JP2014045134A - Flow passage member, heat exchanger using the same, and semiconductor device - Google Patents

Flow passage member, heat exchanger using the same, and semiconductor device Download PDF

Info

Publication number
JP2014045134A
JP2014045134A JP2012187764A JP2012187764A JP2014045134A JP 2014045134 A JP2014045134 A JP 2014045134A JP 2012187764 A JP2012187764 A JP 2012187764A JP 2012187764 A JP2012187764 A JP 2012187764A JP 2014045134 A JP2014045134 A JP 2014045134A
Authority
JP
Japan
Prior art keywords
flow path
base
recess
fin
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012187764A
Other languages
Japanese (ja)
Inventor
Kenji Tsubokawa
健治 坪川
Hiroyuki Abe
弘幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012187764A priority Critical patent/JP2014045134A/en
Publication of JP2014045134A publication Critical patent/JP2014045134A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow passage member with improved heat exchange efficiency, a heat exchanger using the same, and a semiconductor device.SOLUTION: A flow passage member 1, 11-13 according to the present invention having a flow passage 6 inside which fluid 8 flows comprises: a substrate 2 having a recess 2c on a principal plane 2a on the flow passage 6 side; a housing 15; and a fin member 5 provided with plural fins 4 on a base part 3 jointed to the recess 2c of the substrate 2. The fin member 5 is jointed to the recess 2c, so that a portion 3a' of a flow passage side surface 3a of the base part 3 positioned nearest a flow passage side and an end 2c' on the flow passage side of the recess 2c are at different positions. Therefore, the fluid 8 easily generates an eddy current 8d by a step 9, so as to improve heat exchange efficiency. A heat exchanger 21 and a semiconductor device 31 using the flow passage member 1, 11-13 according to the present invention can have improved heat exchange efficiency.

Description

本発明は、流路部材およびこれを用いた熱交換器ならびに半導体装置に関する。   The present invention relates to a flow path member, a heat exchanger using the same, and a semiconductor device.

空冷や水冷の流路部材において、複数のフィンを立設した部材を用いることが知られている。   It is known to use a member in which a plurality of fins are erected in an air-cooled or water-cooled flow path member.

例えば、特許文献1には、ジャケット本体に設けられた凹部内にフィン部材をろう付け固定した流路部材に関するものが開示されている。   For example, Patent Document 1 discloses a flow channel member in which a fin member is brazed and fixed in a recess provided in a jacket body.

特開2006-324647号公報JP 2006-324647 A

しかしながら、特許文献1に記載の流路部材では、熱交換効率をさらに高めたものが求められている現在、この要求に十分応えられるものではなかった。   However, the flow path member described in Patent Document 1 has not been able to sufficiently meet this requirement at present when a material with further improved heat exchange efficiency is required.

本発明は、上記課題を解決するために案出されたものであり、熱交換効率の高い流路部材およびこれを用いた熱交換器ならびに半導体装置を提供することを目的とするものである。   The present invention has been devised to solve the above-described problems, and an object of the present invention is to provide a flow path member with high heat exchange efficiency, a heat exchanger using the same, and a semiconductor device.

本発明の流路部材は、内部に流体が流れる流路を有する流路部材であって、前記流路側の主面に凹部を有する基体と、筐体と、前記基体の凹部に接合されたベース部に複数のフィンが設けられてなるフィン部材とを備え、該フィン部材は、前記ベース部の流路側表面における最も流路側に位置する部位と前記凹部の前記流路側の端とが異なる位置となるように、前記凹部に接合されていることを特徴とするものである。   The flow path member of the present invention is a flow path member having a flow path through which a fluid flows, and a base having a recess on a main surface on the flow path side, a housing, and a base joined to the recess of the base A fin member in which a plurality of fins are provided in the portion, and the fin member has a position where a portion located closest to the flow channel on the flow channel side surface of the base portion differs from the end of the recess on the flow channel side. As such, it is joined to the recess.

また、本発明の熱交換器は、上記構成の流路部材における前記基体の前記流路側と反対側の主面上に金属層が設けられていることを特徴とするものである。   Moreover, the heat exchanger of the present invention is characterized in that a metal layer is provided on the main surface of the flow path member having the above-described configuration on the opposite side to the flow path side of the base.

また、本発明の半導体装置は、上記構成の熱交換器の上方に半導体素子が実装されていることを特徴とするものである。   The semiconductor device of the present invention is characterized in that a semiconductor element is mounted above the heat exchanger having the above-described configuration.

本発明の流路部材によれば、内部に流体が流れる流路を有する流路部材であって、流路側の主面に凹部を有する基体と、筐体と、基体の凹部に接合されたベース部に複数のフィンが設けられてなるフィン部材とを備え、このフィン部材は、ベース部の流路側表面における最も流路側に位置する部位と凹部の流路側の端とが異なる位置となるように、凹部に接合されていることから、この段差によって流体が渦流を発生し、熱交換効率を高めることができる。   According to the flow path member of the present invention, the flow path member has a flow path through which a fluid flows. The base has a recess on the main surface on the flow path side, the housing, and the base joined to the recess of the base A fin member in which a plurality of fins are provided in the portion, and the fin member is positioned so that the portion located on the most flow path side on the flow path side surface of the base portion is different from the end on the flow path side of the recess. Since it is joined to the recess, the fluid generates a vortex due to this step, and the heat exchange efficiency can be improved.

また、本発明の熱交換器は、上記構成の流路部材における基体の流路側と反対側の主面上に金属層が設けられていることから、基体と金属層との熱交換を効率的に行なうことができ、熱交換効率の高い熱交換器とすることができる。   Further, the heat exchanger of the present invention is provided with a metal layer on the main surface opposite to the flow path side of the base in the flow path member having the above-described configuration, so that heat exchange between the base and the metal layer is efficient. Therefore, a heat exchanger with high heat exchange efficiency can be obtained.

また、本発明の半導体装置は、上記構成の熱交換器の上方に半導体素子が実装されていることから、シンプルな構造で半導体素子の発熱による温度上昇を抑制する半導体装置とすることができる。   In addition, since the semiconductor device of the present invention has a semiconductor element mounted above the heat exchanger having the above structure, the semiconductor device can be a semiconductor device that suppresses a temperature rise due to heat generation of the semiconductor element with a simple structure.

本実施形態の流路部材の一例を示す、(a)および(b)は流体の流れる方向に沿う方向の断面図であり、(c)は(a)の点線Aで囲んだ段差部を拡大した断面図であり、(d)は(b)の点線Aで囲んだ段差部を拡大した断面図であり、(e)は(a)および(b)の破線Bで囲んだフィン部材の変形例の断面図である。An example of the flow path member of this embodiment is shown, (a) and (b) are cross-sectional views along the direction in which the fluid flows, and (c) is an enlarged view of the stepped portion surrounded by the dotted line A in (a). (D) is an enlarged cross-sectional view of a step portion surrounded by a dotted line A in (b), and (e) is a deformation of a fin member surrounded by a broken line B in (a) and (b). It is sectional drawing of an example. 本実施形態の流路部材の他の一例を示す、(a)は、図1(a)の点線Aで囲んだ段差部を拡大した断面図であり、(b)は段差部の変形例を拡大した断面図であり、(c)は、図1(b)の点線Aで囲んだ段差部を拡大した断面図である。Another example of the flow path member of the present embodiment is shown, (a) is an enlarged cross-sectional view of a stepped portion surrounded by a dotted line A in FIG. 1 (a), (b) is a modification of the stepped portion. It is expanded sectional drawing, (c) is sectional drawing to which the level | step-difference part enclosed with the dotted line A of FIG.1 (b) was expanded. 本実施形態の流路部材のその他の一例を示す、(a)は流体の流れる方向に沿う方向の断面図であり、(b)は流体の流れる方向に直交する方向の断面図である。The other example of the flow-path member of this embodiment is shown, (a) is sectional drawing of the direction in alignment with the flow direction of a fluid, (b) is sectional drawing of the direction orthogonal to the flow direction of a fluid. 本実施形態の流路部材のその他の一例を示し、流体の流れる方向に沿う方向の断面図である。It is sectional drawing of the direction which shows another example of the flow-path member of this embodiment, and follows the direction through which a fluid flows. 本実施形態のフィンの一例の横断面形状を示す、(a)〜(c)は方形状であり、(d)および(e)は円形状である。(A)-(c) which shows the cross-sectional shape of an example of the fin of this embodiment is a square shape, (d) and (e) are circular. 本実施形態の熱交換器の一例を示し、流路部材における基体の反対側の主面上に金属層を設けた熱交換器の斜視図である。It is a perspective view of the heat exchanger which showed an example of the heat exchanger of this embodiment, and provided the metal layer on the main surface on the opposite side of the base | substrate in a flow-path member. 本実施形態の半導体装置の一例を示し、熱交換器に半導体素子が実装された半導体装置の斜視図である。It is a perspective view of the semiconductor device which showed an example of the semiconductor device of this embodiment, and in which the semiconductor element was mounted in the heat exchanger.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明の流路部材の実施の形態の一例を、図1および図2を用いて説明する。   An example of the embodiment of the flow path member of the present invention will be described with reference to FIGS. 1 and 2.

図1は、本実施形態の流路部材の一例を示す、(a)および(b)は流体の流れる方向に沿う方向の断面図であり、(c)は(a)の点線Aで囲んだ段差部を拡大した断面図であり、(d)は(b)の点線Aで囲んだ段差部を拡大した断面図であり、(e)は(a)および(b)の破線Bで囲んだフィン部材の変形例の断面図である。また、図2は、本実施形態の流路部材の他の一例を示す、(a)は、図1(a)の点線Aで囲んだ段差部を拡大した断面図であり、(b)は段差部の変形例を拡大した断面図であり、(c)は、図1(b)の点線Aで囲んだ段差部を拡大した断面図である。   FIG. 1 shows an example of a flow path member of the present embodiment. (A) and (b) are cross-sectional views in the direction along the fluid flow direction, and (c) is surrounded by a dotted line A in (a). It is sectional drawing which expanded the level | step-difference part, (d) is sectional drawing which expanded the level | step-difference part enclosed with the dotted line A of (b), (e) was enclosed with the broken line B of (a) and (b). It is sectional drawing of the modification of a fin member. FIG. 2 shows another example of the flow path member of the present embodiment. (A) is an enlarged cross-sectional view of a step portion surrounded by a dotted line A in FIG. 1 (a). It is sectional drawing to which the modification of the level | step-difference part was expanded, (c) is sectional drawing to which the level | step-difference part enclosed with the dotted line A of FIG.1 (b) was expanded.

図1に示す本実施形態の流路部材1,11は、内部に流体8が流れる流路6を有する流路部材1,11であって、流路側の主面2aに凹部2cを有する基体2と、筐体15と、基体2の凹部2cに接合されたベース部3に複数のフィン4が設けられてなるフィン部材5とを備え、このフィン部材5は、ベース部3の流路側表面3aにおける最も流路側に位置する部位3a’と、凹部2cの流路側の端2c’とが異なる位置となるように、凹部2cに接合されていることが重要である。なお、本実施形態において、最も流路側に位置する部位3a’と凹部2cの流路側の端2c’とが異なる位置となるとは、上下方向に見た場合に異なる位置となって、段差を有していることを意味する。   The flow path members 1 and 11 of the present embodiment shown in FIG. 1 are flow path members 1 and 11 having a flow path 6 through which a fluid 8 flows, and a base body 2 having a recess 2c on a main surface 2a on the flow path side. And a casing 15 and a fin member 5 in which a plurality of fins 4 are provided on the base portion 3 joined to the concave portion 2c of the base body 2. The fin member 5 is provided on the flow path side surface 3a of the base portion 3. It is important that the portion 3a ′ located closest to the flow path in FIG. 2 and the end 2c ′ on the flow path side of the concave portion 2c are joined to the concave portion 2c so as to be different from each other. In the present embodiment, the position 3a ′ located closest to the flow path and the end 2c ′ of the recess 2c on the flow path side are different from each other when viewed in the vertical direction. Means that

ここで、ベース部3の流路側表面3aにおける最も流路側に位置する部位3a’と、凹部2cの流路側の端2c’とが異なる位置(以下、段差9と言う場合もある。)とは、図1(a)および(c)に示すように、凹部2cの流路側の端2c’に対して、ベース部3の流路側表面3aにおける最も流路側に位置する部位3a’が上方に位置する(言い換え
れば凹んでいる)場合ならびに、図1(b)および(d)に示すように、凹部2cの流路側の端2c’に対して、ベース部3の流路側表面3aにおける最も流路側に位置する部位3a’が下方に位置する(言い換えれば流路6側に突出している)場合の両方を意味する。
Here, the position (hereinafter also referred to as a step 9) where the portion 3a ′ located closest to the flow path in the flow path side surface 3a of the base 3 and the flow path side end 2c ′ of the recess 2c are different (hereinafter also referred to as a step 9). As shown in FIGS. 1A and 1C, a portion 3a ′ located on the most flow path side on the flow path side surface 3a of the base portion 3 is positioned above the end 2c ′ on the flow path side of the recess 2c. And in other words, as shown in FIGS. 1B and 1D, the flow path side surface 3a of the base portion 3 is closest to the flow path side with respect to the flow path side end 2c ′ of the recess 2c. This means both of the cases where the part 3a ′ located at the bottom is located below (in other words, protrudes toward the flow path 6).

このように、本実施形態の流路部材1,11は、フィン部材5のベース部3の流路側表面3aにおける最も流路側に位置する部位3c’と、基体2の凹部2cの流路側の端2c’とが異なる位置となるように段差9を設けて接合されている。これにより流路部材1の場合には、流路6を流れる流体8がフィン4に当たり、このフィン4に当たった流体の一部がフィン4の根本部4bの方へ流れ、段差9の部分の流路側の端2c’と根本部4bとの間のスペースで流体が渦流8dを発生し、流体8と流路部材1との熱交換効率を高めることができる。また、流路部材11の場合には、流路6を流れる流体8が、流路側の主面2aとベース3との段差9に当たり、流路側の主面2aとは反対の方向へと流れる渦流8dが発生し、流体8と流路部材11との熱交換効率を高めることができる。   As described above, the flow path members 1 and 11 of the present embodiment include the portion 3c ′ located closest to the flow path on the flow path side surface 3a of the base portion 3 of the fin member 5 and the end of the recess 2c of the base 2 on the flow path side. Steps 9 are provided so as to be different from 2c ′. Thereby, in the case of the flow path member 1, the fluid 8 flowing through the flow path 6 hits the fin 4, and a part of the fluid that has hit the fin 4 flows toward the root portion 4 b of the fin 4, The fluid generates a vortex 8d in the space between the flow path side end 2c ′ and the root portion 4b, and the heat exchange efficiency between the fluid 8 and the flow path member 1 can be increased. In the case of the flow path member 11, the fluid 8 flowing in the flow path 6 hits the step 9 between the main surface 2a on the flow path side and the base 3, and the vortex flows in the direction opposite to the main surface 2a on the flow path side. 8d is generated, and the heat exchange efficiency between the fluid 8 and the flow path member 11 can be increased.

また、受熱部となる基体2の反対側の主面2bとフィン4との熱伝達のための距離が、基体2の流路側の主面2aが平坦な面である場合に比べ、凹部2cで基体2の厚みを薄くした分短くできる。それにより、基体2の反対側主面2bでの熱が効率よくフィン4に伝熱され、さらにフィン4の根本部4bにて流体8が渦流8dを発生しやすいことから、結果として流体8とフィン部材5との熱交換効率を高めることができる。さらに、流路部材1,11の基体2の凹部2cを除く部分は、厚みが厚いために基体2の剛性も確保できる。   Further, the distance for heat transfer between the main surface 2b on the opposite side of the base body 2 serving as the heat receiving portion and the fins 4 is smaller in the recess 2c than when the main surface 2a on the flow path side of the base body 2 is a flat surface. The substrate 2 can be shortened by reducing the thickness. As a result, heat on the opposite main surface 2b of the base 2 is efficiently transferred to the fins 4, and the fluid 8 tends to generate a vortex 8d at the root portion 4b of the fins 4. As a result, the fluid 8 and The heat exchange efficiency with the fin member 5 can be increased. Furthermore, the portion of the flow path members 1 and 11 excluding the recess 2c of the base body 2 is thick, so that the rigidity of the base body 2 can be secured.

また、図1に示す流路部材1,11のフィン4は、流体8の流れる方向または流れに直交する方向の何れからみた場合においても、板状のほか、特に限定されるものではないが、流体8を効率よく流すにあたり、複数に分割されていることが好ましい。以下特に断らない限り、複数に分割されている例を用いて説明する。なお、言い換えれば複数の部材からフィン4を形成してもよく、その場合において、板状、棒状等、適宜公知の構造を採用することができる。   Further, the fins 4 of the flow path members 1 and 11 shown in FIG. 1 are not particularly limited in addition to the plate shape, when viewed from either the direction in which the fluid 8 flows or the direction perpendicular to the flow. In order to flow the fluid 8 efficiently, it is preferable that the fluid 8 is divided into a plurality of parts. In the following, description will be made using an example divided into a plurality unless otherwise specified. In other words, the fins 4 may be formed from a plurality of members. In that case, a known structure such as a plate shape or a rod shape can be appropriately employed.

また、図1(a)〜(d)の流路部材1,11においては、フィン部材5のフィン4は、ベース部3の孔3bに挿入して固定しているが、図1(e)の変形例に示すように、フィン部材5はフィン4とベース部3とが一体化されたものであってもよい。   Moreover, in the flow path members 1 and 11 of FIGS. 1A to 1D, the fins 4 of the fin member 5 are inserted and fixed in the holes 3b of the base portion 3, but FIG. As shown in the modified example, the fin member 5 may be one in which the fin 4 and the base portion 3 are integrated.

また、(以下、不図示)さらに、ベース部3に凹部を設けフィン4を接合する場合や、ベース部3の表面3aに直接接合する場合であってもよく、さらに、フィン4が板状のときには、フィン部材5を上下方向の長さが短い板状体と、長さが長い板状体とを用いて、凹部2cとなる側の一端を揃えてそれぞれの板状体を交互に積層し接合することにより、ベース部3とフィン4とを有するフィン部材5とすることもできる。なおこの場合、それぞれの板状体のうち、長さの短い板状体に対応する部分がベース部3に相当し、長さが長い板状体のうち、長さの短い板状体に対応する部分より下方部分がフィン4に相当する。   Further, it may be a case where a recess is provided in the base portion 3 and the fin 4 is joined, or a case where the fin 4 is joined directly to the surface 3a of the base portion 3, and the fin 4 is plate-shaped. In some cases, the fin member 5 is formed by using a plate-like body having a short vertical length and a plate-like body having a long length, and alternately laminating the plate-like bodies by aligning one end on the side that becomes the recess 2c. By joining, it can also be set as the fin member 5 which has the base part 3 and the fin 4. FIG. In this case, of each plate-like body, a portion corresponding to the plate-like body having a short length corresponds to the base portion 3, and among plate-like bodies having a long length, it corresponds to a plate-like body having a short length. The lower part corresponds to the fins 4.

さらに、流体8の供給口16と排出口17とは、筐体15の流路側の主面2aに近い位置に設けることが好ましい。これにより、流体8は段差9の近辺に流れ込みやすくなり渦流8dが生じやすくなる。それゆえ、フィン4の根本部4bでの熱交換が活発になり熱交換効率を向上することができる。   Further, the supply port 16 and the discharge port 17 for the fluid 8 are preferably provided at positions close to the main surface 2 a on the flow path side of the housing 15. As a result, the fluid 8 easily flows into the vicinity of the step 9, and the vortex 8d is easily generated. Therefore, heat exchange at the root portion 4b of the fin 4 becomes active, and heat exchange efficiency can be improved.

なお、流体8の供給口16と排出口17とは、筐体15の流路側の主面2aに近い位置に設けることに限定されず、メンテナンス等の観点からは、基体2に設けるほか、筐体15の底部15aに設けてもよい。   Note that the supply port 16 and the discharge port 17 for the fluid 8 are not limited to being provided at positions close to the main surface 2a on the flow path side of the casing 15, and from the viewpoint of maintenance, etc. It may be provided on the bottom 15 a of the body 15.

また、流路6に効率よく流体8を流すにあたり、フィン4の先端部4aは筐体15との間に隙間を設けて配置することが好ましい。なお、流路6の圧力損失を高めて熱交換効率を高めるためには先端部4aと筐体15との間の隙間を狭くし、流路部材の強度の問題で圧力損失が高まることを抑制するためには先端部4aと筐体15との間の隙間を広くすればよい。   Further, in order to efficiently flow the fluid 8 through the flow path 6, it is preferable to arrange the tip portions 4 a of the fins 4 with a gap between them and the housing 15. In order to increase the pressure loss of the flow path 6 and increase the heat exchange efficiency, the gap between the tip 4a and the casing 15 is narrowed to prevent the pressure loss from increasing due to the strength problem of the flow path member. In order to do this, the gap between the tip 4a and the housing 15 may be widened.

図2は、本実施形態の流路部材の他の一例を示すもので、(a)は、凹部2cの流路側の端2c’に対して、ベース部3の最も流路側に位置する部位3a’の位置が凹んでいて、かつ、凹部2cの流路側の端2c’が斜面状となっているものである。また(b)は、凹部2cの流路側の端2c’に対して、ベース部3の最も流路側に位置する部位3a’の位置が凹んでいて、かつ、ベース部3の最も流路側に位置する部位3a’が斜面状となっているものである。さらに(c)は、凹部2cの流路側の端2c’に対して、ベース部3の最も流路側に位置する部位3a’の位置が流路側の主面2aより突出していて、かつ、角状となっているものである。   FIG. 2 shows another example of the flow path member of the present embodiment. FIG. 2A shows a portion 3a of the base portion 3 that is located closest to the flow path with respect to the flow path side end 2c ′ of the recess 2c. The position of 'is recessed, and the end 2c' on the flow path side of the recess 2c is inclined. Further, (b) shows that the position of the portion 3a ′ positioned closest to the flow path of the base portion 3 is recessed with respect to the flow path side end 2c ′ of the recess 2c, and is positioned closest to the flow path of the base portion 3. The part 3a ′ to be formed has a slope shape. Further, (c) shows that the position of the portion 3a ′ located on the most flow path side of the base portion 3 protrudes from the main surface 2a on the flow path side with respect to the flow path side end 2c ′ of the recess 2c, and is square. It is what has become.

このように、凹部2cの流路側の端2c’の形状、或いは、ベース部3の流路側の表面3aの最も流路側に位置する部位3a’の形状が曲面状を含む斜面状の場合においても、段差9によって渦流8dが発生し、流体8と流路部材1,11との熱交換効率を高めること
ができる。
As described above, even when the shape of the end 2c ′ on the flow path side of the recess 2c or the shape of the portion 3a ′ located on the most flow path side of the surface 3a on the flow path side of the base portion 3 is an inclined surface including a curved surface The step 9 generates a vortex 8d, and the heat exchange efficiency between the fluid 8 and the flow path members 1 and 11 can be increased.

なお、基体2の流路側の主面2aの凹部2cは、その平面形状は問わず、正方形、長方形を含む方形や楕円を含む円形でもよい。さらに、段差9を存在させる箇所も凹部2cの周縁の少なくとも一部に存在すればよいが、段差9で渦流8dを発生させ熱交換を効率的に行なうためには、流体8の流れの上流側に設けることが好ましい。また、基体2およびフィン部材5は、熱伝導性の高い、銅、アルミニウムまたはそれらを主成分とする合金や、アルミナ、ジルコニア、ムライト、炭化珪素、窒化珪素および窒化アルミニウムやこれらの複合材料でもよいが、絶縁性の高いアルミナやジルコニア、ムライトおよび窒化珪素などを用いれば、基体2の反対側の主面2bに直接、配線導体を形成でき、これに半導体素子を搭載することで、シンプルな構造で、かつ、熱交換の効率の高い流路部材1,11を備える半導体装置とすることができる。   The recess 2c of the main surface 2a on the flow path side of the substrate 2 is not limited to a planar shape, and may be a square including a square or a rectangle or a circle including an ellipse. Furthermore, it is sufficient that the step 9 is present at least at a part of the periphery of the recess 2c. However, in order to generate the vortex 8d at the step 9 and perform heat exchange efficiently, the upstream side of the flow of the fluid 8 is used. It is preferable to provide in. Further, the base body 2 and the fin member 5 may be made of copper, aluminum, an alloy containing them as a main component, alumina, zirconia, mullite, silicon carbide, silicon nitride, aluminum nitride, or a composite material thereof having high thermal conductivity. However, if highly insulating alumina, zirconia, mullite, silicon nitride, or the like is used, a wiring conductor can be formed directly on the main surface 2b on the opposite side of the substrate 2, and a simple structure can be obtained by mounting a semiconductor element thereon. And it can be set as a semiconductor device provided with the flow path members 1 and 11 with high heat exchange efficiency.

そして、基体2とフィン部材5との接合は、例えば、基体2がセラミックス材料からなるときには、基体2を粉末プレス成型や押出成形、グリーンシート成形により成形体を作製し、フィン部材5もグリーンシートの成形体を積層して作製し、これらを組み合わせて焼成することや、または、インジェクション成形により成形体を作製し、これらの基体2と上記のフィン部材5とを組合せたあとに焼成することによって一体化した基体2とすることができる。   The base 2 and the fin member 5 are joined, for example, when the base 2 is made of a ceramic material, the base 2 is formed by powder press molding, extrusion molding, or green sheet molding, and the fin member 5 is also a green sheet. The molded body is laminated and fired by combining them, or the molded body is fabricated by injection molding, and the base body 2 and the fin member 5 are combined and fired. An integrated substrate 2 can be obtained.

また、その他の材料や、複数の材料の組合せて用いる場合には、例えば、ろう材やはんだなどの接合剤やねじ止め等により基体2とフィン部材5とを接合でき、基体2としては絶縁性、熱伝導性および耐熱性が高いものを選択し、フィン部材5としては熱伝導性が高い材料を選択することができる。   Further, when using other materials or a combination of a plurality of materials, for example, the base 2 and the fin member 5 can be joined by a bonding agent such as a brazing material or solder, or screwing. A material having high heat conductivity and heat resistance can be selected, and a material having high heat conductivity can be selected as the fin member 5.

なお、図2(b)および(c)に示すフィン部材5において、フィン4を接合するベース部3の全て或いは流路6側の表層(不図示)が、ろう材やはんだを含む接着剤でコーティングされていてもよい。この場合であっても、段差9における渦流8dの発生に影響はない。   In the fin member 5 shown in FIGS. 2B and 2C, the entire base portion 3 to which the fin 4 is joined or the surface layer (not shown) on the flow path 6 side is made of an adhesive containing brazing material or solder. It may be coated. Even in this case, the generation of the vortex 8d at the step 9 is not affected.

また、フィン4を複数に分割した状態でベース部3に設けるにあたっては、基体2の流路側の主面2a側から平面視したときに、(不図示)格子状となるように配置することも
できるが、フィン4の配置が千鳥状になるように設けることが好ましい。この様な構成とすれば、流体8はフィン4に衝突した後にフィン4の左右に分散されて進み、その後さらにその次のフィン4に衝突しさらに分散される。それにより、流体8が分散と混合とを繰り返す頻度が高くなることから、流路部材1,11の流体8の流れる方向に対して垂直な方向における温度バラツキが高くなることを抑制できる。
Further, when the fins 4 are provided in the base portion 3 in a state of being divided into a plurality of parts, they may be arranged in a lattice shape (not shown) when viewed from the main surface 2a side on the flow path side of the base 2. However, it is preferable to provide the fins 4 in a staggered arrangement. With such a configuration, the fluid 8 collides with the fin 4 and then travels while being dispersed to the left and right of the fin 4, and then collides with the next fin 4 and further dispersed. Thereby, since the frequency with which the fluid 8 repeats dispersion and mixing increases, it is possible to suppress an increase in temperature variation in the direction perpendicular to the direction in which the fluid 8 flows in the flow path members 1 and 11.

さらに、フィン4を複数に分割した状態でベース部3に設ける場合において、フィン4の密度は、流体の流れる方向に沿って流体の入口側を高くする場合や、熱交換対象物が設けられる付近の密度を高くするなど、熱交換対象物の配置方法により適宜選択して設けることで、基体2の受熱部となる反対側の主面2b全体の温度バラツキの低減を図ることができる。   Further, in the case where the fins 4 are provided in the base portion 3 in a state where the fins 4 are divided into a plurality, the density of the fins 4 is set so that the inlet side of the fluid is increased along the direction of fluid flow or in the vicinity where the heat exchange object is provided. The temperature variation of the entire main surface 2b on the opposite side, which becomes the heat receiving portion of the base body 2, can be reduced by appropriately selecting and providing the heat exchange target object according to the arrangement method of the heat exchange object.

以上のように、本実施形態の流路部材1が、フィン部材5のベース部3の流路側表面3aにおける最も流路側に位置する部位3a’が、凹部2cの流路側の端2c’よりも凹んでいる場合(図1(a),(c)および図2(a)および(b)に示すような構成)であれば、流路部材1の供給口16から流路6内に入った流体8は、その一部が段差9の凹みのフィン4の根本部4bで渦流8dとなり、流体8とフィン部材5との熱交換を活発にし、かつ、基体2は凹部2cを形成し他の部分より厚みが薄くなっていることから、受熱部となる反対側の主面2bとの熱交換効率を高めることができる。また、基体2の凹部が設けられていない部分(例えば枠体となる部分)の厚みが凹部2cの基体2の厚みより厚いために剛性を確保でき、基体2の反りなどの発生も抑制でき、流路部材1が破壊することを抑制できる。   As described above, the flow path member 1 of the present embodiment is such that the portion 3a ′ located closest to the flow path in the flow path side surface 3a of the base portion 3 of the fin member 5 is more than the end 2c ′ of the recess 2c on the flow path side. If it is indented (as shown in FIGS. 1A and 1C and FIGS. 2A and 2B), it has entered the flow path 6 from the supply port 16 of the flow path member 1. A part of the fluid 8 becomes a vortex 8d at the root 4b of the fin 4 having a recess in the step 9, and heat exchange between the fluid 8 and the fin member 5 is actively performed. Since the thickness is thinner than the portion, it is possible to increase the efficiency of heat exchange with the opposite main surface 2b serving as the heat receiving portion. Further, since the thickness of the portion of the base body 2 where the concave portion is not provided (for example, the portion serving as a frame) is thicker than the thickness of the base portion 2 of the concave portion 2c, the rigidity can be ensured, and the occurrence of warping of the base body 2 can also be suppressed. It can suppress that the flow-path member 1 destroys.

また、以上のように、本実施形態の流路部材11が、フィン部材5のベース部3の流路側表面3aにおける最も流路側に位置する部位3a’が、凹部2cの流路側の端2c’よりも突出している場合(図1(b),(d)および図2(c)示すような構成)であれば、流路部材11の供給口16から流路6内に入った流体8は、その一部が段差9の突出したフィン4の根本部4bで渦流8dとなり、流体8とフィン部材5との熱交換を活発にし、かつ、基体2は凹部2cを形成し他の部分より厚みが薄くなっていることから、受熱部となる反対側の主面2bとの熱交換効率を高めることができる。また、基体2の凹部が設けられていない部分(例えば、枠体となる部分)の厚みが凹部2cの基体2の厚みより厚いために剛性を確保でき、基体2の反りなどの発生も抑制でき流路部材11が破壊することを抑制できる。   Further, as described above, the flow path member 11 of the present embodiment is located at the flow path side end 3c ′ of the recess 2c on the flow path side surface 3a of the base portion 3 of the fin member 5 at the most flow path side portion 3a ′. 1 (b), (d), and FIG. 2 (c), the fluid 8 that has entered the flow path 6 from the supply port 16 of the flow path member 11 , A part of which becomes a vortex 8d at the root 4b of the fin 4 protruding from the step 9, thereby actively exchanging heat between the fluid 8 and the fin member 5, and the base 2 has a recess 2c to be thicker than the other parts. Therefore, the heat exchange efficiency with the main surface 2b on the opposite side serving as the heat receiving portion can be increased. In addition, since the thickness of the portion of the base body 2 where the concave portion is not provided (for example, the portion serving as a frame) is thicker than the thickness of the base portion 2 of the concave portion 2c, rigidity can be ensured and occurrence of warpage of the base body 2 can be suppressed. Breakage of the flow path member 11 can be suppressed.

なお、凹部2cの流路側の端2c’に対して、ベース部の流路側表面3aにおける最も流路側に位置する部位3a’が、凹んでいるものと突出しているものとの双方が、一つのフィン部材5の周縁にあってもよい。なお、フィン部材5の周縁に限られるものではない。   In addition, with respect to the end 2c ′ on the flow path side of the recess 2c, the portion 3a ′ located closest to the flow path side on the flow path side surface 3a of the base portion is both recessed and protruding. It may be on the periphery of the fin member 5. In addition, it is not restricted to the periphery of the fin member 5.

次に、図3および図4を用いて、本実施形態の流路部材のその他の一例を説明する。   Next, another example of the flow path member of the present embodiment will be described with reference to FIGS. 3 and 4.

図3は本実施形態の流路部材のその他の一例を示す、(a)は流体の流れる方向に沿う方向の断面図であり、(b)は流体の流れる方向に直交する方向の断面図であり、図4は本実施形態の流路部材のその他の一例を示し、流体の流れる方向に沿う方向の断面図である。   3A and 3B show another example of the flow path member of the present embodiment, in which FIG. 3A is a cross-sectional view in the direction along the fluid flow direction, and FIG. 3B is a cross-sectional view in the direction orthogonal to the fluid flow direction. FIG. 4 shows another example of the flow path member of the present embodiment, and is a cross-sectional view in the direction along the fluid flow direction.

図3に示す本実施形態の流路部材12は、(a)に示すように、流体8の流れる方向に沿う方向に凹部2cを3つ設けて、それぞれの凹部2cにフィン部材5を配置しており、(b)に示すように、流体8の流れる方向に直交する方向に凹部2cを2つ設けて、それぞれの凹部2cにフィン部材5を配置している。すなわち1つの基体2に6つのフィン部材
5が接合されている。なおそれぞれのフィン部材5において、凹部2cの流路側の端2c’に対して、ベース部3の最も流路側に位置する部位3a’が凹んでいる段差9が設けられている。
As shown in FIG. 3A, the flow path member 12 of the present embodiment shown in FIG. 3 is provided with three recesses 2c in the direction along which the fluid 8 flows, and the fin member 5 is disposed in each recess 2c. As shown in (b), two recesses 2c are provided in a direction orthogonal to the direction in which the fluid 8 flows, and the fin member 5 is disposed in each recess 2c. That is, six fin members 5 are joined to one base body 2. Each fin member 5 is provided with a step 9 in which a portion 3a ′ located closest to the flow path of the base 3 is recessed with respect to the flow path side end 2c ′ of the recess 2c.

また、図4に示す本実施形態の流路部材13は、流体8の流れる方向に沿う方向に、凹部2cを3つ設けて、それぞれの凹部2cにフィン部材5を配置している。なおそれぞれのフィン部材5において、凹部2cの流路側の端2c’に対して、ベース部3の最も流路側に位置する部位3a’が流路6側に突出している。なお、図4における流体8に直交する方向の断面図は、図3(b)の配置と同じであるから記載は省略する。   Further, the flow path member 13 of the present embodiment shown in FIG. 4 is provided with three recesses 2c in the direction along which the fluid 8 flows, and the fin member 5 is disposed in each recess 2c. In each fin member 5, a portion 3 a ′ located on the most flow path side of the base portion 3 protrudes toward the flow path 6 with respect to the end 2 c ′ on the flow path side of the recess 2 c. In addition, since sectional drawing of the direction orthogonal to the fluid 8 in FIG. 4 is the same as arrangement | positioning of FIG.3 (b), description is abbreviate | omitted.

本実施形態の流路部材12、13は、基体2が複数の凹部2cを有し、それぞれの凹部2cにフィン部材5が接合されているとともに、複数のフィン部材5において、基体2の中央部2dの凹部2cにおけるベース部3の流路側表面3aにおける最も流路側に位置する部位3a’と、凹部2cの流路側の端2c’との差が、基体2の中央部以外の部位2eの凹部2cにおけるベース部3の流路側表面3aにおける最も流路側に位置する部位3a’と凹部2cの流路側の端2c’との差よりも大きいことがより好ましい。それにより、熱交換対象物を中央部に配置する場合に、より熱交換効率の向上した流路部材12,13とするこ
とができる。
In the flow path members 12 and 13 of this embodiment, the base 2 has a plurality of recesses 2c, and the fin members 5 are joined to the respective recesses 2c. The difference between the portion 3a ′ located closest to the flow channel in the flow channel side surface 3a of the base portion 3 in the concave portion 2c of 2d and the end 2c ′ on the flow channel side of the concave portion 2c is the concave portion of the portion 2e other than the central portion of the base 2 It is more preferable that the difference between the portion 3a ′ located closest to the flow path on the flow path side surface 3a of the base portion 3 in 2c and the flow path side end 2c ′ of the recess 2c is larger. Thus, when the heat exchange object is arranged in the center, the flow path members 12 and 13 with improved heat exchange efficiency can be obtained.

なお、ここで、流路部材12,13は、流体8の流れる方向に3つの凹部2cと、流体8の流れる方向に直交する方向に2つの凹部2cを形成しているが、流路部材12,13の大きさ
によって、凹部2cならびに凹部2cに挿入し接合するフィン部材5の個数および配置を変更すればよい。
Here, the flow path members 12 and 13 are formed with three recesses 2c in the direction in which the fluid 8 flows and two recesses 2c in the direction perpendicular to the direction in which the fluid 8 flows. The number and arrangement of the fins 5 to be inserted into and joined to the recess 2c and the recess 2c may be changed.

また、凹部2cの流路側の端2c’に対して、ベース部の流路側表面3aにおける最も流路側に位置する部位3a’が、凹んでいるものと突出しているものとの双方が、1つの流路部材12或いは13の中に混合していてもよい。   In addition, with respect to the end 2c ′ of the recess 2c on the flow path side, the portion 3a ′ located closest to the flow path on the flow path side surface 3a of the base portion is both recessed and protruding. It may be mixed in the flow path member 12 or 13.

また、基体2の中央部2dとは、基体2の筐体15との接合部を除く流路側の主面2aの長さ方向および幅方向において、それぞれの寸法の中心から端の方に向かって25%までの範囲内とすればよい。   Further, the central portion 2d of the base body 2 refers to the direction from the center of each dimension toward the end in the length direction and the width direction of the main surface 2a on the flow path side excluding the joint portion between the base body 2 and the casing 15. The range may be up to 25%.

以上のように、本実施形態の流路部材12が、フィン部材5のベース部3の流路側表面3aにおける最も流路側に位置する部位3a’が、凹部2cの流路側の端2c’よりも凹んでおり、また基体2の中央部2dの凹部2cにおけるベース部3の流路側表面3aにおける最も流路側に位置する部位3a’と、凹部2cの流路側の端2c’との差(段差9)が、基体2の中央部以外の部位2eの凹部2cにおけるベース部3の流路側表面3aにおける最も流路側に位置する部位3a’と凹部2cの流路側の端2c’との差(段差9)よりも大きいときには、それぞれの段差9による流体8の渦流8dのうち、中央部2dで発生する渦流8dが最も大きくなりやすい。したがって、受熱部である基体2の反対側の主面2bの中央部2dにおける熱交換効率が高められ、熱交換対象物を基体2の反対側の主面2bの中央部2d付近に配置したとき、基体2の中央部2dと中央部以外2eとの温度バラツキをより低減できる。   As described above, the flow path member 12 of the present embodiment is such that the portion 3a ′ located closest to the flow path side on the flow path side surface 3a of the base portion 3 of the fin member 5 is more than the end 2c ′ of the recess 2c on the flow path side. The difference (step 9) between the portion 3a ′ located closest to the flow path in the flow path side surface 3a of the base portion 3 in the concave portion 2c of the central portion 2d of the base 2 and the flow path side end 2c ′ of the recess 2c. ) Is the difference (step 9) between the portion 3a 'located on the most flow path side in the flow path side surface 3a of the base portion 3 and the end 2c' on the flow path side of the recess 2c. ), The eddy current 8d generated in the central portion 2d tends to be the largest among the vortex 8d of the fluid 8 caused by the respective steps 9. Therefore, the heat exchange efficiency in the central portion 2d of the main surface 2b on the opposite side of the base body 2 that is the heat receiving portion is enhanced, and the heat exchange object is disposed in the vicinity of the central portion 2d of the main surface 2b on the opposite side of the base body 2. The temperature variation between the central portion 2d of the base 2 and the portion 2e other than the central portion can be further reduced.

また、以上のように、本実施形態の流路部材13が、フィン部材5のベース部3の流路側表面3aにおける最も流路側に位置する部位3a’が、流路6側に突出しており、また基体2の中央部2dの凹部2cにおけるベース部3の流路側表面3aにおける最も流路側に位置する部位3a’と、凹部2cの流路側の端2c’との差(段差9)が、基体2の中央部以外の部位2eの凹部2cにおけるベース部3の流路側表面3aにおける最も流路側に位置する部位3a’と凹部2cの流路側の端2c’との差(段差9)よりも大きいときに
は、それぞれの段差9による流体8の渦流8dは中央部2dで発生する渦流8dが最も大きくなりやすい。したがって、受熱部である基体2の反対側の主面2bの中央部2dにおける熱交換効率が高められ、熱交換対象物を基体2の反対側の主面2bの中央部2d付近に配置したとき、基体2の中央部2dと中央部以外2eとの温度バラツキをより低減できる。
Further, as described above, the portion 3a ′ of the channel member 13 of the present embodiment, which is located on the most channel side in the channel side surface 3a of the base portion 3 of the fin member 5, protrudes toward the channel 6 side. Further, the difference (step 9) between the portion 3a ′ located on the most flow path side in the flow path side surface 3a of the base portion 3 in the concave portion 2c of the central portion 2d of the base 2 and the end 2c ′ of the concave portion 2c on the flow path side is 2 is greater than the difference (step 9) between the portion 3a 'located on the most flow path side of the flow path side surface 3a of the base portion 3 and the end 2c' of the recess 2c on the flow path side. In some cases, the eddy current 8d of the fluid 8 caused by each step 9 is most likely to be the eddy current 8d generated at the central portion 2d. Therefore, the heat exchange efficiency in the central portion 2d of the main surface 2b on the opposite side of the base body 2 that is the heat receiving portion is enhanced, and the heat exchange object is disposed in the vicinity of the central portion 2d of the main surface 2b on the opposite side of the base body 2. The temperature variation between the central portion 2d of the base 2 and the portion 2e other than the central portion can be further reduced.

図5は、本実施形態の流路部材に用いるフィンの一例の横断面形状を示す、(a)〜(c)は方形状であり、(d)および(e)は円形状である。なお、ここではフィン4が分割されている場合とし、その1つのみについて示している。   FIG. 5 shows the cross-sectional shape of an example of the fin used for the flow path member of the present embodiment, (a) to (c) are rectangular, and (d) and (e) are circular. Here, it is assumed that the fin 4 is divided, and only one of them is shown.

ここで、図5においては、(a)は流体8の流れ方向に長い長方形で、(b)は正方形で、(c)は角部の一つが流体8の流れに当る菱形であり、(d)は流体8の流れの方向に長い楕円形で、(e)は円形である。   Here, in FIG. 5, (a) is a rectangle that is long in the flow direction of the fluid 8, (b) is a square, (c) is a rhombus in which one of the corners corresponds to the flow of the fluid 8, and (d ) Is an ellipse that is long in the flow direction of the fluid 8, and (e) is circular.

このように、分割されたフィン4の横断面形状が長方形や正方形などの方形状であって、方形の辺の少なくとも一つが、流体8の流れに直交する構成である(a)および(b)に示す方形状の場合には、流体8が衝突するフィン4の箇所では、流体8が渦流や沿面流となり周囲の流体8との混合が促進されるものの、流体8との抵抗が高くなることから圧力損失が高くなることと、流体8が衝突するフィン4の背面側で圧力損失が低くなることから、局部的には、フィン4と流体8の熱交換の温度分布にバラツキが生じやすい一面もあるが、全体としては、熱交換効率は高くなる。   In this way, the cross-sectional shape of the divided fins 4 is a rectangle such as a rectangle or a square, and at least one of the sides of the rectangle is configured to be orthogonal to the flow of the fluid 8 (a) and (b). In the case of the square shape shown in FIG. 4, the fluid 8 becomes a vortex or creeping flow at the location of the fin 4 where the fluid 8 collides, and the mixing with the surrounding fluid 8 is promoted, but the resistance to the fluid 8 is increased. Since the pressure loss becomes higher and the pressure loss becomes lower on the back side of the fin 4 where the fluid 8 collides, locally, the temperature distribution of heat exchange between the fin 4 and the fluid 8 is likely to vary. However, as a whole, the heat exchange efficiency is increased.

これに対して、フィン4の横断面形状が楕円形や円形などの略円形状である(d)および(e)のときには、流体8が衝突するフィン4の箇所では、流体8の多くが円形にそって左右に振り分けられ、かつ、背面に回り込むために、フィン4と流体8との熱交換の温度分布にバラツキが抑えられ、かつ、圧力損失も低く抑えられる。   On the other hand, when the cross-sectional shape of the fin 4 is a substantially circular shape such as an ellipse or a circle (d) and (e), most of the fluid 8 is circular at the location of the fin 4 where the fluid 8 collides. Accordingly, the temperature distribution of the heat exchange between the fins 4 and the fluid 8 is suppressed, and the pressure loss is also suppressed low.

なお、フィン4の横断面形状が、角部の一つが流体8の流れに当る菱形である(c)の場合は、上記フィン4の形状が(a)および(b)の方形状の場合と、(d)および(e)の中間との中間の作用が得られる。   In addition, when the cross-sectional shape of the fin 4 is a rhombus in which one of the corners corresponds to the flow of the fluid 8, the shape of the fin 4 is a square shape of (a) and (b) , (D) and (e), an intermediate effect is obtained.

このように、圧力損失の高低や、熱交換による温度分布バラツキの大小のいずれを重要視するかにより、フィン4の横断面形状を選択すればよい。   Thus, the cross-sectional shape of the fin 4 may be selected depending on whether the pressure loss is high or the temperature distribution variation due to heat exchange is important.

例えば、図4に示す様に、熱交換対象物が実装される基体2の中央部2dの近辺のフィン部材5のフィン4形状は方形状とし、中央部以外2eのフィン部材5のフィン4形状は円形状としてもよい。   For example, as shown in FIG. 4, the fin 4 shape of the fin member 5 in the vicinity of the central portion 2d of the base 2 on which the heat exchange object is mounted is a square shape, and the fin 4 shape of the fin member 5 in the 2e other than the central portion is formed. May be circular.

また、本実施形態の流路部材1,11〜13は、基体2およびフィン部材5が非可撓性部材からなることが好ましく、基体2が非可撓性部材からなる場合であれば、剛性が高く基体2の反対側の主面2b上に熱交換対象物を実装したとしても、荷重や熱膨張係数の差による反りの発生をより抑制でき、流路部材1,11〜13の破壊を抑制できる。   Moreover, it is preferable that the base member 2 and the fin member 5 are made of an inflexible member, and the flow path members 1 and 11 to 13 of the present embodiment are rigid if the base member 2 is made of an inflexible member. Even if the heat exchange object is mounted on the main surface 2b on the opposite side of the base 2, the occurrence of warpage due to the difference in load and thermal expansion coefficient can be further suppressed, and the flow path members 1, 11 to 13 can be destroyed. Can be suppressed.

また、フィン部材5が非可撓性部材からなる場合であるときには、流路部材1,11〜13の流路6に流体8を圧送したとき、流体8や流体8に含まれる固形物がフィン4に当たっても、フィン4が変形や磨耗することを抑制できる。したがって、フィン4間の流路6が塞がれることも抑制でき、熱交換効率の低下を抑制できる。   Further, when the fin member 5 is made of an inflexible member, when the fluid 8 is pumped to the flow path 6 of the flow path members 1, 11 to 13, the fluid 8 and the solid matter contained in the fluid 8 are finned. Even if it hits 4, it can suppress that the fin 4 deform | transforms and wears. Therefore, the flow path 6 between the fins 4 can be prevented from being blocked, and a decrease in heat exchange efficiency can be suppressed.

また、流路部材1,11〜13の製造工程においては、例えば、流路部材1,11〜13の成形、焼成等において流路6内に付着物が付着することがあり、このようなときには、メディ
アを混合した流体を流路部材1,11〜13の流路6に流すことによって流路6内を洗浄しても、フィン4が非可撓性材料からなるため変形や磨耗を抑制しつつ流路6の洗浄が可能となる。
Further, in the manufacturing process of the flow path members 1, 11 to 13, for example, deposits may adhere to the flow path 6 during molding or firing of the flow path members 1, 11 to 13. Even if the inside of the flow path 6 is washed by flowing a fluid mixed with the media through the flow path 6 of the flow path members 1, 11 to 13, the fin 4 is made of an inflexible material, so that deformation and wear are suppressed. However, the flow path 6 can be cleaned.

また、上記非可撓性部材としては、セラミックスであることがより好ましい。   The inflexible member is more preferably ceramic.

流路部材1,11〜13の基体2およびフィン部材5がセラミックスからなるときは、基体2の反対側の主面2bに直接、例えば、配線導体などの金属層を形成することができるため、この金属層上に半導体素子を直接実装でき、部品点数の削減ができるとともに、部品の接合部が少なくできる分、接合部における熱抵抗を低減でき熱交換効率を高められる。   When the base member 2 and the fin member 5 of the flow path members 1, 11 to 13 are made of ceramics, for example, a metal layer such as a wiring conductor can be formed directly on the main surface 2 b on the opposite side of the base member 2. A semiconductor element can be directly mounted on this metal layer, the number of parts can be reduced, and the number of joints between parts can be reduced, so that the thermal resistance at the joints can be reduced and the heat exchange efficiency can be increased.

また、半導体素子の材料はシリコンが多用されているが、近年は炭化珪素も使われつつあり、これらの半導体素子の材料とセラミックスとは、金属、樹脂などに比較し熱膨張係数が近似しているため、流路部材1,11〜13ならびに半導体素子の温度が高くなったときでも、これらの部材間に熱応力による剪断応力を生じることを抑制できる。それにより、流路部材1,11〜13のフィン部材5と基体2との上方に設けられる熱交換対象物である半導体素子などとの接合部の剥離の発生を抑制できる。   In addition, silicon is often used as a material for semiconductor elements, but in recent years silicon carbide is also being used. These semiconductor element materials and ceramics have similar thermal expansion coefficients compared to metals and resins. Therefore, even when the temperature of the flow path members 1, 11 to 13 and the semiconductor element is increased, it is possible to suppress the occurrence of shear stress due to thermal stress between these members. Thereby, generation | occurrence | production of peeling of the junction part with the semiconductor element etc. which are the heat exchange objects provided above the fin member 5 and the base | substrate 2 of the flow-path members 1 and 11-13 can be suppressed.

ここで、セラミックス材料としては、アルミナ、ジルコニア、ムライト、炭化硅素、窒化珪素および窒化アルミニウムやこれらの複合材料でもよいが、絶縁性や価格を重要視するならばアルミナが好ましく、熱伝導性を重要視するならば炭化珪素、窒化アルミニウムおよび窒化硅素のいずれかを選択すればよい。   Here, the ceramic material may be alumina, zirconia, mullite, silicon carbide, silicon nitride and aluminum nitride, or a composite material thereof. However, if insulation and price are important, alumina is preferable, and thermal conductivity is important. From a viewpoint, any of silicon carbide, aluminum nitride, and silicon nitride may be selected.

図6は本実施形態の熱交換器の一例を示し、流路部材における基体の反対側の主面上に金属層を設けた熱交換器の斜視図である。   FIG. 6 shows an example of the heat exchanger of this embodiment, and is a perspective view of a heat exchanger in which a metal layer is provided on the main surface of the flow path member on the opposite side of the base.

図6に示す、本実施形態の熱交換器21は、本実施形態の流路部材1,11〜13の基体2の反対側の主面2bの上方に金属層22が設けられている。これにより、基体2と金属層22との熱交換を効率よく行なうことができ、熱交換効率の高い熱交換器21とすることができる。   In the heat exchanger 21 of this embodiment shown in FIG. 6, a metal layer 22 is provided above the main surface 2b on the opposite side of the base 2 of the flow path members 1, 11 to 13 of this embodiment. Thereby, heat exchange between the base 2 and the metal layer 22 can be performed efficiently, and the heat exchanger 21 with high heat exchange efficiency can be obtained.

ここで、熱交換器21に設けられる金属層22は、配線導体であれば、厚膜や薄膜の印刷によるものやメッキ法によるものや金属板の接合によるもの等の何れでもよい。また、金属層22上に別の流体が流れる流路部材を接合してもよく、この場合には他の流体との効果的な熱交換ができる。   Here, as long as the metal layer 22 provided in the heat exchanger 21 is a wiring conductor, it may be a thick film or thin film printing, a plating method, a metal plate bonding, or the like. Further, a flow path member through which another fluid flows may be joined on the metal layer 22, and in this case, effective heat exchange with the other fluid can be performed.

図7は本実施形態の半導体装置の一例を示し、熱交換器に半導体素子が実装された半導体装置の斜視図である。   FIG. 7 is a perspective view of a semiconductor device in which a semiconductor element is mounted on a heat exchanger, showing an example of the semiconductor device of the present embodiment.

図7に示す本実施形態の半導体装置31は、熱交換器21に設けられた金属層22の上方に半導体素子32が実装されていることから、部品点数が少ないシンプルな構造で、発熱体である半導体素子32を実装できる。   The semiconductor device 31 of the present embodiment shown in FIG. 7 has a simple structure with a small number of parts and a heating element because the semiconductor element 32 is mounted above the metal layer 22 provided in the heat exchanger 21. A certain semiconductor element 32 can be mounted.

したがって、半導体素子32と流路部材1,11〜13の流路を流れる流体間には熱抵抗となる部品点数を最小限としたため熱交換効率が高く、かつ、コストを抑えられる。さらに、フィン部材が流体や流体に含まれる固形物などによる変形や磨耗の発生を抑制できることから、半導体素子32の発熱による温度上昇を抑制する半導体装置31とすることができる。   Accordingly, since the number of parts that become thermal resistance is minimized between the fluid flowing through the flow path of the semiconductor element 32 and the flow path members 1 and 11 to 13, the heat exchange efficiency is high and the cost can be suppressed. Further, since the fin member can suppress the deformation and wear due to the fluid and the solid matter contained in the fluid, the semiconductor device 31 can be configured to suppress the temperature rise due to the heat generation of the semiconductor element 32.

1、11〜13:流路部材
2:基体
2a:流路側の主面、2b:反対側の主面、2c:凹部、2c’:流路側の端、2d:中央部、2e:中央部以外
3:ベース部
3a:流路側の表面、3a’:最も流路側に位置する部位
4:フィン
4a:先端部、4b:根本部
5:フィン部材
6:流路
8:流体、8a:伏流、8b:表面流、8c:沿面流、8d:渦流
9:段差(段差部)
15:筐体
16:供給口
17:排出口
21:熱交換器
22:金属層
31:半導体装置
32:半導体素子
DESCRIPTION OF SYMBOLS 1, 11-13: Channel member 2: Base | substrate 2a: Main surface on the flow path side, 2b: Main surface on the opposite side, 2c: Recessed part, 2c ': End on the flow path side, 2d: Central part, 2e: Other than central part 3: Base part 3a: Surface on the flow path side, 3a ': Site located closest to the flow path side 4: Fin 4a: Tip part, 4b: Root part 5: Fin member 6: Flow path 8: Fluid, 8a: Downflow, 8b : Surface flow, 8c: Creeping flow, 8d: Swirl 9: Step (step)
15: Housing
16: Supply port
17: Discharge port
21: Heat exchanger
22: Metal layer
31: Semiconductor devices
32: Semiconductor element

Claims (7)

内部に流体が流れる流路を有する流路部材であって、前記流路側の主面に凹部を有する基体と、筐体と、前記基体の凹部に接合されたベース部に複数のフィンが設けられてなるフィン部材とを備え、該フィン部材は、前記ベース部の流路側表面における最も流路側に位置する部位と前記凹部の前記流路側の端とが異なる位置となるように、前記凹部に接合されていることを特徴とする流路部材。   A flow path member having a flow path through which a fluid flows, wherein a base having a recess on a main surface on the flow path side, a housing, and a plurality of fins are provided on a base portion joined to the recess of the base The fin member is joined to the recess so that the most channel-side portion of the base portion on the channel-side surface is different from the channel-side end of the recess. A flow path member characterized by being made. 前記フィン部材は、前記ベース部の流路側表面における最も流路側に位置する部位が、前記凹部の前記流路側の端よりも前記流路側から凹んでいることを特徴とする請求項1に記載の流路部材。   2. The fin member according to claim 1, wherein a portion of the base portion, which is located closest to the flow path side on the flow path side surface, is recessed from the flow path side than the end of the recess on the flow path side. Channel member. 前記フィン部材は、前記ベース部の流路側表面における最も流路側に位置する部位が、前記凹部の前記流路側の端よりも前記流路側に突出していることを特徴とする請求項1に記載の流路部材。   2. The fin member according to claim 1, wherein a portion of the fin portion located closest to the flow path side on the flow path side surface of the base portion protrudes toward the flow path side from the end of the recess on the flow path side. Channel member. 前記基体が複数の前記凹部を有し、それぞれの該凹部に前記フィン部材が接合されているとともに、前記複数のフィン部材において、前記基体の中央部の凹部における前記ベース部の流路側表面における最も流路側に位置する部位と前記凹部の前記流路側の端との差が、前記基体の中央部以外の部位の凹部における前記ベース部の流路側表面における最も流路側に位置する部位と前記凹部の前記流路側の端との差よりも大きいことを特徴とする請求項2または3に記載の流路部材。   The base has a plurality of the recesses, and the fin member is joined to each of the recesses. In the plurality of fin members, the base portion of the base portion in the recess at the center of the base is the most The difference between the portion located on the flow channel side and the end of the recess on the flow channel side is such that the portion located on the flow channel side of the base portion in the concave portion of the base portion other than the central portion of the base and the concave portion The flow path member according to claim 2, wherein the flow path member is larger than a difference from the end on the flow path side. 前記基体および前記フィンが非可撓性部材からなることを特徴とする請求項1乃至請求項4のいずれかに記載の流路部材。   The flow path member according to claim 1, wherein the base body and the fin are made of an inflexible member. 請求項1乃至請求項5のいずれかに記載の流路部材における前記基体の前記流路側と反対側の主面上に金属層が設けられていることを特徴とする熱交換器。   6. A heat exchanger, wherein a metal layer is provided on a main surface of the flow path member according to claim 1 opposite to the flow path side of the base body. 請求項6に記載の熱交換器の前記金属層の上方に半導体素子が実装されていることを特徴とする半導体装置。   A semiconductor device, wherein a semiconductor element is mounted above the metal layer of the heat exchanger according to claim 6.
JP2012187764A 2012-08-28 2012-08-28 Flow passage member, heat exchanger using the same, and semiconductor device Pending JP2014045134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012187764A JP2014045134A (en) 2012-08-28 2012-08-28 Flow passage member, heat exchanger using the same, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187764A JP2014045134A (en) 2012-08-28 2012-08-28 Flow passage member, heat exchanger using the same, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2014045134A true JP2014045134A (en) 2014-03-13

Family

ID=50396189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187764A Pending JP2014045134A (en) 2012-08-28 2012-08-28 Flow passage member, heat exchanger using the same, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2014045134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014098214A1 (en) * 2012-12-21 2017-01-12 京セラ株式会社 Channel member, heat exchanger using the same, and semiconductor device
CN111276403A (en) * 2020-02-17 2020-06-12 张正 Semiconductor power module and preparation method thereof
CN111293093A (en) * 2020-02-17 2020-06-16 张正 Intelligent power module and preparation method thereof
WO2021124704A1 (en) * 2019-12-19 2021-06-24 富士電機株式会社 Semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014098214A1 (en) * 2012-12-21 2017-01-12 京セラ株式会社 Channel member, heat exchanger using the same, and semiconductor device
WO2021124704A1 (en) * 2019-12-19 2021-06-24 富士電機株式会社 Semiconductor device
JPWO2021124704A1 (en) * 2019-12-19 2021-06-24
US20220084905A1 (en) * 2019-12-19 2022-03-17 Fuji Electric Co., Ltd. Semiconductor device
JP7160216B2 (en) 2019-12-19 2022-10-25 富士電機株式会社 semiconductor equipment
CN111276403A (en) * 2020-02-17 2020-06-12 张正 Semiconductor power module and preparation method thereof
CN111293093A (en) * 2020-02-17 2020-06-16 张正 Intelligent power module and preparation method thereof
CN111276403B (en) * 2020-02-17 2021-08-31 中山市木林森微电子有限公司 Semiconductor power module and preparation method thereof
CN111293093B (en) * 2020-02-17 2021-12-21 合肥星波通信技术有限公司 Intelligent power module and preparation method thereof

Similar Documents

Publication Publication Date Title
TW202026583A (en) Heatsink
JP6349161B2 (en) Liquid cooling system
JP5344994B2 (en) Heat sink device
JP6534873B2 (en) Liquid cooling system
JP6554406B2 (en) Liquid-cooled cooler
EP3454367B1 (en) Semiconductor module
US20220408592A1 (en) Re-Entrant Flow Cold Plate
JP2008016515A (en) Semiconductor module
JP2014072395A (en) Cooler
JP2014045134A (en) Flow passage member, heat exchanger using the same, and semiconductor device
JP6322930B2 (en) Heat receiver, cooling unit, electronic equipment
JP6054423B2 (en) Channel member, heat exchanger using the same, and semiconductor device
JP2010118497A (en) Heat exchanger equipped with fin with louvers
JP5589647B2 (en) Cooling system
JP2011054778A (en) Heat exchanger using comb-type radiation unit
JP5114324B2 (en) Semiconductor device
JP2011003708A (en) Heat exchanger using corrugated heat radiation unit
JP2011119555A (en) Heat sink using bent louver-like heat dissipation unit
WO2022195374A1 (en) Multichannel manifold cold plate
JP2007221153A (en) Heat sink cooling device
US20210037678A1 (en) Cooler and cooler body
JP7277174B2 (en) heatsinks and electronics
JP2014038893A (en) Heat exchange member, passage member including the same, heat exchanger, and semiconductor device
JP2013229461A (en) Servo amplifier including heat sink with fins having wall thickness and pitch dependent on distance from heat source
JPH11145349A (en) Heat sink for forced cooling