KR102600129B1 - Antibacterial and antiviral Cu-PMF and its manufacturing method - Google Patents

Antibacterial and antiviral Cu-PMF and its manufacturing method Download PDF

Info

Publication number
KR102600129B1
KR102600129B1 KR1020210059995A KR20210059995A KR102600129B1 KR 102600129 B1 KR102600129 B1 KR 102600129B1 KR 1020210059995 A KR1020210059995 A KR 1020210059995A KR 20210059995 A KR20210059995 A KR 20210059995A KR 102600129 B1 KR102600129 B1 KR 102600129B1
Authority
KR
South Korea
Prior art keywords
pmf
filter
polymelamine
formaldehyde
copper
Prior art date
Application number
KR1020210059995A
Other languages
Korean (ko)
Other versions
KR20220153143A (en
Inventor
김승도
최성찬
조성갑
김의건
조성락
최용찬
강은실
윤소영
레티감반
Original Assignee
한림대학교 산학협력단
주식회사 나노이노텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림대학교 산학협력단, 주식회사 나노이노텍 filed Critical 한림대학교 산학협력단
Priority to KR1020210059995A priority Critical patent/KR102600129B1/en
Publication of KR20220153143A publication Critical patent/KR20220153143A/en
Application granted granted Critical
Publication of KR102600129B1 publication Critical patent/KR102600129B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Filtering Materials (AREA)

Abstract

항균·항바이러스용 Cu-PMF 및 이의 제조방법에 관한 것으로, 상세하게는 폴리멜라민-포름알데히드 재질의 필터 표면에 코팅된 구리(Cu)를 포함하는 신규한 항균·항바이러스 물질과 폴리멜라민-포름알데히드(PMF)에 코팅하는 방법에 관한 것이다. It relates to antibacterial/antiviral Cu-PMF and its manufacturing method. Specifically, it relates to a novel antibacterial/antiviral material containing copper (Cu) coated on the surface of a polymelamine-formaldehyde filter and polymelamine-formaldehyde material. It relates to a method of coating aldehyde (PMF).

Description

항균·항바이러스용 Cu-PMF 및 이의 제조방법{Antibacterial and antiviral Cu-PMF and its manufacturing method}Antibacterial and antiviral Cu-PMF and its manufacturing method {Antibacterial and antiviral Cu-PMF and its manufacturing method}

본 발명은 항균·항바이러스용 Cu-PMF 및 이의 제조방법에 관한 것으로, 상세하게는 폴리멜라민-포름알데히드 재질의 필터 표면에 코팅된 구리(Cu)를 포함하는 신규한 항균·항바이러스 물질과 폴리멜라민-포름알데히드(PMF)에 코팅하는 방법에 관한 것이다. The present invention relates to an antibacterial/antiviral Cu-PMF and a method for manufacturing the same. Specifically, the present invention relates to a novel antibacterial/antiviral material containing copper (Cu) coated on the surface of a polymelamine-formaldehyde filter and poly It relates to a method of coating on melamine-formaldehyde (PMF).

최근 코로나바이러스로 인해 전 세계적으로 감염자와 사망자가 속출하면서 대유행으로 번지는 추세로서 실내 공기질에 대한 관심이 높아지고 있다. 하지만 현재 개발된 공기청정기는 바이러스와 세균을 처리할 수 있는 특화 공정이 없는 상황으로 항균 및 항바이러스 처리가 가능한 필터 또는 장치를 보유하고 있는 청정기 개발이 절실하다. Recently, interest in indoor air quality is increasing due to the coronavirus, which is spreading into a pandemic as the number of infections and deaths continues to increase worldwide. However, currently developed air purifiers do not have a specialized process to treat viruses and bacteria, so the development of a purifier with a filter or device capable of antibacterial and antiviral treatment is urgently needed.

일반적으로 구리의 항균·항바이러스 기능은 잘 알려져 있으며, 구리에 의한 세균 및 바이러스 살처분은 두 가지 메커니즘으로 설명하고 있다. 첫째, 구리와 병원균의 직접 접촉에 의한 살균(예, 세포막이 구리이온에 의해 비극성화되면서 파괴), 둘째, 구리에 의해 생성되는 반응성이 탁월한 산화제(예, 하이드록실 라디칼)에 의한 살균 효과를 꼽을 수 있다. 하지만 구리-나노 입자(Cupper-nanoparticles, Cu-NPs) 형태의 구리는 대기 중에 노출되면 산화하여 효과가 감소하고, 입자가 뭉쳐지는 문제가 있었다. In general, the antibacterial and antiviral functions of copper are well known, and the killing of bacteria and viruses by copper is explained by two mechanisms. First, sterilization by direct contact between copper and pathogens (e.g., cell membranes are depolarized and destroyed by copper ions), and second, the sterilization effect by highly reactive oxidants (e.g., hydroxyl radicals) generated by copper. You can. However, copper in the form of copper-nanoparticles (Cu-NPs) was oxidized when exposed to the air, reducing its effectiveness and causing particles to clump together.

또한, 종래에는 공기를 정화하기 위하여 일반적으로 폴리프로필렌(Poly propylene, PP) 수지 섬유 또는 폴리에틸렌(Poly ethylene) 섬유를 이용하는 부직포 형태의 필터를 사용하였다. 하지만 이는 고온에서 취약할 뿐만 아니라 고압에서 손상이나 필터 효율 저하가 빈번하게 발생되는 문제가 있어 여전히 기술 개발이 요구되고 있는 실정이다. In addition, conventionally, non-woven filters using polypropylene (PP) resin fibers or polyethylene fibers were used to purify air. However, it is not only vulnerable at high temperatures, but also frequently experiences damage or reduced filter efficiency at high pressures, so technology development is still required.

한국공개특허 10-2017-0060799Korean Patent Publication No. 10-2017-0060799 한국공개특허 10-2013-0019313Korean Patent Publication No. 10-2013-0019313

본 발명은 안정적으로 항균·항바이러스 기능을 갖는 구리이온(Cu+2)이 기질인 폴리멜라민 포름알데히드(Polymelamine-formaldehyde, PMF)에 코팅된 항균·항바이러스 물질을 제공하는 것을 목적으로 한다. The purpose of the present invention is to provide an antibacterial and antiviral material coated on polymelamine-formaldehyde (PMF), which is a substrate of copper ions (Cu+2), which has stable antibacterial and antiviral functions.

또한, 산화되지 않아 효과가 감소되지 않는 구리-나노 입자(Cupper-nanoparticles, Cu-NPs)를 활용하여 대기 중의 병원균을 처리하기 위한 공기청정 필터를 제공하는 것을 목적으로 한다. In addition, the purpose is to provide an air purification filter for treating pathogens in the air by utilizing copper-nanoparticles (Cu-NPs), which do not oxidize and do not reduce effectiveness.

또한, 고온 및 고압에서도 안정한 필터에 구리를 코팅하여 안정적인 항균·항바이러스 성능을 갖는 필터를 제공하는 것을 목적으로 한다. In addition, the purpose is to provide a filter with stable antibacterial and antiviral performance by coating copper on a filter that is stable even at high temperature and pressure.

본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다. The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned can be clearly understood by those skilled in the art from the description below.

상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 표면에 코팅된 구리(Cu)을 포함하는, 항균·항바이러스 물질이 제공된다. In order to achieve the above object, according to one embodiment of the present invention, an antibacterial and antiviral material containing copper (Cu) coated on the surface of polymelamine-formaldehyde (PMF) is provided.

본 발명의 일 실시예에 따르면, 상기 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 표면은 다공성 폼(form) 형태일 수 있다. According to one embodiment of the present invention, the polymelamine-formaldehyde (PMF) surface may be in the form of a porous foam.

본 발명의 다른 일 실시예에 따르면, 전술한 항균·항바이러스 물질을 포함하는 공기청정기가 제공된다. According to another embodiment of the present invention, an air purifier containing the above-described antibacterial and antiviral material is provided.

본 발명의 또 다른 일 실시예에 따르면, 전술한 항균·항바이러스 물질을 포함하는 공기조화기가 제공된다. According to another embodiment of the present invention, an air conditioner containing the above-described antibacterial and antiviral material is provided.

한편, 본 발명의 다른 일 실시예에 따르면, 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 에틸알코올에 담지 후 초음파 세척기로 세척하는 단계, 상기 세척한 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를, Cu(OAC)2·H2O를 증류수에 희석한 제1 용액에 담지하는 단계, L-아스코빅산(L-ascorbic acid) 녹색 환원제를, 증류수에 희석한 제2 용액을 구리 용액에 첨가하는 단계, 상기 제1 용액, 제2 용액 및 구리 용액을 혼합한 후, 혼합 용액이 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터에 잘 코팅되도록 상온에서 12 내지 36시간 동안 담지하는 단계, 상기 코팅된 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 세척하는 단계 및 상기 세척된 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 건조하는 단계를 포함하는, 항균·항바이러스용 Cu-PMF의 제조방법이 제공된다. Meanwhile, according to another embodiment of the present invention, soaking a polymelamine-formaldehyde (PMF) filter in ethyl alcohol and then washing it with an ultrasonic cleaner, the washed polymelamine-formaldehyde (Polymelamine-formaldehyde) , PMF) filter, supporting a first solution in which Cu(OAC) 2 ·H 2 O is diluted in distilled water, and a second solution in which L-ascorbic acid (L-ascorbic acid) green reducing agent is diluted in distilled water. Adding to the copper solution, mixing the first solution, the second solution, and the copper solution, at room temperature for 12 to 36 hours so that the mixed solution is well coated on the polymelamine-formaldehyde (PMF) filter. Antibacterial, including the step of supporting, washing the coated polymelamine-formaldehyde (PMF) filter, and drying the washed polymelamine-formaldehyde (PMF) filter. ·A method for manufacturing antiviral Cu-PMF is provided.

본 발명의 일 실시예에 따르면, 상기 상기 세척하는 단계는, 코팅된 폴리멜라민-포름알데히드 필터를 증류수로 씻은 후, 탈착되는 구리 입자를 제거하기 위해 초음파 세척기로 세척하는 것일 수 있다. According to one embodiment of the present invention, the washing step may include washing the coated polymelamine-formaldehyde filter with distilled water and then washing it with an ultrasonic cleaner to remove desorbed copper particles.

본 발명의 일 실시예에 따르면, 상기 건조하는 단계는, 폴리멜라민-포름알데히드 필터 표면에 코팅된 구리가 산화되는 것을 방지하기 위해 진공 펌프를 이용하여 12 내지 36시간 동안 건조 시키는 것일 수 있다. According to one embodiment of the present invention, the drying step may be drying for 12 to 36 hours using a vacuum pump to prevent oxidation of the copper coated on the surface of the polymelamine-formaldehyde filter.

한편, 본 발명의 또 다른 일 실시예에 따르면, 전술한 어느 하나의 방법에 의해 제조된 항균·항바이러스용 Cu-PMF가 제공된다. Meanwhile, according to another embodiment of the present invention, Cu-PMF for antibacterial and antiviral use prepared by any of the above-described methods is provided.

본 발명은 구리에 인체에 무해한 녹색 환원제를 첨가함으로써 구리-나노 입자(Cupper-nanoparticles, Cu-NPs)가 기질인 폴리멜라민 포름알데히드(Polymelamine-formaldehyde, PMF)에 화학적으로 결합하여 세균 및 바이러스의 안정적인 처리가 가능한 이점이 있다. In the present invention, by adding a green reducing agent that is harmless to the human body to copper, copper-nanoparticles (Cu-NPs) are chemically bonded to the substrate polymelamine-formaldehyde (PMF), thereby stabilizing bacteria and viruses. There is an advantage in that it can be processed.

또한, 본 발명은 다공성 폼 형태의 PMF 필터에 구리를 코팅하여 사용함으로써, 안정적인 항균·항바이러스 성능을 갖는 필터를 제공하고, 경제성을 높이고 다양한 측면에서 활용 가능성을 높일 수 있는 이점이 있다. In addition, the present invention has the advantage of providing a filter with stable antibacterial and antiviral performance, increasing economic efficiency, and increasing usability in various aspects by using a porous foam-type PMF filter coated with copper.

본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.

도 1은 다공성 폼 평태의 PMF 필터에 구리 나노 입자가 함침되는 반응 메카니즘을 도시한 것이다.
도 2는 PMF 필터와 구리-나노 입자가 함침된 PMF 필터의 SEM 사진이다.
도 3은 PMF 필터와 구리-나노 입자가 함침된 PMF 필터의 푸리에 변환 적외선 분광학(FT-IR) 분석 결과를 도시한 것이다.
도 4는 에어로졸 상태 대장균의 살균 처리율을 파악하기 위해 사용된 연속 흐름형 반응기를 간략히 도시한 그림이다.
도 5는 본 발명의 실시예 1에 따른 구리-나노 입자가 함침된 PMF 필터에 의한 에어로졸 상태 대장균의 시간에 따른 포집 변화율을 보여주는 것이다.
도 6은 액상 상태 대장균의 살균 처리율을 파악하기 위한 실험 방법을 도식화한 것이다.
도 7은 구리-나노 입자가 함침된 PMF 필터와 접촉에 의한 액상 상태 대장균의 시간에 따른 살균 처리율을 보여주는 것이다.
도 8은 구리-나노 입자 함침 PMF 필터 제조 공정을 촬영한 사진이다.
Figure 1 shows the reaction mechanism in which copper nanoparticles are impregnated into a PMF filter made of porous foam.
Figure 2 is an SEM photograph of a PMF filter and a PMF filter impregnated with copper-nanoparticles.
Figure 3 shows Fourier transform infrared spectroscopy (FT-IR) analysis results of a PMF filter and a PMF filter impregnated with copper-nanoparticles.
Figure 4 is a diagram briefly showing the continuous flow reactor used to determine the sterilization treatment rate of aerosolized E. coli.
Figure 5 shows the rate of change in capture of aerosolized E. coli by a PMF filter impregnated with copper-nanoparticles according to Example 1 of the present invention over time.
Figure 6 schematically illustrates an experimental method to determine the sterilization rate of E. coli in liquid state.
Figure 7 shows the sterilization rate over time of liquid E. coli upon contact with a PMF filter impregnated with copper-nanoparticles.
Figure 8 is a photograph of the copper-nanoparticle impregnated PMF filter manufacturing process.

이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, the present invention will be described in detail. Prior to this, the terms or words used in this specification and patent claims should not be construed as limited to their usual or dictionary meanings, and the inventor must appropriately use the concept of the term to explain his or her invention in the best way. It must be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined clearly. Therefore, the configuration described in the embodiments described in this specification is only one of the most preferred embodiments of the present invention and does not represent the entire technical idea of the present invention, and therefore, at the time of filing the present application, various equivalents and It should be understood that variations may exist.

본 명세서 전체에 걸쳐서 폴리프로필렌(Polypropylene)은, 폴리프로필렌 또는 PP로 혼용되어 사용된다. Throughout this specification, polypropylene is used interchangeably with polypropylene or PP.

본 명세서 전체에 걸쳐서 폴리멜라민-포름알데히드((Polymelamine-formaldehyde)는 폴리멜라민-포름알데히드 또는 PMF로 혼용하여 사용된다. Throughout this specification, polymelamine-formaldehyde ((Polymelamine-formaldehyde) is used interchangeably with polymelamine-formaldehyde or PMF.

본 발명의 일 실시예에 따라, 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 표면에 코팅된 구리(Cu)을 포함하는, 항균·항바이러스 물질이 제공된다. According to one embodiment of the present invention, an antibacterial and antiviral material containing copper (Cu) coated on the surface of polymelamine-formaldehyde (PMF) is provided.

이때, 본 발명의 일 실시예에 따라, 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 표면은 다공성 폼(form) 형태일 수 있다. 도 1은 다공성 폼 평태의 PMF 필터에 구리 나노 입자가 함침되는 반응 메카니즘을 도시한 것으로, 도 1을 참조하면, 다공성 폼 형태를 띰으로써 고온에 강하고, 고압에서 손상이나 필터 효율이 저하되는 문제가 발생하지 않는다. At this time, according to an embodiment of the present invention, the polymelamine-formaldehyde (PMF) surface may be in the form of a porous foam. Figure 1 shows the reaction mechanism in which a PMF filter in the form of a porous foam is impregnated with copper nanoparticles. Referring to Figure 1, since it is in the form of a porous foam, it is resistant to high temperatures, and there is no problem of damage or reduced filter efficiency at high pressure. does not occur

본 발명의 일 실시예에 따라, 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 표면에 코팅된 구리(Cu)을 포함하는 여과막, 여과기, 공기청정기, 에어컨, 공기조화기 등이 제공될 수 있다.According to one embodiment of the present invention, a filtration membrane, filter, air purifier, air conditioner, air conditioner, etc. containing copper (Cu) coated on the surface of polymelamine-formaldehyde (PMF) can be provided. .

한편, 본 발명의 일 실시예에 따른 항균·항바이러스용 Cu-PMF의 제조방법은, 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 에틸알코올에 담지 후 초음파 세척기로 세척하는 단계, 상기 세척한 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를, Cu(OAC)2·H2O를 증류수에 희석한 제1 용액에 담지하는 단계, L-아스코빅산(L-ascorbic acid) 녹색 환원제를, 증류수에 희석한 제2 용액을 구리 용액에 첨가하는 단계, 상기 제1 용액, 제2 용액 및 구리 용액을 혼합한 후, 혼합 용액이 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터에 잘 코팅되도록 상온에서 12 내지 36시간 동안 담지하는 단계, 상기 코팅된 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 세척하는 단계 및 상기 세척된 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 건조하는 단계를 포함한다. Meanwhile, the method for producing antibacterial and antiviral Cu-PMF according to an embodiment of the present invention includes the steps of soaking a polymelamine-formaldehyde (PMF) filter in ethyl alcohol and then washing it with an ultrasonic cleaner. Step of soaking the washed polymelamine-formaldehyde (PMF) filter in a first solution of Cu(OAC) 2 ·H 2 O diluted in distilled water, L-ascorbic acid green Adding a reducing agent and a second solution diluted in distilled water to the copper solution; mixing the first solution, the second solution, and the copper solution; then, the mixed solution is filtered through a polymelamine-formaldehyde (PMF) filter. holding at room temperature for 12 to 36 hours to ensure a good coating, washing the coated polymelamine-formaldehyde (PMF) filter, and washing the washed polymelamine-formaldehyde (PMF) filter. ) It includes the step of drying the filter.

상기 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 에틸알코올에 담지 후 초음파 세척기로 세척하는 단계는 코팅 전 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 95% 이상의 에틸 알코올에 담지 후 초음파 세척기(Sonicator)를 이용하여 10 분 내지 1시간 동안 세척한 후 건조시키는 단계이다. In the step of soaking the polymelamine-formaldehyde (PMF) filter in ethyl alcohol and then washing it with an ultrasonic cleaner, the polymelamine-formaldehyde (PMF) filter is soaked in 95% or more of ethyl alcohol before coating. This is the step of washing for 10 minutes to 1 hour using an ultrasonicator and then drying.

상기 세척한 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를, Cu(OAC)2·H2O를 증류수에 희석한 제1 용액에 담지하는 단계는, 1 내지 3g의 Cu(OAC)2·H2O를 10 내지 100ml의 증류수에 희석 한 후, 세척한 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터 원단을 10 분 내지 1시간 동안 담지하는 단계이다. The step of supporting the washed polymelamine-formaldehyde (PMF) filter in a first solution in which Cu(OAC) 2 ·H 2 O is diluted in distilled water is 1 to 3 g of Cu(OAC) 2 ·H 2 O is diluted in 10 to 100 ml of distilled water, and then the washed polymelamine-formaldehyde (PMF) filter fabric is held for 10 minutes to 1 hour.

상기 L-아스코빅산(L-ascorbic acid) 녹색 환원제를, 증류수에 희석한 제2 용액을 구리 용액에 첨가하는 단계는, 5 내지 20g의 L-아스코빅산(L-ascorbic acid) 녹색 환원제를 100 내지 200ml 증류수에 희석한 후 구리 용액에 첨가하는 단계이다. In the step of adding a second solution of the L-ascorbic acid green reducing agent diluted in distilled water to the copper solution, 5 to 20 g of the L-ascorbic acid green reducing agent is added to the copper solution at 100 to 100 g. This is the step of diluting in 200ml distilled water and adding it to the copper solution.

상기 제1 용액, 제2 용액 및 구리 용액을 혼합한 후, 혼합 용액이 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터에 잘 코팅되도록 상온에서 12 내지 36시간 동안 담지하는 단계는, 제1 용액, 제2 용액 및 구리 용액이 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터에 균일하게 코팅되도록 수차례 섞은 후, 상온에서 12 내지 36시간 동안 담지하는 단계이다. After mixing the first solution, the second solution, and the copper solution, the step of supporting the mixed solution for 12 to 36 hours at room temperature to ensure that the mixed solution is well coated on the polymelamine-formaldehyde (PMF) filter includes the first This is the step of mixing the solution, the second solution, and the copper solution several times so that they are uniformly coated on the polymelamine-formaldehyde (PMF) filter, and then supporting them at room temperature for 12 to 36 hours.

상기 코팅된 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 세척하는 단계는, 코팅된 필터를 증류수로 2회 내지 5회 정도 씻은 후 필터에서 탈착되는 구리 입자를 제거 하기 위해 초음파 세척기(Sonicator)를 이용하여 10 분 내지 1시간 동안 세척하는 단계이다. In the step of washing the coated polymelamine-formaldehyde (PMF) filter, the coated filter is washed with distilled water about 2 to 5 times and then washed with an ultrasonic cleaner (Sonicator) to remove copper particles desorbed from the filter. ) is a step of washing for 10 minutes to 1 hour.

한편, 상기 세척된 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 건조하는 단계는, 필터 표면에 코팅되어 있는 구리가 산화되는 것을 방지하기 위해 진공 펌프를 이용하여 2 내지 3일간 건조시키는 단계이다. Meanwhile, the step of drying the washed polymelamine-formaldehyde (PMF) filter involves drying for 2 to 3 days using a vacuum pump to prevent oxidation of the copper coated on the filter surface. am.

이하, 실시예를 통해 본 발명을 더욱 상술하나 하기 실시예에 의해 본 발명이 제한되지 아니함은 자명하다. Hereinafter, the present invention will be described in further detail through examples, but it is obvious that the present invention is not limited by the following examples.

실시예 1Example 1

하기 순서로 구리-나노 입자 함침 PMF 필터를 제조하였으며 도 8은 구리-나노 입자 함침 PMF 필터 제조 공정을 촬영한 사진이다. The copper-nanoparticle impregnated PMF filter was manufactured in the following order, and Figure 8 is a photograph of the copper-nanoparticle impregnated PMF filter manufacturing process.

1) 코팅 전 PMF 필터를 95% 이상의 에틸알코올에 담지 후 초음파 세척기를 이용하여 30분간 세척 후 건조시킨다. 1) Before coating, soak the PMF filter in 95% or more ethyl alcohol, wash it for 30 minutes using an ultrasonic cleaner, and dry it.

2) 1.82g의 Cu(OAC)2·H2O를 40ml 증류수에 희석 후 세척한 PMF 필터 원단을 30분간 담지한다. 2) Dilute 1.82 g of Cu(OAC) 2 ·H 2 O in 40 ml distilled water and soak the washed PMF filter fabric for 30 minutes.

3) 10.56g의 L-아스코빅산(L-ascorbic acid) 녹색 환원제를 160ml 증류수에 희석하여 구리 용액에 첨가한다. 3) Dilute 10.56g of L-ascorbic acid green reducing agent in 160ml distilled water and add to the copper solution.

4) 용액이 PMF 필터에 균일하게 코팅되도록 수차례 섞은 후 25℃ 상온에서 24시간 동안 담지 시킨다. 4) Mix the solution several times so that it is evenly coated on the PMF filter and leave it at room temperature of 25°C for 24 hours.

5) 코팅된 필터를 증류수로 3차례 정도 씻은 후 필터에서 탈착되는 구리 입자를 제거하기 위해 초음파 세척기를 이용하여 30분간 세척한다. 5) After washing the coated filter with distilled water three times, wash it for 30 minutes using an ultrasonic cleaner to remove copper particles desorbing from the filter.

6) 필터 표면에 코팅되어 있는 구리가 산화되는 것을 방지하기 위해 진공 펌프를 이용하여 2~3일간 건조시킨다. 6) To prevent the copper coated on the filter surface from oxidation, dry it for 2-3 days using a vacuum pump.

평가예Evaluation example

도 2는 PMF 필터와 구리-나노 입자가 함침된 PMF 필터의 SEM 사진이다. 구체적으로 도 2 a)는 PMF 필터를 2000배 확대한 사진, b)는 PMF 필터를 500배 확대한 사진, c)는 구리-나노 입자가 함침된 PMF 필터를 2000배 확대한 사진, d)는 구리-나노 입자가 함침된 PMF 필터를 500배 확대한 사진이다. 도 2를 참조하면 본 실시예에 따라 제조된 구리-나노 입자 함침 PMF 필터는 PMF 표면에 구리-나노 입자가 균일하게 코팅되어 있는 것을 확인할 수 있다. Figure 2 is an SEM photograph of a PMF filter and a PMF filter impregnated with copper-nanoparticles. Specifically, Figure 2 a) is a photograph enlarged 2000 times of the PMF filter, b) is a photograph enlarged 500 times of the PMF filter, c) is a photograph enlarged 2000 times of the PMF filter impregnated with copper-nanoparticles, and d) is a photograph enlarged 2000 times. This is a 500x magnified photo of a PMF filter impregnated with copper-nanoparticles. Referring to Figure 2, it can be seen that the copper-nanoparticle impregnated PMF filter manufactured according to this example has copper-nanoparticles uniformly coated on the PMF surface.

도 3은 PMF 필터와 구리-나노 입자가 함침된 PMF 필터의 푸리에 변환 적외선 분광학(FT-IR) 분석 결과를 도시한 것이다. 도 3을 참조하면 본 발명의 실시예 1에 따른 구리-나노 입자가 함침된 PMF 필터는 PMF 필터와 다른 푸리에 변환 적외선 분광학(FT-IR) 분석 결과를 보여주는 것을 알 수 있다. Figure 3 shows Fourier transform infrared spectroscopy (FT-IR) analysis results of a PMF filter and a PMF filter impregnated with copper-nanoparticles. Referring to Figure 3, it can be seen that the PMF filter impregnated with copper-nanoparticles according to Example 1 of the present invention shows Fourier transform infrared spectroscopy (FT-IR) analysis results that are different from those of the PMF filter.

도 4는 에어로졸 상태 대장균의 살균 처리율을 파악하기 위해 사용된 연속 흐름형 반응기를 간략히 도시한 그림이고, 도 5는 본 발명의 실시예 1에 따른 구리-나노 입자가 함침된 PMF 필터에 의한 에어로졸 상태 대장균의 시간에 따른 포집 변화율을 보여주는 것이다. 구체적으로 도 5a)는 구리-나노 입자가 함침된 PMF 필터, 대조군(blank) 및 코팅 전 PMF 필터에서 에어로졸 상태 대장균의 포집 후 검출된 대장균의 사진이며, 도 5b)는 검출된 대장균의 시간 변화에 따른 누적 그래프이다. 도 5a)를 참조하면 육안으로도 확인 가능한 정도로 본 발명의 실시예 1에 따른 구리-나노 입자가 함침된 PMF 필터에서 에어로졸 상태 대장균의 포집 후 검출이 확연이 떨어지는 것을 확인할 수 있으며, 구체적인 수치는 도 5b)를 통해 객관적으로 확인할 수 있다. Figure 4 is a diagram briefly showing the continuous flow reactor used to determine the sterilization treatment rate of E. coli in aerosol state, and Figure 5 is a diagram showing the aerosol state by a PMF filter impregnated with copper-nanoparticles according to Example 1 of the present invention. It shows the change rate of E. coli capture over time. Specifically, Figure 5a) is a photograph of E. coli detected after collection of aerosol-state E. coli from a PMF filter impregnated with copper-nanoparticles, a control (blank), and a PMF filter before coating, and Figure 5b) shows the time change of the detected E. coli. This is a cumulative graph. Referring to Figure 5a), it can be seen that detection after collection of aerosol-state E. coli in the PMF filter impregnated with copper-nanoparticles according to Example 1 of the present invention is clearly reduced to a degree that can be confirmed with the naked eye, and specific values are shown in Figure 5a). It can be confirmed objectively through 5b).

도 6은 액상 상태 대장균의 살균 처리율을 파악하기 위한 실험 방법을 도식화한 것이고, 도 7은 구리-나노 입자가 함침된 PMF 필터와 접촉에 의한 액상 상태 대장균의 시간에 따른 살균 처리율을 보여주는 것이다. 구체적으로 도 7a)는 각기 다른 사이즈의 구리-나노 입자가 함침된 PMF 필터에서 액상 상태 대장균의 살균(Destroy) 후 검출된 대장균 사진이고, 7b)는 시간에 따른 살균 효율 그래프를 나타낸 것이다. 한편 도 7c)는 각기 다른 농도의 구리-나노 입자가 함침된 PMF 필터를 사용하여 코팅한 구리-나노 입자가 함침된 PMF 필터와 코팅 전 PMF 필터에서 액상 상태 대장균의 살균(Destroy) 후 검출된 대장균의 사진이며, 7d)는 시간에 따른 살균 효율 그래프를 나타낸 것이다. 도 7을 참고하면 액상 상태의 대장균에서도 역시 본 발명의 실시예 1에 따른 구리-나노 입자가 함침된 PMF 필터의 살균 처리율이 월등히 우수하다는 것을 확인할 수 있다. Figure 6 is a schematic diagram of an experimental method to determine the sterilization rate of E. coli in liquid state, and Figure 7 shows the sterilization rate over time of E. coli in liquid state by contact with a PMF filter impregnated with copper-nanoparticles. Specifically, Figure 7a) is a photograph of E. coli detected after sterilization (destroy) of liquid state E. coli in a PMF filter impregnated with copper-nanoparticles of different sizes, and Figure 7b) shows a graph of sterilization efficiency over time. Meanwhile, Figure 7c) shows E. coli detected after sterilization of E. coli in the liquid state in the PMF filter impregnated with copper-nanoparticles coated using PMF filters impregnated with different concentrations of copper-nanoparticles and in the PMF filter before coating. This is a photo, and 7d) shows a graph of sterilization efficiency over time. Referring to Figure 7, it can be seen that the sterilization rate of the PMF filter impregnated with copper-nanoparticles according to Example 1 of the present invention is significantly superior even to E. coli in a liquid state.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. will be. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

삭제delete 삭제delete 삭제delete 삭제delete 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 에틸알코올에 담지 후 초음파 세척기로 세척하는 단계;
상기 세척한 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를, Cu(OAC)2·H2O를 증류수에 희석한 제1 용액에 담지하는 단계;
L-아스코빅산(L-ascorbic acid) 녹색 환원제를, 증류수에 희석한 제2 용액을 구리 용액에 첨가하는 단계;
상기 제1 용액, 제2 용액 및 구리 용액을 혼합한 후, 혼합 용액이 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터에 잘 코팅되도록 상온에서 12 내지 36시간 동안 담지하는 단계;
상기 코팅된 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 세척하는 단계;및
상기 세척된 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 건조하는 단계;를 포함하는, 항균용 Cu-PMF의 제조방법.
A step of soaking a polymelamine-formaldehyde (PMF) filter in ethyl alcohol and then washing it with an ultrasonic cleaner;
Supporting the washed polymelamine-formaldehyde (PMF) filter in a first solution of Cu(OAC) 2 ·H 2 O diluted in distilled water;
Adding a second solution of L-ascorbic acid, a green reducing agent diluted in distilled water, to the copper solution;
After mixing the first solution, the second solution, and the copper solution, maintaining the mixed solution at room temperature for 12 to 36 hours so that it is well coated on a polymelamine-formaldehyde (PMF) filter;
Washing the coated polymelamine-formaldehyde (PMF) filter; And
A method for producing antibacterial Cu-PMF, comprising: drying the washed polymelamine-formaldehyde (PMF) filter.
제5항에 있어서,
상기 세척하는 단계는, 코팅된 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터를 증류수로 씻은 후, 탈착되는 구리 입자를 제거하기 위해 초음파 세척기로 세척하는 것인, 항균용 Cu-PMF의 제조방법.
According to clause 5,
In the washing step, the coated polymelamine-formaldehyde (PMF) filter is washed with distilled water and then washed with an ultrasonic cleaner to remove desorbed copper particles. Manufacturing of antibacterial Cu-PMF method.
제5항에 있어서,
상기 건조하는 단계는, 폴리멜라민-포름알데히드(Polymelamine-formaldehyde, PMF) 필터 표면에 코팅된 구리가 산화되는 것을 방지하기 위해 진공 펌프를 이용하여 12 내지 36시간 동안 건조 시키는 것인, 항균용 Cu-PMF의 제조방법.
According to clause 5,
The drying step is to dry the antibacterial Cu- for 12 to 36 hours using a vacuum pump to prevent oxidation of the copper coated on the surface of the polymelamine-formaldehyde (PMF) filter. Manufacturing method of PMF.
제5항 내지 제7항 중 어느 하나의 방법에 의해 제조된, 항균용 Cu-PMF.
Cu-PMF for antibacterial use, manufactured by the method of any one of claims 5 to 7.
KR1020210059995A 2021-05-10 2021-05-10 Antibacterial and antiviral Cu-PMF and its manufacturing method KR102600129B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210059995A KR102600129B1 (en) 2021-05-10 2021-05-10 Antibacterial and antiviral Cu-PMF and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210059995A KR102600129B1 (en) 2021-05-10 2021-05-10 Antibacterial and antiviral Cu-PMF and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20220153143A KR20220153143A (en) 2022-11-18
KR102600129B1 true KR102600129B1 (en) 2023-11-09

Family

ID=84234659

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210059995A KR102600129B1 (en) 2021-05-10 2021-05-10 Antibacterial and antiviral Cu-PMF and its manufacturing method

Country Status (1)

Country Link
KR (1) KR102600129B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050241480A1 (en) 2004-04-28 2005-11-03 Lebowitz Jeffrey L Filter material absorb hydrocarbon
US20080254141A1 (en) 2003-07-29 2008-10-16 Well-Being Biochemical Corp. Anti-bacterial, anti-virus, and anti-fungus composition, its preparation and use
WO2011049140A1 (en) 2009-10-20 2011-04-28 株式会社フジコー Fibrous filter and air purification device
JP2012148239A (en) 2011-01-19 2012-08-09 Sekisui Nano Coat Technology Co Ltd Antimicrobial filter for air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040103626A (en) * 2003-05-30 2004-12-09 웅진코웨이주식회사 Antibiotic HEPA filter in air cleaner
BRPI0808195B1 (en) * 2007-03-12 2019-05-07 Basf Se PROCESS FOR PRODUCING A FOAM BASED ON A MELAMINE / FORMALDEHYDE CONDENSATION PRODUCT CONTAINING AT LEAST AN ANTIMICROBIAN ACTIVE AGENT, FOAM, MOLDED PART, AND THE USE OF A FOAM
KR101321493B1 (en) 2011-08-16 2013-10-28 한국화학연구원 Air filter which having superior effective to filtration of super fine particle and sterilization
KR101834525B1 (en) 2015-11-25 2018-03-07 (주)동양화학 Method for preparing antibiotic metal hepa filter media coated wiht titaniun dioxide and high performance metal filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254141A1 (en) 2003-07-29 2008-10-16 Well-Being Biochemical Corp. Anti-bacterial, anti-virus, and anti-fungus composition, its preparation and use
US20050241480A1 (en) 2004-04-28 2005-11-03 Lebowitz Jeffrey L Filter material absorb hydrocarbon
WO2011049140A1 (en) 2009-10-20 2011-04-28 株式会社フジコー Fibrous filter and air purification device
JP2012148239A (en) 2011-01-19 2012-08-09 Sekisui Nano Coat Technology Co Ltd Antimicrobial filter for air conditioner

Also Published As

Publication number Publication date
KR20220153143A (en) 2022-11-18

Similar Documents

Publication Publication Date Title
CN106076283B (en) A kind of nano-cellulose/poly-dopamine hydrogel adsorbent and the preparation method and application thereof
CN111172749A (en) Antibacterial and antiviral non-woven fabric, preparation method thereof and mask comprising antibacterial and antiviral non-woven fabric
CN107569967B (en) It is a kind of for formaldehyde adsorption and the vehicle-mounted air purification piece of TVOC and preparation method thereof
JP2000248467A (en) Metal chelate-forming fiber and its production and capturing of metal ion using the same fiber and metal chelate fiber
CN104959113B (en) A kind of prepare except the method for formaldehyde activity charcoal-calper calcium peroxide composite particles
KR102600129B1 (en) Antibacterial and antiviral Cu-PMF and its manufacturing method
JP6224147B2 (en) Ammonia treatment method for porous carbon material, method for producing porous carbon material, and method for producing formaldehyde absorbent
KR102211659B1 (en) Good with Antiviral and antibacterial Filter cartridgeand method of manufacturing them
KR20180109289A (en) Antibacterial and antiviral positive electric charge-filter and method of manufacturing using the same
CN110538553A (en) Preparation method of tourmaline-based negative ion air purification functional composite filter material
JP2004290922A (en) Novel anti-allergen filter, production method therefor, and its application
JP6673978B2 (en) Method and apparatus for removing unwanted substances from air
JP2000061277A (en) Production of cellulosic crosslinked membrane
CN107583360A (en) A kind of vitamin air filting material and its preparation method and application
KR20150054144A (en) Antibiotic filter using grapefruit seed extract and apparatus for purifying air using the same
JP3101027B2 (en) Regeneration method of ceramic filter
RU2297269C1 (en) Method of production of filtering material
TWI679058B (en) Gas purification-concentration system and method for regenerating filter material
CN102580554A (en) Antibacterial porous polymeric membrane
KR20220138485A (en) Antibacterial and antiviral Cu-PP and its manufacturing method
KR102563115B1 (en) Antibacterial and antiviral CuBTC-PMF and its manufacturing method
KR101537446B1 (en) Porous complex media, method of Porous complex media and Filter cartridge using that
CN114657703B (en) TiO (titanium dioxide) 2 Ethylene urea/polyacrylonitrile formaldehyde-removing nanofiber membrane and preparation method and application thereof
CN114680128B (en) Antimicrobial aqueous solution and preparation method and application thereof
CN112774314B (en) Nano metal particle coating method for improving bacteriostatic activity of filter layer and mask

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right