実施の形態と同様である。 The titanium dioxide film is formed by colliding the titanium dioxide particles 2 that are photocatalyst particles and the Ag particles that are antibacterial materials against the surface of the fibrous filter body using a thermal spraying technique. Note that, for forming the titanium dioxide film, for example, the spraying temperature variable type high-speed spraying device described in Japanese Patent Application Laid-Open No. 2005-68457 can be used, as in the first embodiment described above. It is.
 ここで、本実施の形態では、溶射技術を利用して二酸化チタン粒子2と抗菌金属(例えばAg粒子等)とを繊維状フィルター本体の表面に衝突させることで、二酸化チタン皮膜の成膜と同時にAg粒子を担持させる場合を例に挙げて説明を行っている。しかしながら、二酸化チタン皮膜にAg粒子を担持させることができれば充分であり、いかなる方法でAg粒子を担持させても良い。
 例えば、その表面にAg等の粒子を初期添着させた二酸化チタン粒子を溶射技術を利用して繊維状フィルター本体の表面に衝突させることで、Ag等の粒子を担持させても良い。また、二酸化チタン皮膜を成膜した後に、Agイオン等を紫外光析出法等によって担持させても良い。
Here, in the present embodiment, the titanium dioxide particles 2 and the antibacterial metal (for example, Ag particles) are caused to collide with the surface of the fibrous filter body by using a thermal spraying technique, thereby simultaneously forming the titanium dioxide film. The case where Ag particles are carried is described as an example. However, it is sufficient if the Ag particles can be supported on the titanium dioxide film, and the Ag particles may be supported by any method.
For example, the particles such as Ag may be supported by colliding titanium dioxide particles, on which the particles such as Ag are initially attached to the surface thereof, with the surface of the fibrous filter body using a thermal spraying technique. Further, after forming the titanium dioxide film, Ag ions or the like may be supported by an ultraviolet light deposition method or the like.
 ところで、本実施の形態の繊維状フィルターの抗菌効果の検討のため、検定菌として大腸菌を用いた大腸菌殺菌性能試験を行った結果、5分程度の短時間で、大腸菌を6オーダー(100万分の1)まで急激に減少できることが確認できた。 By the way, as a result of conducting an Escherichia coli bactericidal performance test using Escherichia coli as a test bacterium for examining the antibacterial effect of the fibrous filter of the present embodiment, 6 orders of E. coli (1 million min. It was confirmed that it could be decreased rapidly until 1).
 また、表5-1に「多孔質セラミックスフィルターにディッピングにより光触媒層を形成したフィルター」を用いたアセトアルデヒドの分解試験の結果(表5-1中符号aで示す)と、第2の実施の形態の繊維状フィルターを用いたアセトアルデヒドの分解試験の結果(表5-1中符号bで示す)を示している。具体的には、時間と濃度との関係を示している。 Table 5-1 shows the results of the acetaldehyde decomposition test (indicated by symbol a in Table 5-1) using the “filter having a photocatalyst layer formed by dipping on a porous ceramic filter”, and the second embodiment. The results of a decomposition test of acetaldehyde using the fibrous filter (indicated by symbol b in Table 5-1) are shown. Specifically, the relationship between time and concentration is shown.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5-1の結果から、第2の実施の形態の繊維状フィルターは、VOCの一種であるアセトアルデヒドを低濃度(10億分の1程度)まで水と二酸化炭素とに分解することが可能であることが分かる。 From the results shown in Table 5-1, the fibrous filter of the second embodiment is capable of decomposing acetaldehyde, which is a type of VOC, into water and carbon dioxide to a low concentration (about one billionth). I understand that there is.
 ここで、本実施の形態では、Agを担持した場合を例に挙げて説明を行っているが、二酸化チタン皮膜が担持する抗菌金属は必ずしもAgである必要は無く、その他の抗菌金属であっても良い。 Here, in this embodiment, the case where Ag is supported is described as an example, but the antibacterial metal supported by the titanium dioxide film is not necessarily Ag, and other antibacterial metals may be used. Also good.
<3.第3の実施の形態>
 本発明を適用した繊維状フィルターの更に他の例では、繊維状フィルター本体1と、繊維状フィルター本体1の表面に成膜された二酸化チタン皮膜とを有する(図1(a)参照)。この点は、上記した第1の実施の形態と同様である。なお、本実施の形態の二酸化チタン皮膜は、12.5質量%のゼオライト(吸着材の一例)を担持している。
<3. Third Embodiment>
Still another example of the fibrous filter to which the present invention is applied includes a fibrous filter body 1 and a titanium dioxide film formed on the surface of the fibrous filter body 1 (see FIG. 1A). This point is the same as in the first embodiment described above. Note that the titanium dioxide film of the present embodiment carries 12.5% by mass of zeolite (an example of an adsorbent).
 繊維状フィルター本体1は、上記した第1の実施の形態と同様に、直径が50μm~500μmのアルミニウム繊維から構成されており、目付量が500g/m~10000g/mであり、空隙率が50%~90%である。 The fibrous filter body 1 is made of aluminum fibers having a diameter of 50 μm to 500 μm, has a basis weight of 500 g / m 2 to 10000 g / m 2 , and has a porosity as in the first embodiment. Is 50% to 90%.
 二酸化チタン皮膜は、光触媒粒子である二酸化チタン粒子2と吸着材であるゼオライトとを溶射技術を用いて繊維状フィルター本体の表面に衝突させることで成膜されている。なお、二酸化チタン皮膜の成膜には、例えば、特開2005-68457号公報に記載された溶射温度可変型の高速溶射装置を用いることができる点は、上記した第1の実施の形態と同様である。 The titanium dioxide film is formed by colliding the titanium dioxide particles 2 that are photocatalyst particles and the zeolite that is the adsorbent with the surface of the fibrous filter body using a thermal spraying technique. Note that, for forming the titanium dioxide film, for example, the spraying temperature variable type high-speed spraying device described in Japanese Patent Application Laid-Open No. 2005-68457 can be used, as in the first embodiment described above. It is.
 ここで、本実施の形態では、溶射技術を利用して二酸化チタン粒子2と吸着材(例えば、ゼオライト)とを繊維状フィルター本体の表面に衝突させることで、二酸化チタン皮膜の成膜と同時にゼオライトを担持させる場合を例に挙げて説明を行っている。しかしながら、二酸化チタン皮膜にゼオライトを担持させることができれば充分であり、いかなる方法でゼオライトを担持させても良い。 Here, in this embodiment, the titanium dioxide particles 2 and the adsorbent (for example, zeolite) are made to collide with the surface of the fibrous filter body using a thermal spraying technique, so that the zeolite is simultaneously formed with the titanium dioxide film. In the description, the case of carrying is taken as an example. However, it is sufficient if the zeolite can be supported on the titanium dioxide film, and the zeolite may be supported by any method.
 ところで、本実施の形態の繊維状フィルターを用いたアセトアルデヒドの分解試験の結果(表5-2中符号Aで示す)と、ゼオライトを担持していない繊維状フィルターを用いたアセトアルデヒドの分解試験の結果(表5-2中符号Bで示す)を表5-2に示している。具体的には、時間と濃度との関係を示している。 By the way, the result of the decomposition test of acetaldehyde using the fibrous filter of the present embodiment (indicated by symbol A in Table 5-2) and the result of the decomposition test of acetaldehyde using the fibrous filter not supporting zeolite. Table 5-2 shows (indicated by symbol B in Table 5-2). Specifically, the relationship between time and concentration is shown.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5-2の結果から、ゼオライトを担持することで、概ね3倍のアセトアルデヒドの分解速度が実現することが分かる。 From the results shown in Table 5-2, it can be seen that the acetaldehyde decomposition rate is approximately three times as high by loading the zeolite.
 ここで、本実施の形態では、ゼオライトを担持した場合を例に挙げて説明を行っているが、二酸化チタン皮膜が担持する吸着材は必ずしもゼオライトである必要は無く、アパタイト、活性炭等のその他の吸着材であっても良い。 Here, in the present embodiment, the case where zeolite is supported is described as an example, but the adsorbent supported by the titanium dioxide film is not necessarily zeolite, and other materials such as apatite and activated carbon are used. It may be an adsorbent.
<4.第4の実施の形態>
 図2は本発明を適用した空気清浄機の一例を説明するための模式図であり、ここで示す空気清浄機10は、その内部の下方にファン11が配置され、ファン11の上方に紫外線LEDランプ12が配置され、紫外線LEDランプ12の更に上方に繊維状フィルター13が配置されている。
<4. Fourth Embodiment>
FIG. 2 is a schematic diagram for explaining an example of an air purifier to which the present invention is applied. The air purifier 10 shown here has a fan 11 disposed below the inside thereof, and an ultraviolet LED above the fan 11. A lamp 12 is disposed, and a fibrous filter 13 is disposed further above the ultraviolet LED lamp 12.
 ファン11は、上方に向けて送風可能に構成されており、ファン11が回転することによって、空気清浄機10の下方より吸気し上方より排気するといった空気の流れが形成されることとなる。 The fan 11 is configured to be able to blow air upward, and when the fan 11 rotates, an air flow is formed such that air is sucked from below the air cleaner 10 and exhausted from above.
 紫外線LEDランプ12は、365nmの波長を有する光を繊維状フィルター13に向けて照射可能に構成されており、紫外線LEDランプ12からの光によって繊維状フィルター13の光触媒機能が発揮されることとなる。 The ultraviolet LED lamp 12 is configured to be able to irradiate light having a wavelength of 365 nm toward the fibrous filter 13, and the photocatalytic function of the fibrous filter 13 is exhibited by the light from the ultraviolet LED lamp 12. .
 繊維状フィルター13は、上記した第2の実施の形態の繊維状フィルターを用いている。 The fibrous filter 13 uses the fibrous filter of the above-described second embodiment.
 上記の様に構成された空気清浄機10では、ファン11が回転することによる吸気作用によって、菌、ウイルス、VOCガスや有害ガスを含む空気が下方から吸い込まれる。吸い込まれた空気は、繊維状フィルター13を通過することで、菌、ウイルス、VOCガスや有害ガスが分解、殺菌等がなされ、清浄空気として上方より排気されることとなる。 In the air purifier 10 configured as described above, air containing bacteria, viruses, VOC gas, and harmful gas is sucked from below by the intake action caused by the rotation of the fan 11. The sucked air passes through the fibrous filter 13 so that bacteria, viruses, VOC gas and harmful gas are decomposed and sterilized, and exhausted from above as clean air.
 表6に「イオン式の空気清浄機」を用いたアンモニアの分解試験の結果(表6中符号cで示す)と、第4の実施の形態の空気清浄機を用いたアンモニアの分解試験の結果(表6中符号dで示す)を示している。具体的には、時間と濃度の関係を示している。 Table 6 shows the results of an ammonia decomposition test using an “ionic air cleaner” (indicated by symbol c in Table 6) and the results of an ammonia decomposition test using the air cleaner of the fourth embodiment. (Indicated by d in Table 6). Specifically, the relationship between time and concentration is shown.
 表7に「イオン式の空気清浄機」を用いたアセトアルデヒドの分解試験の結果(表7中符号cで示す)と、第4の実施の形態の空気清浄機を用いたアセトアルデヒドの分解試験の結果(表7中符号dで示す)を示している。具体的には、時間と濃度との関係を示している。 Table 7 shows the result of a decomposition test of acetaldehyde using an “ionic air cleaner” (indicated by symbol c in Table 7) and the result of a decomposition test of acetaldehyde using the air cleaner of the fourth embodiment. (Indicated by symbol d in Table 7). Specifically, the relationship between time and concentration is shown.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表6及び表7の結果から、第4の実施の形態の空気清浄機は、臭い成分であるアンモニアや、VOCの一種であるアセトアルデヒドを低濃度にまで分解することが可能であることが分かる。 From the results of Tables 6 and 7, it can be seen that the air cleaner of the fourth embodiment can decompose ammonia, which is an odor component, and acetaldehyde, which is a kind of VOC, to a low concentration.
<5.第5の実施の形態>
 図3は本発明を適用した空気清浄機の他の一例を説明するための模式図であり、ここで示す空気清浄機10は、その内部の下方にファン11が配置され、ファン11の上方に可視光LEDランプ14が配置され、可視光LEDランプ14の更に上方に繊維状フィルター13が配置されている。
<5. Fifth embodiment>
FIG. 3 is a schematic view for explaining another example of the air cleaner to which the present invention is applied. The air cleaner 10 shown here has a fan 11 disposed below the inside thereof, and above the fan 11. A visible light LED lamp 14 is disposed, and a fibrous filter 13 is disposed further above the visible light LED lamp 14.
 ファン11は、上方に向けて送風可能に構成されており、ファン11が回転することによって、空気清浄機10の下方より吸気し上方より排気するといった空気の流れが形成されることとなる点は上記した第4の実施の形態と同様である。 The fan 11 is configured to be able to blow air upward, and by rotating the fan 11, an air flow is formed such that air is sucked from below the air cleaner 10 and exhausted from above. This is the same as the fourth embodiment described above.
 可視光LEDランプ14は、415nmの波長を有する光を繊維状フィルター13に向けて照射可能に構成されており、可視光LEDランプ14からの光によって繊維状フィルター13の光触媒機能が発揮されることとなる。 The visible light LED lamp 14 is configured to be able to irradiate light having a wavelength of 415 nm toward the fibrous filter 13, and the photocatalytic function of the fibrous filter 13 is exhibited by the light from the visible light LED lamp 14. It becomes.
 繊維状フィルター13は、上記した第2の実施の形態の繊維状フィルターを用いている。 The fibrous filter 13 uses the fibrous filter of the above-described second embodiment.
 上記の様に構成された空気清浄機10では、ファン11が回転することによる吸気作用によって、菌、ウイルス、VOCガスや有害ガスを含む空気が下方から吸い込まれる。吸い込まれた空気は、繊維状フィルター13を通過することで、菌、ウイルス、VOCガスや有害ガスが分解、殺菌等がなされ、清浄空気として上方より排気されることとなる。 In the air purifier 10 configured as described above, air containing bacteria, viruses, VOC gas, and harmful gas is sucked from below by the intake action caused by the rotation of the fan 11. The sucked air passes through the fibrous filter 13 so that bacteria, viruses, VOC gas and harmful gas are decomposed and sterilized, and exhausted from above as clean air.
 表8に「イオン式の空気清浄機」を用いたアンモニアの分解試験の結果(表8中符号eで示す)と、第5の実施の形態の空気清浄機を用いたアンモニアの分解試験の結果(表8中符号fで示す)を示している。具体的には、時間と濃度の関係を示している。 Table 8 shows the result of the ammonia decomposition test using the “ionic air cleaner” (indicated by symbol e in Table 8) and the result of the ammonia decomposition test using the air cleaner of the fifth embodiment. (Indicated by symbol f in Table 8). Specifically, the relationship between time and concentration is shown.
 表9に「イオン式の空気清浄機」を用いたアセトアルデヒドの分解試験の結果(表9中符号eで示す)と、第5の実施の形態の空気清浄機を用いたアセトアルデヒドの分解試験の結果(表9中符号fで示す)を示している。具体的には、時間と濃度との関係を示している。 Table 9 shows the results of the acetaldehyde decomposition test using the “ionic air cleaner” (indicated by symbol e in Table 9) and the results of the acetaldehyde decomposition test using the air cleaner of the fifth embodiment. (Indicated by symbol f in Table 9). Specifically, the relationship between time and concentration is shown.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表8及び表9から、第5の実施の形態の空気清浄機は、臭い成分であるアンモニアや、VOCの一種であるアセトアルデヒドを低濃度にまで分解することが可能であることが分かる。 From Table 8 and Table 9, it can be seen that the air cleaner of the fifth embodiment can decompose ammonia, which is an odor component, and acetaldehyde, which is a kind of VOC, to a low concentration.
 また、光源として可視光を用いているために、人間の目や肌等に対して優しい。更に、可視光LEDランプは既に大量に流通しており、非常に低コストで入手することができるために、第5の実施の形態の空気清浄機は低コストで実現できる。 Also, since visible light is used as a light source, it is gentle on human eyes and skin. Furthermore, since the visible light LED lamps are already distributed in large quantities and can be obtained at a very low cost, the air cleaner of the fifth embodiment can be realized at a low cost.
<6.第6の実施の形態>
 図4(a)は本発明を適用した空気清浄機の更に他の一例を説明するための模式図であり、ここで示す空気清浄機は、その内部に集塵フィルター15が配置され、集塵フィルター15に隣接して光触媒フィルター部16が配置され、光触媒フィルター部16の集塵フィルター15とは反対側にファン11が配置されている。
<6. Sixth Embodiment>
FIG. 4A is a schematic diagram for explaining still another example of an air cleaner to which the present invention is applied. The air cleaner shown here has a dust collection filter 15 disposed therein, and is a dust collector. A photocatalytic filter portion 16 is disposed adjacent to the filter 15, and the fan 11 is disposed on the opposite side of the photocatalytic filter portion 16 from the dust collection filter 15.
 ファン11は回転することによって、集塵フィルター15側から吸気するといった空気の流れが形成される様に構成されている。 The fan 11 is configured so as to form an air flow such as intake from the dust collection filter 15 side by rotating.
 光触媒フィルター部16は、図4(b)で示す様に、繊維状フィルター13と反射板17によってブラックライト18が囲繞されて構成されている。なお、繊維状フィルター13は上記した第2の実施の形態の繊維状フィルターを用いており、ブラックライト18では、254nmの波長を有するUV殺菌線及び185nmの波長を有するUVオゾン線を発する様に構成されている。 As shown in FIG. 4B, the photocatalytic filter portion 16 is configured by surrounding a black light 18 with a fibrous filter 13 and a reflecting plate 17. The fibrous filter 13 uses the fibrous filter of the second embodiment described above, and the black light 18 emits a UV sterilization line having a wavelength of 254 nm and a UV ozone ray having a wavelength of 185 nm. It is configured.
 上記の様に構成された空気清浄機では、ファン11が回転することによって、菌、ウイルス、VOCガスや有害ガスを含む空気が光触媒フィルター部16に供給される。光触媒フィルター部16では、繊維状フィルター13を通過することで、菌、ウイルス、VOCガスや有害ガスが分解、殺菌等がなされ、清浄空気として排気されることとなる。 In the air purifier configured as described above, the air containing the bacteria, virus, VOC gas, and harmful gas is supplied to the photocatalytic filter unit 16 as the fan 11 rotates. In the photocatalyst filter part 16, by passing through the fibrous filter 13, bacteria, viruses, VOC gas and harmful gas are decomposed and sterilized, and exhausted as clean air.
 表10に「イオン+脱臭フィルター式の空気清浄機」を用いたアンモニアの分解試験の結果(表10中符号pで示す)と、「活性炭式の空気清浄機」を用いたアンモニアの分解試験の結果(表10中符号qで示す)と、第6の実施の形態の空気清浄機を用いたアンモニアの分解試験の結果(表10中符号rで示す)を示している。具体的には、時間と濃度との関係を示している。 Table 10 shows the results of the ammonia decomposition test using the “ion + deodorizing filter type air cleaner” (indicated by the symbol p in Table 10) and the ammonia decomposition test using the “activated carbon type air cleaner”. The results (indicated by symbol q in Table 10) and the results of the ammonia decomposition test using the air cleaner of the sixth embodiment (indicated by symbol r in Table 10) are shown. Specifically, the relationship between time and concentration is shown.
 表11に「イオン+脱臭フィルター式の空気清浄機」を用いたアセトアルデヒドの分解試験の結果(表11中符号pで示す)と、「活性炭式の空気清浄機」を用いたアセトアルデヒド分解試験の結果(表11中符号qで示す)と、第6の実施の形態の空気清浄機を用いたアセトアルデヒドの分解試験の結果(表11中符号rで示す)を示している。具体的には、時間と濃度との関係を示している。 Table 11 shows the results of the acetaldehyde decomposition test using “ion + deodorizing filter type air purifier” (indicated by “p” in Table 11) and the results of the acetaldehyde decomposition test using “activated carbon type air purifier”. (Shown by symbol q in Table 11) and the results of the acetaldehyde decomposition test using the air cleaner of the sixth embodiment (shown by symbol r in Table 11). Specifically, the relationship between time and concentration is shown.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表10及び表11から、第6の実施の形態の空気清浄機は、臭い成分であるアンモニアや、VOCの一種であるアセトアルデヒドを低濃度にまで分解することが可能であることが分かる。 From Table 10 and Table 11, it can be seen that the air cleaner of the sixth embodiment can decompose ammonia, which is an odor component, and acetaldehyde, which is a kind of VOC, to a low concentration.
<7.第7の実施の形態>
 本発明を適用した空気清浄機のまた更に他の一例では、上記した第6の実施の形態と同様に、その内部に集塵フィルター15が配置され、集塵フィルター15に隣接して光触媒フィルター部16が配置され、光触媒フィルター部16の集塵フィルター15とは反対側にファン11が配置されている(図4(a)参照)。
<7. Seventh Embodiment>
In still another example of the air cleaner to which the present invention is applied, a dust collection filter 15 is disposed in the interior thereof, and the photocatalytic filter section is adjacent to the dust collection filter 15 as in the sixth embodiment. 16 is disposed, and the fan 11 is disposed on the opposite side of the photocatalytic filter portion 16 from the dust collection filter 15 (see FIG. 4A).
 また、ファン11は回転することによって、集塵フィルター15側から吸気するといった空気の流れが形成される様に構成されている点についても、上記した第6の実施の形態と同様である。 Also, the fan 11 is configured in such a manner that when it rotates, an air flow is formed such that air is sucked from the dust collection filter 15 side, which is the same as in the sixth embodiment.
 光触媒フィルター部16は、図4(b)で示す様に、繊維状フィルター13と反射板17によってブラックライト18が囲繞されて構成されている。なお、繊維状フィルター13は上記した第2の実施の形態の繊維状フィルターを用いており、ブラックライト18では、365nmの波長を有するUV紫外線を発する様に構成されている。 As shown in FIG. 4B, the photocatalytic filter portion 16 is configured by surrounding a black light 18 with a fibrous filter 13 and a reflecting plate 17. The fibrous filter 13 uses the fibrous filter of the second embodiment described above, and the black light 18 is configured to emit UV ultraviolet light having a wavelength of 365 nm.
 上記の様に構成された空気清浄機では、ファン11が回転することによって、菌、ウイルス、VOCガスや有害ガスを含む空気が光触媒フィルター部16に供給される。光触媒フィルター部16では、繊維状フィルター13を通過することで、菌、ウイルス、VOCガスや有害ガスが分解、殺菌等がなされ、清浄空気として排気されることとなる。 In the air purifier configured as described above, the air containing the bacteria, virus, VOC gas, and harmful gas is supplied to the photocatalytic filter unit 16 as the fan 11 rotates. In the photocatalyst filter part 16, by passing through the fibrous filter 13, bacteria, viruses, VOC gas and harmful gas are decomposed and sterilized, and exhausted as clean air.
 表12に第6の実施の形態の空気清浄機を用いたアセトアルデヒドの分解試験の結果(表12中符号sで示す)と、第7の実施の形態の空気清浄機を用いたアセトアルデヒドの分解試験の結果(表12中符号tで示す)を示している。具体的には、時間と濃度との関係を示している。 Table 12 shows the results of the acetaldehyde decomposition test using the air cleaner according to the sixth embodiment (indicated by symbol s in Table 12) and the acetaldehyde decomposition test using the air cleaner according to the seventh embodiment. (Indicated by t in Table 12). Specifically, the relationship between time and concentration is shown.
 また、表13及び表14に第7の実施の形態の空気清浄機を用いたVOC(アセトアルデヒド・トルエン)の完全分解性能試験の結果を示している。なお、表13中符号uはアセトアルデヒドを示し、表13中符号vは二酸化炭素を示し、表14中符号uはトルエンを示し、表14中符号vは二酸化炭素を示している。 Tables 13 and 14 show the results of a complete decomposition performance test of VOC (acetaldehyde / toluene) using the air cleaner of the seventh embodiment. In Table 13, the symbol u represents acetaldehyde, the symbol v in Table 13 represents carbon dioxide, the symbol u in Table 14 represents toluene, and the symbol v in Table 14 represents carbon dioxide.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表12から、第7の実施の形態の空気清浄機は、第6の実施の形態の空気清浄機よりも高速で臭い成分であるアンモニアや、VOCの一種であるアセトアルデヒドを低濃度にまで分解することが可能であることが分かる。また、表13及び表14から第7の実施の形態の空気清浄機は、VOCの分解性能が極めて高いことが分かる。 From Table 12, the air cleaner of the seventh embodiment decomposes ammonia, which is an odor component, and acetaldehyde, which is a kind of VOC, to a low concentration at a higher speed than the air cleaner of the sixth embodiment. It can be seen that it is possible. Moreover, it turns out that the decomposition | disassembly performance of VOC is very high from the air cleaner of 7th Embodiment from Table 13 and Table 14. FIG.
<8.第8の実施の形態>
 本発明を適用した空気清浄機のまた更に他の一例では、上記した第6の実施の形態と同様に、その内部に集塵フィルター15が配置され、集塵フィルター15に隣接して光触媒フィルター部16が配置され、光触媒フィルター部16の集塵フィルター15とは反対側にファン11が配置されている(図4(a)参照)。
<8. Eighth Embodiment>
In still another example of the air cleaner to which the present invention is applied, a dust collection filter 15 is disposed in the interior thereof, and the photocatalytic filter section is adjacent to the dust collection filter 15 as in the sixth embodiment. 16 is disposed, and the fan 11 is disposed on the opposite side of the photocatalytic filter portion 16 from the dust collection filter 15 (see FIG. 4A).
 また、ファン11は回転することによって、集塵フィルター15側から吸気するといった空気の流れが形成される様に構成されている点についても、上記した第6の実施の形態と同様である。 Also, the fan 11 is configured in such a manner that when it rotates, an air flow is formed such that air is sucked from the dust collection filter 15 side, which is the same as in the sixth embodiment.
 光触媒フィルター部16は、図4(c)で示す様に、繊維状フィルター13によって冷陰極管19が囲繞されて構成されている。なお、繊維状フィルター13は上記した第2の実施の形態の繊維状フィルターを用いており、冷陰極管19では、365nmの波長を有する殺菌線を発する様に構成されている。 As shown in FIG. 4C, the photocatalytic filter portion 16 is configured by a cold cathode tube 19 surrounded by a fibrous filter 13. The fibrous filter 13 uses the fibrous filter of the second embodiment described above, and the cold cathode tube 19 is configured to emit a germicidal line having a wavelength of 365 nm.
 上記の様に構成された空気清浄機では、ファン11が回転することによって、菌、ウイルス、VOCガスや有害ガスを含む空気が光触媒フィルター部16に供給される。光触媒フィルター部16では、繊維状フィルター13を通過することで、菌、ウイルス、VOCガスや有害ガスが分解、殺菌等がなされ、清浄空気として排気されることとなる。 In the air purifier configured as described above, the air containing the bacteria, virus, VOC gas, and harmful gas is supplied to the photocatalytic filter unit 16 as the fan 11 rotates. In the photocatalyst filter part 16, by passing through the fibrous filter 13, bacteria, viruses, VOC gas and harmful gas are decomposed and sterilized, and exhausted as clean air.
 表15に光触媒を搭載した市販の空気清浄機を用いた場合(表15中符号C及び符号Dで示す)と、第8の実施の形態の空気清浄機を用いた場合(表15中符号Eで示す)の空気清浄機稼働後の浮遊菌数の結果を示している。具体的には、1000L容器内で枯草菌を噴霧した後に空気清浄機を稼働させ、容器内の空気をポンプで吸引して菌数を計測した結果を示している。 Table 15 shows a case where a commercially available air cleaner equipped with a photocatalyst is used (indicated by reference characters C and D in Table 15) and a case where the air cleaner according to the eighth embodiment is used (reference symbol E in Table 15). The result of the floating bacteria count after the air purifier is operated is shown. Specifically, after spraying Bacillus subtilis in a 1000 L container, the air purifier is operated, and the number of bacteria is measured by sucking the air in the container with a pump.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表15から明らかな様に、第8の実施の形態の空気清浄機は、枯草菌の分解、殺菌機能が極めて高いことが分かる。 As is apparent from Table 15, it can be seen that the air purifier according to the eighth embodiment has an extremely high decomposition and sterilization function of Bacillus subtilis.
   1  繊維状フィルター本体
   2  二酸化チタン粒子
  10  空気清浄機
  11  ファン
  12  LEDランプ
  13  繊維状フィルター
  14  可視光LEDランプ
  15  集塵フィルター
  16  光触媒フィルター部
  17  反射板
  18  ブラックライト
  19  冷陰極管
DESCRIPTION OF SYMBOLS 1 Fibrous filter main body 2 Titanium dioxide particle 10 Air cleaner 11 Fan 12 LED lamp 13 Fibrous filter 14 Visible light LED lamp 15 Dust collection filter 16 Photocatalyst filter part 17 Reflector 18 Blacklight 19 Cold cathode tube

Claims (11)

  1.  直径が50μm~500μmの繊維から構成され、空隙率が50%~90%である繊維状フィルター本体と、
     前記繊維の表面に溶射技術により成膜された二酸化チタン皮膜とを備える
     繊維状フィルター。
    A fibrous filter body composed of fibers having a diameter of 50 μm to 500 μm and a porosity of 50% to 90%;
    A fibrous filter comprising a titanium dioxide film formed on the surface of the fiber by a thermal spraying technique.
  2.  前記二酸化チタン皮膜は、アナターゼ型結晶構造が70質量%以上である
     請求項1に記載の繊維状フィルター。
    The fibrous filter according to claim 1, wherein the titanium dioxide film has an anatase type crystal structure of 70% by mass or more.
  3.  前記二酸化チタン皮膜は、ルチル型結晶構造で、Fe、Cu、Cr若しくはNiの金属錯体または金属塩から選ばれる少なくとも一種類の化合物である増感剤を担持している
     請求項1に記載の繊維状フィルター。
    The fiber according to claim 1, wherein the titanium dioxide film has a rutile crystal structure and carries a sensitizer which is at least one compound selected from a metal complex or metal salt of Fe, Cu, Cr or Ni. Filter.
  4.  前記二酸化チタン皮膜は、0.1質量%~10質量%の抗菌金属が担持された
     請求項1、請求項2または請求項3に記載の繊維状フィルター。
    The fibrous filter according to claim 1, 2 or 3, wherein the titanium dioxide film carries 0.1% by mass to 10% by mass of an antibacterial metal.
  5.  前記抗菌金属は、銀系、銅系、亜鉛系、アルミニウム系、ニッケル系、コバルト系、若しくは鉄系の金属のうちの少なくとも1つを含む
     請求項4に記載の繊維状フィルター。
    The fibrous filter according to claim 4, wherein the antibacterial metal includes at least one of silver-based, copper-based, zinc-based, aluminum-based, nickel-based, cobalt-based, or iron-based metals.
  6.  前記二酸化チタン皮膜は、アパタイト、ゼオライト若しくは活性炭の少なくとも1つを含む
     請求項1、請求項2または請求項3に記載の繊維状フィルター。
    The fibrous filter according to claim 1, wherein the titanium dioxide film contains at least one of apatite, zeolite, or activated carbon.
  7.  前記繊維状フィルター本体は、金属繊維、無機繊維または有機繊維から構成され、目付量が500g/m~10000g/mである
     請求項1、請求項2または請求項3に記載の繊維状フィルター。
    The fibrous filter body is composed of metal fibers, inorganic fibers or organic fibers, fibrous filter according to claim 1, claim 2 or claim 3 basis weight is 500g / m 2 ~ 10000g / m 2 .
  8.  前記繊維状フィルター本体はアルミニウム繊維から構成され、目付量が500g/m~10000g/mである
     請求項1、請求項2または請求項3に記載の繊維状フィルター。
    The fibrous filter body is composed of aluminum fibers, fibrous filter according to claim 1, claim 2 or claim 3 basis weight is 500g / m 2 ~ 10000g / m 2.
  9.  直径が50μm~500μmの繊維から構成され、空隙率が50%~90%である繊維状フィルター本体と、前記繊維の表面に溶射技術により成膜された二酸化チタン皮膜を有する繊維状フィルターと、
     該繊維状フィルターに光を照射する光源とを備える
     空気清浄機。
    A fibrous filter body composed of fibers having a diameter of 50 μm to 500 μm and a porosity of 50% to 90%; a fibrous filter having a titanium dioxide film formed on the surface of the fibers by a thermal spraying technique;
    An air cleaner comprising: a light source for irradiating the fibrous filter with light.
  10.  直径が50μm~500μmのアルミニウム繊維から構成され、目付量が500g/m~10000g/mであり、空隙率が50%~90%である繊維状フィルター本体と、前記繊維の表面に溶射技術により成膜されると共に、0.1質量%~10質量%の抗菌金属が担持された二酸化チタン皮膜を有する繊維状フィルターと、
     該繊維状フィルターに光を照射する光源とを備える
     空気清浄機。
    A fibrous filter body composed of aluminum fibers having a diameter of 50 μm to 500 μm, a basis weight of 500 g / m 2 to 10000 g / m 2 , and a porosity of 50% to 90%, and a spraying technique on the surface of the fibers And a fibrous filter having a titanium dioxide film on which 0.1% by mass to 10% by mass of an antibacterial metal is supported,
    An air cleaner comprising: a light source for irradiating the fibrous filter with light.
  11.  前記光源は、紫外線を発光するブラックライト、紫外線LEDランプ、可視光LEDランプ、蛍光灯、白熱電灯、若しくは、冷陰極管のいずれか1つである
     請求項9または請求項10に記載の空気清浄機。
    The air purifier according to claim 9 or 10, wherein the light source is any one of a black light that emits ultraviolet light, an ultraviolet LED lamp, a visible light LED lamp, a fluorescent lamp, an incandescent lamp, or a cold cathode tube. Machine.
PCT/JP2010/068515 2009-10-20 2010-10-20 Fibrous filter and air purification device WO2011049140A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080047392.7A CN102574036B (en) 2009-10-20 2010-10-20 Fibrous filter and air purification device
JP2011537287A JP5390630B2 (en) 2009-10-20 2010-10-20 Filter and air purifier
KR1020127010024A KR101351485B1 (en) 2009-10-20 2010-10-20 Fibrous filter and air purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009241580 2009-10-20
JP2009-241580 2009-10-20

Publications (1)

Publication Number Publication Date
WO2011049140A1 true WO2011049140A1 (en) 2011-04-28

Family

ID=43900363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068515 WO2011049140A1 (en) 2009-10-20 2010-10-20 Fibrous filter and air purification device

Country Status (4)

Country Link
JP (1) JP5390630B2 (en)
KR (1) KR101351485B1 (en)
CN (1) CN102574036B (en)
WO (1) WO2011049140A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023612A1 (en) * 2010-08-20 2012-02-23 株式会社フジコー Method for producing photocatalyst coating film, and photocatalyst coating film
JP2014046552A (en) * 2012-08-31 2014-03-17 Fuji Corp Metal fiber composite and method for manufacturing the same
JP2016002545A (en) * 2014-06-19 2016-01-12 株式会社フジコー Air purifier
JP2016530918A (en) * 2012-07-27 2016-10-06 ディ. クロスニィー マーク Air sterilization and disinfection equipment
JP2017127795A (en) * 2016-01-18 2017-07-27 和興フィルタテクノロジー株式会社 Filter medium for filter, oil filter, and manufacturing method of the filter medium for filter
CN108636394A (en) * 2018-05-22 2018-10-12 中国科学院宁波材料技术与工程研究所 A kind of preparation method of nano titanium dioxide photocatalysis coating
JP2020043920A (en) * 2018-09-14 2020-03-26 日本無機株式会社 Air cleaner and air cleaning method
WO2022182307A1 (en) * 2021-02-25 2022-09-01 Okyay Ali Kemal Antimicrobial air filter
WO2022182308A1 (en) * 2021-02-25 2022-09-01 Okyay Ali Kemal Antimicrobial air filtration device
WO2022219356A1 (en) * 2021-04-15 2022-10-20 Filter8 Limited Air purification
KR20220153143A (en) * 2021-05-10 2022-11-18 한림대학교 산학협력단 Antibacterial and antiviral Cu-PMF and its manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522761B1 (en) * 2012-11-28 2015-05-26 금오공과대학교 산학협력단 Air Cleaner having Filter capable of recycling
CN104436860B (en) * 2014-12-31 2017-01-18 安徽元琛环保科技股份有限公司 Copper fiber filter screen for load photocatalyst and manufacturing method thereof
CN106693554A (en) * 2017-01-23 2017-05-24 王宇轩 Air purifier based on silk thread filtration
KR102276929B1 (en) * 2019-11-08 2021-07-13 한국광기술원 fiber filter and method of manufacturing the same and fluid purification apparatus using the same
CN113617617A (en) * 2021-07-09 2021-11-09 华和互惠(青岛)贸易有限公司 Processing technology of CCFL (cold cathode fluorescent lamp) photocatalyst silver ion germicidal lamp
KR102659262B1 (en) * 2021-09-30 2024-04-22 (주)웨이투메이크 Air conditioner including photocatalytic filter with reflective film and method of thereof
KR102674727B1 (en) * 2022-01-26 2024-06-13 주식회사 랩엠제로 Air sterilizer using visible light photocatalysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216365A (en) * 1997-10-20 1999-08-10 Tao:Kk Photocatalyst, photocatalyst device and housing apparatus
JPH11333451A (en) * 1998-05-28 1999-12-07 Raizaa Kogyo Kk Method and apparatus for sterilization/purification by ultraviolet light
JP2000042320A (en) * 1998-07-27 2000-02-15 Suzuki Sogyo Co Ltd Functional filter
JP2000325451A (en) * 1999-05-17 2000-11-28 Tokyo Metallikon Kk Deodorizer and its manufacture
JP2002085534A (en) * 2000-09-18 2002-03-26 Anzai Kantetsu:Kk Deodorizing and cleaning element and deodorizing and cleaning unit using the same as well as deodorizing and cleaning system using the same
JP2006272038A (en) * 2005-03-28 2006-10-12 Shimura Shoji Kk Filter medium and its manufacturing method
JP2009235660A (en) * 2008-03-05 2009-10-15 Nissan Motor Co Ltd Fibrous mass bearing catalyst, process for producing the same, and purifier for discharge gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155598A (en) * 1993-12-10 1995-06-20 Toto Ltd Photocatalyst coating film and its formation
JP4431042B2 (en) * 2002-10-17 2010-03-10 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Layered filter structure containing short metal fibers
CN200966788Y (en) * 2006-08-17 2007-10-31 谭冰 Special device for the air detoxification and purifying

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216365A (en) * 1997-10-20 1999-08-10 Tao:Kk Photocatalyst, photocatalyst device and housing apparatus
JPH11333451A (en) * 1998-05-28 1999-12-07 Raizaa Kogyo Kk Method and apparatus for sterilization/purification by ultraviolet light
JP2000042320A (en) * 1998-07-27 2000-02-15 Suzuki Sogyo Co Ltd Functional filter
JP2000325451A (en) * 1999-05-17 2000-11-28 Tokyo Metallikon Kk Deodorizer and its manufacture
JP2002085534A (en) * 2000-09-18 2002-03-26 Anzai Kantetsu:Kk Deodorizing and cleaning element and deodorizing and cleaning unit using the same as well as deodorizing and cleaning system using the same
JP2006272038A (en) * 2005-03-28 2006-10-12 Shimura Shoji Kk Filter medium and its manufacturing method
JP2009235660A (en) * 2008-03-05 2009-10-15 Nissan Motor Co Ltd Fibrous mass bearing catalyst, process for producing the same, and purifier for discharge gas

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023612A1 (en) * 2010-08-20 2012-02-23 株式会社フジコー Method for producing photocatalyst coating film, and photocatalyst coating film
JPWO2012023612A1 (en) * 2010-08-20 2013-10-28 株式会社フジコー Method for producing photocatalytic film and photocatalytic film
JP5723883B2 (en) * 2010-08-20 2015-05-27 株式会社フジコー Method for producing photocatalytic film and photocatalytic film
JP2016530918A (en) * 2012-07-27 2016-10-06 ディ. クロスニィー マーク Air sterilization and disinfection equipment
JP2014046552A (en) * 2012-08-31 2014-03-17 Fuji Corp Metal fiber composite and method for manufacturing the same
JP2016002545A (en) * 2014-06-19 2016-01-12 株式会社フジコー Air purifier
JP2017127795A (en) * 2016-01-18 2017-07-27 和興フィルタテクノロジー株式会社 Filter medium for filter, oil filter, and manufacturing method of the filter medium for filter
CN108636394A (en) * 2018-05-22 2018-10-12 中国科学院宁波材料技术与工程研究所 A kind of preparation method of nano titanium dioxide photocatalysis coating
CN108636394B (en) * 2018-05-22 2021-01-12 中国科学院宁波材料技术与工程研究所 Preparation method of nano titanium dioxide photocatalytic coating
JP2020043920A (en) * 2018-09-14 2020-03-26 日本無機株式会社 Air cleaner and air cleaning method
WO2022182307A1 (en) * 2021-02-25 2022-09-01 Okyay Ali Kemal Antimicrobial air filter
WO2022182308A1 (en) * 2021-02-25 2022-09-01 Okyay Ali Kemal Antimicrobial air filtration device
WO2022219356A1 (en) * 2021-04-15 2022-10-20 Filter8 Limited Air purification
KR20220153143A (en) * 2021-05-10 2022-11-18 한림대학교 산학협력단 Antibacterial and antiviral Cu-PMF and its manufacturing method
KR102600129B1 (en) 2021-05-10 2023-11-09 한림대학교 산학협력단 Antibacterial and antiviral Cu-PMF and its manufacturing method

Also Published As

Publication number Publication date
KR101351485B1 (en) 2014-01-14
KR20120073281A (en) 2012-07-04
JPWO2011049140A1 (en) 2013-03-14
CN102574036B (en) 2015-01-14
CN102574036A (en) 2012-07-11
JP5390630B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5390630B2 (en) Filter and air purifier
US20240148929A1 (en) Purified hydrogen peroxide gas generation methods and devices
Ochiai et al. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification
Gamage et al. Applications of photocatalytic disinfection
Chen et al. Photocatalytic oxidation for antimicrobial control in built environment: a brief literature overview
CN108452362A (en) Sterilize module and disinfection equipment
Poormohammadi et al. Are photocatalytic processes effective for removal of airborne viruses from indoor air? A narrative review
KR20100061665A (en) Uv air treatment method and device
KR102184694B1 (en) Air Cleaning Filter Using Visible Light Excitation Photocatalyst and Manufacturing Method Thereof
WO2012018244A1 (en) A filter and device for treating air
CN104422019A (en) Complex multi-functional indoor air pollution control unit
JP2010240053A (en) Photocatalyst deodorizer
Truong et al. A critical innovation of photocatalytic degradation for toxic chemicals and pathogens in air
US20230173133A1 (en) Atmospheric plasma filter
Seiß et al. Preparation and real world applications of titania composite materials for photocatalytic surface, air, and water purification: state of the art
JP2006334494A (en) Filter, air washing apparatus, refrigeration equipment, and water purification apparatus
KR100395264B1 (en) Photocatalytic composition having functions of air purification and antimicrobial activity and a moth-proof net coated with the composition
Dhabarde et al. Inactivation of SARS-CoV-2 and other human coronaviruses aided by photocatalytic one-dimensional titania nanotube films as a self-disinfecting surface
MX2007006759A (en) Inactivating biological agents dispersed in gaseous medium with a photoactivated semiconductor.
JP3991776B2 (en) Photocatalytic filter
KR200407654Y1 (en) a warm mat
US20230263929A1 (en) Filter for sanitizing air in indoor environments
RU2751199C1 (en) Air purification device
CN212671523U (en) Automatic light and heat sterilization screen window
JP2023548873A (en) Insert devices for air conditioning equipment and air conditioning equipment with insert devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047392.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127010024

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011537287

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10824989

Country of ref document: EP

Kind code of ref document: A1