JP2014045148A - 露光装置の制御方法、露光装置の制御プログラムおよび露光装置 - Google Patents

露光装置の制御方法、露光装置の制御プログラムおよび露光装置 Download PDF

Info

Publication number
JP2014045148A
JP2014045148A JP2012187999A JP2012187999A JP2014045148A JP 2014045148 A JP2014045148 A JP 2014045148A JP 2012187999 A JP2012187999 A JP 2012187999A JP 2012187999 A JP2012187999 A JP 2012187999A JP 2014045148 A JP2014045148 A JP 2014045148A
Authority
JP
Japan
Prior art keywords
wafer
illuminance distribution
reticle
light
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012187999A
Other languages
English (en)
Inventor
Nobuhiro Komine
信洋 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012187999A priority Critical patent/JP2014045148A/ja
Priority to US13/778,645 priority patent/US9104115B2/en
Publication of JP2014045148A publication Critical patent/JP2014045148A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70133Measurement of illumination distribution, in pupil plane or field plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Abstract

【課題】照度分布を高精度に制御できる露光装置の制御方法、露光装置の制御プログラムおよび露光装置を提供する。
【解決手段】実施形態によれば、露光装置10の制御方法は、レチクル13に照射された光のレチクル13上での照度分布と、レチクル13を経由した光をウェーハ18に投影させる投影光学系としての反射光学系16の特性を反映した像強度分布と、反射光学系16を介してウェーハ18に照射された光のウェーハ18上での照度分布との相関関係を表す関係式と、ウェーハ18上での照度分布の測定値とに基づいて、レチクル13上での照度分布の目標値からのずれを算出する。
【選択図】図1

Description

本発明の実施形態は、露光装置の制御方法、露光装置の制御プログラムおよび露光装置に関する。
半導体装置に形成されるパターンの微細化に伴い、露光光の短波長化が進んでおり、波長13.5nmの極端紫外(EUV:Extreme Ultra Violet)光を利用するEUV露光の実用化に対する要求が高まっている。
EUV光は短波長であり、またウェーハへの投影光学系として反射光学系が用いられることから、EUV露光では、その反射光学系におけるミラー表面の凹凸に起因した散乱光による迷光(フレア)が生じやすい。
米国特許出願公開第2011/0065027号明細書
本発明の実施形態は、照度分布を高精度に制御できる露光装置の制御方法、露光装置の制御プログラムおよび露光装置を提供する。
実施形態によれば、露光装置の制御方法は、レチクルに照射された光の前記レチクル上での照度分布と、前記レチクルを経由した光をウェーハに投影させる投影光学系の特性を反映した像強度分布と、前記投影光学系を介して前記ウェーハに照射された光の前記ウェーハ上での照度分布との相関関係を表す関係式と、前記ウェーハ上での照度分布の測定値とに基づいて、前記レチクル上での照度分布の目標値からのずれを算出する。
実施形態の露光装置の模式図。 実施形態の露光装置における光量調整機構の模式平面図。 第1実施形態の露光装置の制御方法のフローチャート。 実施形態の露光装置の投影光学系の特性を反映した点像強度分布図。 第1実施形態の露光装置の制御方法におけるレチクル上での目標照度分布とウェーハ上での目標照度分布を表す図。 第1実施形態の露光装置の制御方法におけるウェーハ上での照度分布の測定値とウェーハ上での目標照度分布を表す図。 第2実施形態の露光装置の制御方法のフローチャート。 第2実施形態の露光装置の制御方法におけるウェーハ上での照度分布の測定値と、その測定値から推算されたレチクル上での照度分布を表す図。 第2実施形態の露光装置の制御方法においてレチクル上での照度分布を推算する他の方法を示す模式図。 反射光学系のミラー表面における光の散乱を表す模式図。 (a)は比較例におけるレチクル上での照度分布図であり、(b)は比較例におけるウェーハ上での照度分布図。
EUV光は、光学部材として現在用いられているあらゆる物質に対する吸収係数が、KrF光やArF光といった深紫外光(DUV:Deep Ultra Violet)よりも大きい。そのため、レチクルとウェーハとの間の投影光学系としては透過レンズを用いた屈折光学系の使用が難しい。したがって、EUV露光では、ミラーを用いた反射光学系で投影光学系が構成される。
その反射光学系の問題の一つとして、図10に示すように、ミラー40の反射面の微小凹凸に起因する散乱光101によるフレア(迷光)の存在が挙げられる。このフレアは、露光光の波長が短くなるほど影響が大きくなることが知られており、ArF光(波長193nm)やKrF光(245nm)に対して、波長13.5nmのEUV光100を用いたEUV露光ではフレアの影響を無視することができない。
そのフレアの影響を受けるものとして、例えば照度分布の調整が挙げられる。屈折光学系を用いた露光装置においては、ウェーハステージ上で測定された照度分布に基づいて、レチクルに光を通す露光スリットの形状を変形させたり、光路中に濃淡を変化させたフィルターを挿入することによって、ウェーハ上での照度分布が均一になるように調整することができる。そして、フレアの影響が小さい露光装置では、ウェーハ上での照度分布が均一になるように調整すれば、レチクル上での照度分布も均一に調整することができる。
しかしながら、EUV露光装置では、フレアの影響が大きいために、ウェーハ上での照度分布の測定結果には、反射光学系を構成するミラーによって発生するフレアの影響が含まれてしまう。したがって、フレアの影響を考慮せずにウェーハ上での照度分布を図11(b)に示すように均一となるように調整しても、図11(a)に示すようにレチクル面上での照度分布は均一に調整されないことがある。
以下、図面を参照し、実施形態について説明する。なお、各図面中、同じ要素には同じ符号を付している。
図1は、実施形態の露光装置10の模式図である。
実施形態の露光装置10は、光源11として波長13.5nmのEUV光を用いたEUV露光装置である。露光装置10は、光源11と、光量調整機構33と、レチクルステージ12と、反射光学系16と、ウェーハステージ17と、制御装置20と、記憶装置21とを有する。
レチクルステージ12にはレチクル13が保持され、ウェーハステージ17にはウェーハ18が保持される。レチクル13には、ウェーハ18に転写するパターンが形成されている。また、レチクル13は、反射型のフォトマスクである。
光源11とレチクル13との間に、光量調整機構33が設けられている。光量調整機構33は、露光スリット30と遮光ブレード31とを有する。
図2(a)は、光量調整機構33の模式平面図である。
露光スリット30は矩形状に形成され、その長手方向をX方向としし、X方向に対して直交する方向(露光スリット30の短手方向)をY方向とする。光源11からのEUV光は、露光スリット30を通ってレチクル13に照射される。
露光スリット30の短手方向(Y方向)の両端部付近には、複数の遮光ブレード31が設けられている。複数の遮光ブレード31は、露光スリット30の長手方向(X方向)に沿って並んでいる。各々の遮光ブレード31は、Y方向に長手方向を有する矩形板状に形成されている。
各遮光ブレード31は、図示しないアクチュエータによりY方向に駆動可能となっている。その遮光ブレード31のY方向の駆動により、図2(b)に示すように、露光スリット30の面積(形状)を変えることができる。したがって、遮光ブレード31の駆動により、レチクル13に対するEUV光の照射光量を調整することができる。
レチクル13とウェーハ18との間には、レチクル13で反射されたEUV光をウェーハ18に投影させる投影光学系として反射光学系16が設けられている。反射光学系16は、複数のミラー14、15を有する。
光源11から出射されたEUV光は、露光スリット30を通ってレチクル13に照射され、レチクル13で反射される。そのレチクル13で反射されたEUV光は、反射光学系16を経てウェーハ18のパターン形成面に照射される。ウェーハステージ17には、ウェーハ18上でのEUV光の照度分布を測定する照度センサー19が設けられている。
実施形態の露光装置10はスキャン露光方式であり、レチクルステージ12とウェーハステージ17とを同時に、露光スリット30の短手方向(Y方向)に、露光スリット30に対して相対移動させつつ、光源11からのEUV光を露光スリット30、レチクル13、および反射光学系16を介してウェーハ18に照射する。
制御装置20は、後述する図3に示す処理を実行し、また、遮光ブレード31の駆動を制御する。
ウェーハ18に照射されたEUV光のウェーハ18上での照度分布は、ウェーハステージ17に設けられた照度センサー19により、実測することができる。しかしながら、レチクル13上でのEUV光の照度分布の測定は難しい。また、反射光学系16でのフレアの影響のため、ウェーハ18上での照度分布からレチクル13上での照度分布を単純な線形関係により求めることができない。
そこで、実施形態によれば、(1)式の関係式により、ウェーハ18上での照度分布と、レチクル13上での照度分布とを対応付ける。
Figure 2014045148
(1)式において、pは、反射光学系16の特性としてフレアの影響を反映させた点像強度分布関数(PSF:Point Spread Function)を表す。点像強度分布関数pは、以下のようにして求められる。
反射光学系16を構成する各々のミラー14、15の反射面の形状を計測し、その計測された面形状に対して点光源を仮定して光線追跡計算を行う。すると、集光点であるウェーハ18上では点像ではなく、光路差のために図4に示すような像強度分布になる。図4において横軸はウェーハ18上での距離(像の広がり)τを表す。
また、(1)式において、uはウェーハ18上での照度分布を表し、uはレチクル13上での照度分布を表す。u及びuは、露光スリット30の長手方向(X方向)の位置xの関数として表される。
(1)式は、レチクル13上での照度分布uと、反射光学系16の特性(フレアの影響)を反映した点像強度分布関数pと、ウェーハ18上での照度分布uとの相関関係を表す関係式であり、u*pは、uとpとの畳み込み積分(積和演算)を表す。
積分区間は、図2(a)に示す露光スリット30の長手方向(X方向)の幅に等しい。例えば、露光スリット30の長手方向の幅が2bであったとすると、積分区間は−bからbまでとなる。
なお、点像強度分布関数pは、あらかじめ計測しておいたミラー14、15の反射面の面精度(平坦度)データからの予測データであってもよいし、あるいは図4の点像強度分布を実際に測定したデータを用いてもよい。本実施形態では、予測データを用いている。
(1)式の関係式から、レチクル13上での照度分布uが均一に調整された場合、反射光学系16によるフレアの影響を受けたウェーハ18上での照度分布uがどのようになっているのかということを計算的に求めることが可能である。
レチクル13上での照度分布uが均一であるときのウェーハ18上での照度分布uが算出できれば、その計算値を、ウェーハ18上での照度分布の実測値と比較することで、実測できないレチクル13上での照度分布uを間接的に評価することができる。
図3は、第1実施形態による露光装置10の制御方法のフローチャートである。
以下に説明する一連の処理は、図1に示す記憶装置21に格納された実施形態による露光装置の制御プログラムを制御装置20が読み込み、その命令のもとに実行される。
まず、ステップS1として、(1)式にしたがい、レチクル13上での目標照度分布u_targetと、反射光学系16の特性(フレアの影響)を反映した点像強度分布関数pとの畳み込み積分を行う。
この畳み込み積分により、レチクル13上で目標とする照度分布になっているときに、フレアの影響を反映させたウェーハ18上での照度分布が算出される。この計算によって得られたウェーハ18上での目標照度分布u_targetと、ウェーハ18上での照度分布の実測値との差を比較することで、実測のできないレチクル13上での照度分布が目標照度分布u_targetになっているかどうかを間接的に評価することができる。
図5は、レチクル13上での目標照度分布u_targetと、それに対応するウェーハ18上での目標照度分布u_targetとを表す。図5において、横軸は露光スリット30の長手方向(X方向)の位置xを表し、0は露光スリット30のX方向の中心位置を表す。
第1実施形態において、レチクル13上での目標照度分布u_targetは、均一な照度分布である。レチクル13上で均一な照度分布になっているとき、反射光学系16のフレアの影響により、ウェーハ18上では均一な照度分布にならず、図5に示すu_targetのように、露光スリット30の長手方向の両端で照度が相対的に低下する照度分布となっている。
上記ステップS1での計算結果は、ステップS2として、露光装置10が備えた図1に示す記憶装置21のデータベース上に格納しておく。あるいは、上記計算結果は、露光装置10との通信が可能な外部の記憶装置22に格納してもよい。
次に、ステップS3として、照度センサー19を用いてウェーハ18上での照度分布の測定値u_measureを取得する。このウェーハ18上での照度分布の測定値u_measureは、記憶装置21に格納される。
図6に、ウェーハ18上での照度分布の測定値u_measureと、ウェーハ18上での目標照度分布u_targetとを表す。図6において、横軸は露光スリット30の長手方向(X方向)の位置xを表し、0は露光スリット30のX方向の中心位置を表す。
そして、ステップS4として、ウェーハ18上での照度分布の測定値u_measureと、ウェーハ18上での目標照度分布u_targetとの差を計算する。すなわち、ウェーハ18上での照度分布がu_measureとなっているときのレチクル13上での照度分布uの、目標照度分布u_targetからのずれが、間接的に算出されることになる。
次に、ステップS5として、ステップS4で算出されたu_measureとu_targetとの差、すなわちレチクル13上での照度分布uの目標照度分布u_targetからのずれが、設定されたスペック(許容範囲)内かどうかの判定が行われる。
このスペック判定でOKであれば、ステップS6に進み、レチクル13上での照度分布の調整は完了する。
上記スペック判定でNGであった場合には、ステップS7として、ステップS4の計算で得られた差分に基づき、図2(a)及び(b)に示す遮光ブレード31の駆動制御量を算出し、その駆動制御量にしたがって遮光ブレード31を駆動させて露光スリット30の面積を調整する。
そして、調整された露光スリット30を通じてレチクル13にEUV光を照射し、その反射光を反射光学系16を介してウェーハ18に投影させる。そして、そのときのウェーハ18上での照度分布を測定する。すなわち、ステップS3に戻る。そして、次のステップS4として、ウェーハ18上での照度分布の測定値u_measureと、ステップS1の計算で得られたウェーハ18上での目標照度分布u_targetとの差を計算し、ステップS5でその差を評価する。
ステップS5のスペック判定でOKとなるまで上記処理を繰り返すことで、レチクル13上での照度分布を均一に調整することができる。したがって、実施形態によれば、フレアの影響を考慮した高精度なレチクル13上での照度分布制御を行える。なお、レチクル13上での照度分布の評価及び調整は、例えば、露光装置10の定期的な点検として行われる。
また、レチクル13上での目標照度分布u_targetは均一分布であることに限らず、実施形態によれば、任意のレチクル上照度分布に調整することが可能である。最終的には、ウェーハ18に転写されるパターンサイズのばらつきを小さくするために他の要素の補正が行われるが、その補正を精度良く且つ簡便に行うことの前提として、レチクル13上での照度分布を均一にすることが求められることが多い。
図3のフローチャートで示される第1実施形態によれば、(1)式に基づいてあらかじめ設定されたウェーハ18上での目標照度分布u_targetと、実測値u_measureとの比較から、間接的にレチクル13上での照度分布を目標分布(均一分布)になるように調整することができる。しかしながら、ウェーハ18上での照度分布の測定値u_measureと(1)式とから、レチクル13上での照度分布を計算的に求めて、直接レチクル13上での照度分布を評価することも可能である。
以下、第2実施形態による露光装置10の制御方法として、(1)式と、ウェーハ18上での照度分布の測定値u_measureとから、レチクル13上での照度分布を計算的に求めて、直接レチクル13上での照度分布を評価する方法について説明する。
図7は、そのフローチャートである。
第2実施形態における以下に説明する一連の処理も、図1に示す記憶装置21に格納された露光装置の制御プログラムを制御装置20が読み込み、その命令のもとに実行される。
まず、ステップS1として、照度センサー19を用いてウェーハ18上での照度分布の測定値u_measureを取得する。このウェーハ18上での照度分布の測定値u_measureは、記憶装置21に格納される。
次に、ステップS2として、上記(1)式のデコンボリューション演算をして、レチクル13上での照度分布を、ウェーハ18上での照度分布の測定値u_measureから推算する。
図8は、ウェーハ18上での照度分布の測定値u_measureと、ステップS2でのデコンボリューション演算により得られたレチクル13上での照度分布u_calcを表す。図8において、横軸は露光スリット30の長手方向(X方向)の位置xを表し、0は露光スリット30のX方向の中心位置を表す。
そして、ステップS3として、ステップS2で得られたレチクル13上での照度分布u_calcを直接的に評価することができる。すなわち、照度分布u_calcの、目標照度分布u_targetからのずれが、設定されたスペック(許容範囲)内かどうかの判定が行われる。
このスペック判定でOKであれば、ステップS4に進み、レチクル13上での照度分布の調整は完了する。
上記スペック判定でNGであった場合には、ステップS5として、照度分布u_calcと目標照度分布u_targetとの差分に基づき、図2(a)及び(b)に示す遮光ブレード31の駆動制御量を算出し、その駆動制御量にしたがって遮光ブレード31を駆動させて露光スリット30の面積を調整する。
そして、調整された露光スリット30を通じてレチクル13にEUV光を照射し、その反射光を反射光学系16を介してウェーハ18に投影させる。そして、そのときのウェーハ18上での照度分布u_measureを測定する。すなわち、ステップS1に戻る。そして、ステップS2及びステップS3が繰り返され、レチクル13上での照度分布u_calcを評価する。
ステップS3のスペック判定でOKとなるまで上記処理を繰り返すことで、レチクル13上での照度分布を目標分布(例えば均一分布)に調整することができる。
具体的には、(1)式からレチクル13上での照度分布uを求めるために、フーリエ変換を行う。畳み込みを直接計算するよりも、フーリエ変換をしてかけ算をしてから、フーリエ変換の逆演算(逆フーリエ変換)をした方がはるかに少ない計算量で計算することができる。
レチクル13上での照度分布をu、反射光学系16の特性としてフレアの影響を反映させた点像強度分布関数をpとすると、ウェーハ18上での照度分布uは、上記(1)式で表すことができる。
ここで、uの逆フーリエ関数ciが存在するとすると、uは、uとciを用いて(2)式のように表すことができる。
Figure 2014045148
例えばレチクル13上での照度分布uを均一にすることは、uを最小にすることと等価である。したがって、レチクル13上での照度分布uを均一にする場合、(2)式におけるuを最小にするciが最適な補正値となる。すなわち、(2)式におけるuを最小にするように、図2(a)及び(b)に示す遮光ブレード31を駆動させて露光スリット30の面積が調整される。
上記具体例ではフーリエ変換を用いて(1)式のデコンボリューション演算を行ったが、逆フーリエ関数が存在しない場合には、図9(a)〜(e)を参照して以下に説明する繰り返し計算による方法で、レチクル13上での照度分布を推算することが可能である。
まず、レチクル13上での照度分布として、図9(a)に示すように適当な照度分布を設定する。
そして、(1)式にしたがって、図9(a)で設定されたレチクル13での照度分布と、反射光学系16のフレアの影響を反映させた図9(b)に示す点像強度分布関数pとの畳み込み積分を行う。
その畳み込み積分で得られたウェーハ18上での照度分布の計算値を、図9(c)において実線で表す。図9(c)における破線は、照度センサー19を用いて測定されたウェーハ18上での照度分布の測定値を表す。
そして、ウェーハ18上での照度分布の計算値と、ウェーハ18上での照度分布の測定値との差を評価し、その差がスペック(許容範囲)内でない場合には、その差に基づいて、図9(d)において実線で表すようにレチクル13上での照度分布を修正する。図9(d)において破線は、修正前の図9(a)で設定されたレチクル13上での照度分布を表す。
そして、再び、(1)式にしたがって、図9(d)で修正されたレチクル13上での照度分布と、図9(e)に示す点像強度分布関数pとの畳み込み積分を行う。
そして、その畳み込み積分で得られたウェーハ18上での照度分布の計算値と、ウェーハ18上での照度分布の測定値(図9(c)における破線)との差を評価する。その差がスペック(許容範囲)内になるまで以上の処理を繰り返す。
以上の処理により、(1)式による畳み込み積分で算出されたウェーハ18上での照度分布の計算値と、ウェーハ18上での照度分布の測定値との差が小さくなるように、(1)式で使われるレチクル13上での照度分布の設定値(予想分布)を修正していく。この結果、ウェーハ18上でこういう照度分布の実測値が得られていれば、レチクル13上ではこういう照度分布になっているだろうということが推算される。
レチクル13上の照度分布を求めることができれば、その照度分布に基づいて、露光スリット30の面積を調整することで、レチクル13上での照度分布を目標分布に調整することが可能になる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…露光装置、13…レチクル、14,15…ミラー、16…反射光学系、17…ウェーハステージ、18…ウェーハ、19…照度センサー、20…制御装置、21,22…記憶装置、30…露光スリット、31…遮光ブレード、33…光量調整機構

Claims (5)

  1. レチクルに照射されたEUV(Extreme Ultra Violet)光の前記レチクル上での照度分布と、前記レチクルで反射したEUV光をウェーハに投影させる反射光学系の特性を反映した像強度分布と、前記反射光学系を介して前記ウェーハに照射されたEUV光の前記ウェーハ上での照度分布との相関関係を表す関係式と、前記ウェーハ上での照度分布の測定値とに基づいて、前記レチクル上での照度分布の目標値からのずれを算出する露光装置の制御方法。
  2. レチクルに照射された光の前記レチクル上での照度分布と、前記レチクルを経由した光をウェーハに投影させる投影光学系の特性を反映した像強度分布と、前記投影光学系を介して前記ウェーハに照射された光の前記ウェーハ上での照度分布との相関関係を表す関係式と、前記ウェーハ上での照度分布の測定値とに基づいて、前記レチクル上での照度分布の目標値からのずれを算出する露光装置の制御方法。
  3. 前記関係式から、前記レチクル上での目標照度分布に対応する前記ウェーハ上での目標照度分布を算出し、
    前記ウェーハ上での目標照度分布と、前記ウェーハ上での照度分布の測定値とを比較する請求項1または2に記載の露光装置の制御方法。
  4. レチクルに照射された光の前記レチクル上での照度分布と、前記レチクルを経由した光をウェーハに投影させる投影光学系の特性を反映した像強度分布と、前記投影光学系を介して前記ウェーハに照射された光の前記ウェーハ上での照度分布との相関関係を表す関係式と、前記ウェーハ上での照度分布の測定値とに基づいて、前記レチクル上での照度分布の目標値からのずれを算出する処理をコンピュータに実行させるための露光装置の制御プログラム。
  5. 光源からの光をレチクルに通すスリットの面積を変更可能な光量調整機構と、
    前記スリットを通過して前記レチクルを経由した光をウェーハに投影させる投影光学系と、
    前記レチクルに照射された光の前記レチクル上での照度分布と、前記投影光学系の特性を反映した像強度分布と、前記投影光学系を介して前記ウェーハに照射された光の前記ウェーハ上での照度分布との相関関係を表す関係式と、前記ウェーハ上での照度分布の測定値とに基づいて、前記レチクル上での照度分布の目標値からのずれを算出する制御装置と、
    を備えた露光装置。
JP2012187999A 2012-08-28 2012-08-28 露光装置の制御方法、露光装置の制御プログラムおよび露光装置 Pending JP2014045148A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012187999A JP2014045148A (ja) 2012-08-28 2012-08-28 露光装置の制御方法、露光装置の制御プログラムおよび露光装置
US13/778,645 US9104115B2 (en) 2012-08-28 2013-02-27 Method for controlling exposure apparatus and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187999A JP2014045148A (ja) 2012-08-28 2012-08-28 露光装置の制御方法、露光装置の制御プログラムおよび露光装置

Publications (1)

Publication Number Publication Date
JP2014045148A true JP2014045148A (ja) 2014-03-13

Family

ID=50187159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187999A Pending JP2014045148A (ja) 2012-08-28 2012-08-28 露光装置の制御方法、露光装置の制御プログラムおよび露光装置

Country Status (2)

Country Link
US (1) US9104115B2 (ja)
JP (1) JP2014045148A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10558125B2 (en) 2016-11-17 2020-02-11 Tokyo Electron Limited Exposure apparatus, exposure apparatus adjustment method and storage medium
JP6984228B2 (ja) * 2016-11-17 2021-12-17 東京エレクトロン株式会社 露光装置、露光装置の調整方法及び記憶媒体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739898A (en) * 1993-02-03 1998-04-14 Nikon Corporation Exposure method and apparatus
US7030966B2 (en) 2003-02-11 2006-04-18 Asml Netherlands B.V. Lithographic apparatus and method for optimizing an illumination source using photolithographic simulations
JP2007158225A (ja) 2005-12-08 2007-06-21 Canon Inc 露光装置
US8363129B2 (en) * 2008-06-27 2013-01-29 Kyocera Corporation Imaging device with aberration control and method therefor
JP2011066079A (ja) 2009-09-15 2011-03-31 Toshiba Corp フレア補正方法及び半導体デバイスの製造方法
JP2011146449A (ja) 2010-01-12 2011-07-28 Nikon Corp フレア計測方法、露光方法及び装置、並びにデバイス製造方法
JP2011187597A (ja) 2010-03-08 2011-09-22 Nikon Corp 照明光源評価方法、照明光源設定方法、露光方法及びデバイス製造方法、並びにプログラム

Also Published As

Publication number Publication date
US20140063479A1 (en) 2014-03-06
US9104115B2 (en) 2015-08-11

Similar Documents

Publication Publication Date Title
KR101488802B1 (ko) 기판 상의 구조물의 측정
TWI694487B (zh) 製程窗優化器
JP6964591B2 (ja) メトロロジデータへの寄与の分離
TWI612377B (zh) 微影遮罩、用於量測微影印刷裝置之聚焦改變之方法、用於判定遮罩設計之方法、用於判定目標設計之方法及微影印刷工具
US7266800B2 (en) Method and system for designing manufacturable patterns that account for the pattern- and position-dependent nature of patterning processes
TWI641959B (zh) 處理窗識別符
KR101527496B1 (ko) 3d 레지스트 프로파일 시뮬레이션을 위한 리소그래피 모델
TWI432913B (zh) 微影系統、元件製造方法、設定點資料最佳化方法及產生最佳化設定點資料的裝置
US10788748B2 (en) Method and appliance for predicting the imaging result obtained with a mask when a lithography process is carried out
KR101823725B1 (ko) 노광 장치 및 디바이스의 제조 방법
US9581811B2 (en) Method for evaluating and improving pupil luminance distribution, illumination optical system and adjustment method thereof, exposure apparatus, exposure method, and device manufacturing method
US9766548B2 (en) Exposure apparatus, exposure method, and method of manufacturing article
KR100550033B1 (ko) 리소그래피 장치, 디바이스 제조방법, 및 그것에 의해제조된 디바이스
CN113196176A (zh) 用于计量的方法和装置
JP2017538157A (ja) パターニングデバイストポグラフィ誘起位相を使用するための方法及び装置
TWI612396B (zh) 光學系統及方法
JP2014045148A (ja) 露光装置の制御方法、露光装置の制御プログラムおよび露光装置
US9535244B2 (en) Emulation of reproduction of masks corrected by local density variations
JP2007158224A (ja) 露光方法
US11537051B2 (en) Control apparatus and control method, exposure apparatus and exposure method, device manufacturing method, data generating method and program
KR102124851B1 (ko) 토포그래피 측정 시스템
TWI633393B (zh) 非單調劑量靈敏度之判定及應用
JP5742385B2 (ja) 光学性能のシミュレーション方法、露光方法、及び記録媒体
JP2007180101A (ja) 光学特性計測方法及びパターン誤差計測方法
JP2012023215A (ja) 露光量演算方法、並びに露光方法及び装置