JP2014045775A - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP2014045775A
JP2014045775A JP2012188305A JP2012188305A JP2014045775A JP 2014045775 A JP2014045775 A JP 2014045775A JP 2012188305 A JP2012188305 A JP 2012188305A JP 2012188305 A JP2012188305 A JP 2012188305A JP 2014045775 A JP2014045775 A JP 2014045775A
Authority
JP
Japan
Prior art keywords
magnetic field
gradient magnetic
waveform
current
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012188305A
Other languages
English (en)
Other versions
JP6109508B2 (ja
Inventor
Yutaka Machii
豊 待井
Hiroshi Kusahara
博志 草原
Yoshimori Kasai
由守 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2012188305A priority Critical patent/JP6109508B2/ja
Publication of JP2014045775A publication Critical patent/JP2014045775A/ja
Application granted granted Critical
Publication of JP6109508B2 publication Critical patent/JP6109508B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】MRイメージングにより適した波形を有する傾斜磁場の印加を行うことが可能な磁気共鳴イメージング装置を提供することである。
【解決手段】実施形態に係る磁気共鳴イメージング装置は、イメージング手段及び条件設定手段を備える。イメージング手段は、傾斜磁場コイル及び傾斜磁場電源を含む傾斜磁場発生システムを用いて被検体の磁気共鳴イメージングを行う。条件設定手段は、前記傾斜磁場電源から出力される第1の電流の波形に応じて撮像領域に印加される第1の傾斜磁場の波形に基づいて、前記磁気共鳴イメージング用に前記傾斜磁場電源から出力される第2の電流の波形及び前記撮像領域に印加される第2の傾斜磁場の波形の少なくとも一方を設定又は提示する。
【選択図】 図4

Description

本発明の実施形態は、磁気共鳴イメージング(MRI: Magnetic Resonance Imaging)装置に関する。
MRI装置は、静磁場中に置かれた被検体の原子核スピンをラーモア周波数の高周波(RF: radio frequency)信号で磁気的に励起し、この励起に伴って発生する磁気共鳴(MR: magnetic resonance)信号から画像を再構成する画像診断装置である。
MRI装置の傾斜磁場電源から傾斜磁場コイルに出力される電流の波形は、典型的には直線的に立ち上がり、一定の値となった後に直線的に立ち下がる台形波である。従って、傾斜磁場コイルから撮像領域に印加される傾斜磁場の波形も、傾斜磁場コイルに出力される電流の波形に応じた波形となる。
エコープラナーイメージング(EPI: echo planar imaging)法等の高速撮像法では、撮像時間の短縮のために読出し用傾斜磁場の立ち上がり中からMRエコー信号のサンプリングを行う場合がある。傾斜磁場の強度が一定の期間にサンプリングを行う場合には、時間的に等間隔にMR信号のサンプリングを行うことで、k空間(位相空間)上において空間的に等間隔のMRデータを収集することができる。
これに対し、読出し用傾斜磁場の立ち上がり中からMRエコー信号のサンプリングを行う場合には、時間的に等間隔にサンプリングを行うとk空間上において不等間隔のMRデータが収集されることとなる。このため、MRデータの収集後において、傾斜磁場電源から傾斜磁場コイルに出力される電流の波形に基づく補間処理を含むリグリッディング(regridding)処理が実行される。具体的には、傾斜磁場コイルに出力される電流値とMRデータのサンプリング間隔の積が一定となるように時間的に不等間隔に収集されたMRデータと等価なk空間データがregridding処理によって時間的に等間隔に収集されたMRデータから生成される。これにより、k空間上において等間隔のk空間データが画像データの生成用に得られる。
特開2010−172383号公報
上述のような高速撮像法に限らず、MRIでは、よりイメージングに適した波形を有する傾斜磁場の印加が望まれる。
そこで、本発明は、MRイメージングにより適した波形を有する傾斜磁場の印加を行うことが可能な磁気共鳴イメージング装置を提供すること目的とする。
本発明の実施形態に係る磁気共鳴イメージング装置は、イメージング手段及び条件設定手段を備える。イメージング手段は、傾斜磁場コイル及び傾斜磁場電源を含む傾斜磁場発生システムを用いて被検体の磁気共鳴イメージングを行う。条件設定手段は、前記傾斜磁場電源から出力される第1の電流の波形に応じて撮像領域に印加される第1の傾斜磁場の波形に基づいて、前記磁気共鳴イメージング用に前記傾斜磁場電源から出力される第2の電流の波形及び前記撮像領域に印加される第2の傾斜磁場の波形の少なくとも一方を設定又は提示する。
本発明の実施形態に係る磁気共鳴イメージング装置の構成図。 図1に示すコンピュータの機能ブロック図。 図2に示す撮像条件設定部において設定されるEPIシーケンスの一例を示す図。 図2に示す傾斜磁場波形設定部において第1の電流波形及び第1の傾斜磁場波形に基づいて生成された第2の電流波形及び第2の傾斜磁場波形の一例を示す図。 図2に示す撮像条件設定部において設定される傾斜磁場の波形の取得用のパルスシーケンスの一例を示すシーケンスチャート。 図1に示す傾斜磁場電源及び傾斜磁場コイルを含む傾斜磁場発生システムの詳細構成例を示す回路図。 図6に示す傾斜磁場発生システムの等価回路モデルの一例を示す回路図。 図1に示す磁気共鳴イメージング装置により傾斜磁場電源からの出力電流波形と傾斜磁場波形との間における誤差を考慮してイメージングを実行する際の流れを示すフローチャート。
本発明の実施形態に係る磁気共鳴イメージング装置について添付図面を参照して説明する。
図1は本発明の実施形態に係る磁気共鳴イメージング装置の構成図である。
磁気共鳴イメージング装置20は、静磁場を形成する筒状の静磁場用磁石21、この静磁場用磁石21の内部に設けられたシムコイル22、傾斜磁場コイル23及びRFコイル24を備えている。
また、磁気共鳴イメージング装置20には、制御系25が備えられる。制御系25は、静磁場電源26、傾斜磁場電源27、シムコイル電源28、送信器29、受信器30、シーケンスコントローラ31及びコンピュータ32を具備している。制御系25の傾斜磁場電源27は、X軸傾斜磁場電源27x、Y軸傾斜磁場電源27y及びZ軸傾斜磁場電源27zで構成される。また、コンピュータ32には、入力装置33、表示装置34、演算装置35及び記憶装置36が備えられる。
静磁場用磁石21は静磁場電源26と接続され、静磁場電源26から供給された電流により撮像領域に静磁場を形成させる機能を有する。尚、静磁場用磁石21は超伝導コイルで構成される場合が多く、励磁の際に静磁場電源26と接続されて電流が供給されるが、一旦励磁された後は非接続状態とされるのが一般的である。また、静磁場用磁石21を永久磁石で構成し、静磁場電源26が設けられない場合もある。
また、静磁場用磁石21の内側には、同軸上に筒状のシムコイル22が設けられる。シムコイル22はシムコイル電源28と接続され、シムコイル電源28からシムコイル22に電流が供給されて静磁場が均一化されるように構成される。
傾斜磁場コイル23は、X軸傾斜磁場コイル23x、Y軸傾斜磁場コイル23y及びZ軸傾斜磁場コイル23zで構成され、静磁場用磁石21の内部において筒状に形成される。傾斜磁場コイル23の内側には寝台37が設けられて撮像領域とされ、寝台37には被検体Pがセットされる。RFコイル24にはガントリに内蔵されたRF信号の送受信用の全身用コイル(WBC: whole body coil)や寝台37や被検体P近傍に設けられるRF信号の受信用の局所コイルなどがある。
また、傾斜磁場コイル23は、傾斜磁場電源27と接続される。傾斜磁場コイル23のX軸傾斜磁場コイル23x、Y軸傾斜磁場コイル23y及びZ軸傾斜磁場コイル23zはそれぞれ、傾斜磁場電源27のX軸傾斜磁場電源27x、Y軸傾斜磁場電源27y及びZ軸傾斜磁場電源27zと接続される。
そして、X軸傾斜磁場電源27x、Y軸傾斜磁場電源27y及びZ軸傾斜磁場電源27zからそれぞれX軸傾斜磁場コイル23x、Y軸傾斜磁場コイル23y及びZ軸傾斜磁場コイル23zに供給された電流により、撮像領域にそれぞれX軸方向の傾斜磁場Gx、Y軸方向の傾斜磁場Gy、Z軸方向の傾斜磁場Gzを形成することができるように構成される。
RFコイル24は、送信器29及び受信器30の少なくとも一方と接続される。送信用のRFコイル24は、送信器29からRF信号を受けて被検体Pに送信する機能を有し、受信用のRFコイル24は、被検体P内部の原子核スピンのRF信号による励起に伴って発生したNMR信号を受信して受信器30に与える機能を有する。
一方、制御系25のシーケンスコントローラ31は、傾斜磁場電源27、送信器29及び受信器30と接続される。シーケンスコントローラ31は傾斜磁場電源27、送信器29及び受信器30を駆動させるために必要な制御情報、例えば傾斜磁場電源27に印加すべきパルス電流の強度や印加時間、印加タイミング等の動作制御情報を記述したシーケンス情報を記憶する機能と、記憶した所定のシーケンスに従って傾斜磁場電源27、送信器29及び受信器30を駆動させることによりX軸傾斜磁場Gx、Y軸傾斜磁場Gy,Z軸傾斜磁場Gz及びRF信号を発生させる機能を有する。
また、シーケンスコントローラ31は、受信器30におけるNMR信号の検波及びA/D (analog to digital)変換により得られた複素データである生データ(raw data)を受けてコンピュータ32に与えるように構成される。
このため、送信器29には、シーケンスコントローラ31から受けた制御情報に基づいてRF信号をRFコイル24に与える機能が備えられる一方、受信器30には、RFコイル24から受けたNMR信号を検波して所要の信号処理を実行するとともにA/D変換することにより、デジタル化された複素データである生データを生成する機能と生成した生データをシーケンスコントローラ31に与える機能とが備えられる。
また、コンピュータ32の記憶装置36に保存されたプログラムを演算装置35で実行することにより、コンピュータ32には各種機能が備えられる。ただし、プログラムの少なくとも一部に代えて、各種機能を有する特定の回路を磁気共鳴イメージング装置20に設けてもよい。
図2は、図1に示すコンピュータ32の機能ブロック図である。
コンピュータ32の演算装置35は、記憶装置36に保存されたプログラムを実行することにより撮像条件設定部40及びデータ処理部41として機能する。撮像条件設定部40は、傾斜磁場波形設定部40A、傾斜磁場波形シミュレーション部40B及び傾斜磁場波形取得部40Cを有する。また、記憶装置36は、k空間データ記憶部42、画像データ記憶部43及び傾斜磁場波形記憶部44として機能する。
撮像条件設定部40は、入力装置33からの指示情報に基づいてパルスシーケンスを含む撮像条件を設定し、設定した撮像条件をシーケンスコントローラ31に出力する機能を有する。
図3は、図2に示す撮像条件設定部40において設定されるEPIシーケンスの一例を示す図である。
図3において横軸は時間を、RFはRF送信パルスを、GSSはスライス選択(SS: slice selection)傾斜磁場パルスを、GPEは位相エンコード(PE: phase encode)傾斜磁場パルスを、GROは読み出し(RO: readout) 傾斜磁場パルスを、ECHOはMR受信エコー信号を、それぞれ示す。
図3に示すように、EPIシーケンスは、90°RFパルス及び180°RFパルスの印加によってSS傾斜磁場パルスの印加により選択されたスライスを励起した後、PE傾斜磁場パルス及びRO傾斜磁場パルスを繰り返し印加することによって、選択されたスライスから連続的に複数のMR受信エコー信号を収集するパルスシーケンスである。90°RFパルスの印加時刻からk空間中心におけるエコー信号の収集時刻までの時間は、実効エコー時間(effective TE: effective echo time)と呼ばれる。
撮像条件設定部40において設定されたパルスシーケンスは、シーケンスコントローラ31による傾斜磁場電源27や送信器29等のイメージング系の制御に使用される。すなわち、パルスシーケンスで定まる波形を有する電流の出力指示情報が制御信号としてシーケンスコントローラ31から傾斜磁場電源27及び送信器29に出力される。
そして、傾斜磁場コイル23及び傾斜磁場電源27を含む傾斜磁場発生システムによって撮像領域にパルスシーケンスに応じた波形を有する傾斜磁場が印加される。一方、送信器29及び送信用のRFコイル24を含むRF磁場発生システムによって撮像領域にパルスシーケンスに応じた波形を有するRF磁場パルスが印加される。そして、傾斜磁場発生システム及びRF磁場発生システムを含むイメージング系を用いて被検体PのMRイメージングを行うことができる。
このようなパルスシーケンスは従来、傾斜磁場電源27から傾斜磁場コイル23に出力される電流の波形と、傾斜磁場コイル23から撮像領域に印加される傾斜磁場の波形とが比例関係にあるという仮定で設計されている。例えば、図3に例示されるEPIシーケンスのように、傾斜磁場電源27から出力される電流の波形を台形波とすれば、撮像領域に印加される傾斜磁場の波形も台形波になるという前提でパルスシーケンスが設定される。これは、矩形波の場合においても同様である。
しかしながら、撮像領域に印加される傾斜磁場の波形は、傾斜磁場電源27から出力される電流の波形に対して厳密には相似しないことがシミュレーションや傾斜磁場の測定によって判明した。すなわち、傾斜磁場電源27から出力される電流の波形と撮像領域に印加される傾斜磁場の波形とは比例関係になく、傾斜磁場の波形には電流の波形に対する歪が生じる。
この原因としては、傾斜磁場発生システムの特性が正確には設計値としての理想的な特性となっていないことが考えられる。代表的な原因としては、傾斜磁場コイル23の抵抗がチャンネル毎に異なること、傾斜磁場コイル23の応答が相互誘導によって抵抗及びインダクタンスとともに電流の周波数に依存して変化することなどが挙げられる。
尚、EPIシーケンスでは、傾斜磁場コイル23に出力される電流の周波数は、エコー間隔(ETS: echo train space)に相当する。従って、EPIシーケンスの場合には、ETSに依存して傾斜磁場の歪量が変化する。特に、EPIシーケンスでは、傾斜磁場の立ち上りの波形を1/4サイン波形にしようとすると、傾斜磁場の歪量が顕著となる。
上述したように傾斜磁場の波形が歪み、電流波形との誤差が大きくなると、傾斜磁場電源27は無駄な電力を消費していることになる。すなわち、傾斜磁場発生システムの性能を十分に活用していないこととなる。
また、特にEPIシーケンス等の高速撮像用のパルスシーケンスでは、データ収集時間の短縮を図るために台形波であるRO傾斜磁場パルスの立ち上がり期間においてもMRデータが収集される。この場合、時間的に等間隔に収集されたMRデータをk空間に配置すると空間的に不等間隔となるため、k空間において等間隔のk空間データを得るためのregridding処理が実行される。
しかしながら、regridding処理は、傾斜磁場電源27から出力される電流の波形に基づいて実行される。すなわち、regridding処理では、傾斜磁場波形の電流波形に対する歪みが考慮されていない。このため、傾斜磁場波形の電流波形に対する歪みが無視できない場合には、regridding処理によって正確なk空間データを生成することが困難となる。加えて、傾斜磁場波形の電流波形に対する誤差が大きくなり、傾斜磁場波形の面積が小さくなると、画質の劣化やアーチファクトの発生に繋がる。
そこで、撮像条件設定部40の傾斜磁場波形設定部40Aには、傾斜磁場電源27から出力される第1の電流の波形に応じて撮像領域に印加される第1の傾斜磁場の波形に基づいて、MRイメージング用に傾斜磁場電源27から出力される第2の電流の波形及び撮像領域に印加される第2の傾斜磁場の波形の少なくとも一方を設定又は提示する機能が備えられる。具体的には、傾斜磁場波形設定部40Aは、傾斜磁場電源27から出力される電流の波形と撮像領域に印加される傾斜磁場の波形との間における誤差を表す指標が小さくなるように第2の電流の波形及び第2の傾斜磁場の波形の少なくとも一方を設定又は提示するように構成される。
図4は、図2に示す傾斜磁場波形設定部40Aにおいて第1の電流波形及び第1の傾斜磁場波形に基づいて生成された第2の電流波形及び第2の傾斜磁場波形の一例を示す図である。
図4の各グラフにおいて、横軸は時間を示し、縦軸は電流と傾斜磁場のスケールを合わせた相対的な振幅を示す。図4(A)は、撮像条件設定部40において初期設定された第1の電流波形及び第1の電流波形に対応する第1の傾斜磁場波形を示す。また、図4(B)は、傾斜磁場波形設定部40Aにおいて第1の電流波形及び第1の傾斜磁場波形の補正波形として生成された第2の電流波形及び第2の傾斜磁場波形を示す。
図4(A)に示すように、パルスシーケンスにおいてRO傾斜磁場パルスを台形波として定義して傾斜磁場電源27から第1の電流を出力しても、撮像領域に印加される第1の傾斜磁場の波形には、第1の電流波形に対する歪みが生じる。これは、矩形波等の他の波形についても同様であり、矩形波として電流を出力しても、傾斜磁場は正確な矩形波とはならない。
そこで、第1の傾斜磁場波形の第1の電流波形に対する誤差を低減させる補正処理を行うことによって図4(B)に示すように、乖離量が低減された第2の電流波形及び第2の傾斜磁場波形を得ることができる。具体的には、振幅が不連続に変化する部分が滑らかに変化するように補正された第2の電流波形が得られる。従って、初期波形である第1の電流波形が台形波であれば、立ち上がりの部分を鈍らせた波形が第2の電流波形となる。
尚、第2の傾斜磁場波形は、第2の電流波形に応じた波形となるため、第2の傾斜磁場波形は、第1の傾斜磁場波形とは異なる波形となる。
傾斜磁場波形設定部40Aでは、第2の電流波形及び第2の傾斜磁場波形のいずれかを求めるようにしてもよいし、第2の電流波形及び第2の傾斜磁場波形の組合せを求めるようにしてもよい。そして、求められた第2の電流波形及び第2の傾斜磁場波形は、撮像条件として自動設定することができる。或いは、第2の電流波形及び第2の傾斜磁場波形を撮像条件の候補として表示装置34に一旦提示し、入力装置33の操作によるユーザの確認を促すようにしてもよい。
図4に示す第1及び第2の傾斜磁場波形は、それぞれ第1及び第2の電流波形に基づくシミュレーションによって計算された波形である。図4に例示されるように、電流波形に対応する傾斜磁場の波形は、傾斜磁場コイル23及び傾斜磁場電源27を含む傾斜磁場発生システムを適切にモデル化した傾斜磁場波形シミュレーションによって求めることができる。従って、第2の電流の波形及び第2の傾斜磁場の波形の少なくとも一方を設定又は提示するための元データとなる第1の傾斜磁場の波形として、第1の電流の波形に基づくシミュレーションによって取得された傾斜磁場の波形を用いることができる。
但し、シミュレーションに限らず、他の方法によって傾斜磁場電源27から出力される電流の波形に対応する傾斜磁場の波形を求めることもできる。具体例として、パルスシーケンスをシーケンスコントローラ31に出力することによって傾斜磁場電源27から実際に対象となる波形の電流を出力させ、撮像領域に印加された傾斜磁場を測定する方法が挙げられる。また、別の具体例として、パルスシーケンスをシーケンスコントローラ31に出力することによって傾斜磁場電源27から実際に対象となる波形の電流を出力させ、傾斜磁場が印加された状態で収集されたMR信号に基づいて傾斜磁場を計算する方法が挙げられる。
つまり、傾斜磁場発生システムにより実際に傾斜磁場電源27から第1の電流の波形を有する電流を出力させることによって第1の傾斜磁場の波形を有する傾斜磁場を撮像領域に印加し、撮像領域に印加された第1の傾斜磁場の波形に基づいて第2の電流の波形及び第2の傾斜磁場の波形の少なくとも一方を設定又は提示することができる。
従って、第2の電流の波形及び第2の傾斜磁場の波形の少なくとも一方を求めるために必要となる第1の傾斜磁場の波形としては、傾斜磁場波形シミュレーションによって取得された傾斜磁場の波形、第1の電流の波形を傾斜磁場電源27から実際に出力させることによって測定された傾斜磁場の波形或いは第1の電流の波形を傾斜磁場電源27から実際に出力させることによって収集されたMR信号に基づいて求められた傾斜磁場の波形など、様々な方法によって取得した波形を用いることができる。
そこで、傾斜磁場波形シミュレーション部40Bには、傾斜磁場波形シミュレーションによって傾斜磁場電源27から出力される電流の波形に対応する傾斜磁場の波形を求める機能が備えられる。また、傾斜磁場波形取得部40Cには、傾斜磁場波形シミュレーション以外の任意の方法によって傾斜磁場電源27から出力される電流の波形に対応する傾斜磁場の波形を求める機能が備えられる。そして、傾斜磁場波形シミュレーション部40B又は傾斜磁場波形取得部40Cにおいて求められた傾斜磁場の波形は、傾斜磁場波形設定部40Aに与えられるように構成される。
傾斜磁場波形の測定は、サーチコイル及び積分器を含む傾斜磁場測定系を用いて行うことができる。その場合には、図2に示すように、サーチコイル50、積分器51、増幅器52及びA/D変換器53が磁気共鳴イメージング装置20に備えられる。
サーチコイル50は、傾斜磁場が印加される撮像領域に設置される。そして、サーチコイル50によって傾斜磁場の微分成分が検出される。サーチコイル50によって検出された傾斜磁場の微分成分は積分器51に出力される。そして、積分器51における傾斜磁場の微分成分の積分処理によって傾斜磁場の波形が再現される。
積分器51において取得された傾斜磁場の波形は、増幅器52で増幅された後、A/D変換器53においてデジタル情報に変換される。そして、デジタル信号化された傾斜磁場の波形がA/D変換器53からコンピュータ32の傾斜磁場波形取得部40Cに出力されるように構成される。
一方、傾斜磁場の波形は、傾斜磁場の波形の取得用のパルスシーケンスに従って収集されたMR信号に基づいて計算することもできる。そこで、撮像条件設定部40には、傾斜磁場の波形の取得用のパルスシーケンスをデータ収集条件として設定し、設定したパルスシーケンスを含むデータ収集条件をシーケンスコントローラ31に出力する機能が備えられる。
また、傾斜磁場波形取得部40Cには、傾斜磁場の波形の取得用のパルスシーケンスに従って収集されたMR信号をシーケンスコントローラ31からデータ処理部41を通じて取得し、取得したMR信号に基づいて傾斜磁場の波形を求める機能が備えられる。
図5は、図2に示す撮像条件設定部40において設定される傾斜磁場の波形の取得用のパルスシーケンスの一例を示すシーケンスチャートである。
図5において横軸は時間を、RFはRF送信パルス及びデータ収集期間を、Gは傾斜磁場パルスを、それぞれ示す。図5に示すように、RF励起パルスとともにSS傾斜磁場パルスGssを印加した後に、エンコード傾斜磁場パルスGek及び計測対象となる傾斜磁場Gmeasuredを順に印加するパルスシーケンスを、エンコード傾斜磁場パルスGekの強度をステップ状に変化させながら繰返すことによって傾斜磁場波形の取得用のMR信号を収集することができる。
MR信号の収集期間は計測対象となる傾斜磁場Gmeasuredの印加期間中とされ、時刻t (t=t1, t2, t3, ..., tm)における時系列の自由誘導減衰(FID: free induction decay)信号が収集される。従って、エンコード傾斜磁場パルスGekの強度をGek=Ge1, Ge2, Ge3, ..., Genまでステップ状に変化させると、m×n個のMRデータS(t, Gek)が収集される。
そして、傾斜磁場波形取得部40Cでは、MRデータS(t, Gek)に基づいて計測対象となる傾斜磁場Gmeasuredを求めることができる。具体的には、式(1)の演算によって時間的に隣接するMRデータS(t, Gek)間の位相差を位相角とするk空間データD(t, Gek)が求められる。
D(t, Gek)=S(t, Gek)*S*(t+Δt, Gek) (1)
但し、式(1)においてデータS*(t, Gek)は、データS(t, Gek)の共役複素数であり、Δtは隣接する時刻間における時間差である。
次に、エンコード傾斜磁場パルスGekの強度が同一のk空間データD(t, Gek)を加算することによって時刻tごとのk空間データd(t)が求められる。そうすると、式(2)により隣接する時刻間における傾斜磁場差ΔG(t)を求めることができる。
ΔG(t)=arctan{d(t)}/(2πγzΔt) (2)
但し、式(2)においてarctan()は逆正接関数、γは磁気回転比、zは傾斜磁場Gmeasuredの印加軸方向におけるスライス位置、Δtは隣接する時刻間における時間差である。
そして、式(2)により得られた傾斜磁場差ΔG(t)を任意の時刻Tまで積算することによって時刻Tにおける傾斜磁場の強度G(T)、つまり測定対象となる傾斜磁場Gmeasuredの波形を求めることができる。
尚、図5に示されたパルスシーケンスは一例であり、他のパルスシーケンスを用いて傾斜磁場の波形を求めることもできる。例えば、図5に示すエンコード傾斜磁場パルスGekに代えてリフェーズパルスの印加を伴う時系列のFID信号S(t)の収集を1回実行し、FID信号S(t)に基づいて傾斜磁場の波形を求めることもできる。この場合には、エンコード傾斜磁場パルスGekの強度ごとのk空間データの加算処理を省略した計算によって同様に傾斜磁場Gmeasuredの波形を求めることができる。
一方、上述したように傾斜磁場波形シミュレーション部40Bにおける傾斜磁場波形シミュレーションによれば、実際に傾斜磁場電源27から電流を出力させずに電流波形に対応する傾斜磁場波形を計算によって求めることができる。傾斜磁場波形シミュレーションは、傾斜磁場電源27、傾斜磁場コイル26及びシーケンスコントローラ31のように傾斜磁場の生成に寄与する構成要素を可能な限り含む傾斜磁場発生システムの等価回路モデルを用いて実行することができる。
図6は、図1に示す傾斜磁場電源27及び傾斜磁場コイル23を含む傾斜磁場発生システムの詳細構成例を示す回路図である。
図6に示すように、傾斜磁場電源27は、ブレーカ122と、整流器123と、直流電源124と、電解コンデンサ126、126'、126"と、傾斜磁場アンプ128、128'、128"と、電流検出器130、130'、130"とを有する。即ち、図1に示すX、Y、Z軸傾斜磁場電源27x、27y、27zは、ブレーカ122と、整流器123と、定電圧(CV: Constant Voltage)/定電流(CC: Constant Current)特性を持つ直流電源124とを共有する。
尚、CV/CC特性を持つ直流電源は、負荷が軽いときには定電圧を出力して負荷が重くなり、ある電流以上を流す必要が生じた際には、一定電流を負荷に供給する制御を行う電源である。
ブレーカ122は、外部の交流電源120からの出力電流が定格電流値を超えた場合に、交流電源120と、整流器123との間を電気的に遮断する。整流器123は、交流電源120からの交流の供給電力を直流電力に変換して直流電源124に供給する。
直流電源124は、整流器123を介して供給される直流電流で電解コンデンサ126、126'、126"を充電し、傾斜磁場アンプ128、128'、128"に直流電流を供給する。また、直流電源124は、傾斜磁場アンプ128、128'、128"側の負荷が軽い場合には定電圧源として動作し、負荷が重い場合には定電流源として動作する。
各傾斜磁場アンプ128、128'、128"は、それぞれ+側入力端子(+in)、−側入力端子(-in)、+側出力端子(+out)及び−側出力端子(-out)を有する。また、傾斜磁場アンプ128、128'、128"は、直流電源124から電力供給をそれぞれ受けると共に、シーケンスコントローラ31からの制御信号を+側入力端子においてそれぞれ受ける。シーケンスコントローラ31から傾斜磁場アンプ128、128'128"に入力される各制御信号は、パルスシーケンスに従ってX、Y、Z軸傾斜磁場コイル23x、23y、23zによりそれぞれ撮像領域に印加すべき傾斜磁場波形に相似する波形を有する電圧信号である。
電流検出器130、130'、130"はそれぞれ、傾斜磁場アンプ128、128'、128"の−側出力端子に流入する電流の電流値を検出する。電流検出器130、130'、130"において検出される電流の大きさは、傾斜磁場アンプ128、128'、128"の+側出力端子から出力される電流に等しい。これは、各傾斜磁場アンプ128、128'、128"の+側出力端子から出力される電流はそれぞれ、傾斜磁場コイル23x、23y、23zを流れて傾斜磁場アンプ128、128'、128"の−側出力端子に戻るからである。
電流検出器130、130'、130"はそれぞれ、検出した電流の電流値を示す電圧信号を生成して、生成した電圧信号を傾斜磁場アンプ128、128'、128"の−側入力端子に入力する。
傾斜磁場アンプ128、128'、128"は、+/−側入力端子間の誤差信号が0になるように電流を出力する電流源として動作する。ここで、傾斜磁場アンプ128、128'、128"の出力電流は電流検出器130、130'、130"によって負帰還となっている。このため、+側入力端子への入力電圧に比例する電流を+側出力端子から出力するように、フィードバック制御が行われる。
図7は、図6に示す傾斜磁場発生システムの等価回路モデルの一例を示す回路図である。
図7において、X軸傾斜磁場電源27xは、図6に示すブレーカ122、整流器123、直流電源124、電解コンデンサ126、傾斜磁場アンプ128及び電流検出器130とに対応する。同様に、Y軸傾斜磁場電源27yは、ブレーカ122、整流器123、直流電源124、電解コンデンサ126'、傾斜磁場アンプ128'及び電流検出器130'に対応し、Z軸傾斜磁場電源27zは、ブレーカ122、整流器123、直流電源124、電解コンデンサ126"、傾斜磁場アンプ128"及び電流検出器130"に対応する。そこで、ここでは、X軸傾斜磁場の傾斜磁場発生システムの等価回路モデルについて説明する。
図7に示すように等価回路モデル140xは、1次側として、X軸傾斜磁場電源27x、X軸傾斜磁場コイル23xの抵抗成分に相当する抵抗23xR及びX軸傾斜磁場コイル23xのインダクタンス成分に相当するコイル23xLを直列に接続した構成である。
また、等価回路モデル140xは、抵抗141R及び仮想コイル141Lの直列回路を第1の2次側回路として有する。さらに、等価回路モデル140xは、抵抗142R及び仮想コイル142Lの直列回路を第2の2次側回路として有する。コイル23xLと、仮想コイル141Lとが互いに磁気的に結合している。また、コイル23xLと、仮想コイル142Lとが互いに磁気的に結合している。
周波数が高くなると、X、Y、Z軸傾斜磁場コイル23x、23y、23zの各インピーダンスは、1つの抵抗成分及び1つのインダクタンス成分の和で表される単純なモデルのように単純に増加しない。例えば、高周波電流が導体を流れる時、実際には、電流密度が導体の表面で高く、表面から離れると低くなる。すなわち、表皮効果により、周波数が高くなるほど電流が表面へ集中する。この結果、導体の交流抵抗は高くなる。
従って、表皮効果等を考慮すると、傾斜磁場発生システムのインピーダンスを表す多項式において、X軸傾斜磁場コイル23xの抵抗23xRの抵抗値が含まれる項も、周波数に依存して変化する項とすることが望ましい。そこで、例えば、抵抗23xRの抵抗値にも角周波数ωが乗じられるような等価回路モデル、つまりインピーダンスの虚部のみならず実部も周波数依存性を有する等価回路モデルを傾斜磁場波形シミュレーションに用いることが望ましい。
また、実際には、X、Y、Z軸傾斜磁場コイル23x、23y、23zにパルス電流を供給すると渦電流が発生する。このため、渦電流による渦磁場がX、Y、Z軸方向の各傾斜磁場Gx、Gy、Gzに加わって傾斜磁場分布の歪みが生じる。渦磁場を考慮すると、相互インダクタンスも含まれた等価回路モデルを傾斜磁場波形シミュレーションに用いることが望ましい。
また、傾斜磁場発生システムには、所定の周波数以上の高周波電流を遮断するためのチョークコイルが設けられる場合がある。この場合、複数の相互インダクタンスが含まれた等価回路モデルを傾斜磁場波形シミュレーションに用いることが望ましい。
図7に示す等価回路モデル140xは、このような点を考慮して作成されたモデルの一例である。従って、図7に例示される等価回路モデル140xに限らず、傾斜磁場発生システムの回路構成や特性に応じた等価回路モデルを作成することができる。
図7に示す等価回路モデル140xの場合には、X軸方向における傾斜磁場の波形Gx(t)を式(3)によって計算することができる。
Gx(t)= aIout(t)+bI1(t)+cI2(t) (3)
但し、式(3) において、aは図7に示すコイル23xLの電流感度、bは仮想コイル141Lの電流感度、cは仮想コイル142Lの電流感度、Iout(t)はX軸傾斜磁場電源27xからの出力電流波形、I1(t)は第1の2次側回路を流れる電流、I2(t)は第2の2次側回路を流れる電流である。尚、電流感度は、コイルに電流を流すことで発生する傾斜磁場の強度[T/m]を、コイルに流す電流値[A]で除算して得られる定数である。
式(3)によって傾斜磁場の波形Gx(t)を計算すれば、X軸傾斜磁場電源27xからの出力電流Iout(t)に比例しない渦磁場等の磁場が加算された正確な傾斜磁場の波形を求めることができる。すなわち、仮想コイル141L、142Lによって生じる仮想的な傾斜磁場波形bI1(t)、cI2(t)をX軸傾斜磁場電源27xからの出力電流Iout(t)に比例する傾斜磁場波形aIout(t)に加算した正確な傾斜磁場の波形Gx(t)を求めることができる。
式(3)においてX軸傾斜磁場電源27xからの出力電流Iout(t)は、パルスシーケンスで定められるため既知である。一方、仮想コイル141Lを流れる電流I1(t)及び仮想コイル142Lを流れる電流I2(t)は、それぞれ式(4-1)及び式(4-2)により計算することができる。
R1I1(t)+L1{dI1(t)/dt}+M1{dIout(t)/dt}=0 (4-1)
R2I2(t)+L2{dI2(t)/dt}+M2{dIout(t)/dt}=0 (4-2)
但し、式(4-1)及び式(4-2)において、R1は抵抗141Rの抵抗値、R2は抵抗142Rの抵抗値、L1は仮想コイル141Lの自己インダクタンス値、L2は仮想コイル142Lの自己インダクタンス値、M1はコイル26xLと仮想コイル141Lとの相互インダクタンス値、M2はコイル26xLと仮想コイル142Lとの相互インダクタンス値である。
更に、等価回路モデル140xにおいて、X軸傾斜磁場電源44xから見たX軸傾斜磁場コイル26xのインピーダンスは、X軸傾斜磁場コイル26xにおける抵抗23xRの抵抗値Rload及びコイル23xLの自己インダクタンス値Lload並びに式(4-1)及び式(4-2)の係数となっている抵抗141R及び抵抗142Rの各抵抗値R1、R2、仮想コイル141L及び仮想コイル142Lの自己インダクタンス値L1、L2、コイル26xLと仮想コイル141L及び仮想コイル142Lとの相互インダクタンス値M1、M2を含む式で表すことができる。具体的には、実部及び虚部についての2つの式でX軸傾斜磁場コイル26xのインピーダンスを表すことができる。
X軸傾斜磁場コイル26xのインピーダンスを表す式において、X軸傾斜磁場コイル26xにおける抵抗23xRの抵抗値Rload及びコイル23xLの自己インダクタンス値Lloadは、設計値又は測定値を用いることができる。そうすると、X軸傾斜磁場コイル26xのインピーダンスの周波数特性を表す式と、X軸傾斜磁場コイル26xのインピーダンスの周波数特性の測定値とのカーブフィッティングによって式(4-1)及び式(4-2)の係数を求めることができる。
尚、コイル141Lを流れる電流I1(t)の初期値及びコイル142Lを流れる電流I2(t)の初期値は、過去の傾斜磁場の印加から十分な時間が経過していれば、双方ともゼロとすることができる。この結果、式(3)における未知数がなくなり、傾斜磁場の波形Gx(t)を求めることができる。
従って、パルスシーケンスにおいて定義された傾斜磁場電源27からの第1の電流Iout(t)に基づいて、第1の電流Iout(t)に対応する第1の傾斜磁場の波形Gx(t)を傾斜磁場波形シミュレーションによって計算することができる。すなわち、傾斜磁場発生システムの等価回路における仮想コイルによって生成される傾斜磁場の計算を含むシミュレーションによって取得された傾斜磁場の波形を、第1の傾斜磁場波形として用いることができる。
尚、非線形成分の項を含む式によって電流波形に対応する傾斜磁場波形を計算することが可能であれば、任意のモデルを用いてシミュレーションを行うことができる。換言すれば、傾斜磁場の非線形成分の項が生じるように任意の方法で傾斜磁場発生システムのモデル化を行うことができる。
傾斜磁場波形設定部40Aにおいて初期波形としての第1の電流波形及び第1の傾斜磁場波形が定まると、第1の電流波形と第1の傾斜磁場波形との間における誤差を表す指標を低減させる処理によってイメージング用の最終波形となる第2の電流波形及び第2の傾斜磁場波形を生成することが可能となる。
第1の電流波形と第1の傾斜磁場波形との間における誤差を表す指標Dindexとしては、例えば互いにスケールを合わせた第1の電流波形の面積Siと第1の傾斜磁場波形の面積Sgとの差を用いることができる。この場合における誤差の指標Dindexは、式(5)で定義することができる。
Dindex=Si-Sg (5)
別の例として、互いにスケールを合わせた第1の電流波形の面積Siに対する第1の電流波形の面積Siと第1の傾斜磁場波形の面積Sgとの差の割合を誤差の指標Dindexとすることもできる。この場合における誤差の指標Dindexは、式(6)で定義することができる。
Dindex=(Si-Sg)/Si (6)
更に別の例として、第1の電流波形と第1の傾斜磁場波形との差として得られる誤差波形を周波数分解し、EPI法において位相方向に出現するN/2アーチファクトの原因となる高周波成分の量を誤差の指標Dindexとすることもできる。
このように任意の方法で電流波形と傾斜磁場波形との間における誤差を表す指標Dindexを定義することができる。誤差を表す指標Dindexが定義されると、指標Dindexを低減化又は最小化する計算によって第2の電流波形及び第2の傾斜磁場波形を生成することが可能となる。
第2の電流波形及び第2の傾斜磁場波形の計算方法としては、例えば、遺伝的アルゴリズム等の最適化アルゴリズムを用いた最適化計算によって誤差の指標を最小化する方法が挙げられる。すなわち、第1の電流波形と第1の傾斜磁場波形と間における誤差の指標を最小にする最適化アルゴリズムによって第2の電流の波形及び第2の傾斜磁場の波形の少なくとも一方を求めることができる。この方法は、電流に対応する傾斜磁場波形の計算を繰返す処理となるため、傾斜磁場波形シミュレーションによる傾斜磁場波形の計算が繰り返されることとなる。
別の計算方法として第1の傾斜磁場波形に対する誤差を最小にするカーブフィッティングによって第2の電流の波形を求める方法が挙げられる。具体的には、指数関数の係数をパラメータとして立ち上がり期間を鈍らせた電流波形を生成し、指数関数の係数の最適化によって第1の傾斜磁場波形に近づけた電流波形として第2の電流波形を求めることができる。
更に別の計算方法として第1の傾斜磁場波形を初期の傾斜磁場波形とし、傾斜磁場波形を傾斜磁場波形シミュレーションに電流波形として入力させて傾斜磁場波形を再計算するループ計算を繰返す方法が挙げられる。このループ計算を所定回数実行すると、誤差が低減された第2の電流波形及び第2の傾斜磁場波形を得ることができる。すなわち、傾斜磁場コイル23から撮像領域に印加される傾斜磁場の波形を傾斜磁場電源27から出力される電流の波形とする計算を繰返すことによって第2の電流の波形及び第2の傾斜磁場の波形の少なくとも一方を求めることができる。
第2の電流の波形及び第2の傾斜磁場の波形の計算に当たって必要となる誤差の許容値は、要求される画質や撮像目的に応じて任意に決定することができる。また、傾斜磁場の強度等の撮像条件によっても傾斜磁場波形の歪み量が変化するため、誤差の許容値を変えることができる。
一例として、N/2アーチファクト等のアーチファクトの発生を回避することが可能な電流波形と傾斜磁場波形との間における誤差の上限を予め計測する方法が挙げられる。そして、信号領域において電流波形と傾斜磁場波形との誤差がアーチファクトの回避に要求される誤差の上限を超える部分が信号領域全体の所定の割合以下となるように誤差の許容値を決定してもよい。或いは、傾斜磁場波形シミュレーションによる傾斜磁場波形の計算を繰返すことによって電流波形と傾斜磁場波形との間における誤差が収束する場合には、収束値に基づいて誤差の許容値を決定することができる。
また、複数の誤差の許容値を設定することもできる。この場合には、誤差の許容値ごとに第2の電流波形と第2の傾斜磁場波形の組合せが求められることとなる。そこで、複数の誤差の許容値に対応する複数の第2の電流波形と第2の傾斜磁場波形の組合せをイメージング用の候補として表示装置34に提示し、入力装置33の操作によってユーザが選択できるようにしてもよい。
尚、第2の電流波形及び第2の傾斜磁場波形をシミュレーション等によって求める際は、対応するパルスシーケンスを用いた撮像条件のうち最も傾斜磁場波形が歪む条件として求めることが望ましい。例えば、撮影視野(FOV: field of view)を最小とし、かつ最大の電流レベルで電流を出力させる条件が最も傾斜磁場波形が歪む条件に該当する。
また、第2の電流波形の積分値は、誤差の低減処理の結果、初期波形である第1の電流波形の積分値よりも小さくなる。従って、画像データの分解能が劣化しないように、実際には、第2の電流波形の積分値が第1の電流波形の積分値と同等になるように、第2の電流波形の波高値を調整してイメージング用の撮像条件とすることが望ましい。そこで、第2の電流波形のスケーリングを行うことによって簡易に第2の電流波形の波高値及び面積を調整することができる。これは、第1の傾斜磁場波形と第2の傾斜磁場波形との関係においても同様である。
第2の電流波形及び第2の傾斜磁場波形の算出は、イメージング毎に行うことができるが、磁気共鳴イメージング装置20の設計時や据付時に行うようにしてもよい。そこで、一旦求められた撮像条件や装置ごとに適切な第2の電流波形及び第2の傾斜磁場波形をライブラリ化することができる。また、傾斜磁場波形シミュレーションの結果や傾斜磁場波形の測定結果についてもライブラリ化することができる。
具体的には、傾斜磁場電源27から出力され得る互いに異なる複数の電流の波形に対応する複数の傾斜磁場の波形を傾斜磁場波形記憶部44に記憶しておくことができる。同様に、初期波形として設定された第1の電流の波形及び第1の傾斜磁場の波形に対応する第2の電流の波形及び第2の傾斜磁場の波形についても傾斜磁場波形記憶部44に保存してライブラリ化することが可能である。
これにより、傾斜磁場波形設定部40Aは、傾斜磁場波形記憶部44から取得した第1の電流の波形に対応する第1の傾斜磁場の波形に基づいて第2の電流の波形及び第2の傾斜磁場の波形の少なくとも一方を設定又は提示することが可能となる。このため、シミュレーションに要する時間を短縮したり、傾斜磁場波形の取得のための傾斜磁場電源27からの電流波形の出力を省略することが可能となる。更に、第2の電流の波形及び第2の傾斜磁場の波形の生成のための処理自体も省略することが可能である。
一方、コンピュータ32のデータ処理部41は、撮像条件設定部40において設定された撮像条件下におけるイメージングスキャンによって収集されたMR信号をシーケンスコントローラ31から取得してk空間データ記憶部42に形成されたk空間に配置する機能、k空間データ記憶部42からk空間データを取り込んでフーリエ変換(FT: Fourier transform)を含む画像再構成処理を施すことにより画像データを再構成する機能、再構成して得られた画像データを画像データ記憶部43に書き込む機能、画像データ記憶部43から取り込んだ画像データに必要な画像処理を施して表示装置34に表示させる機能を有する。
次に磁気共鳴イメージング装置20の動作及び作用について説明する。
図8は、図1に示す磁気共鳴イメージング装置20により傾斜磁場電源27からの出力電流波形と傾斜磁場波形との間における誤差を考慮してイメージングを実行する際の流れを示すフローチャートである。
まずステップS1において、撮像条件設定部40においてEPIシーケンス等のパルスシーケンスを含む撮像条件が設定される。
次に、ステップS11において、傾斜磁場波形設定部40Aは、傾斜磁場波形と電流波形とが相似するとの前提で設定されたパルスシーケンスにおける傾斜磁場の制御値を、傾斜磁場を生成するための初期の電流波形である第1の電流波形として設定する。
次に、ステップS12において、傾斜磁場波形設定部40Aは、初期設定された第1の電流波形に対応する第1の傾斜磁場波形を取得する。第1の傾斜磁場波形は、傾斜磁場波形シミュレーション部40Bにおける、第1の電流波形を入力とする傾斜磁場波形シミュレーションによって求めることができる。
尚、撮像断面がオブリーク断面である場合のように、撮像条件や磁気共鳴イメージング装置20の状態によって傾斜磁場波形の電流波形に対する歪量が変化する場合がある。例えば、傾斜磁場の印加方向や強度に応じて傾斜磁場波形の歪量が変化する場合がある。
そこで、磁気共鳴イメージング装置20の状態を表す情報や撮像条件をパラメータとする傾斜磁場波形シミュレーションによって磁気共鳴イメージング装置20の状態及び撮像条件に応じたより正確な傾斜磁場波形を求めることができる。
或いは、傾斜磁場波形シミュレーションに依らず、第1の電流波形を傾斜磁場電源27から出力させるプレスキャンを行って傾斜磁場波形を取得するようにしてもよい。具体的には、サーチコイル50及び積分器51で構成される傾斜磁場波形の検出システムを用いて傾斜磁場波形を検出したり、プレスキャンによって傾斜磁場の印加期間中に収集されたFID信号に基づく演算によって傾斜磁場波形を求めることができる。この場合には、傾斜磁場波形取得部40Cにより第1の電流波形に対応する第1の傾斜磁場波形が取得される。
次に、ステップS13において、傾斜磁場波形設定部40Aは、第1の電流波形と第1の傾斜磁場波形との間における誤差を算出する。次に、ステップS14において、傾斜磁場波形設定部40Aは、第1の電流波形と第1の傾斜磁場波形との間における誤差が誤差の許容値として予め決定された閾値以下であるか否かを判定する。
そして、第1の電流波形と第1の傾斜磁場波形との間における誤差が閾値以下ではないと判定された場合には、ステップS15において、傾斜磁場波形設定部40Aが電流波形を変更する。具体的には、電流波形をパラメータとして誤差を最小にする最適化アルゴリズムや指数関数による傾斜磁場波形へのカーブフィッティングによって電流波形が変更される。或いは、スケールを合わせた傾斜磁場波形自体を電流波形に設定するようにしてもよい。
そして、再びステップS12において変更された電流波形に対応する傾斜磁場波形が任意の方法で取得される。但し、傾斜磁場波形の取得が繰返される場合には、傾斜磁場波形シミュレーションにより計算で求めることが現実的である。
そして、上述したような電流波形の変更及び変更された傾斜磁場波形の取得は、ステップS14において電流波形と傾斜磁場波形との間における誤差が閾値以下であると判定されるまで繰返される。この結果、乖離量が閾値以下となった第2の電流波形と第2の傾斜磁場波形の組合せを得ることができる。
そして、得られた第2の電流波形と第2の傾斜磁場波形の組合せは、ステップS14において撮像条件として提示又は設定される。また、撮像条件設定部40において、第2の電流波形の撮像条件としての確定処理や他の必要な撮像条件の設定を行うことができる。
撮像条件設定部40において撮像条件の設定が完了すると、ステップS2においてシーケンスコントローラ31や静磁場用磁石21等を含むイメージング系によってMRイメージングが実行される。
具体的には予め寝台37に被検体Pがセットされ、静磁場電源26により励磁された静磁場用磁石21(超伝導磁石)の撮像領域に静磁場が形成される。また、シムコイル電源28からシムコイル22に電流が供給されて撮像領域に形成された静磁場が均一化される。
そして、入力装置33から撮像条件設定部40にスキャン開始指示が与えられると、撮像条件設定部40はパルスシーケンスを含む撮影条件をシーケンスコントローラ31に出力する。このため、シーケンスコントローラ31は、パルスシーケンスに従って傾斜磁場電源27、送信器29及び受信器30を駆動させることにより被検体Pがセットされた撮像領域に傾斜磁場を形成させるとともに、RFコイル24からRF信号を発生させる。
このため、被検体Pの内部における磁気共鳴により生じたMR信号が、RFコイル24により受信されて受信器30に与えられる。受信器30は、RFコイル24からMR信号を受けて、所要の信号処理を実行した後、A/D変換することにより、デジタルデータのMR信号である生データを生成する。受信器30は、生成した生データをシーケンスコントローラ31に与える。シーケンスコントローラ31は、生データをコンピュータ32のデータ処理部41に出力する。
そうすると、データ処理部41は、イメージングスキャンによって収集されたMR信号をk空間データ記憶部42に形成されたk空間に配置する。続いて、データ処理部41はk空間データ記憶部42からk空間データを取り込んで画像再構成処理を施すことにより画像データを生成する。そして、画像データに必要な画像処理を施して表示装置34に表示させたり、画像データ記憶部43に書き込んで保存することができる。
尚、図8には、傾斜磁場波形との誤差が小さくなるような傾斜磁場電源27の出力電流波形をイメージング毎に事前に求める場合の流れを示したが、磁気共鳴イメージング装置20の設計時や据付時において傾斜磁場波形との誤差が小さくなるような電流波形を求めるようにしてもよい。
磁気共鳴イメージング装置20やパルスシーケンスの設計時に傾斜磁場波形との誤差が小さくなるようなイメージング用の第2の電流波形を求める場合には、傾斜磁場電源27及び傾斜磁場コイル23を含む磁気共鳴イメージング装置20の設計値に基づいて傾斜磁場発生システムの特性を表すパラメータを見積もることができる。そして、見積もられたパラメータ値を用いた傾斜磁場波形シミュレーションによって傾斜磁場波形との誤差が小さくなるようなイメージング用の第2の電流波形をパルスシーケンス毎に計算することができる。更に、計算されたパルスシーケンス毎のイメージング用の第2の電流波形を傾斜磁場波形記憶部44に記憶させ、イメージングの際にパルスシーケンスに対応する第2の電流波形及び第2の電流波形に対応する第2の傾斜磁場波形を撮像条件として用いることができる。
一方、磁気共鳴イメージング装置20の据付時においても同様に傾斜磁場波形との誤差が小さくなるようなイメージング用の第2の電流波形を求めて傾斜磁場波形記憶部44に保存しておくことができる。但し、傾斜磁場コイル23のインダクタンスやキャパシタンス等の傾斜磁場発生システムの設計誤差のばらつきに応じた適切な第2の電流波形を求めることができる。その場合には、傾斜磁場コイル23等のハードウェアの特性のばらつきを模擬した傾斜磁場波形シミュレーションによって第2の電流波形が計算されることとなる。或いは、サーチコイル50及び積分器51で構成される傾斜磁場波形の検出システムを用いた傾斜磁場波形の検出やMR信号に基づく傾斜磁場波形の取得が必要となる。
傾斜磁場波形シミュレーションを実行する場合には、傾斜磁場波形シミュレーションによって計算された傾斜磁場波形と、傾斜磁場波形の検出システムによって検出された傾斜磁場波形又はMR信号に基づいて取得された傾斜磁場波形とを比較することによって傾斜磁場波形シミュレーションに用いられるパラメータを傾斜磁場発生システムの特性に適合させることができる。そして、パルスシーケンス毎に傾斜磁場波形が最も歪む条件で傾斜磁場波形シミュレーションを実行することにより、傾斜磁場発生システムの特性のばらつきに応じた第2の電流波形及び第2の電流波形に対応する第2の傾斜磁場波形を求めることができる。
つまり以上のような磁気共鳴イメージング装置20は、初期波形として設定された傾斜磁場電源27から第1の電流波形に対応する第1の傾斜磁場波形を求め、電流波形と傾斜磁場波形との間における誤差が低減されるように補正された第2の電流波形及び第2の傾斜磁場波形をイメージング用に提示又は設定するようにしたものである。
このため、磁気共鳴イメージング装置20によれば、傾斜磁場電源27から出力される電流波形により近い波形を有する傾斜磁場を撮像領域に印加することが可能となる。従って、傾斜磁場波形を台形や矩形に近づけるための急激な立ち上りを有する電流の出力を回避すすることができる。この結果、傾斜磁場アンプへの負荷が減り、傾斜磁場発生システムの性能を最大限引き出すことが可能となる。
特に、EPIにおいてETL (echo train length)に課される制限を緩和することができる。また、EPIにおけるregridding処理を、より正確に行うことが可能となる。従って、画質の劣化やアーチファクトを低減することができる。
以上、特定の実施形態について記載したが、記載された実施形態は一例に過ぎず、発明の範囲を限定するものではない。ここに記載された新規な方法及び装置は、様々な他の様式で具現化することができる。また、ここに記載された方法及び装置の様式において、発明の要旨から逸脱しない範囲で、種々の省略、置換及び変更を行うことができる。添付された請求の範囲及びその均等物は、発明の範囲及び要旨に包含されているものとして、そのような種々の様式及び変形例を含んでいる。
20 磁気共鳴イメージング装置
21 静磁場用磁石
22 シムコイル
23 傾斜磁場コイル
24 RFコイル
25 制御系
26 静磁場電源
27 傾斜磁場電源
28 シムコイル電源
29 送信器
30 受信器
31 シーケンスコントローラ
32 コンピュータ
33 入力装置
34 表示装置
35 演算装置
36 記憶装置
37 寝台
40 撮像条件設定部
41 データ処理部
42 k空間データ記憶部
43 画像データ記憶部
44 傾斜磁場波形記憶部
50 サーチコイル
51 積分器
52 増幅器
53 A/D変換器
P 被検体

Claims (11)

  1. 傾斜磁場コイル及び傾斜磁場電源を含む傾斜磁場発生システムを用いて被検体の磁気共鳴イメージングを行うイメージング手段と、
    前記傾斜磁場電源から出力される第1の電流の波形に応じて撮像領域に印加される第1の傾斜磁場の波形に基づいて、前記磁気共鳴イメージング用に前記傾斜磁場電源から出力される第2の電流の波形及び前記撮像領域に印加される第2の傾斜磁場の波形の少なくとも一方を設定又は提示する条件設定手段と、
    を備える磁気共鳴イメージング装置。
  2. 前記条件設定手段は、前記傾斜磁場電源から出力される電流の波形と前記撮像領域に印加される傾斜磁場の波形との間における誤差を表す指標が小さくなるように前記第2の電流の波形及び前記第2の傾斜磁場の波形の少なくとも一方を設定又は提示するように構成される請求項1記載の磁気共鳴イメージング装置。
  3. 前記条件設定手段は、前記第1の傾斜磁場の波形として、前記第1の電流の波形に基づくシミュレーションによって取得された傾斜磁場の波形を用いるように構成される請求項1又は2記載の磁気共鳴イメージング装置。
  4. 前記条件設定手段は、前記第1の傾斜磁場の波形として、前記第1の電流の波形を前記傾斜磁場電源から出力させることによって測定された傾斜磁場の波形を用いるように構成される請求項1又は2記載の磁気共鳴イメージング装置。
  5. 前記条件設定手段は、前記第1の傾斜磁場の波形として、前記第1の電流の波形を前記傾斜磁場電源から出力させることによって収集された磁気共鳴信号に基づいて求められた傾斜磁場の波形を用いるように構成される請求項1又は2記載の磁気共鳴イメージング装置。
  6. 前記条件設定手段は、前記第1の傾斜磁場の波形として、前記傾斜磁場発生システムの等価回路における仮想コイルによって生成される傾斜磁場の計算を含むシミュレーションによって取得された傾斜磁場の波形を用いるように構成される請求項3記載の磁気共鳴イメージング装置。
  7. 前記傾斜磁場電源から前記第1の電流の波形を有する電流を出力させることによって前記第1の傾斜磁場の波形を有する傾斜磁場を前記撮像領域に印加する傾斜磁場印加手段を更に備え、
    前記条件設定手段は、前記撮像領域に印加された前記第1の傾斜磁場の波形に基づいて前記第2の電流の波形及び前記第2の傾斜磁場の波形の少なくとも一方を設定又は提示するように構成される請求項1乃至6のいずれか1項に記載の磁気共鳴イメージング装置。
  8. 前記傾斜磁場電源から出力され得る互いに異なる複数の電流の波形に対応する複数の傾斜磁場の波形を記憶する記憶手段を更に備え、
    前記条件設定手段は、前記記憶手段から取得した前記第1の電流の波形に対応する前記第1の傾斜磁場の波形に基づいて前記第2の電流の波形及び前記第2の傾斜磁場の波形の少なくとも一方を設定又は提示するように構成される請求項1乃至6のいずれか1項に記載の磁気共鳴イメージング装置。
  9. 前記条件設定手段は、前記指標を最小にする最適化アルゴリズムによって前記第2の電流の波形及び前記第2の傾斜磁場の波形の少なくとも一方を求めるように構成される請求項2記載の磁気共鳴イメージング装置。
  10. 前記条件設定手段は、前記第1の傾斜磁場の波形に対する誤差を最小にするカーブフィッティングによって前記第2の電流の波形を求めるように構成される請求項2記載の磁気共鳴イメージング装置。
  11. 前記条件設定手段は、前記傾斜磁場コイルから前記撮像領域に印加される傾斜磁場の波形を前記傾斜磁場電源から出力される電流の波形とする計算を繰返すことによって前記第2の電流の波形及び前記第2の傾斜磁場の波形の少なくとも一方を求めるように構成される請求項1乃至9のいずれか1項に記載の磁気共鳴イメージング装置。
JP2012188305A 2012-08-29 2012-08-29 磁気共鳴イメージング装置 Expired - Fee Related JP6109508B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188305A JP6109508B2 (ja) 2012-08-29 2012-08-29 磁気共鳴イメージング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188305A JP6109508B2 (ja) 2012-08-29 2012-08-29 磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JP2014045775A true JP2014045775A (ja) 2014-03-17
JP6109508B2 JP6109508B2 (ja) 2017-04-05

Family

ID=50606104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188305A Expired - Fee Related JP6109508B2 (ja) 2012-08-29 2012-08-29 磁気共鳴イメージング装置

Country Status (1)

Country Link
JP (1) JP6109508B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067895A (ja) * 2014-09-30 2016-05-09 株式会社東芝 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
JP2018514277A (ja) * 2015-04-27 2018-06-07 シナプティヴ メディカル (バルバドス) インコーポレイテッドSynaptive Medical (Barbados) Inc. 核磁気共鳴画像法における画像ひずみを補正するためのシステム及び方法
US10634754B2 (en) 2016-10-11 2020-04-28 Kabushiki Kaisha Toshiba Correction device, correction method, and magnetic resonance imaging apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464639A (en) * 1987-09-07 1989-03-10 Hitachi Medical Corp Nuclear magnetic resonance imaging apparatus
JPH02211124A (ja) * 1989-02-13 1990-08-22 Hitachi Medical Corp 磁気共鳴イメージング装置
JPH03173531A (ja) * 1989-12-01 1991-07-26 Hitachi Ltd 磁気共鳴イメージング装置の渦電流補償方法及び渦電流補償装置
JPH07148136A (ja) * 1993-11-30 1995-06-13 Shimadzu Corp Mrイメージング装置
JPH09117422A (ja) * 1995-10-24 1997-05-06 Ge Yokogawa Medical Syst Ltd 傾斜磁場用駆動波形生成装置、渦電流推定装置、mrイメージング方法およびmri装置
JPH1189817A (ja) * 1997-09-22 1999-04-06 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2003111744A (ja) * 2001-10-02 2003-04-15 Hitachi Ltd 核磁気共鳴を用いた検査装置及び傾斜磁場波形の調整方法
WO2004004563A1 (ja) * 2002-07-04 2004-01-15 Hitachi Medical Corporation 磁気共鳴イメージング装置
JP2004236848A (ja) * 2003-02-06 2004-08-26 Ge Medical Systems Global Technology Co Llc 渦電流補正方法および磁気共鳴撮影装置
US20060022674A1 (en) * 2004-08-02 2006-02-02 Yong Zhou Eddy current measurement and correction in magnetic resonance imaging systems
JP2010172383A (ja) * 2009-01-27 2010-08-12 Toshiba Corp 磁気共鳴イメージング装置
WO2013002231A1 (ja) * 2011-06-30 2013-01-03 株式会社 日立メディコ 磁気共鳴イメージング装置および高周波磁場決定方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464639A (en) * 1987-09-07 1989-03-10 Hitachi Medical Corp Nuclear magnetic resonance imaging apparatus
JPH02211124A (ja) * 1989-02-13 1990-08-22 Hitachi Medical Corp 磁気共鳴イメージング装置
JPH03173531A (ja) * 1989-12-01 1991-07-26 Hitachi Ltd 磁気共鳴イメージング装置の渦電流補償方法及び渦電流補償装置
JPH07148136A (ja) * 1993-11-30 1995-06-13 Shimadzu Corp Mrイメージング装置
JPH09117422A (ja) * 1995-10-24 1997-05-06 Ge Yokogawa Medical Syst Ltd 傾斜磁場用駆動波形生成装置、渦電流推定装置、mrイメージング方法およびmri装置
JPH1189817A (ja) * 1997-09-22 1999-04-06 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2003111744A (ja) * 2001-10-02 2003-04-15 Hitachi Ltd 核磁気共鳴を用いた検査装置及び傾斜磁場波形の調整方法
WO2004004563A1 (ja) * 2002-07-04 2004-01-15 Hitachi Medical Corporation 磁気共鳴イメージング装置
JP2004236848A (ja) * 2003-02-06 2004-08-26 Ge Medical Systems Global Technology Co Llc 渦電流補正方法および磁気共鳴撮影装置
US20060022674A1 (en) * 2004-08-02 2006-02-02 Yong Zhou Eddy current measurement and correction in magnetic resonance imaging systems
JP2010172383A (ja) * 2009-01-27 2010-08-12 Toshiba Corp 磁気共鳴イメージング装置
WO2013002231A1 (ja) * 2011-06-30 2013-01-03 株式会社 日立メディコ 磁気共鳴イメージング装置および高周波磁場決定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067895A (ja) * 2014-09-30 2016-05-09 株式会社東芝 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
JP2018514277A (ja) * 2015-04-27 2018-06-07 シナプティヴ メディカル (バルバドス) インコーポレイテッドSynaptive Medical (Barbados) Inc. 核磁気共鳴画像法における画像ひずみを補正するためのシステム及び方法
US10634754B2 (en) 2016-10-11 2020-04-28 Kabushiki Kaisha Toshiba Correction device, correction method, and magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP6109508B2 (ja) 2017-04-05

Similar Documents

Publication Publication Date Title
US20230324489A1 (en) Eddy current mitigation systems and methods
WO2012173095A1 (ja) 磁気共鳴イメージング装置及びその制御装置
JP5611661B2 (ja) 磁気共鳴イメージング装置
JP5916240B2 (ja) 磁気共鳴イメージング装置および傾斜磁場波形推定方法
US9720066B2 (en) Magnetic resonance imaging apparatus and control method thereof
US9317917B2 (en) Method, reconstruction device, and magnetic resonance apparatus for reconstructing magnetic resonance raw data
JP5886024B2 (ja) 磁気共鳴イメージング装置
JP2012040362A (ja) 磁気共鳴イメージング方法、磁気共鳴イメージング装置およびその制御装置
JP2013000173A (ja) 磁気共鳴イメージング装置及びその制御装置
JP5865785B2 (ja) 磁気共鳴イメージング装置、および、傾斜磁場発生システムの負荷算出方法
US7689015B2 (en) Magnetic resonance imaging apparatus and image correction estimating method
JP6552804B2 (ja) 磁気共鳴イメージング装置
JP6109508B2 (ja) 磁気共鳴イメージング装置
JPWO2010047245A1 (ja) 磁気共鳴イメージング装置及び方法
JP5846450B2 (ja) 磁気共鳴イメージング装置、計測空間座標補正方法、及び、画像再構成方法
KR20130135776A (ko) 자기 공명 기법에서 측정 볼륨 내의 검사 대상의 대상-특정 b1 분포를 결정하는 방법, 자기 공명 시스템, 컴퓨터 프로그램, 및 전자적으로 판독가능한 데이터 매체
US9547062B2 (en) Method and magnetic resonance apparatus to generate an artifact-free magnetic resonance image data set
JP2013017811A (ja) 磁気共鳴イメージング装置
JPH0751249A (ja) 測定対象の局所分解磁気共鳴検査方法および装置
JP5718148B2 (ja) 磁気共鳴イメージング装置及びDualSlice計測方法
JP5121773B2 (ja) 磁気共鳴イメージング装置
JP5971689B2 (ja) 磁気共鳴撮像装置
JP6157976B2 (ja) 磁気共鳴イメージング装置、及び方法
JP6727154B2 (ja) 磁気共鳴イメージング装置
JP2017086736A (ja) 磁気共鳴イメージング装置、及び方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R150 Certificate of patent or registration of utility model

Ref document number: 6109508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees