JP2014044970A - Light emitting device and manufacturing method of the same - Google Patents

Light emitting device and manufacturing method of the same Download PDF

Info

Publication number
JP2014044970A
JP2014044970A JP2011273823A JP2011273823A JP2014044970A JP 2014044970 A JP2014044970 A JP 2014044970A JP 2011273823 A JP2011273823 A JP 2011273823A JP 2011273823 A JP2011273823 A JP 2011273823A JP 2014044970 A JP2014044970 A JP 2014044970A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting device
emitting element
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011273823A
Other languages
Japanese (ja)
Inventor
Junpei Sawada
準平 澤田
Akio Masuda
暁雄 増田
Toshiyuki Yoneda
俊之 米田
Takayuki Nakao
貴行 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011273823A priority Critical patent/JP2014044970A/en
Priority to PCT/JP2012/072191 priority patent/WO2013088790A1/en
Priority to JP2013549139A priority patent/JP5726331B2/en
Priority to TW101140680A priority patent/TW201330329A/en
Publication of JP2014044970A publication Critical patent/JP2014044970A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a light emitting device, which is formed by a light emitting element mounted on a substrate and sealed by a translucent resin, enables a semispherical translucent resin to be easily formed, and achieves high light extraction efficiency, high light directivity, and small color shading, at low cost.SOLUTION: A light emitting device includes: a light emitting surface 25 on which a light emitting element 10 is mounted; a coat 300 which includes a coat rear surface 314 which covers the light emitting surface 25 around the light emitting element 10, a coat front surface 313 which faces the coat rear surface 314, and a coat upper surface 315, the coat 300 including an inclined surface 311, which is annularly formed so as to enclose the light emitting element 10 and is formed so that a diameter reduces from the coat upper surface 315 to the coat rear surface 314 and an acute angle is made between itself and the coat upper surface 315, and an edge part 310 including an edge 312 formed at a border between the coat upper surface 315 and the inclined surface 311; and a translucent resin 40 which covers the light emitting element 10 and fills the inner side of the edge part 310.

Description

本発明は、基板上に実装された発光素子を有する発光装置及び発光装置の製造方法に関する。   The present invention relates to a light emitting device having a light emitting element mounted on a substrate and a method for manufacturing the light emitting device.

従来、発光素子を基板上に実装し、発光素子の出光側に波長を変換する蛍光材料を配置し、発光素子の発光と蛍光材料の発光との合成光として白色光を得る発光装置が開示されている。このような発光装置は蛍光灯や白熱電球などの従来光源に比べ、長寿命であり、近年その発光効率や光束の向上に伴って、一般照明機器の光源として用いられ始めている。   Conventionally, a light-emitting device in which a light-emitting element is mounted on a substrate, a fluorescent material that converts a wavelength is arranged on the light-emitting side of the light-emitting element, and white light is obtained as a combined light of light emission of the light-emitting element and light emission of the fluorescent material has been disclosed. ing. Such a light-emitting device has a longer lifetime than conventional light sources such as fluorescent lamps and incandescent lamps, and has recently begun to be used as a light source for general lighting equipment as its luminous efficiency and luminous flux improve.

このような発光装置では、蛍光材料を含有する透光性樹脂で発光素子を覆っているが、凹型に形成された高反射樹脂で発光素子を囲み、樹脂形状を制御し、樹脂量を一定にする方法と、基板上に実装された発光素子に透光性樹脂をそのまま形成する方法がある。   In such a light-emitting device, the light-emitting element is covered with a translucent resin containing a fluorescent material. However, the light-emitting element is surrounded by a highly reflective resin formed in a concave shape, the resin shape is controlled, and the amount of resin is kept constant. And a method of forming a translucent resin as it is on a light emitting element mounted on a substrate.

凹型に形成された高反射樹脂で発光素子を囲む方法では、高反射樹脂の反射ロスによる光取り出し効率の低下という課題がある。基板に実装された発光素子に透光性樹脂をそのまま形成する方法では、樹脂の形状制御が難しいため、色むらが発生しやすく、取り出した光の指向性が問題となるという課題がある。一方、キャスティングによる成型は、透光性樹脂の形状、充填量の制御が容易であるが、成型用の金型を準備する必要があり、また装置も大掛かりになるため、高コストであるといった課題がある。これらの課題に対し、略垂直のエッジ部分を有する堰止め部で透光性樹脂の流出を防ぐことで、透光性樹脂の形状を制御する発光装置(特許文献1)が開示されている。   In the method of surrounding the light emitting element with the highly reflective resin formed in the concave shape, there is a problem that the light extraction efficiency is lowered due to the reflection loss of the highly reflective resin. In the method of forming a translucent resin as it is on a light-emitting element mounted on a substrate, it is difficult to control the shape of the resin, so that color unevenness is likely to occur, and there is a problem that directivity of extracted light becomes a problem. On the other hand, in casting molding, it is easy to control the shape and filling amount of the translucent resin, but it is necessary to prepare a mold for molding, and the apparatus becomes large, so that the cost is high. There is. In response to these problems, a light emitting device (Patent Document 1) that controls the shape of a translucent resin by preventing the translucent resin from flowing out at a damming portion having a substantially vertical edge portion is disclosed.

特開2010−003994号公報JP 2010-003994 A

先行技術では、透光性樹脂の形状制御を容易に行い、色むらを低減することを目的としているが、略垂直のエッジであるため、樹脂の流出制御が不十分であり、透光性樹脂を十分に半球状に形成することができないという課題がある。   The prior art aims to easily control the shape of the translucent resin and reduce color unevenness, but because it is a substantially vertical edge, the resin outflow control is insufficient, and the translucent resin Has a problem that it cannot be formed into a sufficient hemispherical shape.

本発明では、半球状の透光性樹脂を容易に形成し、光取り出し効率、光の指向性が高く、色むらの少ない発光装置を低コストで生産することを目的とする。   An object of the present invention is to easily produce a hemispherical translucent resin, to produce a light emitting device with high light extraction efficiency, high light directivity, and little color unevenness at low cost.

本発明に係る発光装置は、
発光素子が実装される発光面と、
前記発光素子の周囲の発光面を覆う裏面と、裏面と対向する表面とを有する被膜であって、前記発光素子を囲むように環状に形成される斜面であって前記表面から前記裏面に向かって径が小さくなるように形成されるとともに前記表面との角度が鋭角になるように形成される斜面と、前記表面と前記斜面との境界に形成されたエッジとを有するエッジ部を備える被膜とを備えることを特徴とする。
The light emitting device according to the present invention is
A light emitting surface on which the light emitting element is mounted;
A film having a back surface covering a light emitting surface around the light emitting element, and a surface facing the back surface, and is an inclined surface formed in an annular shape so as to surround the light emitting element, from the surface toward the back surface A film having an edge portion having an inclined surface formed to have a small diameter and an acute angle with the surface, and an edge formed at a boundary between the surface and the inclined surface. It is characterized by providing.

本発明に係る発光装置は、発光素子が実装される発光面と、前記発光素子の周囲の発光面を覆う裏面と、裏面と対向する表面とを有する被膜であって、前記発光素子を囲むように環状に形成される斜面であって前記表面から前記裏面に向かって径が小さくなるように形成されるとともに前記表面との角度が鋭角になるように形成される斜面と、前記表面と前記斜面との境界に形成されたエッジとを有するエッジ部を備える被膜とを備えるので、エッジ部の内側を充填する透光性樹脂を効率良く半球状に成形できるとともに、透光性樹脂の厚みを均一にでき発光装置の色むらを低減することができるという効果を奏する。   The light-emitting device according to the present invention is a film having a light-emitting surface on which a light-emitting element is mounted, a back surface that covers the light-emitting surface around the light-emitting element, and a surface that faces the back surface, and surrounds the light-emitting element. A slope formed in an annular shape, the slope formed such that the diameter decreases from the front surface toward the back surface, and an angle with the surface is an acute angle, and the surface and the slope And a coating film having an edge portion having an edge formed at the boundary between the edge portion and the translucent resin filling the inside of the edge portion can be efficiently formed into a hemispherical shape, and the thickness of the translucent resin is uniform. In this way, the color unevenness of the light emitting device can be reduced.

実施の形態1に係る発光装置100の断面図である。1 is a cross-sectional view of a light emitting device 100 according to Embodiment 1. FIG. 実施の形態1に係る発光装置100を上から見た平面図である。FIG. 2 is a plan view of the light emitting device 100 according to Embodiment 1 as viewed from above. 図1のA部拡大図である。It is the A section enlarged view of FIG. 液滴の平坦部401での表面張力、接触角の関係を表す図である。It is a figure showing the relationship between the surface tension and contact angle in the flat part 401 of a droplet. 実施の形態1に係るエッジ部310での表面張力、接触角の関係を表す図である。It is a figure showing the relationship between the surface tension in the edge part 310 which concerns on Embodiment 1, and a contact angle. 実施の形態2に係る発光装置101の断面図である。6 is a cross-sectional view of a light emitting device 101 according to Embodiment 2. FIG. 実施の形態2に係る発光装置101を上から見た図(平面図)である。It is the figure (plan view) which looked at the light-emitting device 101 which concerns on Embodiment 2 from the top. 実施の形態3に係る発光装置102を上から見た図(平面図)である。It is the figure (plan view) which looked at the light-emitting device 102 which concerns on Embodiment 3 from the top. 実施の形態4に係る発光装置103を上から見た図(平面図)である。It is the figure (plan view) which looked at the light-emitting device 103 which concerns on Embodiment 4 from the top. 実施の形態5に係る発光装置104の断面図である。6 is a cross-sectional view of a light emitting device 104 according to Embodiment 5. FIG. 実施の形態5に係る発光装置104を上から見た図(平面図)である。It is the figure (plan view) which looked at the light-emitting device 104 which concerns on Embodiment 5 from the top. 実施の形態6に係る発光装置105の断面図である。FIG. 10 is a cross-sectional view of light-emitting device 105 according to Embodiment 6. 実施の形態7に係る発光装置106の断面図である。FIG. 10 is a cross-sectional view of light-emitting device 106 according to Embodiment 7.

実施の形態1.
図1は、実施の形態1に係る発光装置100の断面図である。図2は、実施の形態1に係る発光装置100を上から見た平面図である。図3は、図1のA部拡大図である。なお、図2では描写の都合上、透光性樹脂40の記載を省いている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of light-emitting device 100 according to Embodiment 1. FIG. 2 is a plan view of the light emitting device 100 according to Embodiment 1 as viewed from above. FIG. 3 is an enlarged view of a portion A in FIG. In FIG. 2, the illustration of the translucent resin 40 is omitted for the sake of illustration.

発光装置100は、発光素子10、基板20、バンプ21、接合材22、ワイヤー23、回路パターン24(図2参照)、高反射性の被膜A30、高反射性の被膜B31、透光性樹脂40を備える。   The light emitting device 100 includes a light emitting element 10, a substrate 20, a bump 21, a bonding material 22, a wire 23, a circuit pattern 24 (see FIG. 2), a highly reflective coating A30, a highly reflective coating B31, and a translucent resin 40. Is provided.

発光素子10は、基板20に実装される。発光素子10は、基板20に埋め込まれた銅製のバンプ21に、樹脂ダイボンド、銀ペースト、もしくは半田等の接合材22により接合されている。接合材22は、20〜40μm程度の厚みを有し、より好ましくは40μmとする。発光素子10は、発光素子10の表面に形成された電極(図示せず)がワイヤー23により基板20の回路パターン24に電気的に接続される。これにより、発光素子10に電力が供給される。   The light emitting element 10 is mounted on the substrate 20. The light emitting element 10 is bonded to a copper bump 21 embedded in the substrate 20 by a bonding material 22 such as resin die bond, silver paste, or solder. The bonding material 22 has a thickness of about 20 to 40 μm, and more preferably 40 μm. In the light emitting element 10, an electrode (not shown) formed on the surface of the light emitting element 10 is electrically connected to the circuit pattern 24 of the substrate 20 by a wire 23. Thereby, electric power is supplied to the light emitting element 10.

基板20は、基板表面において回路パターン24が形成されている領域以外の基板表面を高反射性の被膜A30が覆っており、発光素子10からの光を効率良く取り出すようになっている。被膜A30は、高反射性の樹脂により形成される。被膜A30の形成方法としては、塗布、印刷、露光などが挙げられ、好ましくは露光により形成されるフォトレジストとする。   In the substrate 20, the highly reflective coating A30 covers the substrate surface other than the region where the circuit pattern 24 is formed on the substrate surface, and the light from the light emitting element 10 is efficiently extracted. The coating A30 is formed of a highly reflective resin. Examples of the method for forming the coating A30 include coating, printing, and exposure, and a photoresist formed by exposure is preferable.

図2に示すように、被膜A30の被膜表面313には、発光素子10を囲むように環状に被膜B31が形成されている。被膜B31は、高反射性の樹脂であれば、特に材料の種類は問わないが、より好ましくは被膜A30と同一の材料とする。被膜B31の形成方法は、例えば、塗布、印刷、露光などが挙げられ、より好ましくは露光により形成されるフォトレジストとする。   As shown in FIG. 2, a coating film B <b> 31 is formed on the coating film surface 313 of the coating film A <b> 30 in an annular shape so as to surround the light emitting element 10. The coating B31 is not particularly limited as long as it is a highly reflective resin, but more preferably the same material as the coating A30. Examples of the method for forming the coating B31 include coating, printing, and exposure. More preferably, the photoresist is formed by exposure.

以下の説明において、被膜A30と被膜B31とを合わせて被膜300と記載する場合もある。また、被膜A30と被膜B31とは、上述したように別個に形成されてもよいし、一体成形されるとしてもよい。被膜300は、基板20の発光素子10が実装される発光面25と当接し、発光素子10の周囲の発光面25を覆う被膜裏面314(裏面の一例)と、被膜裏面314と対向する被膜表面313、被膜上面315(表面の一例)とを有する。   In the following description, the coating A30 and the coating B31 may be collectively referred to as a coating 300. Further, the coating A30 and the coating B31 may be formed separately as described above, or may be integrally formed. The coating 300 is in contact with the light emitting surface 25 on which the light emitting element 10 of the substrate 20 is mounted, the coating back surface 314 (an example of the back surface) covering the light emitting surface 25 around the light emitting element 10, and the coating surface facing the coating back surface 314. 313 and a coating upper surface 315 (an example of a surface).

被膜B31は、発光素子10の周囲に環状(ドーナツ状)に突き出した突出部であって被膜上面315を有する突出部である。図3に示すように、被膜B31は、発光素子10を囲むように環状に形成される斜面311であって、被膜上面315から発光面25(被膜裏面314)に向かって鋭角(角度βが鋭角)に形成されるとともに発光面25(被膜裏面314)に向かって徐々に径が狭くなるように形成される斜面311と、被膜上面315と斜面311との境界に形成されるエッジ312とを有するエッジ部310を備える。   The coating B31 is a protruding portion that protrudes in a ring shape (donut shape) around the light emitting element 10 and has a coating upper surface 315. As shown in FIG. 3, the coating B31 is a slope 311 formed in an annular shape so as to surround the light emitting element 10, and has an acute angle (angle β is an acute angle) from the coating top surface 315 toward the light emitting surface 25 (coating back surface 314). ) And an inclined surface 311 formed so that the diameter gradually decreases toward the light emitting surface 25 (coating back surface 314), and an edge 312 formed at the boundary between the coating upper surface 315 and the inclined surface 311. An edge portion 310 is provided.

斜面311は、被膜上面135から被膜裏面314に向かって徐々に径が狭くなるように形成される。斜面311は、被膜上面135から被膜裏面314に向かってテーパー状(先細り状)に形成される。   The slope 311 is formed so that the diameter gradually decreases from the coating upper surface 135 toward the coating back surface 314. The slope 311 is formed in a tapered shape (tapered shape) from the coating upper surface 135 toward the coating back surface 314.

言い換えれば、斜面311は、光の発光方向に向かって徐々に径が広がるように形成される。つまり、斜面311は、光の発光方向に向かって逆テーパー状(徐々に広がる形状)に形成される。   In other words, the slope 311 is formed so that its diameter gradually increases in the light emission direction. That is, the inclined surface 311 is formed in a reverse taper shape (a shape that gradually widens) toward the light emission direction.

図2に示すように、被膜B31は、円環状であり、エッジ312は円形を形成する。そして、斜面311は、被膜上面315から被膜裏面314に向かって径が徐々に小さくなる円錐形状の外周面の一部をなす形状を形成する。   As shown in FIG. 2, the coating B31 has an annular shape, and the edge 312 forms a circle. The slope 311 forms a part of a conical outer peripheral surface whose diameter gradually decreases from the coating upper surface 315 toward the coating back surface 314.

被膜B31は、エッジ部310の斜面311が光の発光方向側に向かって逆テーパー状(徐々に広がる形状)に立つように形成される。被膜B31の幅L3(図1参照)は、0.25〜1.0mm程度が好ましい。エッジ部310の角度βは、90°より小さく、より好ましくは80°以下である。また、被膜A30の厚みL2、被膜B31の厚みL1は、20〜30μm程度であり、より好ましくは20μm程度の薄膜であるとする。したがって、基板20の発光面25(被膜裏面314)から被膜上面315までの高さ(L1+L2)は、発光面25から発光素子10までの高さL4(図1参照)よりも低く形成することができる。   The coating B31 is formed such that the slope 311 of the edge portion 310 stands in an inversely tapered shape (a shape that gradually widens) toward the light emission direction. The width L3 (see FIG. 1) of the coating B31 is preferably about 0.25 to 1.0 mm. The angle β of the edge portion 310 is smaller than 90 °, more preferably 80 ° or less. Further, the thickness L2 of the coating A30 and the thickness L1 of the coating B31 are about 20 to 30 μm, and more preferably a thin film of about 20 μm. Therefore, the height (L1 + L2) from the light emitting surface 25 (the coating back surface 314) of the substrate 20 to the coating upper surface 315 may be formed lower than the height L4 from the light emitting surface 25 to the light emitting element 10 (see FIG. 1). it can.

透光性樹脂40は、発光素子10を覆うとともにエッジ部310の内側を充填する。透光性樹脂40は、発光素子10の上、被膜B31で囲まれた領域内に半球状に形成される。透光性樹脂40としては、高い光透過性を有するシリコーン樹脂が好ましく、他にエポキシ樹脂等が挙げられ、低融点ガラス等の無機化合物等も被膜300を形成する材料の範囲に含む。   The translucent resin 40 covers the light emitting element 10 and fills the inside of the edge portion 310. The translucent resin 40 is formed in a hemispherical shape in the region surrounded by the coating B31 on the light emitting element 10. As the translucent resin 40, a silicone resin having high light transmissivity is preferable, and other examples include an epoxy resin, and an inorganic compound such as a low melting point glass is included in the range of the material for forming the coating 300.

透光性樹脂40は、上述したように、液体から固体へ変化する材料であり、液体の状態でエッジ部310の内側に液滴として滴下され、滴下された液滴の拡がりがエッジ312により堰き止められた状態(半球状)で固化したものである。   As described above, the translucent resin 40 is a material that changes from a liquid to a solid. The translucent resin 40 is dropped as a droplet inside the edge portion 310 in a liquid state, and the spread of the dropped droplet is dammed by the edge 312. It is solidified in a stopped state (hemisphere).

図4は、液滴の平坦部401での表面張力、接触角の関係を表す図である。図5は、実施の形態1に係るエッジ部310での表面張力、接触角の関係を表す図である。図4、図5を用いて、上述したような構成を有する発光装置100において、透光性樹脂40を効率的に、生産性良く半球状に形成する方法について説明する。   FIG. 4 is a diagram illustrating the relationship between the surface tension and the contact angle at the flat portion 401 of the droplet. FIG. 5 is a diagram illustrating the relationship between the surface tension and the contact angle at the edge portion 310 according to the first embodiment. A method for efficiently forming the translucent resin 40 in a hemispherical shape with high productivity in the light emitting device 100 having the above-described configuration will be described with reference to FIGS.

液体は、平坦部401よりも、エッジ部310で接触角が向上する。このことを、図4、図5を用いて説明する。図4は平坦な固体表面における液滴の接触角、表面張力を表す。また、図5はエッジ部310を有する固体表面における液滴の接触角、表面張力を表す。図4では、ヤングの式と呼ばれる以下の数式が成り立つ。
γSG=γLS+γLGcosθ
cosθ=(γSG−γLS)/γLG 式(1)
The contact angle of the liquid is improved at the edge portion 310 as compared with the flat portion 401. This will be described with reference to FIGS. FIG. 4 shows the contact angle and surface tension of a droplet on a flat solid surface. FIG. 5 shows the contact angle and surface tension of the droplet on the solid surface having the edge portion 310. In FIG. 4, the following equation called Young's equation holds.
γ SG = γ LS + γ LG cos θ
cos θ = (γ SG −γ LS ) / γ LG formula (1)

式(1)において、γLGは液体の表面張力、γSGは固体(基質)の表面張力、γLSは液体/基質界面張力である。θは、液滴の接触角を表す。表面張力(界面張力)γLG、γSG、γLSは、各々の材料に固有の値であり、定数である。したがって、接触角θは各々の材料により決まった値となる。 In formula (1), γ LG is the surface tension of the liquid, γ SG is the surface tension of the solid (substrate), and γ LS is the liquid / substrate interface tension. θ represents the contact angle of the droplet. The surface tension (interfacial tension) γ LG , γ SG , γ LS is a value specific to each material and is a constant. Therefore, the contact angle θ is a value determined by each material.

一方、エッジ部310を有する固体表面における液滴の接触角θについて図5を用いて示す。エッジ部310での二面角がαであり、被膜上面315と斜面311とのなす角がβであるとすると、α+β=2πである。このとき、ヤングの式の変形型として以下の式が成立する。
γSGcosα=γLS+γLGcosθ
cosθ=(γSGcosα−γLS)/γLG 式(2)
On the other hand, the contact angle θ of the droplet on the solid surface having the edge portion 310 will be described with reference to FIG. If the dihedral angle at the edge portion 310 is α and the angle formed by the coating upper surface 315 and the inclined surface 311 is β, α + β = 2π. At this time, the following formula is established as a modified type of Young's formula.
γ SG cos α = γ LS + γ LG cos θ
cos θ = (γ SG cos α−γ LS ) / γ LG formula (2)

式(2)において、0<α<πの場合、−1<cosα<1である。そのため、平坦部401、エッジ部310で同一材料を用いた場合、表面張力(界面張力)は同じであるので、(1)式よりも、(2)式においてcosθが小さい値を取る。すなわち、接触角θは平坦部401よりも、エッジ部310において大きくなることが分かる。   In Formula (2), when 0 <α <π, -1 <cosα <1. For this reason, when the same material is used for the flat portion 401 and the edge portion 310, the surface tension (interface tension) is the same, and therefore, cos θ takes a smaller value in the equation (2) than in the equation (1). That is, it can be seen that the contact angle θ is larger at the edge portion 310 than at the flat portion 401.

さらに、本実施の形態1におけるエッジ部310の斜面311は、被膜上面315と斜面311とのなす角が鋭角である。このため、被膜上面315と斜面311とのなす角が略垂直の場合よりもcosαは小さい値、すなわち、接触角θがより大きい値を取ることになる。光の発光方向に向かう逆テーパー(徐々に広がる形状)の度合いが大きいほど、つまり角度βの角度が小さいほど接触角θは小さくなる。なお、これらの式は、液体にかかる重力が無視できるほどの微小液滴について成り立ち、液滴が大きくなると重力の影響を考慮するべきである。しかし、ここで重要なことは式(1)よりも式(2)において接触角θが大きくなることであるため、ここでは重力の影響を無視する。   Furthermore, the slope 311 of the edge portion 310 in the first embodiment has an acute angle between the coating upper surface 315 and the slope 311. For this reason, cos α takes a smaller value, that is, the contact angle θ takes a larger value than when the angle formed between the coating upper surface 315 and the inclined surface 311 is substantially vertical. The greater the degree of inverse taper (shape that gradually spreads) in the light emission direction, that is, the smaller the angle β, the smaller the contact angle θ. Note that these equations hold for micro droplets where the gravity on the liquid is negligible, and the influence of gravity should be considered when the droplets become large. However, what is important here is that the contact angle θ is larger in the equation (2) than in the equation (1), so the influence of gravity is ignored here.

以上のように、エッジ部310のエッジ312において接触角θが大きくなる現象を利用し、被膜B31のエッジ部310を光の発光方向に向かって逆テーパー状に立たせることで透光性樹脂40を効率的に半球状に形成する。   As described above, the phenomenon that the contact angle θ is increased at the edge 312 of the edge portion 310 is utilized, and the edge portion 310 of the coating B31 is caused to stand in an inversely tapered shape toward the light emission direction, thereby translucent resin 40. Is efficiently formed into a hemispherical shape.

例えば、被膜B31が存在しない基板上の被膜A30に、透光性樹脂40(ここでは、シリコーン樹脂とする)を塗布、硬化した場合、透光性樹脂40の接触角θ(基板に接触している角度)は約7°とぬれ拡がる。これに対し、被膜B31で囲まれた領域(エッジ部310の内側の領域)内に塗布、硬化した透光性樹脂40は、被膜B31のエッジ部310でぬれ拡がりが抑止されて、35°〜45°程度の接触角θを有するような半球状に成形することができる。   For example, when the translucent resin 40 (here, silicone resin) is applied to the coating A30 on the substrate on which the coating B31 is not present and cured, the contact angle θ of the translucent resin 40 (in contact with the substrate) The angle) is about 7 ° and spreads out. On the other hand, the translucent resin 40 applied and cured in the region surrounded by the coating B31 (the region inside the edge portion 310) is prevented from wetting and spreading at the edge portion 310 of the coating B31, and is 35 ° to 35 ° C. It can be formed into a hemisphere having a contact angle θ of about 45 °.

次に、エッジ部310の内側に透光性樹脂40を充填する方法について説明する。発光素子10が実装される発光面25を備える発光装置100の製造方法では、エッジ部310の内側に液体の状態の透光性樹脂40を液滴として滴下し、滴下された透光性樹脂40の液滴の拡がりがエッジ部310のエッジ312により堰き止められた半球状の状態で、透光性樹脂40を固化させる。   Next, a method for filling the translucent resin 40 inside the edge portion 310 will be described. In the manufacturing method of the light emitting device 100 including the light emitting surface 25 on which the light emitting element 10 is mounted, the translucent resin 40 in a liquid state is dropped as a droplet inside the edge portion 310, and the translucent resin 40 that has been dropped is dropped. The translucent resin 40 is solidified in a hemispherical state in which the spread of the liquid droplets is blocked by the edge 312 of the edge portion 310.

透光性樹脂40の必要な充填量は、被膜B31の直径(つまり、エッジ312が形成する円形の直径)と、目的とする接触角θとから算出する。例えば、被膜B31の直径(つまり、エッジ312が形成する円形の直径)が4mm、接触角θを36°としたい場合、4.1μLが「透光性樹脂40の必要な充填量」として算出される。4.1μLの透光性樹脂40がエッジ部310の内側に充填される。   The necessary filling amount of the translucent resin 40 is calculated from the diameter of the coating B31 (that is, the circular diameter formed by the edge 312) and the target contact angle θ. For example, when the diameter of the coating B31 (that is, the circular diameter formed by the edge 312) is 4 mm and the contact angle θ is 36 °, 4.1 μL is calculated as “necessary filling amount of the translucent resin 40”. The 4.1 μL of translucent resin 40 is filled inside edge portion 310.

透光性樹脂40の充填方法としては、例えば、ディスペンサーを用いたポッティング方式が好ましい。透光性樹脂40の粘度は特に問わないが、吐出精度、レベリング性の観点から好ましくは40Pas以下とする。   As a filling method of the translucent resin 40, for example, a potting method using a dispenser is preferable. The viscosity of the translucent resin 40 is not particularly limited, but is preferably 40 Pas or less from the viewpoint of ejection accuracy and leveling properties.

本実施の形態では、被膜B31は、エッジ部310の斜面311が光の発光方向側に向かって逆テーパー状に立つように形成される。被膜B31の幅L3(図1参照)は、0.25〜1.0mm程度が好ましい。   In the present embodiment, the coating B31 is formed such that the slope 311 of the edge portion 310 stands in a reverse taper shape toward the light emission direction. The width L3 (see FIG. 1) of the coating B31 is preferably about 0.25 to 1.0 mm.

本実施の形態では、被膜B31を環状の帯状とし、外周面317が斜面311となる形状としたが、このような形状でなくてもよい。本実施の形態では、図1に示すように、被膜B31の内周面316も、外周面317と同様に、被膜上面315との角度が鋭角となっている。これは、フォトレジストで被膜を形成した場合、エッジ部310が光の発光方向に向かって逆テーパー状になる現象を利用して、エッジ部310を形成しているので、内周面316側も鋭角となっているものである。しかし、被膜B31は、エッジ部310を有していればよく、内周面316(図1参照)はどのような形状でもよい。例えば、図1の点線で示した被膜内側部399のように、内周面316は略直角に立つ形状でも構わない。   In the present embodiment, the coating B31 has an annular belt shape and the outer peripheral surface 317 has a slope 311. However, the shape may not be such a shape. In the present embodiment, as shown in FIG. 1, the inner peripheral surface 316 of the coating B31 is also at an acute angle with the coating upper surface 315 in the same manner as the outer peripheral surface 317. This is because the edge portion 310 is formed by utilizing the phenomenon that the edge portion 310 is inversely tapered toward the light emission direction when a film is formed of a photoresist. It is an acute angle. However, the coating B31 only needs to have the edge portion 310, and the inner peripheral surface 316 (see FIG. 1) may have any shape. For example, the inner peripheral surface 316 may have a shape standing substantially at a right angle, as in the coating inner portion 399 indicated by a dotted line in FIG.

以上のように、本実施の形態に係る発光装置100は、基板20と、基板20に実装された発光素子10と、発光素子10を覆うように設けられた透光性樹脂40で構成された発光装置100であって、発光素子を囲むように形成され、かつエッジ部310の斜面311が光の発光方向に向かって逆テーパー状に立った被膜300を有する。本実施の形態に係る発光装置100によれば、エッジ部310では平坦部401よりも接触角θが大きくなり、さらにエッジ部310の斜面311が光の発光方向に向かって逆テーパー状になっているほど(被膜上面315とエッジ部310の斜面311との角度βがより小さいほど)、接触角θがより大きくなる現象と、フォトレジストで被膜を形成した場合、エッジ部310が光の発光方向に向かって逆テーパー状になる現象とを利用して、透光性樹脂40を効率的に半球状に形成することができる。   As described above, the light emitting device 100 according to the present embodiment includes the substrate 20, the light emitting element 10 mounted on the substrate 20, and the translucent resin 40 provided so as to cover the light emitting element 10. The light-emitting device 100 includes a coating 300 that is formed so as to surround the light-emitting element, and the inclined surface 311 of the edge portion 310 stands in a reverse tapered shape in the light emission direction. According to the light emitting device 100 according to the present embodiment, the edge portion 310 has a larger contact angle θ than the flat portion 401, and the inclined surface 311 of the edge portion 310 has a reverse taper shape toward the light emission direction. The smaller the angle β between the coating upper surface 315 and the inclined surface 311 of the edge portion 310, the larger the contact angle θ, and the edge portion 310 emits light when the coating is formed with a photoresist. The translucent resin 40 can be efficiently formed into a hemispherical shape by utilizing the phenomenon of becoming an inverse taper toward the surface.

また、本実施の形態にかかる発光装置100によれば、基板20の発光面25(被膜裏面314)から被膜上面315までの高さ(L1+L2)は、発光面25から発光素子10までの高さL4よりも低く形成することができるので、発光素子10からの横方向への光が被膜B31に当たらないため、発光素子10から発光される光の反射ロスを低減することができ、光の取り出し効率を向上することができる。   Further, according to the light emitting device 100 according to the present embodiment, the height (L1 + L2) from the light emitting surface 25 (the coating back surface 314) to the coating top surface 315 of the substrate 20 is the height from the light emitting surface 25 to the light emitting element 10. Since it can be formed lower than L4, light in the lateral direction from the light emitting element 10 does not hit the coating B31, so that reflection loss of light emitted from the light emitting element 10 can be reduced, and light extraction is performed. Efficiency can be improved.

また、本実施の形態にかかる発光装置100によれば、透光性樹脂40を半球状に形成することで、発光素子10に対する透光性樹脂40の厚みを均一にでき、発光装置100の色むらを低減することができる。さらに、発光素子の配光特性に応じて前記透光性樹脂を任意の半球状に形成することで色むらを低減することができる。   In addition, according to the light emitting device 100 according to the present embodiment, by forming the translucent resin 40 in a hemispherical shape, the thickness of the translucent resin 40 with respect to the light emitting element 10 can be made uniform. Unevenness can be reduced. Furthermore, color unevenness can be reduced by forming the translucent resin in an arbitrary hemispherical shape according to the light distribution characteristics of the light emitting element.

また、本実施の形態にかかる発光装置100によれば、二面角を有するエッジ部310では平坦部401よりも接触角θが向上する現象と、UV露光でフォトレジストを形成した場合にエッジ部310は光の発光方向に向かって逆テーパー状になる現象とを利用して、半球状の透光性樹脂40を効率的に形成し、光取り出し効率、指向性を向上することができる。また、前記被膜の高さは前記発光素子よりも低いため、前記発光素子からの横方向への光の反射ロスを低減することができ、より光取り出し効率が向上する。   Further, according to the light emitting device 100 according to the present embodiment, the edge portion 310 having the dihedral angle has a phenomenon that the contact angle θ is improved as compared with the flat portion 401, and the edge portion when the photoresist is formed by UV exposure. 310 can efficiently form the hemispherical translucent resin 40 by utilizing the phenomenon of becoming an inversely tapered shape in the light emission direction, thereby improving the light extraction efficiency and directivity. Further, since the height of the coating film is lower than that of the light emitting element, it is possible to reduce the reflection loss of light from the light emitting element in the lateral direction, and the light extraction efficiency is further improved.

以上、光の取り出し効率、指向性が高く、色むらの少ない発光装置を効率的に、低コストに生産することが可能である。   As described above, a light-emitting device with high light extraction efficiency and high directivity and little color unevenness can be produced efficiently and at low cost.

実施の形態2.
実施の形態2について、図6,図7を用いて説明する。実施の形態1で説明した部分(構成)と共通する部分および同一の作用をする部分については、同一の符号を付し、その説明を省略する。
Embodiment 2. FIG.
The second embodiment will be described with reference to FIGS. Parts that are common to the parts (configuration) described in the first embodiment and parts that perform the same functions are denoted by the same reference numerals, and description thereof is omitted.

実施の形態1において、発光装置100は、斜面311が光の発光方向に向かって逆テーパー状に立っており、かつ、被膜上面315(被膜表面313)と斜面311とのなす角βが鋭角であるエッジ部310を有する被膜300を備える。実施の形態1では、このエッジ部310を形成するために、被膜A30の上にさらに被膜B31をフォトレジストにて形成する方法に関して説明したが、本実施の形態では、被膜A30の一部分を、発光素子10を囲むように環状に除去して、エッジ部310を形成する場合について説明する。   In Embodiment 1, the light emitting device 100 has the inclined surface 311 standing in a reverse taper shape in the light emission direction, and the angle β formed by the coating upper surface 315 (coating surface 313) and the inclined surface 311 is an acute angle. A coating 300 having an edge 310 is provided. In the first embodiment, in order to form the edge portion 310, the method of forming the coating B31 on the coating A30 with a photoresist has been described. However, in the present embodiment, a part of the coating A30 is emitted. A case will be described in which the edge portion 310 is formed by removing it in an annular shape so as to surround the element 10.

図6は、実施の形態2に係る発光装置101の断面図である。図7は、実施の形態2に係る発光装置101を上から見た図(平面図)である。なお、図7では描写の都合上、透光性樹脂40を省いている。   FIG. 6 is a cross-sectional view of the light emitting device 101 according to the second embodiment. FIG. 7 is a diagram (plan view) of the light emitting device 101 according to Embodiment 2 as viewed from above. In FIG. 7, the translucent resin 40 is omitted for the sake of illustration.

被膜A30は、発光素子10の周囲に環状に設けられた溝32であって、内側壁318と外側壁319とを備える溝32を備える。基板20上に塗布されている高反射性の被膜A30の一部分を、発光素子10を囲むように環状の帯状に除去している。   The coating A30 is a groove 32 provided in an annular shape around the light emitting element 10, and includes a groove 32 including an inner wall 318 and an outer wall 319. A part of the highly reflective coating A30 applied on the substrate 20 is removed in the form of an annular band so as to surround the light emitting element 10.

エッジ312は、溝32の内側壁318の上端に形成され、斜面311は、溝32の内側壁318に形成される。被膜表面313と内側壁318とのなす角度が鋭角であり、内側壁318はその断面が被膜表面313から被膜裏面314に向かって徐々に狭くなるように形成される。言い換えると、内側壁318はその断面が光の発光方向に向かって逆テーパー状(徐々に広がる形状)に形成されている。したがって、内側壁318上端から内側壁318にかけての部分がエッジ部310となる。外側壁319の形状は、どのような形状でも構わないが、加工のし易さを考慮すると略垂直に立っているのが好ましい。   The edge 312 is formed at the upper end of the inner wall 318 of the groove 32, and the inclined surface 311 is formed on the inner wall 318 of the groove 32. The angle formed by the coating surface 313 and the inner wall 318 is an acute angle, and the inner wall 318 is formed such that its cross section gradually narrows from the coating surface 313 toward the coating back surface 314. In other words, the inner wall 318 has a cross-section with a reverse taper shape (a shape that gradually widens) in the light emission direction. Therefore, the portion from the upper end of the inner wall 318 to the inner wall 318 becomes the edge portion 310. The outer wall 319 may have any shape, but it is preferable that the outer wall 319 is substantially vertical in view of ease of processing.

被膜A30は、40μm程度の厚み(L2)を有している。溝32の開口部の幅L5は0.25〜1.0mm程度、溝32の深さL6は20μm程度であるものとする。溝32を形成するために、被膜A30の溝32部分を除去する方法としては、レーザー光を斜めに照射して被膜の一部を除去するレーザー加工、金属工具を用いた切削加工等が挙げられるが、エッジ部310(内側壁318)が光の発光方向に向かって逆テーパー状に立つように、溝32を形成できればどのような加工方法であっても構わない。   The coating A30 has a thickness (L2) of about 40 μm. The width L5 of the opening of the groove 32 is about 0.25 to 1.0 mm, and the depth L6 of the groove 32 is about 20 μm. Examples of a method for removing the groove 32 portion of the coating A30 in order to form the groove 32 include laser processing for obliquely irradiating a laser beam to remove a part of the coating, and cutting using a metal tool. However, any processing method may be used as long as the groove 32 can be formed so that the edge portion 310 (inner wall 318) stands in a reverse tapered shape in the light emission direction.

以上のように、本実施の形態にかかる発光装置101によれば、被膜A30に内側壁318が光の発光方向に向かって逆テーパー状に立った凹部(溝32)を形成し、内側壁318をエッジ部310として、エッジ部310で透光性樹脂40の流出を抑制し、透光性樹脂40を効率的に半球状に形成することができる。   As described above, according to the light emitting device 101 according to the present embodiment, the inner wall 318 is formed with the recess (groove 32) in which the inner wall 318 stands in a reverse taper shape in the light emission direction in the coating A30. As the edge portion 310, the edge portion 310 can suppress the outflow of the translucent resin 40, and the translucent resin 40 can be efficiently formed into a hemispherical shape.

実施の形態3.
実施の形態3について、図8を用いて説明する。図8は、実施の形態3に係る発光装置102を上から見た図(平面図)である。実施の形態1,2で説明した部分(構成)と共通する部分および同一の作用をする部分については、同一の符号を付し、その説明を省略する。
Embodiment 3 FIG.
A third embodiment will be described with reference to FIG. FIG. 8 is a diagram (plan view) of the light emitting device 102 according to Embodiment 3 as viewed from above. Parts that are common to the parts (configuration) described in the first and second embodiments and parts that perform the same functions are denoted by the same reference numerals, and description thereof is omitted.

実施の形態1,2では、光の発光方向に向かって逆テーパー状に立ったエッジ部310が、発光素子10を囲むように環状に連続的に形成される態様について説明した。実施の形態3では、エッジ部310が透光性樹脂40の流出を抑制し、透光性樹脂40を半球状に形成することができれば、不連続でもよい場合について説明する。   In the first and second embodiments, the aspect has been described in which the edge portion 310 standing in a reverse taper shape in the light emission direction is continuously formed in an annular shape so as to surround the light emitting element 10. In the third embodiment, a case will be described in which the edge portion 310 may be discontinuous as long as the translucent resin 40 can be prevented from flowing out and the translucent resin 40 can be formed in a hemispherical shape.

図8に示すように、被膜B31は、発光素子10を囲むように環状に形成されているが、連続な環状ではなく、不連続な環状に形成される。被膜B31は、不連続部36を有する。図8に示すように、被膜B31の円形の円周上に等間隔で6カ所に不連続部36を有する。エッジ312、斜面311も連続した環状ではなく、不連続な環状に形成される。   As shown in FIG. 8, the coating B <b> 31 is formed in an annular shape so as to surround the light emitting element 10, but is formed in a discontinuous annular shape instead of a continuous annular shape. The coating B31 has a discontinuous portion 36. As shown in FIG. 8, discontinuous portions 36 are provided at six locations at equal intervals on the circular circumference of the coating B31. The edge 312 and the slope 311 are also formed in a discontinuous ring, not a continuous ring.

上述したように、エッジ部310が透光性樹脂40の流出を抑制し、透光性樹脂40を半球状に形成することができれば、不連続部36の位置、不連続部36の数は適宜変更することができる。   As described above, if the edge portion 310 can suppress the outflow of the translucent resin 40 and the translucent resin 40 can be formed in a hemispherical shape, the positions of the discontinuous portions 36 and the number of the discontinuous portions 36 are appropriately determined. Can be changed.

本実施の形態において、発光素子10を囲むように形成された、エッジ部310が逆テーパー状に立った被膜B31は、透光性樹脂40の流出を抑制できれば不連続でも良いことを特徴とする。以上のように、発光素子10を不連続な被膜B31で囲み、透光性樹脂40の流出を抑制することで半球状に形成することができる。   In the present embodiment, the coating B31 formed so as to surround the light emitting element 10 and having the edge 310 standing in a reverse taper shape may be discontinuous as long as the outflow of the translucent resin 40 can be suppressed. . As described above, the light emitting element 10 can be formed in a hemispherical shape by surrounding it with the discontinuous film B31 and suppressing the outflow of the translucent resin 40.

実施の形態4.
実施の形態4について、図9を用いて説明する。図9は、実施の形態4に係る発光装置103を上から見た図(平面図)である。実施の形態1〜3で説明した部分(構成)と共通する部分および同一の作用をする部分については、同一の符号を付し、その説明を省略する。
Embodiment 4 FIG.
The fourth embodiment will be described with reference to FIG. FIG. 9 is a diagram (plan view) of the light emitting device 103 according to Embodiment 4 as viewed from above. The parts common to the parts (configuration) described in the first to third embodiments and the parts having the same functions are denoted by the same reference numerals, and the description thereof is omitted.

実施の形態1〜3では、エッジ部310が光の発光方向に逆テーパー状に立った被膜B31で覆われる発光素子10は1つである場合に関して説明した。実施の形態4では、エッジ部310が光の発光方向に逆テーパー状に立った被膜B31で覆われる発光素子10が少なくとも1つ以上である場合について説明する。   In the first to third embodiments, the case where the number of the light emitting element 10 covered with the coating B31 in which the edge portion 310 stands in a reverse tapered shape in the light emission direction has been described. In the fourth embodiment, a case will be described in which at least one light emitting element 10 is covered with the coating B31 in which the edge portion 310 stands in a reverse taper shape in the light emission direction.

図9に示すように、発光装置103は、エッジ部310の内側の基板20の領域に4つの発光素子10を実装する。エッジ部310は、4つの発光素子10を囲むように形成される。4つの発光素子10は、略均等に円形に配置されており、被膜B31は、4つの発光素子10を囲むように円環状に形成される。   As shown in FIG. 9, the light emitting device 103 mounts the four light emitting elements 10 in the region of the substrate 20 inside the edge portion 310. The edge portion 310 is formed so as to surround the four light emitting elements 10. The four light emitting elements 10 are substantially equally arranged in a circle, and the coating B31 is formed in an annular shape so as to surround the four light emitting elements 10.

実施の形態1〜3において説明したエッジ部310によれば、透光性樹脂40を効率よく半球状に成形することができる。したがって、本実施の形態4の発光装置103のように、複数の発光素子10が被膜B31内の基板領域に略均等に配置されることにより、より明るく色むらの少ない発光装置103を得ることができる。被膜B31内に存在する発光素子10は少なくとも1つ以上存在すれば良く、数は特に問わない。   According to the edge portion 310 described in the first to third embodiments, the translucent resin 40 can be efficiently formed into a hemispherical shape. Therefore, like the light emitting device 103 of the fourth embodiment, the light emitting devices 103 that are brighter and less uneven in color can be obtained by arranging the plurality of light emitting elements 10 almost uniformly in the substrate region in the coating B31. it can. There may be at least one light emitting element 10 present in the coating B31, and the number is not particularly limited.

以上のように、本実施の形態に係る発光装置103によれば、複数の発光素子10を一括して同一の透光性樹脂40で覆うことで、生産性良く明るい発光装置103を提供することができる。   As described above, according to the light emitting device 103 according to the present embodiment, a bright light emitting device 103 with high productivity can be provided by covering a plurality of light emitting elements 10 together with the same translucent resin 40. Can do.

実施の形態5.
実施の形態5について、図10、図11を用いて説明する。図10は、実施の形態5に係る発光装置104の断面図である。図11は、実施の形態5に係る発光装置104を上から見た図(平面図)である。
Embodiment 5 FIG.
The fifth embodiment will be described with reference to FIGS. FIG. 10 is a cross-sectional view of the light emitting device 104 according to the fifth embodiment. FIG. 11 is a diagram (plan view) of the light emitting device 104 according to Embodiment 5 as viewed from above.

実施の形態1〜4で説明した部分(構成)と共通する部分および同一の作用をする部分については、同一の符号を付し、その説明を省略する。   Parts that are the same as the parts (configurations) described in the first to fourth embodiments and parts that perform the same functions are denoted by the same reference numerals, and description thereof is omitted.

実施の形態1〜4において、エッジ部310が光の発光方向に逆テーパー状に立った被膜300(被膜B31、被膜A30)を用いて、発光素子10を円形の環状(円環状)に囲む場合について説明した。本実施の形態では、エッジ部310の発光素子10を囲む環状の形状は円環状ではなく、楕円形の環状(すなわち、楕円環状)である。   In Embodiments 1 to 4, when the edge portion 310 surrounds the light emitting element 10 in a circular ring shape (annular ring) using the coating film 300 (coating B31, coating film A30) standing in a reverse tapered shape in the light emission direction Explained. In the present embodiment, the annular shape surrounding the light emitting element 10 of the edge portion 310 is not an annular shape but an elliptical shape (that is, an elliptical shape).

エッジ部310により囲まれた領域内の発光素子10の配置が、図11に示すように1列並びで長手方向に長い場合、あるいは、短手方向よりも長手方向が複数の発光素子10が配置されている場合など、発光素子10の配置に応じて、エッジ部310により形成される形状は任意に変更することができる。   When the arrangement of the light emitting elements 10 in the region surrounded by the edge portion 310 is long in the longitudinal direction in a row as shown in FIG. 11, or the light emitting elements 10 having a plurality of longitudinal directions are arranged in the longitudinal direction rather than the short direction. The shape formed by the edge portion 310 can be arbitrarily changed according to the arrangement of the light emitting element 10 in the case where the light emitting element 10 is arranged.

本実施の形態において、基板20上に発光素子10が一列の直線状に複数個(3つ)実装されている。このような場合、発光素子10を囲むエッジ部が逆テーパー状に立った被膜B31を楕円状に形成することで、発光素子10からの光の取り出し効率、指向性を高くすることができる。   In the present embodiment, a plurality (three) of light emitting elements 10 are mounted on the substrate 20 in a straight line. In such a case, the light extraction efficiency and directivity from the light emitting element 10 can be increased by forming the coating B31 having an edge portion surrounding the light emitting element 10 in an inversely tapered shape in an elliptical shape.

以上のように、発光素子10を囲むエッジ部310が逆テーパー状に立った被膜B31は、円形だけでなく、発光素子10の配置に応じ、楕円形状、角部を丸く形成した多角形形状などの任意の形状を取ることができる。   As described above, the coating B31 in which the edge portion 310 surrounding the light emitting element 10 stands in a reverse taper shape is not only circular, but also has an elliptical shape, a polygonal shape with rounded corners, and the like according to the arrangement of the light emitting element 10. Can take any shape.

本実施の形態にかかる発光装置104は、発光素子10を囲むように形成された被膜B(エッジ部310)の形状が、円形である場合だけでなく、楕円状など発光素子10の配置に応じて、様々に形状を変更することができる。発光素子10の配置、個数に応じてエッジ部310(ダム被膜)の形状を変更することで、各々の発光素子10の配置に応じ、高い光取り出し効率、指向性を得ることができる。   In the light-emitting device 104 according to the present embodiment, the shape of the coating B (edge portion 310) formed so as to surround the light-emitting element 10 is not limited to a circular shape, but according to the arrangement of the light-emitting elements 10 such as an ellipse. The shape can be changed in various ways. By changing the shape of the edge portion 310 (dam coating) according to the arrangement and the number of the light emitting elements 10, high light extraction efficiency and directivity can be obtained according to the arrangement of each light emitting element 10.

実施の形態6.
実施の形態6について、図12を用いて説明する。本実施の形態において、実施の形態1〜5と共通する部分および同一の作用をする部分については、同一の符号を付し、その説明を省略する。
Embodiment 6 FIG.
The sixth embodiment will be described with reference to FIG. In the present embodiment, portions common to Embodiments 1 to 5 and portions having the same functions are denoted by the same reference numerals and description thereof is omitted.

実施の形態1〜5において、透光性樹脂40にはフィラー(粘度を高めるための鉱質微粒子粉末)を含まない場合について説明したが、本実施の形態6では透光性樹脂40に無機フィラー41を分散し、半球状への成形性をより向上させた態様について説明する。   In the first to fifth embodiments, the case where the translucent resin 40 does not include a filler (mineral fine particle powder for increasing the viscosity) has been described. In the sixth embodiment, the translucent resin 40 includes an inorganic filler. A mode in which 41 is dispersed and the moldability to a hemisphere is further improved will be described.

図12は、実施の形態6に係る発光装置105の断面図である。本実施の形態6において、透光性樹脂40には、無機フィラー41が分散されており、粘度が向上されている。   FIG. 12 is a cross-sectional view of light-emitting device 105 according to Embodiment 6. In the sixth embodiment, an inorganic filler 41 is dispersed in the translucent resin 40, and the viscosity is improved.

無機フィラー41として、好ましくは一次粒子径が数nmのナノシリカを用いる。数nmの微粒子を用い、分散性を適切に保ち、凝集を抑制することで透過ロスを抑止することができる。無機フィラー41を分散させ、粘度を向上することで、ぬれ拡がりに要する時間を長期化し、より効率、精度良く透光性樹脂40を半球状に形成することができる。無機フィラー41にナノシリカ(平均一次粒子径7nm)を用いた場合、濃度範囲は1〜6wt%程度であり、より好ましくは2wt%程度とし、粘度は10〜40Pas程度が好ましい。   As the inorganic filler 41, nano silica having a primary particle diameter of several nm is preferably used. Transmission loss can be suppressed by using fine particles of several nm, maintaining dispersibility appropriately, and suppressing aggregation. By dispersing the inorganic filler 41 and improving the viscosity, the time required for wetting and spreading can be prolonged, and the translucent resin 40 can be formed into a hemispherical shape with higher efficiency and accuracy. When nano silica (average primary particle diameter 7 nm) is used for the inorganic filler 41, the concentration range is about 1 to 6 wt%, more preferably about 2 wt%, and the viscosity is preferably about 10 to 40 Pas.

これよりも高濃度にナノシリカを充填した場合、粘度が高すぎるため、ポッティングによる塗布精度の低下が懸念される。また、これよりも低濃度である場合は、被膜B31のエッジ部で止めきれず、透光性樹脂40が流出してしまう恐れがある。
以上のように、透光性樹脂40に無機フィラー41を分散し、粘度を向上することで、より効率、精度良く透光性樹脂を半球状に形成することができる。
When nano silica is filled at a higher concentration than this, since the viscosity is too high, there is a concern that the coating accuracy may be reduced due to potting. Moreover, when the concentration is lower than this, the translucent resin 40 may flow out without being stopped at the edge of the coating B31.
As described above, by dispersing the inorganic filler 41 in the translucent resin 40 and improving the viscosity, the translucent resin can be formed into a hemispherical shape with higher efficiency and accuracy.

本実施の形態に係る発光装置105は、透光性樹脂40に無機フィラー41を含み、粘度が向上されているので、透光性樹脂40をより半球状に近く形成することができる。   Since the light emitting device 105 according to the present embodiment includes the inorganic filler 41 in the translucent resin 40 and the viscosity is improved, the translucent resin 40 can be formed more nearly hemispherical.

実施の形態7.
実施の形態7について、図13を用いて説明する。本実施の形態において、実施の1〜6と共通する部分および同一の作用をする部分については、同一の符号を付し、その説明を省略する。
Embodiment 7 FIG.
A seventh embodiment will be described with reference to FIG. In the present embodiment, portions common to Embodiments 1 to 6 and portions having the same functions are denoted by the same reference numerals, and description thereof is omitted.

実施の形態1〜6において、透光性樹脂40には蛍光材料を含まない場合について説明した。本実施の形態7では、透光性樹脂40に蛍光材料42を分散し、発光装置106からの光を所望の色に調整する態様について説明する。   In Embodiment 1-6, the case where the fluorescent material was not included in translucent resin 40 was demonstrated. In the seventh embodiment, a mode in which the fluorescent material 42 is dispersed in the translucent resin 40 and the light from the light emitting device 106 is adjusted to a desired color will be described.

図13は、実施の形態7に係る発光装置106の断面図である。本実施の形態に係る発光装置106において、透光性樹脂40には、蛍光材料42が分散されており、発光素子10からの発光を所望の色に変換することができる。蛍光材料42の材質は特に問わず、光を吸収し、より長波長の光を出光する材質であることとする。   FIG. 13 is a cross-sectional view of light-emitting device 106 according to Embodiment 7. In the light emitting device 106 according to the present embodiment, a fluorescent material 42 is dispersed in the translucent resin 40, and light emitted from the light emitting element 10 can be converted into a desired color. The material of the fluorescent material 42 is not particularly limited, and is a material that absorbs light and emits light having a longer wavelength.

実施の形態1〜5に係る発光装置100〜104によれば、発光素子10に対して、透光性樹脂40の厚みが均一になるように透光性樹脂40を半球状に形成することができるので、蛍光材料42の存在割合を均一(同一)にし、色むらを低減することができる。   According to the light emitting devices 100 to 104 according to Embodiments 1 to 5, the translucent resin 40 is formed in a hemispherical shape so that the thickness of the translucent resin 40 is uniform with respect to the light emitting element 10. Therefore, the existence ratio of the fluorescent material 42 can be made uniform (same), and color unevenness can be reduced.

以上のように、透光性樹脂40に蛍光材料42を分散させることにより、半球状に形成された透光性樹脂40に色変換色素(蛍光材料42)を含むことで、色むらが少なく、所望の発光色を得ることができる。   As described above, by dispersing the fluorescent material 42 in the translucent resin 40, the translucent resin 40 formed in a hemispherical shape contains a color conversion dye (fluorescent material 42), thereby reducing color unevenness, A desired luminescent color can be obtained.

以上、実施の形態1〜7について説明したが、これらの7つの実施の形態を部分的に組み合わせて実施しても構わない。あるいは、これらのうちの1つの実施の形態を部分的に実施しても構わない。あるいは、これらのうちの2つ以上の実施の形態を部分的に組み合わせて実施しても構わない。そのほか、これらの7つの実施の形態をどのように組み合わせて実施しても構わない。   Although Embodiments 1 to 7 have been described above, these seven embodiments may be partially combined and implemented. Alternatively, one of these embodiments may be partially implemented. Alternatively, two or more of these embodiments may be partially combined. In addition, these seven embodiments may be combined in any way.

10 発光素子、20 基板、21 バンプ、22 接合材、23 ワイヤー、24 回路パターン、25 発光面、30 被膜A、31 被膜B、32 溝、36 不連続部、40 透光性樹脂、41 無機フィラー、42 蛍光材料、100,101,102,103,104,105,106 発光装置、300 被膜、310 エッジ部、311 斜面、312 エッジ、313 被膜表面、314 被膜裏面、315 被膜上面、316 内周面、317 外周面、318 内側壁、319 外側壁、399 被膜内側部、401 平坦部。   DESCRIPTION OF SYMBOLS 10 Light emitting element, 20 Substrate, 21 Bump, 22 Bonding material, 23 Wire, 24 Circuit pattern, 25 Light emitting surface, 30 Coating A, 31 Coating B, 32 Groove, 36 Discontinuous part, 40 Translucent resin, 41 Inorganic filler , 42 Fluorescent material, 100, 101, 102, 103, 104, 105, 106 Light emitting device, 300 coating, 310 edge, 311 slope, 312 edge, 313 coating surface, 314 coating back surface, 315 coating top surface, 316 inner peripheral surface 317 outer peripheral surface, 318 inner side wall, 319 outer side wall, 399 inner side of coating, 401 flat part.

Claims (11)

発光素子が実装される発光面と、
前記発光素子の周囲の発光面を覆う裏面と、裏面と対向する表面とを有する被膜であって、前記発光素子を囲むように環状に形成される斜面であって前記表面から前記裏面に向かって径が小さくなるように形成されるとともに前記表面との角度が鋭角になるように形成される斜面と、前記表面と前記斜面との境界に形成されたエッジとを有するエッジ部を備える被膜と
を備えることを特徴とする発光装置。
A light emitting surface on which the light emitting element is mounted;
A film having a back surface covering a light emitting surface around the light emitting element, and a surface facing the back surface, and is an inclined surface formed in an annular shape so as to surround the light emitting element, from the surface toward the back surface A film having an edge portion having an inclined surface formed to have a small diameter and an acute angle with the surface, and an edge formed at a boundary between the surface and the inclined surface. A light-emitting device comprising:
前記発光装置は、さらに、
前記発光素子を覆うとともに前記エッジ部の内側を充填する透光性樹脂を備えることを特徴とする請求項1に記載の発光装置。
The light emitting device further includes:
The light emitting device according to claim 1, further comprising a translucent resin that covers the light emitting element and fills the inside of the edge portion.
前記透光性樹脂は、液体から固体へ変化し、液体の状態で前記エッジ部の内側に液滴として滴下され、滴下された液滴の拡がりが前記エッジにより堰き止められた状態で固化したことを特徴とする請求項2に記載の発光装置。   The translucent resin changed from a liquid to a solid, dropped as a droplet inside the edge portion in a liquid state, and solidified in a state where the spread of the dropped droplet was blocked by the edge The light-emitting device according to claim 2. 前記透光性樹脂は、無機フィラーを含むことを特徴とする請求項2又は3に記載の発光装置。   The light-emitting device according to claim 2, wherein the translucent resin includes an inorganic filler. 前記透光性樹脂は、色変換色素を含むことを特徴とする請求項2又は3に記載の発光装置。   The light-emitting device according to claim 2, wherein the translucent resin contains a color conversion pigment. 前記被膜は、前記発光素子の周囲に環状に設けられた溝であって、内側壁を備える溝を備え、
前記エッジは、前記内側壁の上端に形成され、
前記斜面は、前記内側壁に形成されることを特徴とする請求項1〜5のいずれかに記載の発光装置。
The coating is a groove provided in an annular shape around the light emitting element, and includes a groove having an inner wall,
The edge is formed at an upper end of the inner wall;
The light emitting device according to claim 1, wherein the slope is formed on the inner wall.
前記発光面から前記エッジまでの高さは、前記発光面から前記発光素子までの高さよりも低いことを特徴とする請求項1〜6のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein a height from the light emitting surface to the edge is lower than a height from the light emitting surface to the light emitting element. 前記エッジは、不連続な環状に形成されることを特徴とする請求項1〜7のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the edge is formed in a discontinuous annular shape. 前記エッジは、円環状に形成されることを特徴とする請求項1〜8のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the edge is formed in an annular shape. 前記エッジは、楕円環状に形成されることを特徴とする請求項1〜8のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the edge is formed in an elliptical ring shape. 発光素子が実装される発光面を備える発光装置の製造方法において、
前記発光装置は、前記発光素子の周囲の前記発光面を覆う裏面と、裏面と対向する表面とを有する被膜であって、前記発光素子を囲むように環状に形成される斜面であって前記表面から前記裏面に向かって径が小さくなるように形成されるとともに前記表面との角度が鋭角になるように形成される斜面と、前記表面と前記斜面との境界に形成されたエッジとを有するエッジ部を備える被膜を備え、
前記エッジ部の内側に液体の状態の透光性樹脂を液滴として滴下し、
滴下された前記透光性樹脂の液滴の拡がりが前記エッジにより堰き止められた状態で、前記透光性樹脂を固化させることを特徴とする発光装置の製造方法。
In a method for manufacturing a light emitting device including a light emitting surface on which a light emitting element is mounted,
The light-emitting device is a film having a back surface covering the light-emitting surface around the light-emitting element and a surface facing the back surface, and is an inclined surface formed in an annular shape so as to surround the light-emitting element. An edge having a slope formed such that the diameter decreases from the surface toward the back surface and an angle with the surface becomes an acute angle, and an edge formed at a boundary between the surface and the slope A coating comprising a part,
Dropping the translucent resin in a liquid state inside the edge portion as a droplet,
A method of manufacturing a light-emitting device, characterized in that the translucent resin is solidified in a state where the spread of the dropped droplets of the translucent resin is blocked by the edge.
JP2011273823A 2011-12-14 2011-12-14 Light emitting device and manufacturing method of the same Pending JP2014044970A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011273823A JP2014044970A (en) 2011-12-14 2011-12-14 Light emitting device and manufacturing method of the same
PCT/JP2012/072191 WO2013088790A1 (en) 2011-12-14 2012-08-31 Light emitting apparatus, illuminating apparatus, display apparatus, and method for manufacturing light emitting apparatus
JP2013549139A JP5726331B2 (en) 2011-12-14 2012-08-31 LIGHT EMITTING DEVICE, LIGHTING DEVICE, DISPLAY DEVICE, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
TW101140680A TW201330329A (en) 2011-12-14 2012-11-02 Light emitting device, illuminating device, display device, and the method for manufacturing a light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011273823A JP2014044970A (en) 2011-12-14 2011-12-14 Light emitting device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2014044970A true JP2014044970A (en) 2014-03-13

Family

ID=48612249

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011273823A Pending JP2014044970A (en) 2011-12-14 2011-12-14 Light emitting device and manufacturing method of the same
JP2013549139A Active JP5726331B2 (en) 2011-12-14 2012-08-31 LIGHT EMITTING DEVICE, LIGHTING DEVICE, DISPLAY DEVICE, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013549139A Active JP5726331B2 (en) 2011-12-14 2012-08-31 LIGHT EMITTING DEVICE, LIGHTING DEVICE, DISPLAY DEVICE, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Country Status (3)

Country Link
JP (2) JP2014044970A (en)
TW (1) TW201330329A (en)
WO (1) WO2013088790A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017033890A1 (en) * 2015-08-24 2018-03-01 京セラ株式会社 Light emitting element mounting substrate, light emitting device, and light emitting module
JP2018037259A (en) * 2016-08-31 2018-03-08 東芝ライテック株式会社 Vehicular illuminating device, and vehicular lighting fixture
JP2020091410A (en) * 2018-12-06 2020-06-11 アルパイン株式会社 Illumination device
JP2021002632A (en) * 2019-06-25 2021-01-07 豊田合成株式会社 Light-emitting device and method for manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102080778B1 (en) 2013-09-11 2020-04-14 엘지이노텍 주식회사 Light emitting device package
JP2016167518A (en) * 2015-03-09 2016-09-15 パナソニックIpマネジメント株式会社 Light emission device and luminaire
JP7016639B2 (en) * 2017-08-21 2022-02-07 スタンレー電気株式会社 Manufacturing method of semiconductor light emitting device and semiconductor light emitting device
JP7111957B2 (en) 2018-06-14 2022-08-03 日亜化学工業株式会社 Semiconductor device and its manufacturing method
CN116885551A (en) 2018-12-12 2023-10-13 日亚化学工业株式会社 Light emitting module
JP7311770B2 (en) * 2018-12-12 2023-07-20 日亜化学工業株式会社 Light-emitting module manufacturing method, light-emitting module, and projector
JP7252820B2 (en) 2019-04-12 2023-04-05 日機装株式会社 Semiconductor light emitting device and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3431038B2 (en) * 1994-02-18 2003-07-28 ローム株式会社 LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LED HEAD MANUFACTURING METHOD
JPH1131761A (en) * 1997-07-11 1999-02-02 Denso Corp Semiconductor component and manufacture of the same
JP4211029B2 (en) * 2003-07-17 2009-01-21 三菱電機株式会社 Surface light source device
JP2006100489A (en) * 2004-09-29 2006-04-13 Ricoh Co Ltd Printed circuit board and electronic unit using the printed circuit board, and method of forming dam for preventing resin outflowing
JP2006324589A (en) * 2005-05-20 2006-11-30 Sharp Corp Led device and manufacturing method thereof
DE102007021904A1 (en) * 2007-02-28 2008-09-04 Osram Opto Semiconductors Gmbh Housing body for opto-electronic component, has main surface with surface area and another surface area, and both surface areas are adjoined together by outer edge
JP4895879B2 (en) * 2007-03-19 2012-03-14 サンユレック株式会社 Silicone resin composition for sealing light emitting device and method for producing optical semiconductor electronic component by potting method using the same
JP2010003994A (en) * 2008-06-23 2010-01-07 Sharp Corp Lighting device, backlight device, and method of manufacturing lighting device
JP5342270B2 (en) * 2009-02-23 2013-11-13 パナソニック株式会社 LED dimming / lighting device and LED lighting apparatus using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017033890A1 (en) * 2015-08-24 2018-03-01 京セラ株式会社 Light emitting element mounting substrate, light emitting device, and light emitting module
US10174914B2 (en) 2015-08-24 2019-01-08 Kyocera Corporation Light-emitting-element mounting substrate, light emitting device, and light emitting module
JP2018037259A (en) * 2016-08-31 2018-03-08 東芝ライテック株式会社 Vehicular illuminating device, and vehicular lighting fixture
JP2020091410A (en) * 2018-12-06 2020-06-11 アルパイン株式会社 Illumination device
JP7037474B2 (en) 2018-12-06 2022-03-16 アルパイン株式会社 Illuminator
JP2021002632A (en) * 2019-06-25 2021-01-07 豊田合成株式会社 Light-emitting device and method for manufacturing the same
JP7226131B2 (en) 2019-06-25 2023-02-21 豊田合成株式会社 Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2013088790A1 (en) 2015-04-27
WO2013088790A1 (en) 2013-06-20
JP5726331B2 (en) 2015-05-27
TW201330329A (en) 2013-07-16

Similar Documents

Publication Publication Date Title
JP2014044970A (en) Light emitting device and manufacturing method of the same
US20180240780A1 (en) Package substrate and package structure using the same
JP6187277B2 (en) Light emitting device and manufacturing method thereof
JP2006135288A (en) White emitting diode package and its manufacturing method
JP2010532929A (en) Light emitting device package
US9263647B2 (en) Light emitting diode package structure and manufacturing method thereof
JP2010225791A (en) Semiconductor light emitting device
JP2016171227A (en) Light-emitting device and manufacturing method of the same
US11616179B2 (en) Light emitting device and method of manufacturing light emitting device
JP2017117912A (en) Light-emitting device using wavelength conversion member, and wavelength conversion member and method of manufacturing light-emitting device
US20180073718A1 (en) Mounting pedestal, light-emitting device, moving-body lighting device, and moving body
US11791448B2 (en) Light-emitting device and element mounting wiring board
US11996504B2 (en) Light-emitting device and method of manufacturing the same
US10714460B2 (en) Light emitting device and manufacturing method thereof
JP2013197259A (en) Light emitting device and manufacturing method of the same
US10629786B2 (en) Light emitting device and manufacturing method thereof
JP6021457B2 (en) Light emitting device
US11355678B2 (en) Light-emitting device and method of manufacturing the same
JP2013243237A (en) Light emitting device
JP2019036676A (en) Light-emitting device
JP5808973B2 (en) Light emitting device
JP2021082655A (en) Light-emitting device and manufacturing method thereof
JP2007207939A (en) Light emitting device
WO2017217549A1 (en) Light emitting device
KR20120074734A (en) Wavelength converted light emitting diode chip and light emitting device having the same