JP5714567B2 - Honeycomb filter - Google Patents

Honeycomb filter Download PDF

Info

Publication number
JP5714567B2
JP5714567B2 JP2012509532A JP2012509532A JP5714567B2 JP 5714567 B2 JP5714567 B2 JP 5714567B2 JP 2012509532 A JP2012509532 A JP 2012509532A JP 2012509532 A JP2012509532 A JP 2012509532A JP 5714567 B2 JP5714567 B2 JP 5714567B2
Authority
JP
Japan
Prior art keywords
collection layer
honeycomb filter
cell
corner
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012509532A
Other languages
Japanese (ja)
Other versions
JPWO2011125770A1 (en
Inventor
水谷 貴志
貴志 水谷
晃士 永田
晃士 永田
由紀夫 宮入
由紀夫 宮入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2012509532A priority Critical patent/JP5714567B2/en
Publication of JPWO2011125770A1 publication Critical patent/JPWO2011125770A1/en
Application granted granted Critical
Publication of JP5714567B2 publication Critical patent/JP5714567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/912HC-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、ハニカムフィルタに関する。   The present invention relates to a honeycomb filter.

従来、ハニカムフィルタとしては、一方の端部が開口され且つ他方の端部が目封止されたセルと、一方の端部が目封止され且つ他方の端部が開口するセルとが交互に配設されるよう形成された多孔質の隔壁部と、この隔壁部上に形成された排ガスに含まれる粒子状物質(以下PMとも称する)を捕集・除去する層が形成されているものが提案されている(例えば、特許文献1〜3参照)。このハニカムフィルタでは、捕集層によりPMを捕集することにより、圧力損失を低減させつつPMの捕集を行うことができる。   Conventionally, as a honeycomb filter, a cell in which one end is opened and the other end is plugged, and a cell in which one end is plugged and the other end is opened alternately A porous partition wall formed so as to be disposed and a layer for collecting and removing particulate matter (hereinafter also referred to as PM) contained in the exhaust gas formed on the partition wall. It has been proposed (see, for example, Patent Documents 1 to 3). In this honeycomb filter, PM can be collected while reducing pressure loss by collecting PM by the collection layer.

特開2004−216226号公報JP 2004-216226 A 特開平6−33734号公報JP-A-6-33734 特開平1−304022号公報Japanese Patent Laid-Open No. 1-304022

ところで、この特許文献1〜3に記載されたハニカムフィルタでは、捕集したPMを燃焼除去する処理(再生処理とも称する)を行い、再生処理後に排ガス中のPMを捕集除去し、また再生処理を行うというサイクルを繰り返す。この捕集層が形成されたハニカムフィルタにおいて、捕集したPMの燃焼除去を十分行おうとすると、再生処理の時間が長くなることがあった。また、再生処理の時間を短くしようとすると、捕集したPMが残存してしまい、また、頻繁に再生処理を行うことにもなる。このように、固体成分を十分除去し、且つ、再生処理時間を低減することが望まれていた。   By the way, in the honeycomb filter described in Patent Documents 1 to 3, a process of burning and removing the collected PM (also referred to as a regeneration process) is performed, and PM in the exhaust gas is collected and removed after the regeneration process, and the regeneration process is performed. Repeat the cycle. In the honeycomb filter in which the trapping layer is formed, if the trapped PM is sufficiently removed by combustion, the regeneration process time may be long. Further, when trying to shorten the time for the regeneration process, the collected PM remains, and the regeneration process is frequently performed. Thus, it has been desired to sufficiently remove the solid components and reduce the regeneration processing time.

本発明は、このような課題に鑑みなされたものであり、捕集した固体成分を燃焼除去する再生処理後の固体成分の残留をより抑制すると共に、再生処理の時間をより低減することができるハニカムフィルタを提供することを主目的とする。   This invention is made | formed in view of such a subject, and while suppressing the residual of the solid component after the regeneration process which burns and removes the collected solid component, the time of a regeneration process can be reduced more. The main object is to provide a honeycomb filter.

本発明は、上述の主目的を達成するために以下の手段を採った。   The present invention adopts the following means in order to achieve the main object described above.

即ち、本発明のハニカムフィルタは、
流体に含まれる固体成分を捕集・除去するハニカムフィルタであって、
一方の端部が開口され且つ他方の端部が目封止され流体の流路となり断面が多角形である複数のセルを形成する複数の多孔質の隔壁部と、
前記隔壁部の平均細孔径よりも小さい平均粒径で構成された粒子群により前記隔壁部上に形成されており、前記多角形のセルの辺部分を形成する隔壁部上に形成された辺部捕集層と前記多角形のセルの角部分の隔壁部上に形成された角部捕集層とを含み、前記流体に含まれる固体成分を捕集・除去する層である捕集層と、を備え、
前記辺部捕集層の厚さXに対する前記角部捕集層の厚さYの比である捕集層厚さ比Y/Xが1.1以上2.4以下であるものである。
That is, the honeycomb filter of the present invention is
A honeycomb filter for collecting and removing solid components contained in a fluid,
A plurality of porous partition walls that are open at one end and plugged at the other end to form a fluid flow path and form a plurality of cells having a polygonal cross section;
The side part formed on the partition part by the particle group composed of an average particle size smaller than the average pore diameter of the partition part, and formed on the partition part forming the side part of the polygonal cell. A collection layer that includes a collection layer and a corner collection layer formed on a partition wall of a corner portion of the polygonal cell, and is a layer that collects and removes a solid component contained in the fluid; With
The collection layer thickness ratio Y / X, which is the ratio of the thickness Y of the corner collection layer to the thickness X of the side collection layer, is 1.1 or more and 2.4 or less.

このハニカムフィルタでは、捕集した固体成分(以下、PMとも称する)を燃焼除去する再生処理後の固体成分の残留をより抑制すると共に、再生処理の時間をより低減することができる。この理由は、以下のように推察される。例えば、捕集層は、辺部捕集層の厚さXに対する角部捕集層の厚さYの比である捕集層厚さ比Y/Xが1.1以上2.4以下である。即ち、辺部捕集層厚さXに比して角部捕集層厚さYの方が厚く形成されている。このため、固体成分を捕集する際には、角部捕集層での透過流速が遅く、辺部捕集層に比して少ない量の流体が通過する、つまり、角部捕集層でのPM捕集量が辺部捕集層に比して少なくなる。また、再生処理を行う際には、角部捕集層で捕集されているPM量が少ないことから、PMの燃焼除去が難しいセルの角部において、辺部捕集層での再生完了時間と同等の再生完了時間とすることができる。したがって、ハニカムフィルタ全体において、捕集したPMの燃焼除去を、より確実に且つより短時間で行うことができる。   In this honeycomb filter, it is possible to further suppress the remaining of the solid component after the regeneration process for burning and removing the collected solid component (hereinafter also referred to as PM), and to further reduce the time for the regeneration process. The reason is presumed as follows. For example, the collection layer has a collection layer thickness ratio Y / X which is a ratio of the thickness Y of the corner collection layer to the thickness X of the side collection layer of 1.1 or more and 2.4 or less. . That is, the corner portion collecting layer thickness Y is formed thicker than the side portion collecting layer thickness X. For this reason, when collecting solid components, the permeation flow velocity in the corner collection layer is slow, and a smaller amount of fluid passes through the corner collection layer, that is, in the corner collection layer. The amount of collected PM is less than that of the side collection layer. In addition, when the regeneration process is performed, since the amount of PM collected in the corner collection layer is small, the regeneration completion time in the side collection layer at the corner of the cell where PM is difficult to remove by combustion. The playback completion time can be equivalent to. Therefore, in the entire honeycomb filter, the collected PM can be burned and removed more reliably and in a shorter time.

本発明のハニカムフィルタにおいて、前記辺部捕集層の平均厚さが10μm以上80μm以下であるものとしてもよい。辺部捕集層の平均厚さが10μm以上ではPMを捕集しやすく、80μm以下では流体が隔壁を通過する抵抗をより低減可能であり、圧力損失をより低減することができる。この辺部捕集層の平均厚さは、20μm以上60μm以下であることがより好ましく、30μm以上50μm以下であることが更に好ましい。   In the honeycomb filter of the present invention, the side collection layer may have an average thickness of 10 μm to 80 μm. When the average thickness of the side collection layer is 10 μm or more, PM is easily collected, and when it is 80 μm or less, the resistance of the fluid to pass through the partition wall can be further reduced, and the pressure loss can be further reduced. The average thickness of the side collection layer is more preferably 20 μm or more and 60 μm or less, and further preferably 30 μm or more and 50 μm or less.

本発明のハニカムフィルタにおいて、前記隔壁部は、前記セルの多角形の角部が円弧状となるように形成されているものとしてもよい。こうすれば、セルの角部での隔壁部が多くなることから、熱容量を高めることができる。また、セルの角部よりも辺部分へ流通する流体量が増加するなど、流体の流路調整を行うことができる。このとき、前記隔壁部は、前記セルの角部の円弧が前記セルの多角形の一辺の長さに対し5%以上40%以下となるよう形成されているものとしてもよい。セルの角部の円弧が5%以上では再生限界をより高めることができ、40%以下では流体の流量が大きい高負荷時などの圧力損失をより低減することができる。ここで、「再生限界」とは、再生処理で許容することができるPMの堆積量とすることができ、例えば、過剰に堆積させたPMの燃焼除去時に、ハニカムフィルタにクラックが生じる限界のPM堆積量とすることができる。また、本発明のハニカムフィルタにおいて、前記隔壁部は、前記セルを断面4角形に形成するものとしてもよい。   In the honeycomb filter of the present invention, the partition wall may be formed such that a polygonal corner of the cell has an arc shape. By so doing, the partition walls at the corners of the cell increase, so the heat capacity can be increased. Further, the flow path of the fluid can be adjusted such that the amount of fluid flowing from the corner portion of the cell to the side portion increases. At this time, the partition wall may be formed such that the arc of the corner of the cell is 5% or more and 40% or less with respect to the length of one side of the polygon of the cell. When the arc at the corner of the cell is 5% or more, the regeneration limit can be further increased, and when it is 40% or less, the pressure loss during a high load with a large fluid flow rate can be further reduced. Here, the “regeneration limit” can be a PM accumulation amount that can be tolerated in the regeneration process. For example, the limit PM at which cracks are generated in the honeycomb filter when the excessively accumulated PM is removed by combustion. It can be the amount of deposition. Further, in the honeycomb filter of the present invention, the partition wall portion may form the cell with a quadrangular cross section.

本発明のハニカムフィルタにおいて、前記捕集層は、気体を搬送媒体とし該捕集層の原料である無機材料を前記セルへ供給することにより形成されているものとしてもよい。こうすれば、気体による搬送を利用して、比較的容易に捕集層の厚さを制御することができる。   In the honeycomb filter of the present invention, the collection layer may be formed by supplying an inorganic material, which is a raw material of the collection layer, to the cell using gas as a carrier medium. If it carries out like this, the thickness of a collection layer can be controlled comparatively easily using conveyance by gas.

本発明のハニカムフィルタにおいて、前記隔壁部は、コージェライト、SiC、ムライト、チタン酸アルミニウム、アルミナ、窒化珪素、サイアロン、リン酸ジルコニウム、ジルコニア、チタニア及びシリカから選択される1以上の無機材料を含んで形成されているものとしてもよい。また、前記捕集層は、コージェライト、SiC、ムライト、チタン酸アルミニウム、アルミナ、窒化珪素、サイアロン、リン酸ジルコニウム、ジルコニア、チタニア及びシリカから選択される1以上の無機材料を含んで形成されているものとしてもよい。   In the honeycomb filter of the present invention, the partition wall includes one or more inorganic materials selected from cordierite, SiC, mullite, aluminum titanate, alumina, silicon nitride, sialon, zirconium phosphate, zirconia, titania and silica. It is good also as what is formed by. Further, the collection layer is formed to include one or more inorganic materials selected from cordierite, SiC, mullite, aluminum titanate, alumina, silicon nitride, sialon, zirconium phosphate, zirconia, titania and silica. It is good as it is.

本発明のハニカムフィルタは、前記隔壁部及び前記捕集層を有する2以上のハニカムセグメントが接合層によって接合されて形成されているものとしてもよい。   The honeycomb filter of the present invention may be formed by joining two or more honeycomb segments having the partition wall and the collection layer with a joining layer.

本発明のハニカムフィルタにおいて、前記隔壁部及び前記捕集層のうち少なくとも一方には、触媒が担持されているものとしてもよい。こうすれば、捕集した固体成分の燃焼除去などをより効率よく行うことができる。   In the honeycomb filter of the present invention, a catalyst may be supported on at least one of the partition wall and the collection layer. By so doing, it is possible to more efficiently perform the removal of the collected solid component by combustion.

ハニカムフィルタ20の構成の概略の一例を示す説明図である。3 is an explanatory diagram illustrating an example of a schematic configuration of a honeycomb filter 20. FIG. 隔壁部22、セル23及び捕集層24の説明図である。It is explanatory drawing of the partition part 22, the cell 23, and the collection layer 24. FIG. SEM観察による捕集層の厚さの算出方法の説明図である。It is explanatory drawing of the calculation method of the thickness of the collection layer by SEM observation. 捕集層24の形成厚の測定位置の説明図である。It is explanatory drawing of the measurement position of the formation thickness of the collection layer. ハニカムフィルタ40の構成の概略の一例を示す説明図である。3 is an explanatory diagram illustrating an example of a schematic configuration of a honeycomb filter 40. FIG. 円弧状ではない角部のセル23の説明図である。It is explanatory drawing of the cell 23 of the corner | angular part which is not circular arc shape. 捕集層厚さ比Y/Xに対するモード再生効率(%)の測定結果である。It is a measurement result of mode regeneration efficiency (%) to collection layer thickness ratio Y / X. 捕集層厚さ比Y/Xに対するPM付圧力損失(kPa)の測定結果である。It is a measurement result of pressure loss (kPa) with PM with respect to collection layer thickness ratio Y / X. 角部のRサイズ(%)に対する再生限界(g/L)の測定結果である。It is a measurement result of the reproduction | regeneration limit (g / L) with respect to R size (%) of a corner | angular part. 角部のRサイズ(%)に対する出力点圧力損失(kPa)の測定結果である。It is a measurement result of output point pressure loss (kPa) with respect to R size (%) of a corner.

本発明のハニカムフィルタの一実施形態を図面を用いて説明する。図1は、本発明の一実施形態であるハニカムフィルタ20の構成の概略の一例を示す説明図である。図2は、隔壁部22、セル23及び捕集層24の説明図であり、図3は、SEM観察による捕集層の厚さの算出方法の説明図であり、図4は、捕集層24の形成厚の測定位置の説明図である。本実施形態のハニカムフィルタ20は、図1に示すように、隔壁部22を有する2以上のハニカムセグメント21が接合層27によって接合された形状を有し、その外周に外周保護部28が形成されている。   An embodiment of the honeycomb filter of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a honeycomb filter 20 according to an embodiment of the present invention. 2 is an explanatory diagram of the partition wall 22, the cell 23, and the collection layer 24. FIG. 3 is an explanatory diagram of a method for calculating the thickness of the collection layer by SEM observation. FIG. 4 is an illustration of the collection layer. It is explanatory drawing of the measurement position of 24 formation thickness. As shown in FIG. 1, the honeycomb filter 20 of the present embodiment has a shape in which two or more honeycomb segments 21 having partition walls 22 are joined by a joining layer 27, and an outer peripheral protection part 28 is formed on the outer periphery thereof. ing.

ハニカムフィルタ20は、一方の端部が開口され且つ他方の端部が目封止され流体の流路となるセル23と、一方の端部が目封止され且つ他方の端部が開口しておりセル23とが交互に配置されるように形成されている。ハニカムフィルタ20は、複数のセル23を形成している複数の多孔質の隔壁部22と、隔壁部22の平均細孔径よりも小さい平均粒径で構成された粒子群により隔壁部22上に形成され排ガスに含まれる固体成分(PM)を捕集・除去する層である捕集層24とを備えている。このハニカムフィルタ20では、流体としての排ガスの入口側のセル23の内壁に捕集層24が形成されている。ここで、ハニカムフィルタ20において、セル23の辺部分を形成する隔壁部を辺部隔壁22a、セル23の角部分を角部隔壁22bと称し、これらを隔壁部22と総称するものとする。また、辺部隔壁22a上に形成された捕集層を辺部捕集層24aと称し、角部隔壁22b上に形成された捕集層を角部捕集層24bと称し、これらを捕集層24と総称するものとする。また、辺部捕集層24aの厚さを辺部捕集層厚さXとし、角部捕集層24bの厚さを角部捕集層厚さYと称する。ハニカムフィルタ20では、入口側のセル23へ入った排ガスが捕集層24及び隔壁部22を介して出口側のセル23を通過して排出され、このとき、排ガスに含まれるPMが捕集層24上に捕集される。なお、捕集層24の粒子群の平均粒径は、走査型電子顕微鏡(SEM)で捕集層24を観察し、撮影した画像に含まれる捕集層24の各粒子を計測して求めた平均値をいうものとする。また、原料粒子における平均粒径は、レーザ回折/散乱式粒度分布測定装置を用い、水を分散媒として原料粒子を測定したメディアン径(D50)をいうものとする。   The honeycomb filter 20 has a cell 23 that is open at one end and plugged at the other end to form a fluid flow path, and is plugged at one end and open at the other end. The cage cells 23 are alternately arranged. The honeycomb filter 20 is formed on the partition wall 22 by a plurality of porous partition walls 22 forming a plurality of cells 23 and a particle group having an average particle size smaller than the average pore diameter of the partition walls 22. And a collection layer 24 which is a layer for collecting and removing a solid component (PM) contained in the exhaust gas. In the honeycomb filter 20, a collection layer 24 is formed on the inner wall of the cell 23 on the inlet side of exhaust gas as a fluid. Here, in the honey-comb filter 20, the partition part which forms the side part of the cell 23 is called the side part partition 22a, the corner | angular part of the cell 23 is called the corner part partition 22b, and these shall be named the partition part 22 generically. Moreover, the collection layer formed on the side partition 22a is referred to as a side collection layer 24a, and the collection layer formed on the corner partition 22b is referred to as a corner collection layer 24b. This is collectively referred to as layer 24. Further, the thickness of the side collection layer 24a is referred to as a side collection layer thickness X, and the thickness of the corner collection layer 24b is referred to as a corner collection layer thickness Y. In the honeycomb filter 20, the exhaust gas that has entered the cell 23 on the inlet side passes through the collection layer 24 and the partition wall portion 22 and is discharged through the cell 23 on the outlet side. At this time, PM contained in the exhaust gas is collected. Collected on 24. In addition, the average particle diameter of the particle group of the collection layer 24 was obtained by observing the collection layer 24 with a scanning electron microscope (SEM) and measuring each particle of the collection layer 24 included in the photographed image. It shall mean the average value. The average particle diameter of the raw material particles is the median diameter (D50) obtained by measuring the raw material particles using water as a dispersion medium using a laser diffraction / scattering particle size distribution measuring apparatus.

このハニカムフィルタ20の外形は、特に限定されないが、円柱状、四角柱状、楕円柱状、六角柱状などの形状とすることができる。ハニカムセグメント21の外形は、特に限定されないが、接合しやすい平面を有していることが好ましく、断面が多角形の角柱状(四角柱状、六角柱状など)の形状とすることができる。セルは、その断面の形状として3角形、4角形、6角形、8角形などの多角形の形状や円形、楕円形などの流線形状、及びそれらの組み合わせとすることができる。例えば、セル23は排ガスの流通方向に垂直な断面が4角形に形成されているものとしてもよい。なお、図1,2には、ハニカムフィルタ20の外形が円柱状に形成され、ハニカムセグメント21の外形が矩形柱状に形成され、セル23が矩形状に形成されているものを一例として示した。   The outer shape of the honeycomb filter 20 is not particularly limited, but may be a columnar shape, a quadrangular columnar shape, an elliptical columnar shape, a hexagonal columnar shape, or the like. The outer shape of the honeycomb segment 21 is not particularly limited, but preferably has a flat surface that can be easily joined, and can have a polygonal prismatic shape (such as a quadrangular prism shape or a hexagonal prism shape). The cell may have a cross-sectional shape of a polygon such as a triangle, a quadrangle, a hexagon, and an octagon, a streamline shape such as a circle and an ellipse, and a combination thereof. For example, the cell 23 may have a quadrangular cross section perpendicular to the flow direction of the exhaust gas. 1 and 2 show an example in which the outer shape of the honeycomb filter 20 is formed in a cylindrical shape, the outer shape of the honeycomb segment 21 is formed in a rectangular column shape, and the cells 23 are formed in a rectangular shape.

隔壁部22において、辺部隔壁22aの厚さは、150μm以上500μm以下であることが好ましく、200μm以上460μm以下であることがより好ましい。辺部隔壁22aの厚さが150μm以上では、フィルタとしての熱容量が大きくなるため、ハニカムフィルタ20の再生時に許容されるPMの堆積量である再生限界をより高めることができる。また、辺部隔壁22aの厚さが500μm以下では、隔壁の透過抵抗をより抑えられ、圧力損失の上昇をより抑制することができる。セル23の幅は、0.6mm以上2.0mm以下であることが好ましく、0.8mm以上1.2mm以下であることがより好ましい。   In the partition part 22, the thickness of the side partition 22a is preferably 150 μm or more and 500 μm or less, and more preferably 200 μm or more and 460 μm or less. When the thickness of the side partition wall 22a is 150 μm or more, the heat capacity as a filter increases, and therefore, the regeneration limit, which is the amount of PM that is allowed when the honeycomb filter 20 is regenerated, can be further increased. Moreover, when the thickness of the side partition wall 22a is 500 μm or less, the transmission resistance of the partition wall can be further suppressed, and an increase in pressure loss can be further suppressed. The width of the cell 23 is preferably 0.6 mm or greater and 2.0 mm or less, and more preferably 0.8 mm or greater and 1.2 mm or less.

この隔壁部22は、多孔質であり、例えば、コージェライト、Si結合SiC、再結晶SiC、チタン酸アルミニウム、ムライト、窒化珪素、サイアロン、リン酸ジルコニウム、ジルコニア、チタニア、アルミナ及びシリカから選択される1以上の無機材料を含んで形成されているものとしてもよい。このうち、コージェライトやSi結合SiC、再結晶SiCなどが好ましい。隔壁部22は、その気孔率が30体積%以上85体積%以下であることが好ましく、35体積%以上65体積%以下であることがより好ましい。この隔壁部22は、その平均細孔径が10μm以上60μm以下の範囲であることが好ましい。この隔壁部22の気孔率や平均細孔径は、水銀圧入法により測定した結果をいうものとする。このような気孔率、平均細孔径、厚さで隔壁部22を形成すると、排ガスが通過しやすく、PMを捕集・除去しやすい。   The partition wall 22 is porous and is selected from, for example, cordierite, Si-bonded SiC, recrystallized SiC, aluminum titanate, mullite, silicon nitride, sialon, zirconium phosphate, zirconia, titania, alumina, and silica. It is good also as what is formed including one or more inorganic materials. Of these, cordierite, Si-bonded SiC, recrystallized SiC, and the like are preferable. The partition wall 22 preferably has a porosity of 30% by volume to 85% by volume, and more preferably 35% by volume to 65% by volume. The partition wall 22 preferably has an average pore diameter in the range of 10 μm to 60 μm. The porosity and average pore diameter of the partition wall portion 22 are the results of measurement by mercury porosimetry. When the partition wall portion 22 is formed with such a porosity, average pore diameter, and thickness, the exhaust gas easily passes and PM is easily collected and removed.

隔壁部22は、排ガスの流通方向に垂直な断面において、多角形の角を有するセル23を形成するものとしてもよいし、多角形の角に円弧状のRを有するセル23を形成するものとしてもよい。図2に示すように、多角形の角に円弧状のRを有するセル23では、セルの角部での隔壁部が多くなることから、熱容量を高めることができる。このため、PMの再生処理時において、再生限界をより高めることができる。また、角に円弧状のRを有するとセルの角部での隔壁部が多くなることから、角部隔壁22bよりも辺部隔壁22aへ流通する排ガスが増加するなど、排ガスの流路調整を行うことができる。この隔壁部22は、セル23の角部の円弧のサイズ(Rサイズ)がセル23の多角形の一辺の長さに対し5%以上40%以下となるよう形成されていることが好ましく、10%以上30%以下で形成されていることがより好ましい。このRサイズが5%以上では再生限界をより高めることができ、Rサイズが40%以下では排ガスの流量が大きい高負荷時などの圧力損失をより低減することができる。ここで、Rサイズ(%)は、図2に示すように、セル23の多角形の1辺の長さをL1、片側の角部の円弧を除いた長さをL2としたとき、R(%)=(L1−L2)/L1×100で得られた値をいうものとする。また、再生限界とは、再生処理で許容することができるPMの堆積量、例えば、過剰に堆積させたPMの燃焼除去時にハニカムフィルタにクラックが生じる限界のPM堆積量とすることができる。   The partition wall portion 22 may form a cell 23 having a polygonal corner in a cross section perpendicular to the flow direction of the exhaust gas, or may form a cell 23 having an arc R at a polygonal corner. Also good. As shown in FIG. 2, in the cell 23 having an arc-shaped R at the corner of the polygon, the partition wall portion at the corner of the cell increases, so that the heat capacity can be increased. For this reason, the regeneration limit can be further increased during the regeneration process of PM. In addition, if the corner has an arcuate R, the partition wall portion at the corner of the cell increases, so the exhaust gas flow to the side partition wall 22a increases from the corner partition wall 22b. It can be carried out. The partition wall 22 is preferably formed so that the arc size (R size) of the corner of the cell 23 is 5% or more and 40% or less with respect to the length of one side of the polygon of the cell 23. It is more preferable that it is formed with a percentage of 30% or more. When the R size is 5% or more, the regeneration limit can be further increased, and when the R size is 40% or less, the pressure loss can be further reduced when the exhaust gas flow rate is high and the load is high. Here, as shown in FIG. 2, when the length of one side of the polygon of the cell 23 is L1, and the length excluding the arc at one corner is L2, the R size (%) is R ( %) = (L1-L2) / L1 × 100. In addition, the regeneration limit can be a PM deposition amount that can be tolerated in the regeneration process, for example, a limit PM deposition amount that causes cracks in the honeycomb filter when the excessively deposited PM is removed by combustion.

また、隔壁部22は、開口面積が所定値であるセル(小セル)と、このセルに隣接し、この所定値よりも開口面積が大きいセル(大セル)とを形成するものとしてもよい。このとき、大セルが流体としての排ガスの入口側のセルであり、小セルが排ガスの出口側のセルとするのが好ましく、大セルの内壁に捕集層24が形成されていることが好ましい。この小セルの幅に対する大セルの幅の比であるセル幅比は、1.2以上2.0以下であるのが好ましく、1.4以上1.6以下であることがより好ましい。このセル幅比が1.2以上では入口側のセルの開口部がより大きく、圧力損失をより低減することができる。また、セル幅比が2.0以下では出口側のセルの開口部が小さくなりすぎず、圧力損失をより低減することができる。   The partition wall 22 may form a cell (small cell) having an opening area of a predetermined value and a cell (large cell) adjacent to the cell and having an opening area larger than the predetermined value. At this time, it is preferable that the large cell is a cell on the inlet side of the exhaust gas as a fluid, and the small cell is a cell on the outlet side of the exhaust gas, and the collection layer 24 is preferably formed on the inner wall of the large cell. . The cell width ratio, which is the ratio of the large cell width to the small cell width, is preferably 1.2 or more and 2.0 or less, and more preferably 1.4 or more and 1.6 or less. When the cell width ratio is 1.2 or more, the opening of the cell on the inlet side is larger, and the pressure loss can be further reduced. In addition, when the cell width ratio is 2.0 or less, the opening of the cell on the outlet side does not become too small, and the pressure loss can be further reduced.

捕集層24は、図2に示すように、辺部捕集層の厚さXに対する角部捕集層の厚さYの比である捕集層厚さ比Y/Xが1.1以上2.4以下となるように形成されている。捕集層厚さ比Y/Xが1.1以上では、PMを含む排ガスが角部捕集層24bや角部隔壁22b側へ流れにくくPMの捕集量が小さくなるため、PMの燃焼しにくい角部での再生処理時間をより低減することができる。また、捕集層厚さ比Y/Xが2.4以下では、角部捕集層24bが厚くなりすぎず、PMを堆積した際の圧力損失をより低減することができる。この捕集層厚さ比Y/Xは、1.2以上2.0以下がより好ましい。辺部捕集層厚さXは、10μm以上80μm以下であることが好ましく、20μm以上60μm以下であることがより好ましく、30μm以上50μm以下であることが更に好ましい。捕集層24の平均厚さが10μm以上ではPMを捕集しやすく、80μm以下では流体が隔壁を通過する抵抗をより低減可能であり、圧力損失をより低減することができる。角部捕集層厚さYは、15μm以上110μm以下であることがより好ましく、20μm以上70μm以下であることが更に好ましい。また、捕集層24の平均厚さは、辺部捕集層の平均厚さを便宜的に用いるものとしてもよい。   As shown in FIG. 2, the collection layer 24 has a collection layer thickness ratio Y / X of 1.1 or more, which is a ratio of the thickness Y of the corner collection layer to the thickness X of the side collection layer. It is formed to be 2.4 or less. When the trapping layer thickness ratio Y / X is 1.1 or more, the exhaust gas containing PM is difficult to flow to the corner trapping layer 24b or the corner partition wall 22b side, and the trapped amount of PM becomes small. Reproduction processing time at difficult corners can be further reduced. Further, when the trapping layer thickness ratio Y / X is 2.4 or less, the corner trapping layer 24b does not become too thick, and the pressure loss when PM is deposited can be further reduced. The trapping layer thickness ratio Y / X is more preferably 1.2 or more and 2.0 or less. The side collection layer thickness X is preferably 10 μm or more and 80 μm or less, more preferably 20 μm or more and 60 μm or less, and further preferably 30 μm or more and 50 μm or less. When the average thickness of the collection layer 24 is 10 μm or more, PM is easily collected, and when it is 80 μm or less, the resistance of the fluid to pass through the partition walls can be further reduced, and the pressure loss can be further reduced. The corner collecting layer thickness Y is more preferably 15 μm or more and 110 μm or less, and further preferably 20 μm or more and 70 μm or less. Moreover, as the average thickness of the collection layer 24, the average thickness of the side collection layer may be used for convenience.

捕集層24は、平均細孔径が、0.2μm以上10μm以下であることが好ましく、気孔率が40体積%以上95体積%以下であることが好ましく、捕集層を構成する粒子の平均粒径が0.5μm以上15μm以下であることが好ましい。平均細孔径が0.2μm以上であればPMが堆積していない初期の圧力損失が過大になるのを抑制することができ、10μm以下であれば捕集効率が良好なものとなり、捕集層24を通り抜け細孔内部にPMが到達するのを抑制可能であり、PM堆積時の圧力損失低減効果の低下を抑制することができる。また、気孔率が40体積%以上であると、PMが堆積していない初期の圧力損失が過大となるのを抑制することができ、95体積%以下では耐久性のある捕集層24としての表層を作製することができる。また、捕集層を構成する粒子の平均粒径が0.5μm以上であれば捕集層を構成する粒子の粒子間の空間のサイズを十分に確保可能であるため捕集層の透過性を維持でき急激な圧力損失の上昇を抑制することができ、15μm以下であれば粒子同士の接触点が十分に存在するから粒子間の結合強度を十分に確保可能であり捕集層の剥離強度を確保することができる。このように、良好なPM捕集効率の維持、PM捕集開始直後の急激な圧力損失上昇防止、PM堆積時の圧力損失低減、捕集層の耐久性を実現することができる。この捕集層24は、コージェライト、SiC、ムライト、チタン酸アルミニウム、アルミナ、窒化珪素、サイアロン、リン酸ジルコニウム、ジルコニア、チタニア及びシリカから選択される1以上の無機材料を含んで形成されているものとしてもよい。このとき、捕集層24は、隔壁部22と同種の材料により形成されているものとすることが好ましい。また、この捕集層24は、セラミック又は金属の無機繊維を70重量%以上含有しているものとするのがより好ましい。こうすれば、繊維質によりPMを捕集しやすい。また、捕集層24は、無機繊維がアルミノシリケート、アルミナ、シリカ、ジルコニア、セリア及びムライトから選択される1以上の材料を含んで形成されているものとすることができる。   The collection layer 24 preferably has an average pore diameter of 0.2 μm or more and 10 μm or less, and preferably has a porosity of 40 volume% or more and 95 volume% or less, and the average particle size of the particles constituting the collection layer The diameter is preferably 0.5 μm or more and 15 μm or less. If the average pore diameter is 0.2 μm or more, it is possible to suppress an excessive initial pressure loss in which no PM is deposited, and if it is 10 μm or less, the collection efficiency is good, and the collection layer It is possible to suppress PM from passing through 24 and reaching the inside of the pores, and it is possible to suppress a decrease in pressure loss reduction effect during PM deposition. Further, when the porosity is 40% by volume or more, it is possible to suppress an excessive initial pressure loss in which PM is not deposited, and when the porosity is 95% by volume or less, the durable collection layer 24 is used. A surface layer can be produced. Moreover, if the average particle size of the particles constituting the collection layer is 0.5 μm or more, the size of the space between the particles of the particles constituting the collection layer can be sufficiently secured, so that the permeability of the collection layer can be increased. It is possible to maintain a rapid pressure loss increase, and if it is 15 μm or less, there is a sufficient contact point between the particles, so that sufficient bond strength between the particles can be secured and the separation layer peel strength can be secured. Can be secured. As described above, it is possible to maintain good PM collection efficiency, prevent a sudden pressure loss increase immediately after the start of PM collection, reduce pressure loss during PM deposition, and durability of the collection layer. This collection layer 24 is formed by including one or more inorganic materials selected from cordierite, SiC, mullite, aluminum titanate, alumina, silicon nitride, sialon, zirconium phosphate, zirconia, titania and silica. It may be a thing. At this time, the collection layer 24 is preferably formed of the same material as the partition wall 22. The collection layer 24 more preferably contains 70% by weight or more of ceramic or metal inorganic fibers. If it carries out like this, it will be easy to collect PM by fiber. The collection layer 24 may be formed by including one or more materials in which the inorganic fibers are selected from aluminosilicate, alumina, silica, zirconia, ceria, and mullite.

ここで、捕集層24の厚さの測定方法について図3を用いて説明する。捕集層24の厚さ、換言すると捕集層を構成する粒子群の厚さは、以下のようにして求めるものとする。ここでは、ハニカムフィルタ20の隔壁基材を樹脂埋めした後に研磨した観察用試料を用意し、走査型電子顕微鏡(SEM)観察を行い得られた画像を解析することによって捕集層の厚さを求める。まず、流体の流通方向に垂直な断面を観察面とするように切断・研磨した観察用試料を用意する。次に、SEMの倍率を100倍〜500倍に設定し、後述する測定位置において、視野をおよそ500μm×500μmの範囲として用意した観察用試料の観察面を撮影する。次に、撮影した画像において、隔壁の最外輪郭線を仮想的に描画する。この隔壁の最外輪郭線とは、隔壁の輪郭を示す線であって、隔壁表面(照射面、図3上段参照)に対して垂直の方向からこの隔壁表面に仮想平行光を照射したものとしたときに得られる投影線をいうものとする(図3中段参照)。即ち、隔壁の最外輪郭線は、光が当たっているものとする高さの異なる複数の隔壁上面の線分と、隣り合う高さの異なる隔壁上面の線分の各々をつなぐ垂線とにより形成される。この隔壁上面の線分は、例えば、100μmの長さの線分に対して5μmの長さ以下の凹凸については無視する「5%解像度」により描画するものとし、水平方向の線分が細かくなりすぎないようにするものとする。また、隔壁の最外輪郭線を描画する際には、捕集層の存在については無視するものとする。続いて、隔壁の最外輪郭線と同様に、捕集層を形成する粒子群の最外輪郭線を仮想的に描画する。この粒子群の最外輪郭線とは、捕集層の輪郭を示す線であって、捕集層表面(照射面、図3上段参照)に対して垂直の方向からこの捕集層表面に仮想平行光を照射したものとしたときに得られる投影線をいうものとする(図3中段参照)。即ち、粒子群の最外輪郭線は、光が当たっているものとする高さの異なる複数の粒子群上面の線分と、隣り合う高さの異なる粒子群上面の線分の各々をつなぐ垂線とにより形成される。この粒子群上面の線分は、例えば、上記隔壁と同じ「解像度」により描画するものとする。多孔性の高い捕集層では、樹脂埋めして研磨して観察用試料を作製すると、空中に浮いているように観察される粒子群もあることから、このように仮想光の照射による投影線を用いて最外輪郭線を描画するのである。続いて、描画した隔壁の最外輪郭線の上面線分の各々の高さ及び長さに基づいて隔壁の最外輪郭線の平均線である隔壁の標準基準線を求める(図3下段参照)。また、隔壁の標準基準線と同様に、描画した粒子群の最外輪郭線の上面線分の各々の高さ及び長さに基づいて粒子群の最外輪郭線の平均線である粒子群の平均高さを求める(図3下段参照)。そして、得られた粒子群の平均高さと隔壁の標準基準線との差をとり、この差(長さ)を、この撮影画像における捕集層の厚さ(粒子群の厚さ)とする。このようにして、捕集層の厚さを求めることができる。   Here, the measuring method of the thickness of the collection layer 24 is demonstrated using FIG. The thickness of the collection layer 24, in other words, the thickness of the particle group constituting the collection layer is obtained as follows. Here, an observation sample polished after the partition wall substrate of the honeycomb filter 20 is filled with resin is prepared, and the thickness of the collection layer is determined by analyzing an image obtained by observation with a scanning electron microscope (SEM). Ask. First, an observation sample is prepared by cutting and polishing so that a cross section perpendicular to the fluid flow direction is an observation surface. Next, the magnification of the SEM is set to 100 times to 500 times, and an observation surface of an observation sample prepared with a visual field in a range of about 500 μm × 500 μm is photographed at a measurement position described later. Next, the outermost contour line of the partition wall is virtually drawn in the photographed image. The outermost contour line of the partition wall is a line indicating the contour of the partition wall, and the partition surface is irradiated with virtual parallel light from a direction perpendicular to the partition surface (irradiation surface, refer to the upper part of FIG. 3). It is assumed that the projection line obtained when the above is performed (see the middle of FIG. 3). That is, the outermost contour line of the partition wall is formed by the line segments on the upper surfaces of the plurality of partition walls having different heights and the perpendicular lines connecting the line segments on the upper surfaces of the partition walls having different heights. Is done. For example, the line segment on the upper surface of the partition wall is drawn with “5% resolution” ignoring unevenness of 5 μm or less with respect to the line segment of 100 μm length, and the horizontal line segment becomes finer. Shall not be too much. In addition, when the outermost contour line of the partition wall is drawn, the presence of the collection layer is ignored. Subsequently, like the outermost contour line of the partition wall, the outermost contour line of the particle group forming the collection layer is virtually drawn. The outermost contour line of the particle group is a line indicating the contour of the trapping layer, and it is assumed to be virtual on the trapping layer surface from a direction perpendicular to the trapping layer surface (irradiation surface, see the upper part of FIG. 3). The projection line obtained when parallel light is irradiated (refer to the middle part of FIG. 3). That is, the outermost contour line of the particle group is a perpendicular line that connects each of the line segments on the upper surface of a plurality of particle groups with different heights and the line segment of the upper surface of the particle group with different heights adjacent to each other. And formed. For example, the line segment on the upper surface of the particle group is drawn with the same “resolution” as the partition wall. In the case of a highly porous collection layer, if a sample for observation is prepared by embedding with resin and polishing, there are particles that are observed to float in the air. Is used to draw the outermost contour line. Subsequently, a standard reference line of the partition which is an average line of the outermost contour lines of the partition walls is obtained based on the height and length of the upper surface segment of the outermost contour line of the drawn partition walls (see the lower part of FIG. 3). . Further, similarly to the standard reference line of the partition wall, the particle group which is an average line of the outermost contour lines of the particle group based on the height and length of the upper surface line segment of the outermost contour line of the drawn particle group. The average height is obtained (see the lower part of FIG. 3). And the difference of the average height of the obtained particle group and the standard reference line of a partition is taken, and this difference (length) is made into the thickness (thickness of particle group) of the collection layer in this picked-up image. In this way, the thickness of the collection layer can be determined.

次に、捕集層の厚さを測定する測定位置について説明する。図4に示すように、ハニカムフィルタの入口端面からハニカムフィルタの全長の10%程度の長さ下流の断面、流体の流通方向の中央断面、及び出口端面からハニカムフィルタの全長の10%程度の長さ上流の断面において、セル内の捕集層の厚さの分布を測定する。この捕集層の厚さの分布は、断面内の中央領域における中央点とこの中央点に対して上下左右に位置する4点を含む任意の5箇所を測定するものとした。また、図4に示すように、辺部隔壁22aでの捕集層厚さXは、各辺につき等間隔で5箇所計測し、その平均値として求めるものとする。また、角部隔壁22bの捕集層厚さYは、各角につき中央部の1箇所を測定し、この平均値として求めるものとする。したがって、辺部捕集層厚さXは、1つのセルにつき5箇所×4辺=20箇所、且つ、3つの断面内で5箇所を測定することから、20×3×5=300点の平均として求めるものとする。また、角部捕集層厚さYは、1つのセルにつき1箇所×4辺=4箇所、且つ3つの断面内で5箇所を測定することから、4×3×5=60点の平均として求めるものとする。このようにして、辺部捕集層24aや角部捕集層24bの厚さを求めることができる。   Next, the measurement position for measuring the thickness of the collection layer will be described. As shown in FIG. 4, the downstream cross section is about 10% of the total length of the honeycomb filter from the inlet end face of the honeycomb filter, the central cross section in the fluid flow direction, and the length of about 10% of the total length of the honeycomb filter from the outlet end face. In the upstream cross section, the thickness distribution of the collection layer in the cell is measured. The thickness distribution of the trapping layer was measured at any five points including a central point in the central region in the cross section and four points located above, below, left, and right with respect to the central point. Moreover, as shown in FIG. 4, the collection layer thickness X in the side partition 22a is measured at five locations at equal intervals for each side, and is obtained as an average value thereof. Further, the trapping layer thickness Y of the corner partition wall 22b is obtained as an average value by measuring one place in the center portion for each corner. Therefore, the side collection layer thickness X is an average of 20 × 3 × 5 = 300 points because 5 locations × 4 sides = 20 locations per cell and 5 locations within the three cross sections are measured. Suppose that Moreover, since the corner | angular part collection layer thickness Y measures 5 places in 1 place x 4 sides = 4 places and 3 cross sections per cell, it is set as the average of 4x3x5 = 60 points. Suppose you want. In this way, the thickness of the side collection layer 24a and the corner collection layer 24b can be obtained.

また、捕集層24の平均細孔径及び気孔率は、SEM観察による画像解析によって求めるものとする。上述した捕集層の厚さと同様に、図3に示すように、ハニカムフィルタ20の断面をSEM撮影して画像を得る。次に、隔壁の最外輪郭線と粒子群の最外輪郭線との間に形成される領域を捕集層の占める領域(捕集層領域)とし、この捕集層領域のうち、粒子群の存在する領域を「粒子群領域」とすると共に、粒子群の存在しない領域を「捕集層の気孔領域」とする。そして、この捕集層領域の面積(捕集層面積)と、粒子群領域の面積(粒子群面積)とを求める。そして、粒子群面積を捕集層面積で除算し100を乗算することにより、得られた値を捕集層の気孔率とする。また、「捕集層の気孔領域」において、粒子群及び隔壁の最外輪郭線と粒子群の外周とに内接する内接円を直径が最大になるように描く処理を行う。このとき、例えばアスペクト比の大きい長方形の気孔領域など、1つの「捕集層の気孔領域」に複数の内接円を描くことができるときには、気孔領域が十分に埋められるように、できるだけ大きい内接円を複数描くものとする。そして、観察した画像範囲において、描いた内接円の直径の平均値を捕集層の平均細孔径とするものとする。このようにして、捕集層24の平均細孔径及び気孔率を求めることができる。   Moreover, the average pore diameter and porosity of the collection layer 24 shall be calculated | required by the image analysis by SEM observation. Similar to the thickness of the trapping layer described above, as shown in FIG. 3, the cross section of the honeycomb filter 20 is imaged by SEM to obtain an image. Next, a region formed between the outermost contour line of the partition wall and the outermost contour line of the particle group is defined as a region occupied by the collection layer (collection layer region). A region where the particle group exists is referred to as a “particle group region”, and a region where the particle group does not exist is referred to as a “pore region of the collection layer”. And the area (collection layer area) of this collection layer area | region and the area (particle group area) of a particle group area | region are calculated | required. Then, the particle group area is divided by the collection layer area and multiplied by 100 to obtain the obtained value as the porosity of the collection layer. Further, in the “pore region of the collection layer”, an inscribed circle inscribed in the outermost contour lines of the particle group and the partition wall and the outer periphery of the particle group is drawn so as to maximize the diameter. At this time, for example, when a plurality of inscribed circles can be drawn in one “trapping layer pore region”, such as a rectangular pore region having a large aspect ratio, the inner diameter is as large as possible so that the pore region is sufficiently filled. A plurality of tangent circles shall be drawn. Then, in the observed image range, the average value of the diameter of the drawn inscribed circle is set as the average pore diameter of the collection layer. In this way, the average pore diameter and porosity of the collection layer 24 can be determined.

捕集層24の形成方法は、気体(空気)を捕集層の原料の搬送媒体とし、捕集層の原料を含む気体を入口セルへ供給するものとしてもよい。こうすれば、捕集層を構成する粒子群がより粗に形成されるため、極めて高い気孔率の捕集層を作製することができ、好ましい。捕集層の原料は、例えば、無機繊維や無機粒子を用いてもよい。あるいは、無機繊維は上述したものを用いることができ、例えば平均粒径が0.5μm以上8μm以下、平均長さが100μm以上500μm以下であるものが好ましい。無機粒子としては、上述した無機材料の粒子を用いることができる。例えば、平均粒径が0.5μm以上15μm以下のSiC粒子やコージェライト粒子を用いることができる。このとき、隔壁部22と捕集層24との無機材料を同じ材質とすることが好ましい。また、捕集層24の形成において、無機繊維や無機粒子と共に結合材も供給してもよい。結合材としてはゾル材料、コロイド材料から選択でき特にコロイダルシリカを用いることが好ましい。無機粒子はシリカにより被覆されており且つ無機粒子同士、及び無機粒子と隔壁部の材料とがシリカにより結合されていることが好ましい。例えば、コージェライトやチタン酸アルミニウムなどの酸化物材料の場合には、無機粒子同士、及び無機粒子と隔壁部の材料とが焼結により結合されているのが好ましい。捕集層24は、隔壁部22上に原料の層を形成したあと、熱処理を行い結合することが好ましい。熱処理での温度としては、例えば650℃以上1350℃以下の温度とするのが好ましい。熱処理温度が650℃以上では十分な結合力を確保することができ、1350℃以下であると過度な粒子の酸化による細孔の閉塞を抑制することができる。なお、捕集層24の形成方法は、例えば、捕集層24の原料になる無機粒子を含むスラリーを用いてセル23の表面に形成するものとしてもよい。   The formation method of the collection layer 24 is good also as what uses gas (air) as the conveyance medium of the raw material of a collection layer, and supplies the gas containing the raw material of a collection layer to an entrance cell. In this case, since the particle group constituting the collection layer is formed more coarsely, a collection layer having an extremely high porosity can be produced, which is preferable. As the raw material for the collection layer, for example, inorganic fibers or inorganic particles may be used. Alternatively, the inorganic fibers described above can be used, and for example, those having an average particle diameter of 0.5 μm to 8 μm and an average length of 100 μm to 500 μm are preferable. As the inorganic particles, the above-described inorganic material particles can be used. For example, SiC particles or cordierite particles having an average particle size of 0.5 μm or more and 15 μm or less can be used. At this time, it is preferable to use the same inorganic material for the partition wall 22 and the collection layer 24. Further, in the formation of the collection layer 24, a binder may be supplied together with inorganic fibers and inorganic particles. The binder can be selected from sol materials and colloidal materials, and colloidal silica is particularly preferably used. The inorganic particles are preferably coated with silica, and the inorganic particles and the inorganic particles and the partition wall material are preferably bonded with silica. For example, in the case of an oxide material such as cordierite or aluminum titanate, it is preferable that the inorganic particles and the inorganic particles and the partition wall material are bonded together by sintering. The collection layer 24 is preferably bonded by forming a raw material layer on the partition wall 22 and then performing a heat treatment. As a temperature in the heat treatment, for example, a temperature of 650 ° C. or higher and 1350 ° C. or lower is preferable. When the heat treatment temperature is 650 ° C. or higher, sufficient bonding strength can be secured, and when it is 1350 ° C. or lower, pore clogging due to excessive oxidation of particles can be suppressed. In addition, the formation method of the collection layer 24 is good also as what forms on the surface of the cell 23 using the slurry containing the inorganic particle used as the raw material of the collection layer 24, for example.

また、捕集層24の形成では、捕集層24を形成するセル23の近隣にある入口セルに、捕集層24の原料微粉体が混合された気体が流入しないように遮蔽しつつ行うものとしてもよい。こうすれば、捕集層24を形成するセル23に隣接した出口セルへは、このセル23からのみ気体が流入するから、セル23の角部に気体が流通しやすく、角部隔壁22b上へ捕集層24がより形成されやすい。具体的には、ハニカムフィルタ20の入口端面に捕集層の原料微粉体を混合した混入気体が入らないよう遮断板にて遮断する。この遮断板には1辺に並列に並ぶ1列のセルにのみ混合気体が通過可能なスリットが設けられており、そのスリットを徐々に移動させることで、1辺に並列に並ぶ1列のセル毎に混合気体を流入させて捕集層の形成を行う。一度にハニカムフィルタの断面全体に対して混合気体を供給する場合、全入口セルへ混合気体が流入するため、入口セルと入口セルとの間では気体の流れが発生しないことから、周辺の入口セルに最も距離が近い各入口セルの角部には気体の透過がほとんど起きず、辺部隔壁22aと同等レベルの厚みしか形成されない。上述した遮蔽する方法によると、入口セルから、遮断板にて気体流入が遮断されている周辺の入口セルへの気体の透過が発生するため、入口セルと距離の最も近い角部にも捕集層の原料微粉体が十分に堆積する。このようにして辺部捕集層24aに比して角部捕集層24bが厚く形成されている捕集層24を、より容易に形成することができる。   The trapping layer 24 is formed while shielding the gas mixed with the raw fine powder of the trapping layer 24 from flowing into the inlet cell in the vicinity of the cell 23 forming the trapping layer 24. It is good. By so doing, gas flows into the exit cell adjacent to the cell 23 forming the collection layer 24 only from the cell 23, so that the gas easily flows through the corner of the cell 23, and onto the corner partition 22b. The collection layer 24 is more easily formed. Specifically, it is blocked by a blocking plate so that mixed gas mixed with the raw material fine powder of the collection layer does not enter the inlet end face of the honeycomb filter 20. This blocking plate is provided with slits through which the mixed gas can pass only in one row of cells arranged in parallel on one side, and one row of cells arranged in parallel on one side by gradually moving the slit. Each time a mixed gas is introduced to form a collection layer. When supplying a mixed gas to the entire cross section of the honeycomb filter at a time, the mixed gas flows into all the inlet cells, so no gas flow occurs between the inlet cells and the inlet cells. Gas is hardly permeated at the corners of the inlet cells that are closest to each other, and only a thickness equivalent to that of the side partition 22a is formed. According to the shielding method described above, gas permeation from the inlet cell to the surrounding inlet cell where the gas inflow is blocked by the blocking plate is generated, so that it is also collected at the corner closest to the inlet cell. The raw material fine powder of the layer is sufficiently deposited. Thus, the collection layer 24 in which the corner collection layer 24b is formed thicker than the side collection layer 24a can be formed more easily.

接合層27は、ハニカムセグメント21を接合する層であり、無機粒子、無機繊維及び結合材などを含むものとしてもよい。無機粒子は、上述した無機材料の粒子とすることができ、その平均粒径は0.1μm以上30μm以下であることが好ましい。無機繊維は、上述したものとしてもよく、例えば平均粒径が0.5μm以上8μm以下、平均長さが100μm以上500μm以下であることが好ましい。結合材としてはコロイダルシリカや粘土などとすることができる。接合層27は、0.5mm以上2mm以下の範囲で形成されていることが好ましい。外周保護部28は、ハニカムフィルタ20の外周を保護する層であり、上述した無機粒子、無機繊維及び結合材などを含むものとしてもよい。   The bonding layer 27 is a layer for bonding the honeycomb segments 21 and may include inorganic particles, inorganic fibers, a binder, and the like. The inorganic particles can be the particles of the inorganic material described above, and the average particle diameter is preferably 0.1 μm or more and 30 μm or less. The inorganic fiber may be as described above, and for example, it is preferable that the average particle diameter is 0.5 μm to 8 μm and the average length is 100 μm to 500 μm. As the binder, colloidal silica or clay can be used. The bonding layer 27 is preferably formed in a range of 0.5 mm to 2 mm. The outer periphery protection part 28 is a layer that protects the outer periphery of the honeycomb filter 20 and may include the above-described inorganic particles, inorganic fibers, a binder, and the like.

ハニカムフィルタ20において、40℃〜800℃におけるセル23の通過孔方向の熱膨張係数は、6.0×10-6/℃以下であることが好ましく、1.0×10-6/℃以下であることがより好ましく、0.8×10-6/℃以下であることが更に好ましい。この熱膨張係数が6.0×10-6/℃以下であると、高温の排気に晒された際に発生する熱応力を許容範囲内に抑えることができる。In the honeycomb filter 20, the thermal expansion coefficient in the direction of the passage hole of the cell 23 at 40 ° C. to 800 ° C. is preferably 6.0 × 10 −6 / ° C. or less, and 1.0 × 10 −6 / ° C. or less. More preferably, it is 0.8 × 10 −6 / ° C. or less. When the thermal expansion coefficient is 6.0 × 10 −6 / ° C. or less, the thermal stress generated when exposed to high-temperature exhaust can be suppressed within an allowable range.

ハニカムフィルタ20において、セルピッチは、1.0mm以上2.5mm以下とするのが好ましい。PM堆積時の圧力損失は、濾過面積が大きいほど小さい値を示す。一方、初期の圧力損失は、セル直径が小さいほど大きい値を示す。したがって、初期圧力損失、PM堆積時の圧力損失、PMの捕集効率のトレードオフを考慮して、セルピッチ、セル密度や隔壁部22の厚さを設定するものとすればよい。   In the honeycomb filter 20, the cell pitch is preferably set to 1.0 mm or more and 2.5 mm or less. The pressure loss during PM deposition shows a smaller value as the filtration area is larger. On the other hand, the initial pressure loss increases as the cell diameter decreases. Therefore, the cell pitch, the cell density, and the thickness of the partition wall 22 may be set in consideration of the trade-off between the initial pressure loss, the pressure loss during PM deposition, and the PM collection efficiency.

ハニカムフィルタ20において、隔壁部22や捕集層24は、触媒を含むものとしてもよい。この触媒は、捕集されたPMの燃焼を促進する触媒、排ガスに含まれる未燃焼ガス(HCやCOなど)を酸化する触媒及びNOXを吸蔵/吸着/分解する触媒のうち少なくとも1種以上としてもよい。こうすれば、PMを効率よく除去することや未燃焼ガスを効率よく酸化することやNOXを効率よく分解することなどができる。この触媒としては、例えば、貴金属元素、遷移金属元素を1種以上含むものとするのがより好ましい。また、ハニカムフィルタ20では、他の触媒や浄化材が担持されていてもよい。例えば、アルカリ金属(Li、Na、K、Cs等)やアルカリ土類金属(Ca、Ba、Sr等)などを含むNOx吸蔵触媒、少なくとも1種の希土類金属、遷移金属、三元触媒、セリウム(Ce)及び/又はジルコニウム(Zr)の酸化物に代表される助触媒、HC(Hydro Carbon)吸着材等が挙げられる。具体的には、貴金属としては、例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)や、金(Au)及び銀(Ag)などが挙げられる。触媒に含まれる遷移金属としては、例えば、Mn,Fe,Co,Ni,Cu,Zn,Sc,Ti,V,Cr等が挙げられる。また、希土類金属としては、例えば、Sm,Gd,Nd,Y,La,Pr等が挙げられる。また、アルカリ土類金属としては、例えば、Mg,Ca,Sr,Ba等が挙げられる。このうち、白金及びパラジウムがより好ましい。また、貴金属及び遷移金属、助触媒などは、比表面積の大きな担体に担持してもよい。担体としては、例えば、アルミナ、シリカ、シリカアルミナ、ゼオライトなどを用いることができる。PMの燃焼を促進する触媒を有するものとすれば、捕集層24上に捕集されたPMをより容易に除去することができるし、未燃焼ガスを酸化する触媒やNOXを分解する触媒を有するものとすれば、排ガスをより浄化することができる。In the honey-comb filter 20, the partition part 22 and the collection layer 24 are good also as a thing containing a catalyst. The catalyst is at least one of a catalyst that promotes combustion of collected PM, a catalyst that oxidizes unburned gas (such as HC and CO) contained in exhaust gas, and a catalyst that absorbs / adsorbs / decomposes NO x. It is good. In this way, PM can be efficiently removed, unburned gas can be efficiently oxidized, NO x can be efficiently decomposed, and the like. As this catalyst, for example, it is more preferable to contain one or more kinds of noble metal elements and transition metal elements. Further, the honeycomb filter 20 may carry another catalyst or a purification material. For example, NO x storage catalyst containing alkali metals (Li, Na, K, Cs, etc.) and alkaline earth metals (Ca, Ba, Sr, etc.), at least one rare earth metal, transition metal, three-way catalyst, cerium Examples thereof include promoters represented by oxides of (Ce) and / or zirconium (Zr), and HC (Hydro Carbon) adsorbents. Specifically, examples of the noble metal include platinum (Pt), palladium (Pd), rhodium (Rh), gold (Au), and silver (Ag). Examples of the transition metal contained in the catalyst include Mn, Fe, Co, Ni, Cu, Zn, Sc, Ti, V, and Cr. Examples of rare earth metals include Sm, Gd, Nd, Y, La, Pr, and the like. Examples of the alkaline earth metal include Mg, Ca, Sr, Ba and the like. Of these, platinum and palladium are more preferred. Further, noble metals, transition metals, promoters and the like may be supported on a carrier having a large specific surface area. As the carrier, for example, alumina, silica, silica alumina, zeolite or the like can be used. If the catalyst has a catalyst that promotes the combustion of PM, the PM collected on the collection layer 24 can be removed more easily, and a catalyst that oxidizes unburned gas or a catalyst that decomposes NO x. If it has, it will be possible to further purify the exhaust gas.

以上説明した実施形態のハニカムフィルタ20によれば、辺部捕集層24aや角部捕集層24bの厚さなどを好適な範囲とすることにより、PM再生処理後にPMが残留するのをより抑制すると共に、PM再生処理の時間をより低減することができる。ハニカムフィルタ20では、辺部捕集層厚さXに比して角部捕集層厚さYの方が厚く形成されており、PMを捕集する際には、角部捕集層24bでの透過流速が遅く、辺部捕集層24aに比して少ない量の排ガスが通過する、即ち、角部捕集層24bでのPM捕集量が辺部捕集層24aに比して少なくなる。また、PM再生処理を行う際には、角部捕集層24bで捕集されているPM量が少ないことから、PMの燃焼除去が難しいセル23の角部において、辺部捕集層24aでの再生完了時間と同等の再生完了時間とすることができ、ハニカムフィルタ全体において、捕集したPMの燃焼除去をより確実に行うことができる。また、一般に、PM再生処理後にPMがフィルタに残留した場合には、例えば圧力損失が大きくなる頻度が高まるなどしてPM再生処理がより頻繁に実行されるようになる。このPM再生処理では、排ガス温度を上昇させるために燃料をより多量に消費する。この点において、このハニカムフィルタ20では、PM再生処理後にPMが残留しにくく、且つPM再生処理時間をより短くすることができるため、PM再生頻度の低減及びPM再生時間の低減により、燃費の向上をより図ることができる。   According to the honeycomb filter 20 of the embodiment described above, it is possible to prevent the PM from remaining after the PM regeneration process by setting the thickness of the side collection layer 24a and the corner collection layer 24b to a suitable range. In addition to the suppression, the time for the PM regeneration process can be further reduced. In the honeycomb filter 20, the corner collection layer thickness Y is thicker than the side collection layer thickness X. When collecting PM, the corner collection layer 24b The permeation flow rate of the gas is low and a small amount of exhaust gas passes through the side collection layer 24a. That is, the amount of PM collected at the corner collection layer 24b is small compared to the side collection layer 24a. Become. Further, when performing the PM regeneration process, since the amount of PM collected by the corner collection layer 24b is small, the side collection layer 24a is used in the corner of the cell 23 where it is difficult to remove and burn PM. The regeneration completion time can be set equal to the regeneration completion time, and the collected PM can be burned and removed more reliably in the entire honeycomb filter. In general, when PM remains in the filter after the PM regeneration process, the PM regeneration process is executed more frequently, for example, by increasing the frequency with which the pressure loss increases. In this PM regeneration process, a larger amount of fuel is consumed to raise the exhaust gas temperature. In this respect, in this honeycomb filter 20, since PM hardly remains after PM regeneration processing and the PM regeneration processing time can be further shortened, fuel efficiency is improved by reducing the PM regeneration frequency and the PM regeneration time. Can be further planned.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、ハニカムセグメント21を接合層27により接合したハニカムフィルタ20としたが、図5に示すように、一体成形されたハニカムフィルタ40としてもよい。ハニカムフィルタ40において、隔壁部42、セル43、捕集層44、目封止部46及び外周保護部48などは、ハニカムフィルタ20の隔壁部22、セル23、捕集層24、目封止部26及び外周保護部28と同様の構成とすることができる。こうしても、再生処理でのPMの残留をより抑制すると共に、PMの再生処理の時間をより低減することができる。   For example, in the embodiment described above, the honeycomb filter 20 is formed by bonding the honeycomb segments 21 with the bonding layer 27. However, as shown in FIG. In the honeycomb filter 40, the partition wall portion 42, the cell 43, the collection layer 44, the plugging portion 46, the outer periphery protection portion 48, and the like are the partition wall portion 22, the cell 23, the collection layer 24, and the plugging portion of the honeycomb filter 20. 26 and the outer periphery protection part 28 can be set as the same structure. Even in this case, it is possible to further suppress the PM remaining in the regeneration process and to further reduce the time for the PM regeneration process.

上述した実施形態では、セル23は多角形の角に円弧状のRを有するものを示したが、図6に示すように、セル23の角部が円弧状になっていないもの、多角形の角を有するものとしてもよい。こうしても、再生処理でのPMの残留をより抑制すると共に、PMの再生処理の時間をより低減することができる。   In the embodiment described above, the cell 23 has an arcuate R at the corners of the polygon. However, as shown in FIG. 6, the cell 23 has a corner that is not arcuate. It may have a corner. Even in this case, it is possible to further suppress the PM remaining in the regeneration process and to further reduce the time for the PM regeneration process.

上述した実施形態では、ハニカムフィルタ20には触媒が含まれるものとしたが、流通する流体に含まれる除去対象物質を浄化処理可能なものであれば特にこれに限定されない。あるいは、ハニカムフィルタ20は、触媒を含まないものとしてもよい。また、排ガスに含まれるPMを捕集するハニカムフィルタ20として説明したが、流体に含まれる固体成分を捕集・除去するものであれば特にこれに限定されず、建設機器の動力エンジン用のハニカムフィルタとしてもよいし、工場や発電所用のハニカムフィルタとしてもよい。   In the above-described embodiment, the honeycomb filter 20 includes a catalyst. However, the honeycomb filter 20 is not particularly limited as long as the removal target substance included in the flowing fluid can be purified. Alternatively, the honeycomb filter 20 may not include a catalyst. Moreover, although it demonstrated as the honey-comb filter 20 which collects PM contained in waste gas, if it collects and removes the solid component contained in a fluid, it will not be limited to this in particular, The honeycomb for power engines of construction equipment It may be a filter or a honeycomb filter for factories or power plants.

以下には、ハニカムフィルタを具体的に製造した例を実施例として説明する。   Below, the example which manufactured the honey-comb filter concretely is demonstrated as an Example.

[ハニカムフィルタの作製]
SiC粉末及び金属Si粉末を80:20の質量割合で混合し、これにメチルセルロース及びヒドロキシプロポキシルメチルセルロース、界面活性剤及び水を添加して混練し、可塑性の坏土を得て、所定の金型を用いて坏土を押出成形し、所望形状のハニカムセグメント成形体を成形した。ここでは、セルの排ガス流通方向に垂直な断面形状が4角形であり、辺部捕集層の厚さX、角部捕集層の厚さY及びセル幅などを後述する値に適宜設定したセル形状に成形した。また、ハニカムセグメントは、断面が35mm×35mm、長さが152mmの形状に成形した。次に、得られたハニカムセグメント成形体をマイクロ波により乾燥させ、更に熱風にて乾燥させた後、目封止をして、酸化雰囲気において550℃、3時間で仮焼きした後に、不活性雰囲気下にて1400℃、2時間の条件で本焼成を行った。目封止部の形成は、セグメント成形体の一方の端面のセル開口部に交互にマスクを施し、マスクした端面をSiC原料を含有する目封止スラリーに浸漬し、開口部と目封止部とが交互に配設されるように行った。また、他方の端面にも同様にマスクを施し、一方が開口し他方が目封止されたセルと一方が目封止され他方が開口したセルとが交互に配設されるように目封止部を形成した。得られたハニカムセグメント焼成体の排ガス流入側の開口端部より、隔壁の平均細孔径よりも小さい平均粒径を有するSiC粒子を含む空気を流入させ、且つハニカムセグメントの流出側より吸引しながら、排ガス流入側の隔壁の表層に堆積させた。このとき、後述する捕集層の形成厚分布処理を行い、辺部捕集層厚さXと角部捕集層厚さYとを制御して捕集層を隔壁部に形成した。次に、大気雰囲気下にて1300℃、2時間の条件の熱処理により、隔壁の表層に堆積させたSiC粒子同士、及び堆積させたSiC粒子と隔壁を構成するSiC及びSi粒子と結合させた。このように、隔壁部上に捕集層を形成したハニカムセグメントを作製した。このようにして得られたハニカムセグメントの側面に、アルミナシリケートファイバ、コロイダルシリカ、ポリビニルアルコール、炭化珪素、および水を混練してなる接合用スラリーを塗布し、互いに組み付けて圧着したあと、加熱乾燥して、全体形状が四角形状のハニカムセグメント接合体を得た。さらに、そのハニカムセグメント接合体を、円柱形状に研削加工した後、その周囲を、接合用スラリーと同等の材料からなる外周コート用スラリーで被覆し、乾燥により硬化させることにより所望の形状、セグメント形状、セル構造を有する円柱形状のハニカムフィルタを得た。ここでは、ハニカムフィルタは、断面の直径が144mm、長さが152mmの形状とした。また、後述する実施例1〜16及び比較例1〜4の隔壁部の気孔率は42体積%であり、平均細孔径は16μmであり、捕集層を形成する粒子の平均粒径は2.0μmであった。なお、隔壁部の気孔率及び平均細孔径は水銀ポロシメータ(Micromeritics社製Auto PoreIII型式9405)を用いて測定した。また、捕集層の原料粒子の平均粒径は、レーザ回折/散乱式粒度分布測定装置(堀場製作所社製LA−910)を用い、水を分散媒として測定したメディアン径(D50)である。
[Preparation of honeycomb filter]
SiC powder and metal Si powder are mixed at a mass ratio of 80:20, and methyl cellulose and hydroxypropoxyl methyl cellulose, a surfactant and water are added and kneaded to obtain a plastic clay, and a predetermined mold is obtained. Was used to extrude the kneaded material to form a honeycomb segment formed body having a desired shape. Here, the cross-sectional shape perpendicular to the exhaust gas flow direction of the cell is a quadrangle, and the thickness X of the side collection layer, the thickness Y of the corner collection layer, the cell width, and the like are appropriately set to values described later. Molded into a cell shape. The honeycomb segment was formed into a shape having a cross section of 35 mm × 35 mm and a length of 152 mm. Next, the obtained honeycomb segment formed body was dried by microwave, further dried with hot air, plugged, calcined in an oxidizing atmosphere at 550 ° C. for 3 hours, and then inert atmosphere The main baking was performed under the conditions of 1400 ° C. and 2 hours below. The plugging portion is formed by alternately masking the cell opening on one end face of the segment molded body, immersing the masked end face in a plugging slurry containing a SiC raw material, and then opening and plugging section. And were arranged alternately. Similarly, the other end face is also masked so that one open and the other plugged cell and the one plugged and the other open cell are alternately arranged. Part was formed. From the opening end on the exhaust gas inflow side of the obtained honeycomb segment fired body, air containing SiC particles having an average particle diameter smaller than the average pore diameter of the partition walls is introduced, and suctioned from the outflow side of the honeycomb segment, It was deposited on the surface layer of the partition wall on the exhaust gas inflow side. At this time, the formation thickness distribution process of the collection layer mentioned later was performed, and the collection layer was formed in the partition part by controlling the side collection layer thickness X and the corner collection layer thickness Y. Next, the SiC particles deposited on the surface layer of the partition walls and the SiC particles and the SiC particles constituting the partition walls were bonded to each other by heat treatment under conditions of 1300 ° C. for 2 hours in an air atmosphere. Thus, a honeycomb segment in which a collection layer was formed on the partition wall was produced. A honeycomb slurry obtained by kneading alumina silicate fiber, colloidal silica, polyvinyl alcohol, silicon carbide, and water is applied to the side surface of the honeycomb segment thus obtained, and after being assembled and pressure-bonded to each other, heat-dried. Thus, a bonded honeycomb segment assembly having an overall shape of a quadrangle was obtained. Furthermore, after the honeycomb segment bonded body is ground into a cylindrical shape, the periphery thereof is coated with a slurry for outer periphery coating made of the same material as the bonding slurry, and cured by drying to have a desired shape and segment shape. A cylindrical honeycomb filter having a cell structure was obtained. Here, the honeycomb filter has a cross-sectional diameter of 144 mm and a length of 152 mm. Moreover, the porosity of the partition walls of Examples 1 to 16 and Comparative Examples 1 to 4 described later is 42% by volume, the average pore diameter is 16 μm, and the average particle diameter of the particles forming the collection layer is 2. It was 0 μm. In addition, the porosity and average pore diameter of the partition walls were measured using a mercury porosimeter (Auto Pore III model 9405 manufactured by Micromeritics). Moreover, the average particle diameter of the raw material particles of the collection layer is a median diameter (D50) measured using a laser diffraction / scattering particle size distribution measuring apparatus (LA-910, manufactured by Horiba, Ltd.) using water as a dispersion medium.

[捕集層の形成厚分布処理]
作製したハニカムセグメントの入口側の端面に捕集層の原料である微粒子を混入した気体が入らないよう遮断板にて遮断した。その遮断板にはセグメントの1辺に並列に並ぶ1列のセルにのみ製膜できるスリットが設けられており、そのスリットを徐々に移動させることで、セグメントの1辺に並列に並ぶ1列のセル毎に捕集層を形成していった。例えば、セグメントの断面全体に微粒子を含む気体を供給すると、全入口セルへ微粒子を含む気体が流入することから、入口セルと入口セルとの間での気体の流れが発生せず、周辺の入口セルに最も距離が近い各入口セルの角部には気体の透過がほとんど起きないため角部にはほとんど粒子群が堆積しない、もしくは辺部と同等レベルの厚みしか粒子群が堆積しなかった。今回の形成厚分布処理を行うと、入口セルから周辺の遮断板にて気体流入が遮断されている入口セルへの気体の透過が発生することから、入口セルと距離の最も近い角部にもより多くの捕集層形成粒子が堆積した。このように、辺部捕集層厚さXよりも厚い、角部捕集層厚さYとなる捕集層24を形成した。
[Treatment layer thickness distribution treatment]
The manufactured honeycomb segment was blocked by a blocking plate so that gas mixed with fine particles as a raw material of the collection layer did not enter the end face on the inlet side. The blocking plate is provided with slits that can be formed only in one row of cells arranged in parallel on one side of the segment, and by moving the slit gradually, one row of cells arranged in parallel on one side of the segment. A collection layer was formed for each cell. For example, if a gas containing fine particles is supplied to the entire cross section of the segment, the gas containing fine particles flows into all the inlet cells, so that no gas flow occurs between the inlet cells and the inlet cells, and the peripheral inlets. There was almost no gas permeation at the corner of each inlet cell closest to the cell, so there was almost no particle group deposited at the corner, or only a thickness equal to that of the side. When the formation thickness distribution treatment is performed this time, gas permeation from the inlet cell to the inlet cell where the gas inflow is blocked by the surrounding barrier plates will occur, so it will also be at the corner closest to the inlet cell. More trapping layer forming particles were deposited. Thus, the collection layer 24 having a corner collection layer thickness Y that is thicker than the side collection layer thickness X was formed.

[触媒担持]
まず、重量比でアルミナ:白金:セリア系材料=7:0.5:2.5とし、セリア系材料を重量比でCe:Zr:Pr:Y:Mn=60:20:10:5:5とした原料を混合し、溶媒を水とした触媒のスラリーを調製した。次に、ハニカム構造体の出口端面(排ガスが流出する側)を所定の高さまで浸漬させ、入口端面(排ガスが流入する側)より、所定の吸引圧力と吸引流量に調整しながら所定時間にわたって吸引し、隔壁に触媒を担持し、120℃2時間で乾燥させた後、550℃1時間で焼付けを行った。ハニカムフィルタの単位体積当たりの触媒量は、30g/Lとなるようにした。
[Catalyst loading]
First, alumina: platinum: ceria-based material = 7: 0.5: 2.5 by weight ratio, and Ce: Zr: Pr: Y: Mn = 60: 20: 10: 5: 5 by weight ratio of ceria-based material. A catalyst slurry was prepared by mixing the starting materials and water as a solvent. Next, the exit end face (exhaust gas outflow side) of the honeycomb structure is immersed to a predetermined height, and suction is performed from the entrance end face (exhaust gas inflow side) to a predetermined suction pressure and suction flow rate for a predetermined time. The catalyst was supported on the partition walls, dried at 120 ° C. for 2 hours, and baked at 550 ° C. for 1 hour. The amount of catalyst per unit volume of the honeycomb filter was set to 30 g / L.

(実施例1〜4)
上記ハニカムフィルタの作製条件において、隔壁部の厚さが304.8μm、セル幅が1.16μm、セルの1辺の長さに対する角部のRサイズが0%(即ちピン角)であるセル形状に成形した。また、辺部捕集層24aの厚さXが40μm、角部捕集層24bの厚さYが44μm、Y/X比が1.10となるように捕集層の形成厚分布処理を行い得られたハニカムフィルタを実施例1とした。また、角部捕集層24bの厚さYを60μm、Y/X比を1.50とした以外は実施例1と同様の工程を経て得られたハニカムフィルタを実施例2とした。また、角部捕集層24bの厚さYを80μm、Y/X比を2.00とした以外は実施例1と同様の工程を経て得られたハニカムフィルタを実施例3とした。また、角部捕集層24bの厚さYを96μm、Y/X比を2.40とした以外は実施例1と同様の工程を経て得られたハニカムフィルタを実施例4とした。
(Examples 1-4)
A cell shape in which the partition wall thickness is 304.8 μm, the cell width is 1.16 μm, and the R size of the corner with respect to the length of one side of the cell is 0% (ie, pin angle) Molded into. Further, the collection layer formation thickness distribution process is performed so that the thickness X of the side collection layer 24a is 40 μm, the thickness Y of the corner collection layer 24b is 44 μm, and the Y / X ratio is 1.10. The obtained honeycomb filter was referred to as Example 1. Further, Example 2 was a honeycomb filter obtained through the same process as Example 1 except that the thickness Y of the corner collecting layer 24b was 60 μm and the Y / X ratio was 1.50. In addition, Example 3 was a honeycomb filter obtained through the same process as Example 1 except that the thickness Y of the corner collecting layer 24b was 80 μm and the Y / X ratio was 2.00. In addition, Example 4 was a honeycomb filter obtained through the same process as Example 1 except that the thickness Y of the corner collecting layer 24b was 96 μm and the Y / X ratio was 2.40.

(比較例1,2)
角部捕集層24bの厚さYを42μm、Y/X比を1.05とした以外は実施例1と同様の工程を経て得られたハニカムフィルタを比較例1とした。また、角部捕集層24bの厚さYを104μm、Y/X比を2.60とした以外は実施例1と同様の工程を経て得られたハニカムフィルタを比較例2とした。
(Comparative Examples 1 and 2)
Comparative Example 1 was a honeycomb filter obtained through the same steps as in Example 1 except that the corner portion collecting layer 24b had a thickness Y of 42 μm and a Y / X ratio of 1.05. In addition, Comparative Example 2 was a honeycomb filter obtained through the same steps as in Example 1 except that the thickness Y of the corner collecting layer 24b was 104 μm and the Y / X ratio was 2.60.

(実施例5〜8)
上記ハニカムフィルタの作製条件において、セルの1辺の長さに対する角部のRサイズを20%とし、角部捕集層24bの厚さYを44μm、Y/X比を1.10とした以外は実施例1と同様の工程を経て得られたハニカムフィルタを実施例5とした。また、角部捕集層24bの厚さYを60μm、Y/X比を1.50とした以外は実施例5と同様の工程を経て得られたハニカムフィルタを実施例6とした。また、角部捕集層24bの厚さYを80μm、Y/X比を2.00とした以外は実施例5と同様の工程を経て得られたハニカムフィルタを実施例7とした。また、角部捕集層24bの厚さYを96μm、Y/X比を2.40とした以外は実施例5と同様の工程を経て得られたハニカムフィルタを実施例8とした。
(Examples 5 to 8)
In the above honeycomb filter manufacturing conditions, the corner R size with respect to the length of one side of the cell is 20%, the thickness Y of the corner collecting layer 24b is 44 μm, and the Y / X ratio is 1.10. Example 5 was a honeycomb filter obtained through the same steps as in Example 1. In addition, Example 6 was a honeycomb filter obtained through the same process as Example 5 except that the thickness Y of the corner collecting layer 24b was 60 μm and the Y / X ratio was 1.50. In addition, Example 7 was a honeycomb filter obtained through the same process as Example 5 except that the thickness Y of the corner collecting layer 24b was 80 μm and the Y / X ratio was 2.00. In addition, Example 8 was a honeycomb filter obtained through the same process as Example 5 except that the thickness Y of the corner collecting layer 24b was 96 μm and the Y / X ratio was 2.40.

(比較例3,4)
角部捕集層24bの厚さYを42μm、Y/X比を1.05とした以外は実施例5と同様の工程を経て得られたハニカムフィルタを比較例3とした。また、角部捕集層24bの厚さYを104μm、Y/X比を2.60とした以外は実施例5と同様の工程を経て得られたハニカムフィルタを比較例4とした。
(Comparative Examples 3 and 4)
A honeycomb filter obtained through the same steps as in Example 5 except that the thickness Y of the corner collecting layer 24b was 42 μm and the Y / X ratio was 1.05 was defined as Comparative Example 3. Further, Comparative Example 4 was a honeycomb filter obtained through the same steps as in Example 5 except that the thickness Y of the corner collecting layer 24b was 104 μm and the Y / X ratio was 2.60.

(実施例9〜16)
上記ハニカムフィルタの作製条件において、セルの1辺の長さに対する角部のRサイズを3%とし、角部捕集層24bの厚さYを60μm、Y/X比を1.50とした以外は実施例1と同様の工程を経て得られたハニカムフィルタを実施例9とした。また、Rサイズを5%,10%,20%,30%,40%,45%,3%とした以外は実施例9と同様の工程を経て得られたハニカムフィルタをそれぞれ実施例10〜16とした。
(Examples 9 to 16)
In the above honeycomb filter manufacturing conditions, except that the R size of the corner portion with respect to the length of one side of the cell is 3%, the thickness Y of the corner portion collecting layer 24b is 60 μm, and the Y / X ratio is 1.50. Example 9 was a honeycomb filter obtained through the same steps as in Example 1. Further, honeycomb filters obtained through the same steps as in Example 9 except that the R size was changed to 5%, 10%, 20%, 30%, 40%, 45%, and 3%. It was.

[SEM観察による捕集層の厚さ測定]
実施例1〜16及び比較例1〜4の断面のSEM撮影を走査型電子顕微鏡(日立ハイテクノロジーズ製S−3200N)を用いて行い、辺部捕集層厚さX及び角部捕集層厚さYを測定した。まず、ハニカムフィルタの隔壁基材を樹脂埋めした後に流体の流通方向に垂直な断面を観察面とするように切断・研磨した観察用試料を用意し、SEMの倍率を100倍〜500倍に設定し、後述する測定位置において、視野をおよそ500μm×500μmの範囲として用意した観察用試料の観察面を撮影した。測定位置は、ハニカムフィルタの入口端面から15mm、中央部、出口端面から15mm上流側の断面において、その中央領域の中央上下左右の任意の5箇所とした(図4参照)。辺部捕集層厚さXさは各辺につき等間隔で5箇所計測しその平均値として求め、角部捕集層厚さYは各辺につき中央部の1箇所を測定しこの平均値として求めた。撮影した画像において、隔壁表面に対して垂直の方向からこの隔壁表面に仮想光を照射したものとしたときに得られる投影線を隔壁の最外輪郭線として仮想的に描画した。また、同様に、捕集層表面に対して垂直の方向からこの捕集層を形成する粒子群の表面に仮想光を照射したものとしたときに得られる投影線を粒子群の最外輪郭線として仮想的に描画した。続いて、描画した隔壁の最外輪郭線の上面線分の各々の高さ及び長さに基づいて隔壁の最外輪郭線の平均線である隔壁の標準基準線を求めた。また、隔壁の標準基準線と同様に、描画した粒子群の最外輪郭線の上面線分の各々の高さ及び長さに基づいて粒子群の最外輪郭線の平均線である粒子群の平均高さを求めた。そして、得られた粒子群の平均高さと隔壁の標準基準線との差をとり、この差(長さ)を、この撮影画像における捕集層の厚さ(粒子群の厚さ)とした。求めた捕集層の厚さを平均してそれぞれ辺部捕集層厚さX及び角部捕集層厚さYを求めた。
[Measurement of collection layer thickness by SEM observation]
SEM imaging of the cross sections of Examples 1 to 16 and Comparative Examples 1 to 4 was performed using a scanning electron microscope (S-3200N manufactured by Hitachi High-Technologies Corporation), and the side collection layer thickness X and the corner collection layer thickness were measured. The thickness Y was measured. First, prepare an observation sample that is cut and polished so that the cross section perpendicular to the fluid flow direction is the observation surface after filling the partition wall substrate of the honeycomb filter with resin, and set the SEM magnification to 100 to 500 times Then, an observation surface of an observation sample prepared with a field of view in a range of about 500 μm × 500 μm was photographed at a measurement position described later. The measurement positions were set at any five locations on the center region in the upper, lower, left, and right sides in the cross section 15 mm upstream from the inlet end face of the honeycomb filter and 15 mm upstream from the outlet end face (see FIG. 4). The side collection layer thickness X is measured at five equal intervals for each side and obtained as an average value, and the corner collection layer thickness Y is measured at one central portion for each side as the average value. Asked. In the photographed image, a projection line obtained when virtual light was irradiated onto the partition wall surface from a direction perpendicular to the partition wall surface was virtually drawn as the outermost contour line of the partition wall. Similarly, the projection line obtained when the surface of the particle group forming the collection layer is irradiated with virtual light from the direction perpendicular to the surface of the collection layer is the outermost contour line of the particle group. As a virtual drawing. Subsequently, a standard reference line of the partition, which is an average line of the outermost contour lines of the partition walls, was obtained based on the height and length of the upper surface line segment of the drawn outermost contour line of the partition walls. Further, similarly to the standard reference line of the partition wall, the particle group which is an average line of the outermost contour lines of the particle group based on the height and length of the upper surface line segment of the outermost contour line of the drawn particle group. The average height was determined. And the difference of the average height of the obtained particle group and the standard reference line of a partition was taken, and this difference (length) was made into the thickness (thickness of particle group) of the collection layer in this picked-up image. The obtained trapping layer thickness was averaged to determine the side trapping layer thickness X and the corner trapping layer thickness Y, respectively.

[再生効率測定(モード再生効率測定)]
非定常モードで、堆積したPMを燃焼除去す再生処理処理を行い、実施例1〜16及び比較例1〜4のハニカムフィルタ再生効率について検討した。まず、2.0Lディーゼルエンジンを搭載した車両を用いて、欧州規制モードであるNEDCサイクルをシャシーダイナモにて繰り返し走行した。ここでは、再生処理前に通常のPM堆積量を超える過剰量のPMを堆積させ(8g/L)、ポストインジェクションによる再生処理処理を1サイクル分行い、そのサイクル後に車両を停止し、再生されずに残存したPM量を、再生処理の前後のハニカムフィルタの重量を測定することにより計測した。再生処理前後のPM量により、再生効率(再生前のPM量に対する燃焼したPM量)を算出し、評価した。
[Regeneration efficiency measurement (mode regeneration efficiency measurement)]
In the unsteady mode, a regeneration treatment process for burning and removing the accumulated PM was performed, and the honeycomb filter regeneration efficiency of Examples 1 to 16 and Comparative Examples 1 to 4 was examined. First, using a vehicle equipped with a 2.0 L diesel engine, the NEDC cycle, which is a European regulation mode, was repeatedly run on the chassis dynamo. Here, an excessive amount of PM exceeding the normal PM deposition amount is deposited before the regeneration process (8 g / L), the regeneration process by post-injection is performed for one cycle, the vehicle is stopped after that cycle, and the regeneration is not performed. The amount of PM remaining in the sample was measured by measuring the weight of the honeycomb filter before and after the regeneration treatment. Based on the PM amount before and after the regeneration process, the regeneration efficiency (burned PM amount with respect to the PM amount before regeneration) was calculated and evaluated.

[再生限界測定]
実施例1〜16及び比較例1〜4のハニカムフィルタの再生限界値を測定した。2.2Lディーゼルエンジンを搭載するエンジンベンチにて、一定運転条件にて所定量のPMを作製したハニカムフィルタへ堆積させたあと、ポストインジェクションによる再生処理処理を行い、ハニカムフィルタの入口ガス温度を上昇させ、ハニカムフィルタの前後の圧損が低下し始めたところでポストインジェクションを切り、エンジンをアイドル状態に切り替えた。再生処理処理前の所定量のPM堆積量を徐々に増加させ、ハニカムフィルタにクラックが生じるPM堆積量をPM堆積時の再生限界とした。
[Regeneration limit measurement]
The regeneration limit values of the honeycomb filters of Examples 1 to 16 and Comparative Examples 1 to 4 were measured. After depositing a predetermined amount of PM on a honeycomb filter with a constant operating condition on an engine bench equipped with a 2.2L diesel engine, a regeneration process is performed by post-injection to increase the inlet gas temperature of the honeycomb filter. When the pressure loss before and after the honeycomb filter began to decrease, the post-injection was cut and the engine was switched to the idle state. The PM deposition amount of a predetermined amount before the regeneration treatment was gradually increased, and the PM deposition amount at which cracks occurred in the honeycomb filter was defined as the regeneration limit during PM deposition.

[PM付圧力損失測定]
2.2Lディーゼルエンジンの排気管に実施例1〜16及び比較例1〜4のハニカムフィルタを装着し、1800rpm、40Nm、一定にて運転し、PMをハニカムフィルタへ堆積させた。このとき、PM堆積量に対する圧力損失の挙動を測定し、PM堆積量が4g/Lの値をPM付圧力損失の値として、各サンプルの評価を行った。
[Pressure loss measurement with PM]
The honeycomb filters of Examples 1 to 16 and Comparative Examples 1 to 4 were mounted on the exhaust pipe of a 2.2 L diesel engine, and the operation was performed at a constant 1800 rpm and 40 Nm, so that PM was deposited on the honeycomb filter. At this time, the behavior of the pressure loss with respect to the PM deposition amount was measured, and each sample was evaluated using the PM deposition amount of 4 g / L as the value of the PM pressure loss.

[出力点圧力損失(高負荷・高回転圧損)]
2.2Lディーゼルエンジンの排気管に実施例1〜16及び比較例1〜4のハニカムフィルタを装着し、このエンジンの最高出力点近傍(4000rpm、250Nm)において圧力損失を測定し、これを出力点圧力損失とし各サンプルの評価を行った。
[Output point pressure loss (high load, high rotation pressure loss)]
A honeycomb filter of Examples 1 to 16 and Comparative Examples 1 to 4 is mounted on the exhaust pipe of a 2.2 L diesel engine, and pressure loss is measured in the vicinity of the maximum output point (4000 rpm, 250 Nm) of this engine. Each sample was evaluated as a pressure loss.

(実験結果)
実施例1〜16及び比較例1〜4のセル構造及び評価結果を表1にまとめて示す。図7は、実施例1〜8及び比較例1〜4における、角部/辺部の捕集層厚さ比Y/Xに対するモード再生効率(%)の測定結果である。図8は、実施例1〜8及び比較例1〜4における、角部/辺部の捕集層厚さ比Y/Xに対するPM付圧力損失(kPa)の測定結果である。図9は、実施例9〜16における、角部のRサイズ(%)に対する再生限界(g/L)の測定結果である。図10は、実施例9〜16における、角部のRサイズ(%)に対する出力点圧力損失(kPa)の測定結果である。表1及び図7に示すように、モード再生効率は、角部捕集層厚さY/辺部捕集層厚さX(捕集層厚さ比Y/X)が1.10未満、即ち、捕集層が角部と辺部とで略同じ厚さで形成されているときには、再生効率が低下することがわかった。これは、捕集層が角部及び辺部で略均一に形成されると、PMの辺部捕集層への堆積に伴い排ガスが角部をも流通し、角部捕集層にもPMが堆積されるが、再生処理処理を行っても除去されにくくセル内にPMが残存することを示している。これに対し、捕集層厚さ比Y/Xが1.10以上では、PMが辺部捕集層に堆積しても、角部捕集層における排ガスの透過抵抗が高いことから、角部捕集層にPMが堆積しにくく、比較的PMの燃焼がしやすい辺部捕集層により多くのPMが堆積しているため、全体としてPMの再生効率が高まるものと推察された。また、図8に示すように、捕集層厚さ比Y/Xが2.50を超えると、PM付圧力損失が上昇することがわかった。これは、角部捕集層が厚くなりすぎ、辺部捕集層にPMが堆積した際に角部捕集層に排ガスが流通しにくくなっているためであると推察された。また、図9に示すように、捕集層厚さ比Y/Xが1.50において、Rサイズが5%以上40%以下の範囲で、再生処理時のPM異常燃焼が起こった際の再生限界値が向上することがわかった。これは、隔壁部の角部にRがあると、角部の排ガス透過流量が小さくなり、圧損の上昇がほとんどない中でハニカム構造体としての熱容量を上げることができるためであると推察された。また、図10に示すように、出力点圧力上昇においては、Rサイズが5%以上40%以下の範囲で、やや圧力損失が低く、セルの角部が円弧状になっている方がより好ましいことがわかった。これは、角部を通る排ガスは隔壁部を通る排ガスよりも長い経路をたどり出口セルへ流出するから経路が長い分、圧損が高くなるが、角部捕集層が角部へ流入する排ガスを抑制するため、隔壁部へ排ガスがより流入しやすい、即ち、流路調整機能を果たしているものと推察された。
(Experimental result)
Table 1 summarizes the cell structures and evaluation results of Examples 1 to 16 and Comparative Examples 1 to 4. FIG. 7 shows measurement results of mode regeneration efficiency (%) with respect to the corner / side collection layer thickness ratio Y / X in Examples 1 to 8 and Comparative Examples 1 to 4. FIG. 8 shows the measurement results of pressure loss with PM (kPa) with respect to the corner / side collecting layer thickness ratio Y / X in Examples 1-8 and Comparative Examples 1-4. FIG. 9 shows measurement results of the regeneration limit (g / L) with respect to the R size (%) of the corners in Examples 9 to 16. FIG. 10 shows the measurement results of the output point pressure loss (kPa) with respect to the R size (%) of the corners in Examples 9 to 16. As shown in Table 1 and FIG. 7, the mode regeneration efficiency is such that the corner collection layer thickness Y / side collection layer thickness X (collection layer thickness ratio Y / X) is less than 1.10. It has been found that when the trapping layer is formed with substantially the same thickness at the corner and the side, the regeneration efficiency decreases. This is because when the trapping layer is formed substantially uniformly at the corners and sides, the exhaust gas also flows through the corners as PM accumulates on the side trapping layers, and the corner trapping layer also has PM. However, it is difficult to remove even if the regeneration treatment is performed, and PM remains in the cell. On the other hand, when the trapping layer thickness ratio Y / X is 1.10 or more, even if PM is deposited on the side trapping layer, the corner portion has a high permeation resistance of exhaust gas. Since PM is hardly deposited on the collection layer and a large amount of PM is deposited on the side collection layer where PM can be combusted relatively easily, it is presumed that the PM regeneration efficiency is improved as a whole. Moreover, as shown in FIG. 8, when the trapping layer thickness ratio Y / X exceeded 2.50, it was found that the pressure loss with PM increased. This was presumed to be because the corner collection layer was too thick, and when PM was deposited on the side collection layer, it was difficult for the exhaust gas to flow through the corner collection layer. In addition, as shown in FIG. 9, when the trapping layer thickness ratio Y / X is 1.50 and the R size is in the range of 5% to 40%, regeneration when abnormal PM combustion occurs during regeneration processing. It was found that the limit value was improved. This is presumed to be because if there is R at the corners of the partition walls, the exhaust gas permeation flow rate at the corners becomes small, and the heat capacity of the honeycomb structure can be increased while there is almost no increase in pressure loss. . Further, as shown in FIG. 10, in the output point pressure increase, it is more preferable that the R size is in the range of 5% or more and 40% or less, the pressure loss is slightly low, and the corners of the cells are arcuate. I understood it. This is because the exhaust gas that passes through the corner follows a longer path than the exhaust gas that passes through the partition wall and flows out to the exit cell, so the pressure loss increases because the path is longer, but the exhaust gas that the corner collection layer flows into the corner In order to suppress it, it was speculated that the exhaust gas easily flows into the partition wall, that is, it fulfills the flow path adjusting function.

Figure 0005714567
Figure 0005714567

本出願は、2010年3月31日に出願された日本国特許出願第2010−81902号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。   This application is based on Japanese Patent Application No. 2010-81902 filed on Mar. 31, 2010, the contents of which are incorporated herein by reference in their entirety.

本発明は、自動車用エンジン、建設機械用及び産業用の定置エンジン並びに燃焼機器等から排出される排ガスを浄化するためのフィルターとして好適に使用することができる。   The present invention can be suitably used as a filter for purifying exhaust gas discharged from automobile engines, construction machinery and industrial stationary engines, combustion equipment, and the like.

Claims (6)

流体に含まれる固体成分を捕集・除去するハニカムフィルタであって、
一方の端部が開口され且つ他方の端部が目封止され流体の流路となり断面が多角形である複数のセルを形成する複数の多孔質の隔壁部と、
前記隔壁部の平均細孔径よりも小さい平均粒径で構成された粒子群により前記隔壁部上に形成されており、前記多角形のセルの辺部分を形成する隔壁部上に形成された辺部捕集層と前記多角形のセルの角部分の隔壁部上に形成された角部捕集層とを含み、前記流体に含まれる固体成分を捕集・除去する層である捕集層と、を備え、
前記隔壁部は、前記セルの多角形の角部が円弧状となるように形成されており、前記セルの角部の円弧が前記セルの多角形の一辺の長さに対し5%以上40%以下となるよう形成されており、
前記辺部捕集層の厚さXに対する前記角部捕集層の厚さYの比である捕集層厚さ比Y/Xが1.1以上2.4以下である、ハニカムフィルタ。
A honeycomb filter for collecting and removing solid components contained in a fluid,
A plurality of porous partition walls that are open at one end and plugged at the other end to form a fluid flow path and form a plurality of cells having a polygonal cross section;
The side part formed on the partition part by the particle group composed of an average particle size smaller than the average pore diameter of the partition part, and formed on the partition part forming the side part of the polygonal cell. A collection layer that includes a collection layer and a corner collection layer formed on a partition wall of a corner portion of the polygonal cell, and is a layer that collects and removes a solid component contained in the fluid; With
The partition wall is formed such that the polygonal corner of the cell is arcuate, and the arc of the corner of the cell is 5% or more and 40% of the length of one side of the polygon of the cell. It is formed to be
A honeycomb filter, wherein a collection layer thickness ratio Y / X, which is a ratio of a thickness Y of the corner collection layer to a thickness X of the side collection layer, is 1.1 or more and 2.4 or less.
前記辺部捕集層の平均厚さが10μm以上80μm以下である、請求項1に記載のハニカムフィルタ。   The honeycomb filter according to claim 1, wherein an average thickness of the side collection layer is 10 µm or more and 80 µm or less. 前記隔壁部は、コージェライト、SiC、ムライト、チタン酸アルミニウム、アルミナ、窒化珪素、サイアロン、リン酸ジルコニウム、ジルコニア、チタニア及びシリカから選択される1以上の無機材料を含んで形成されている、請求項1又は2に記載のハニカムフィルタ。 The partition wall is formed by including one or more inorganic materials selected from cordierite, SiC, mullite, aluminum titanate, alumina, silicon nitride, sialon, zirconium phosphate, zirconia, titania and silica. Item 3. The honeycomb filter according to Item 1 or 2 . 前記捕集層は、コージェライト、SiC、ムライト、チタン酸アルミニウム、アルミナ、窒化珪素、サイアロン、リン酸ジルコニウム、ジルコニア、チタニア及びシリカから選択される1以上の無機材料を含んで形成されている、請求項1〜のいずれか1項に記載のハニカムフィルタ。 The collection layer is formed by including one or more inorganic materials selected from cordierite, SiC, mullite, aluminum titanate, alumina, silicon nitride, sialon, zirconium phosphate, zirconia, titania and silica. The honeycomb filter according to any one of claims 1 to 3 . 前記ハニカムフィルタは、前記隔壁部及び前記捕集層を有する2以上のハニカムセグメントが接合層によって接合されて形成されている、請求項1〜のいずれか1項に記載のハニカムフィルタ。 The honeycomb filter according to any one of claims 1 to 4 , wherein the honeycomb filter is formed by joining two or more honeycomb segments having the partition walls and the collection layer with a joining layer. 前記隔壁部及び前記捕集層のうち少なくとも一方には、触媒が担持されている、請求項1〜のいずれか1項に記載のハニカムフィルタ。 The honeycomb filter according to any one of claims 1 to 5 , wherein a catalyst is supported on at least one of the partition wall and the collection layer.
JP2012509532A 2010-03-31 2011-03-30 Honeycomb filter Active JP5714567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509532A JP5714567B2 (en) 2010-03-31 2011-03-30 Honeycomb filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010081902 2010-03-31
JP2010081902 2010-03-31
PCT/JP2011/058080 WO2011125770A1 (en) 2010-03-31 2011-03-30 Honeycomb filter
JP2012509532A JP5714567B2 (en) 2010-03-31 2011-03-30 Honeycomb filter

Publications (2)

Publication Number Publication Date
JPWO2011125770A1 JPWO2011125770A1 (en) 2013-07-08
JP5714567B2 true JP5714567B2 (en) 2015-05-07

Family

ID=44762711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012509532A Active JP5714567B2 (en) 2010-03-31 2011-03-30 Honeycomb filter

Country Status (3)

Country Link
EP (1) EP2554235B1 (en)
JP (1) JP5714567B2 (en)
WO (1) WO2011125770A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012023703B1 (en) * 2010-04-01 2018-09-25 Basf Corp method for preparing a coated monolithic support member, monolithic support member, and use of a monolithic support member
JP5869887B2 (en) * 2012-01-10 2016-02-24 日本碍子株式会社 Honeycomb filter
JP6012369B2 (en) * 2012-09-26 2016-10-25 日本碍子株式会社 Plugged honeycomb structure
JP6267452B2 (en) * 2013-07-31 2018-01-24 イビデン株式会社 Honeycomb filter
JP6809963B2 (en) * 2017-03-30 2021-01-06 日本碍子株式会社 Honeycomb structure
JP7504826B2 (en) 2021-03-23 2024-06-24 日本碍子株式会社 Honeycomb Filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202220A (en) * 1999-01-13 2000-07-25 Ngk Insulators Ltd Double-layered structural honeycomb filter and its production
JP2003210922A (en) * 2002-01-23 2003-07-29 Ibiden Co Ltd Ceramic honeycomb filter
WO2004113252A1 (en) * 2003-06-23 2004-12-29 Ibiden Co., Ltd. Honeycomb structure
JP2006136817A (en) * 2004-11-12 2006-06-01 Toyota Motor Corp Honeycomb structure and catalyst for emission gas purification
JP2006329790A (en) * 2005-05-25 2006-12-07 Toyota Motor Corp Manufacturing method of catalyst for exhaust gas purification

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2675071B2 (en) 1988-05-31 1997-11-12 イビデン株式会社 Honeycomb filter
JPH0633734A (en) 1992-07-10 1994-02-08 Ibiden Co Ltd Exhaust emission control device
JPH07124428A (en) * 1993-11-08 1995-05-16 Noritake Co Ltd Monolith type ceramic filter
JP3489048B2 (en) * 2000-02-01 2004-01-19 日産自動車株式会社 Exhaust gas purification catalyst
JP4284588B2 (en) 2003-01-10 2009-06-24 トヨタ自動車株式会社 Exhaust gas purification filter catalyst
JP2010081902A (en) 2008-10-01 2010-04-15 Taakii:Kk Connecting tool for animal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202220A (en) * 1999-01-13 2000-07-25 Ngk Insulators Ltd Double-layered structural honeycomb filter and its production
JP2003210922A (en) * 2002-01-23 2003-07-29 Ibiden Co Ltd Ceramic honeycomb filter
WO2004113252A1 (en) * 2003-06-23 2004-12-29 Ibiden Co., Ltd. Honeycomb structure
JP2006136817A (en) * 2004-11-12 2006-06-01 Toyota Motor Corp Honeycomb structure and catalyst for emission gas purification
JP2006329790A (en) * 2005-05-25 2006-12-07 Toyota Motor Corp Manufacturing method of catalyst for exhaust gas purification

Also Published As

Publication number Publication date
EP2554235A1 (en) 2013-02-06
EP2554235B1 (en) 2020-01-01
EP2554235A4 (en) 2015-08-26
JPWO2011125770A1 (en) 2013-07-08
WO2011125770A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5764120B2 (en) Honeycomb filter
JP5635076B2 (en) Honeycomb filter
JP5604346B2 (en) Honeycomb filter
JP5666562B2 (en) Honeycomb filter
JP5775512B2 (en) Honeycomb filter and method for manufacturing honeycomb filter
JP5714567B2 (en) Honeycomb filter
JP5714568B2 (en) Honeycomb filter
JP5096978B2 (en) Honeycomb catalyst body
JP2009248070A (en) Manufacturing method of honeycomb structure
JP5954994B2 (en) Honeycomb filter
JP5771190B2 (en) Honeycomb filter
JP5714372B2 (en) Manufacturing method of honeycomb filter
JP5954993B2 (en) Honeycomb filter
JP2012206079A (en) Honeycomb filter
JP5969386B2 (en) Honeycomb filter
JP5785870B2 (en) Honeycomb filter
JP5869887B2 (en) Honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150311

R150 Certificate of patent or registration of utility model

Ref document number: 5714567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150