JP2013243237A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2013243237A
JP2013243237A JP2012115236A JP2012115236A JP2013243237A JP 2013243237 A JP2013243237 A JP 2013243237A JP 2012115236 A JP2012115236 A JP 2012115236A JP 2012115236 A JP2012115236 A JP 2012115236A JP 2013243237 A JP2013243237 A JP 2013243237A
Authority
JP
Japan
Prior art keywords
coating
light emitting
outer peripheral
edge
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012115236A
Other languages
Japanese (ja)
Inventor
Yusuke Umebachi
佑介 梅鉢
Toshiyuki Yoneda
俊之 米田
Takayuki Nakao
貴行 中尾
Junpei Sawada
準平 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012115236A priority Critical patent/JP2013243237A/en
Publication of JP2013243237A publication Critical patent/JP2013243237A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting device which facilitates the control of the shape and the thickness of a translucent resin and improves the light extraction efficiency.SOLUTION: A light emitting device 100 includes: a mounting surface 51 on which a light emitting element 10 is mounted; a coating base part 76 which includes a coating base part rear surface 762 formed into an annular shape so as to enclose a periphery of the light emitting element 10 and contacting with the mounting surface 51, a coating base part front surface 761, and a coating base part outer peripheral surface 763; and coating protrusion part 75 including a coating protrusion rear surface 752 formed into an annular shape so as to protrude from the coating base part front surface 761 and contacting with the coating base part front surface 761, a coating protrusion front surface 751, and a coating protrusion outer peripheral surface 753. The coating protrusion outer peripheral surface 753 is positioned at the inner side relative to the coating base part outer peripheral surface 763.

Description

本発明は、基板上に実装された発光素子を有する発光装置およびその製造方法に関する。   The present invention relates to a light emitting device having a light emitting element mounted on a substrate and a method for manufacturing the same.

近年、白熱球、蛍光灯といった従来の照明から、従来の照明に比べ低消費電力、長寿命であるLED(発光ダイオード)照明への置き換えが進んでいる。照明の多くは白色であり、白色LEDが使用されている。   In recent years, replacement of conventional illumination such as incandescent bulbs and fluorescent lamps with LED (light emitting diode) illumination, which has lower power consumption and longer life than conventional illumination, is progressing. Most of the illumination is white and white LEDs are used.

LEDで白色を得るには2つの方法がある。1つ目の方法は赤、青、緑といった複数の発光素子を用いて、素子の発光を合成する方法である。2つ目の方法は単色の発光素子と蛍光体を用いて素子の発光と蛍光体の変換光を合成する方法である。コスト低減のため、白色LEDの多くは後者の方法を採用している(特許文献1〜3参照)。   There are two ways to obtain white with an LED. The first method is a method of synthesizing the light emission of elements using a plurality of light emitting elements such as red, blue, and green. The second method is a method of synthesizing the light emission of the element and the converted light of the phosphor using a single color light emitting element and the phosphor. In order to reduce costs, many white LEDs employ the latter method (see Patent Documents 1 to 3).

蛍光体を利用する発光装置は、蛍光体を含む樹脂で発光素子を覆うことにより所望の色の光を得ている。しかし、製造ばらつきによって樹脂の形状・厚みが変わることにより所望の色を得られないという課題があった。   A light emitting device using a phosphor obtains light of a desired color by covering the light emitting element with a resin containing the phosphor. However, there has been a problem that a desired color cannot be obtained due to a change in the shape and thickness of the resin due to manufacturing variations.

特開2007−201171号公報JP 2007-201171 A 特開2010−003994号公報JP 2010-003994 A 特開2012−015318号公報JP 2012-015318 A

特許文献1では、前記樹脂の形状・厚みのばらつきによる色むらの課題に対し、凹型に形成された高反射樹脂で発光素子を囲むことにより樹脂の形状・厚みを安定させている。しかし、凹型の高反射樹脂は発光素子より少なくとも高く設定する必要がある。しかも樹脂量のばらつきを考慮すると凹型の高反射樹脂は発光素子より更に高くする必要がある。そのため前記高反射樹脂に当たる光が増え、反射ロスが多くなり光の取り出し効率が低下するという課題があった。   In Patent Document 1, the shape and thickness of the resin are stabilized by surrounding the light emitting element with a highly reflective resin formed in a concave shape, in order to solve the problem of uneven color due to variations in the shape and thickness of the resin. However, the concave highly reflective resin needs to be set at least higher than the light emitting element. In addition, considering the variation in the amount of resin, it is necessary to make the concave highly reflective resin higher than the light emitting element. Therefore, there is a problem that light hitting the highly reflective resin increases, reflection loss increases, and light extraction efficiency decreases.

特許文献2では、前記樹脂の形状・厚みのばらつきによる色むらの課題と、前記反射ロスによる光の取り出し効率の低下の課題に対し、せき止め部外周に略垂直のエッジを設けることにより、前記エッジが無いときに比べせき止め部を低くしている。そのため、樹脂の形状・厚みを安定させつつ、光の取り出し効率を向上させている。   In Patent Document 2, in response to the problem of color unevenness due to variations in the shape and thickness of the resin and the problem of reduced light extraction efficiency due to the reflection loss, the edge is provided by providing a substantially vertical edge on the outer periphery of the damming portion. Compared to the case where there is no dam, the damming part is lowered. Therefore, the light extraction efficiency is improved while stabilizing the shape and thickness of the resin.

しかし、エッジの形成が不十分な場合や、エッジの欠損、エッジへのゴミの付着、ばらつきによる樹脂の過剰供給などにより樹脂がせき止め部から流出し、形状が崩れ、樹脂の形状・厚みが安定しないという課題があった。   However, if the edge formation is insufficient, the edge is missing, the dust is attached to the edge, or the resin is excessively supplied due to variations, the resin flows out from the damming part, causing the shape to collapse and the shape and thickness of the resin to be stable. There was a problem of not doing.

エッジにおける樹脂の接触角を大きくし、樹脂形状を半球形に近づけるほど光の取り出し効率は向上するが、特許文献2において樹脂形状をより半球形に近づけるためには、樹脂量を増やし接触角をエッジから流出しない限界まで大きくする必要がある。しかし樹脂量がばらつくと樹脂がせき止め部からの容易に流出してしまい、樹脂の形状・厚みが変化してしまうという課題があった。また、この課題を防ぐためには樹脂量を減らし接触角を小さくする必要があり、樹脂形状を半球形に近づけることができず、光の取り出し効率が低下するという課題があった。   Increasing the contact angle of the resin at the edge and making the resin shape closer to a hemisphere improves the light extraction efficiency. However, in Patent Document 2, in order to make the resin shape closer to a hemisphere, the amount of resin is increased and the contact angle is increased. It is necessary to increase the limit so that it does not flow out of the edge. However, when the amount of resin varies, there is a problem that the resin easily flows out from the damming portion and the shape and thickness of the resin change. Further, in order to prevent this problem, it is necessary to reduce the amount of resin and reduce the contact angle. Thus, there is a problem that the resin shape cannot be made close to a hemispherical shape and the light extraction efficiency is lowered.

特許文献3では樹脂量のばらつきをせき止め部上に乗り上げる範囲に収め、かつせき止め部を撥油性材料で形成することによりせき止め部エッジまで樹脂が広がる余地を持たせることにより、樹脂の形状・厚みを安定化させている。   In Patent Document 3, the variation in the amount of resin is within the range that runs on the damming portion, and the shape and thickness of the resin is reduced by allowing the resin to spread to the edge of the damming portion by forming the damming portion with an oil repellent material. Stabilized.

しかし、樹脂量のばらつきを撥油パターン上に乗り上げる範囲に収めるには、従来に比べ樹脂量を細かく管理できる装置が必要であり高コストになるという課題があった。また、撥油成分を含有しているため、反射率が低下し、光の取り出し効率が低下するという課題があった。また、撥油パターンであるため接触角が小さく、光の取り出し効率が低いという課題があった。   However, in order to keep the variation in the resin amount within the range on the oil-repellent pattern, an apparatus capable of finely managing the resin amount as compared with the conventional technique is required, resulting in a high cost. Moreover, since the oil repellent component is contained, there is a problem that the reflectance is lowered and the light extraction efficiency is lowered. In addition, the oil repellent pattern has a problem that the contact angle is small and the light extraction efficiency is low.

本発明は、樹脂の形状・厚みの制御を容易にし、かつ光の取り出し効率を向上させることを目的とする。   An object of the present invention is to facilitate control of the shape and thickness of a resin and to improve light extraction efficiency.

本発明に係る発光装置は、発光素子が実装される発光面を備えた発光装置において、前記発光素子の周囲を囲むように環状に形成された第1の被膜であって、前記発光面に当接する第1の被膜裏面と、前記第1の被膜裏面に対向する第1の被膜表面と、前記第1の被膜表面の外周縁から前記第1の被膜裏面の外周縁にわたって形成された第1の外周面とを有する第1の被膜と、前記第1の被膜表面から突き出すように環状に形成された第2の被膜であって、前記第1の被膜表面に当接する第2の被膜裏面と、前記第2の被膜裏面に対向する第2の被膜表面と、前記第2の被膜表面の外周縁から前記第2の被膜裏面の外周縁にわたって形成された第2の外周面とを有する第2の被膜とを備え、前記第2の外周面は、前記第1の外周面よりも内側に位置していることを特徴とする。   The light emitting device according to the present invention is a light emitting device having a light emitting surface on which a light emitting element is mounted, and is a first film formed in an annular shape so as to surround the periphery of the light emitting element. A first coating back surface that is in contact with the first coating coating surface, the first coating coating surface facing the first coating coating back surface, and a first coating formed from an outer peripheral edge of the first coating surface to an outer peripheral edge of the first coating back surface. A first film having an outer peripheral surface, and a second film formed in an annular shape so as to protrude from the surface of the first film, the second film back surface being in contact with the surface of the first film; A second coating surface opposite to the second coating back surface, and a second outer peripheral surface formed from the outer peripheral edge of the second coating surface to the outer peripheral edge of the second coating back surface. And the second outer peripheral surface is on the inner side than the first outer peripheral surface. And it is located.

本発明に係る発光装置は、発光素子が実装される発光面を備えた発光装置において、前記発光素子の周囲を囲むように環状に形成された第1の被膜であって、前記発光面に当接する第1の被膜裏面と、前記第1の被膜裏面に対向する第1の被膜表面と、前記第1の被膜表面の外周縁から前記第1の被膜裏面の外周縁にわたって形成された第1の外周面とを有する第1の被膜と、前記第1の被膜表面から突き出すように環状に形成された第2の被膜であって、前記第1の被膜表面に当接する第2の被膜裏面と、前記第2の被膜裏面に対向する第2の被膜表面と、前記第2の被膜表面の外周縁から前記第2の被膜裏面の外周縁にわたって形成された第2の外周面とを有する第2の被膜とを備え、前記第2の外周面は、前記第1の外周面よりも内側に位置しているので、透光性材料が第2の被膜表面の外周縁から流出しても第1の被膜表面の外周縁によってせき止めることができるので、透光性材料の形状・厚みを安定化することができ、色むらの少ない発光装置が得ることができる。   The light emitting device according to the present invention is a light emitting device having a light emitting surface on which a light emitting element is mounted, and is a first film formed in an annular shape so as to surround the periphery of the light emitting element. A first coating back surface that is in contact with the first coating coating surface, the first coating coating surface facing the first coating coating back surface, and a first coating formed from an outer peripheral edge of the first coating surface to an outer peripheral edge of the first coating back surface. A first film having an outer peripheral surface, and a second film formed in an annular shape so as to protrude from the surface of the first film, the second film back surface being in contact with the surface of the first film; A second coating surface opposite to the second coating back surface, and a second outer peripheral surface formed from the outer peripheral edge of the second coating surface to the outer peripheral edge of the second coating back surface. And the second outer peripheral surface is on the inner side than the first outer peripheral surface. Because it is located, even if the translucent material flows out from the outer peripheral edge of the second coating surface, it can be blocked by the outer peripheral edge of the first coating surface, so that the shape and thickness of the translucent material are stabilized. Thus, a light-emitting device with little color unevenness can be obtained.

実施の形態1の発光装置100の断面図である。1 is a cross-sectional view of a light emitting device 100 according to Embodiment 1. FIG. 実施の形態1の発光装置100を上から見た平面図である。2 is a plan view of the light emitting device 100 according to Embodiment 1 as viewed from above. FIG. 光の接触角と取り出し効率との関係を説明するための発光装置101の断面図である。It is sectional drawing of the light-emitting device 101 for demonstrating the relationship between the contact angle of light, and extraction efficiency. 実施の形態1の基板50の表面を高反射膜で覆った発光装置100の断面図である。2 is a cross-sectional view of the light emitting device 100 in which the surface of the substrate 50 of Embodiment 1 is covered with a highly reflective film. FIG. 実施の形態1の被膜70周辺の断面の拡大図である。FIG. 3 is an enlarged view of a cross section around a film 70 according to the first embodiment. 実施の形態1の透光性材料80が流出した時の被膜70周辺の断面の拡大図である。FIG. 3 is an enlarged view of a cross section around a coating film 70 when the translucent material 80 of Embodiment 1 flows out. 第1のせき止め部と第2のせき止め部を並べた時の被膜70周辺の断面の拡大図である。It is an enlarged view of the section of the circumference of coat 70 when the 1st damming part and the 2nd damming part are arranged. 実施の形態1の被膜70の断面形状のバリエーションを示した図である。FIG. 6 is a view showing variations in cross-sectional shape of the coating 70 of the first embodiment. 実施の形態2の被膜70周辺の断面の拡大図である。FIG. 6 is an enlarged view of a cross section around a film 70 according to a second embodiment. 固体表面に液滴を滴下したときの力のつりあいを示した図である。It is the figure which showed balance of force when a droplet is dripped at the solid surface. エッジ部を有する固体表面に液滴を滴下したときの力のつりあいを示した図である。It is the figure which showed balance of force when a droplet is dripped at the solid surface which has an edge part. 実施の形態2においてエッジα77の角度が変化した場合の透光性材料80の形状と透光性材料80が増えた場合の透光性材料80の形状とを示した図である。It is the figure which showed the shape of the translucent material 80 when the angle of edge (alpha) 77 changes in Embodiment 2, and the shape of the translucent material 80 when the translucent material 80 increases. 実施の形態2の被膜70の断面形状のバリエーションを示した図である。It is the figure which showed the variation of the cross-sectional shape of the film 70 of Embodiment 2. FIG. 実施の形態3の発光装置103を上から見た平面図である。FIG. 6 is a plan view of the light emitting device 103 according to Embodiment 3 as viewed from above. 実施の形態3の発光装置103の断面図である。6 is a cross-sectional view of a light emitting device 103 according to Embodiment 3. FIG. 実施の形態3の被膜70Aと被膜70B周辺の断面の拡大図である。It is an enlarged view of the cross section of the coating 70A and the coating 70B periphery of Embodiment 3. FIG. 実施の形態4の被膜70周辺の断面の拡大図である。FIG. 10 is an enlarged view of a cross section around a coating film 70 of a fourth embodiment. 実施の形態5の被膜70A、70B周辺の断面の拡大図である。FIG. 10 is an enlarged view of a cross section around coatings 70A and 70B of a fifth embodiment. 実施の形態6の被膜70周辺の断面の拡大図である。FIG. 10 is an enlarged view of a cross section around a film 70 according to a sixth embodiment. 実施の形態7の被膜70A、70B周辺の断面の拡大図である。FIG. 20 is an enlarged view of a cross section around coatings 70A and 70B according to a seventh embodiment. 実施の形態8のエッチングの方法の説明図1である。FIG. 10 is an explanatory diagram 1 of an etching method according to an eighth embodiment. 実施の形態8のエッチングの方法の説明図2である。FIG. 2 is an explanatory diagram 2 of an etching method according to an eighth embodiment. 実施の形態10の発光装置110を上から見た平面図である。It is the top view which looked at the light-emitting device 110 of Embodiment 10 from the top. (a)は実施の形態10の被膜基部外周部76oLを通る断面の拡大図、(b)は実施の形態10の被膜基部外周部76oHを通る断面の拡大図である。(A) is an enlarged view of a cross section passing through the coating base outer peripheral portion 76oL of the tenth embodiment, and (b) is an enlarged view of a cross section passing through the coating base outer peripheral portion 76oH of the tenth embodiment. 実施の形態10の発光装置110の一例を上から見た平面図である。It is the top view which looked at an example of the light-emitting device 110 of Embodiment 10 from the top. 実施の形態10において透光性材料80がエッジα77から流出した際の透光性材料80を上から見たときの概形図である。FIG. 40 is a schematic diagram of translucent material 80 as seen from above when translucent material 80 flows out from edge α77 in the tenth embodiment. 実施の形態11の発光装置111を上から見た平面図である。It is the top view which looked at the light-emitting device 111 of Embodiment 11 from the top. 実施の形態12の発光装置112を上から見た平面図である。It is the top view which looked at the light-emitting device 112 of Embodiment 12 from the top.

以下、本発明の実施の形態について、図を用いて説明する。なお、各実施の形態の説明において、「上」、「下」、「左」、「右」、「前」、「後」、「表」、「裏」といった方向は、説明の便宜上、そのように記しているだけであって、装置、器具、部品等の配置や向き等を限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of each embodiment, the directions such as “up”, “down”, “left”, “right”, “front”, “back”, “front”, “back” are However, it is not intended to limit the arrangement or orientation of devices, instruments, parts, or the like.

実施の形態1.
以下に、図1〜図8を用いて本実施の形態について説明する。
Embodiment 1 FIG.
The present embodiment will be described below with reference to FIGS.

図1は、本実施の形態の発光装置100の断面図である。発光装置100は、発光素子10、ワイヤ20、接合剤30、バンプ40、基板50、回路パターン60、被膜70、蛍光体材料を含む透光性材料80を備える。発光素子10は、例えば、LED(発光ダイオード)素子であり、基板50の実装面51に実装される。基板50にはバンプ40が埋め込まれている。バンプ40は銅やアルミといった高熱伝導性の材料であり、発光素子10の放熱を目的としている。透光性材料80(透光性樹脂ともいう)は、例えば、シリコーン樹脂、エポキシ樹脂などの有機化合物や、低融点ガラスなどの無機化合物が挙げられる。   FIG. 1 is a cross-sectional view of the light emitting device 100 of the present embodiment. The light emitting device 100 includes a light emitting element 10, a wire 20, a bonding agent 30, a bump 40, a substrate 50, a circuit pattern 60, a film 70, and a translucent material 80 including a phosphor material. The light emitting element 10 is, for example, an LED (light emitting diode) element, and is mounted on the mounting surface 51 of the substrate 50. Bumps 40 are embedded in the substrate 50. The bump 40 is a material having high thermal conductivity such as copper or aluminum, and is intended for heat dissipation of the light emitting element 10. Examples of the translucent material 80 (also referred to as translucent resin) include organic compounds such as silicone resin and epoxy resin, and inorganic compounds such as low-melting glass.

図2は、本実施の形態の発光装置100を上から見た平面図である。発光素子10は、樹脂、銀ペースト、半田といった接合剤30を介してバンプ40に接着される。また、基板50は回路パターン60を備えており、発光素子10はワイヤ20を介して回路パターン60と電気的に接続されている。なお、回路パターン60の位置、形状に関して指定は無く、図2に限定するものではない。   FIG. 2 is a plan view of the light emitting device 100 according to the present embodiment as viewed from above. The light emitting element 10 is bonded to the bumps 40 via a bonding agent 30 such as resin, silver paste, or solder. The substrate 50 includes a circuit pattern 60, and the light emitting element 10 is electrically connected to the circuit pattern 60 through the wire 20. The position and shape of the circuit pattern 60 are not specified, and the circuit pattern 60 is not limited to FIG.

図2では、透光性材料80は省略している。被膜70は発光素子10を囲むよう環状(リング状)に形成されている。透光性材料80は、環状の被膜70の内側に略半球形状に形成される。   In FIG. 2, the translucent material 80 is omitted. The coating 70 is formed in an annular shape (ring shape) so as to surround the light emitting element 10. The translucent material 80 is formed in a substantially hemispherical shape inside the annular coating 70.

図1に示すように、被膜70の外周側の断面形状は階段状である。被膜70の形状及び断面形状の詳細については後述する。   As shown in FIG. 1, the cross-sectional shape on the outer peripheral side of the coating 70 is stepped. Details of the shape and cross-sectional shape of the coating 70 will be described later.

図3は、光の接触角と取り出し効率との関係を説明するための発光装置101の断面図である。発光装置101では、発光素子10を覆う樹脂の接触角を大きくし、樹脂形状を半球形に近づけるほど光の取り出し効率は向上する。図3を用いて、樹脂の接触角を大きくし、樹脂形状を半球形に近づけるほど光の取り出し効率は向上する理由について説明する。   FIG. 3 is a cross-sectional view of the light emitting device 101 for explaining the relationship between the contact angle of light and the extraction efficiency. In the light emitting device 101, the light extraction efficiency is improved as the contact angle of the resin covering the light emitting element 10 is increased and the resin shape is made closer to a hemispherical shape. The reason why the light extraction efficiency increases as the contact angle of the resin is increased and the resin shape is made closer to a hemispherical shape will be described with reference to FIG.

図3において、図1と同様の機能を有する構成には同一の符号を付している。発光装置101では、図1の被膜70の代わりに、透光性材料80A、あるいは透光性材料80Bをせき止めるためのせき止め部201を備える。せき止め部201との接触角が大きい透光性材料80Aと、接触角が小さい透光性材料80Bを示している。発光素子10から出た光の経路11と透光性材料80Aの界面との成す角度を角度Aとし、発光素子10から出た光の経路11と透光性材料80Bの界面との成す角度を角度Bとする。   3, components having the same functions as those in FIG. 1 are denoted by the same reference numerals. The light emitting device 101 includes a damming portion 201 for damming the translucent material 80A or the translucent material 80B instead of the coating 70 in FIG. A translucent material 80A having a large contact angle with the damming portion 201 and a translucent material 80B having a small contact angle are shown. The angle formed between the path 11 of light emitted from the light emitting element 10 and the interface of the light transmissive material 80A is defined as angle A, and the angle formed between the path 11 of light emitted from the light emitting element 10 and the interface of the light transmissive material 80B. An angle B is assumed.

図3のように角度Aは角度Bより小さい。接触角を大きくし、樹脂形状を半球形に近づけた透光性材料80Aの方が入射角(角度A)は小さくなり、界面での反射光が減り、取り出す光(11A)が増え、光の取り出し効率が高いものとなる。一方、接触角が小さい透光性材料80Bの方が入射角(角度B)が大きくなり、界面での反射光(11B)が増え、光の取り出し効率が低くなる。以上のように、接触角を大きくし、樹脂形状を半球形に近づけるほど光の入射角は小さくなり、透光性樹脂の界面での反射が減り、光の取り出し効率が向上する。   The angle A is smaller than the angle B as shown in FIG. The translucent material 80A having a larger contact angle and a resin shape closer to a hemispherical shape has a smaller incident angle (angle A), less reflected light at the interface, and more light (11A) to be extracted. The extraction efficiency is high. On the other hand, the translucent material 80B having a smaller contact angle has a larger incident angle (angle B), and the reflected light (11B) at the interface increases, so that the light extraction efficiency is lowered. As described above, as the contact angle is increased and the resin shape is made closer to a hemispherical shape, the incident angle of light becomes smaller, reflection at the interface of the translucent resin is reduced, and light extraction efficiency is improved.

図4は、本実施の形態に係る基板50の表面を高反射膜で覆った発光装置100の断面図である。図4では、基板50の実装面51を高反射材料からなる被膜71で覆い、そのときに発光素子10から発光する光の経路を矢印で示している。   FIG. 4 is a cross-sectional view of the light emitting device 100 in which the surface of the substrate 50 according to the present embodiment is covered with a highly reflective film. In FIG. 4, the mounting surface 51 of the substrate 50 is covered with a coating 71 made of a highly reflective material, and the path of light emitted from the light emitting element 10 at that time is indicated by arrows.

発光素子10が発する光の経路は、透光性材料80を通過して直接外部に達する光の経路14と、透光性材料80を通り被膜70の内周面である内側斜面701に反射して外部に到達する光の経路13と、透光性材料80を通り被膜71に反射して外部に到達する光の経路12とに分けることができる。また、透光性材料80を通り被膜71に反射し、さらに被膜70の内側斜面701に反射して外部に到達する光の経路も考えられる。光の経路12,13のように、被膜70や被膜71に衝突する光も効率よく取り出すことができるように実装面51を被膜71で覆うことが好ましい。   The light path emitted from the light emitting element 10 is reflected by the light path 14 that passes through the translucent material 80 and directly reaches the outside, and the inner slope 701 that is the inner peripheral surface of the coating 70 through the translucent material 80. The light path 13 that reaches the outside can be divided into the light path 12 that passes through the translucent material 80 and is reflected by the coating 71 and reaches the outside. Further, a light path that passes through the translucent material 80 and is reflected by the coating 71 and further reflected by the inner slope 701 of the coating 70 and reaches the outside is also conceivable. As in the light paths 12 and 13, it is preferable to cover the mounting surface 51 with the coating 71 so that the light colliding with the coating 70 and the coating 71 can be efficiently extracted.

図4に示すように、バンプ40と基板50の発光素子10を実装する実装面51は、発光素子10を接合する箇所および回路パターン60の接点を除いて、高反射性の被膜71に覆われている。被膜71の形成方法は、転写、塗布、印刷、露光などが挙げられる。例えば、露光部位の現像液が残るネガ型のフォトレジストや、露光部位の現像液が除去されるポジ型のフォトレジストである。このように基板50を高反射性の被膜71で覆うことにより、光の経路12のように基板に当たって吸収される光を減らすことができる。   As shown in FIG. 4, the mounting surface 51 on which the light emitting element 10 of the bump 40 and the substrate 50 is mounted is covered with a highly reflective coating 71 except for a portion where the light emitting element 10 is joined and a contact point of the circuit pattern 60. ing. Examples of the method for forming the coating 71 include transfer, coating, printing, and exposure. For example, a negative photoresist in which the developer at the exposed portion remains, or a positive photoresist from which the developer at the exposed portion is removed. By covering the substrate 50 with the highly reflective coating 71 in this manner, the light absorbed by the substrate as in the light path 12 can be reduced.

また、発光素子10は被膜70より高い位置にあることが好ましい。つまり、実装面51から発光素子の上端までの高さL1と、実装面51から被膜上端までの高さL2とは、L1>L2の関係である。好ましくは、L2は、L1の1/4〜3/4程度が好ましい。   In addition, the light emitting element 10 is preferably positioned higher than the coating 70. That is, the height L1 from the mounting surface 51 to the upper end of the light emitting element and the height L2 from the mounting surface 51 to the upper end of the film have a relationship of L1> L2. Preferably, L2 is preferably about 1/4 to 3/4 of L1.

発光素子10を被膜70より高い位置にすることにより、光の経路13のように被膜70に当たる光を減らし、光の経路14のように透光性樹脂外へ直接出る光を増やすことができる。透光性樹脂外へ直接出る光を増やすことにより反射ロスが減るため光の取り出し効率を高くすることができる。   By setting the light emitting element 10 to a position higher than the film 70, the light hitting the film 70 like the light path 13 can be reduced, and the light directly coming out of the translucent resin like the light path 14 can be increased. Increasing the amount of light directly coming out of the translucent resin reduces reflection loss, so that the light extraction efficiency can be increased.

図5は、本実施の形態の被膜70周辺の断面の拡大図である。被膜70は、被膜凸部75と被膜基部76により構成される。被膜基部76について、基板50、もしくは回路パターン60、もしくは被膜71と接する「裏面」と規定すると、裏面と対向する「表面」を持つ。また、説明の便宜上、光の発光方向側を上方とし、その反対側を下方をする。   FIG. 5 is an enlarged view of a cross section around the coating 70 of the present embodiment. The coating 70 includes a coating convex portion 75 and a coating base 76. When the film base 76 is defined as a “back surface” in contact with the substrate 50, the circuit pattern 60, or the film 71, the film base 76 has a “surface” that faces the back surface. For convenience of explanation, the light emission direction side is set to the upper side, and the opposite side is set to the lower side.

被膜基部76の表面を被膜基部表面761とし、被膜基部76の裏面を被膜基部裏面762とする。また、被膜基部76の外周面は、実装面51に対して略垂直に立っており、この外周面を被膜基部外周面763とする。   The surface of the film base 76 is referred to as a film base surface 761, and the back surface of the film base 76 is referred to as a film base back surface 762. The outer peripheral surface of the coating base 76 stands substantially perpendicular to the mounting surface 51, and this outer peripheral surface is referred to as a coating base outer peripheral surface 763.

被膜70は、被膜基部表面761に被膜76から突き出した被膜凸部75を備える。被膜凸部75、および被膜基部76は発光素子10を囲むよう環状に形成されている。被膜凸部75の外周と発光素子10の中心との距離をa、被膜基部76の外周と発光素子10の中心との距離をbとする。aはbより小さく設定されている。   The coating 70 includes a coating convex portion 75 protruding from the coating 76 on the coating base surface 761. The coating convex portion 75 and the coating base portion 76 are formed in an annular shape so as to surround the light emitting element 10. The distance between the outer periphery of the coating convex portion 75 and the center of the light emitting element 10 is a, and the distance between the outer periphery of the coating base portion 76 and the center of the light emitting element 10 is b. a is set smaller than b.

被膜凸部75について、被膜基部76と接する面を被膜凸部裏面752とし、被膜凸部裏面752の反対側の面を被膜凸部表面751とする。また、被膜凸部75の外周面は、実装面51に対して略垂直に立っており、この外周面を被膜凸部外周面753とする。   Regarding the coating convex portion 75, the surface in contact with the coating base portion 76 is referred to as a coating convex portion rear surface 752, and the surface opposite to the coating convex portion rear surface 752 is referred to as a coating convex portion surface 751. The outer peripheral surface of the coating convex portion 75 stands substantially perpendicular to the mounting surface 51, and this outer peripheral surface is referred to as a coating convex portion outer peripheral surface 753.

被膜凸部75の断面の表面側の外周側にエッジを持ち、そのエッジを「エッジα77」と呼び、その角度をαとする。エッジα77は、被膜凸部外周面753と被膜凸部表面751とのエッジ角がαである。また、被膜基部76断面の表面側の外周側にエッジを持ち、そのエッジを「エッジβ78」と呼び、その角度をβとする。エッジβ78は、被膜基部外周面763と被膜基部表面761とのエッジ角がβである。   An edge is provided on the outer peripheral side on the surface side of the cross section of the coating convex portion 75, the edge is referred to as “edge α77”, and the angle is α. In the edge α77, the edge angle between the coating convex outer peripheral surface 753 and the coating convex surface 751 is α. Further, an edge is provided on the outer peripheral side on the surface side of the cross section of the coating base portion 76, the edge is referred to as “edge β78”, and the angle is β. In the edge β78, the edge angle between the coating base outer peripheral surface 763 and the coating base surface 761 is β.

図5に示すように、透光性材料80は、通常状態ではエッジα77によりせき止められる。エッジα77を第1のせき止め部とし、エッジβ78を第2のせき止め部とする。このように、第1のせき止め部となるエッジα77と、第2のせき止め部となるエッジβ78を設けることで、エッジα77から透光性材料80が流出した場合でもエッジβ78でせき止めることができ、透光性材料80の形状・厚みの変化量を低減することができる。   As shown in FIG. 5, the translucent material 80 is blocked by the edge α77 in the normal state. The edge α77 is a first damming portion, and the edge β78 is a second damming portion. In this manner, by providing the edge α77 serving as the first blocking portion and the edge β78 serving as the second blocking portion, even when the translucent material 80 flows out from the edge α77, the edge β78 can be blocked. The amount of change in the shape and thickness of the translucent material 80 can be reduced.

本実施の形態に係る発光素子10は、実装面51(発光面)に実装された発光装置10の周囲を囲むように環状に形成され、実装面に当接する被膜基部裏面762(第1の被膜裏面)と、被膜基部裏面762に対向する被膜基部表面761(第1の被膜表面)と、被膜基部表面761の外周縁であるエッジβ78から被膜基部裏面762の外周縁にわたって形成された被膜基部外周面763(第1の外周面)とを有する被膜基部76(第1の被膜)を備える。   The light-emitting element 10 according to the present embodiment is formed in an annular shape so as to surround the periphery of the light-emitting device 10 mounted on the mounting surface 51 (light-emitting surface), and the film base back surface 762 (first film) that contacts the mounting surface Back surface), coating base surface 761 (first coating surface) facing the coating base back surface 762, and outer periphery of the coating base formed from the edge β78 which is the outer periphery of the coating base surface 761 to the outer periphery of the coating base back surface 762 A coating base 76 (first coating) having a surface 763 (first outer peripheral surface) is provided.

また、発光装置100は、被膜基部表面761から突き出すように環状に形成され、被膜基部表面761に当接する被膜凸部裏面752(第2の被膜裏面)と、被膜凸部裏面752に対向する被膜凸部表面751(第2の被膜表面)と、被膜凸部表面751の外周縁であるエッジα77から被膜凸部裏面752の外周縁にわたって形成された被膜凸部外周面753(第2の外周面)とを有する被膜凸部75を備える。被膜凸部外周面753は、被膜基部外周面763よりも内側に位置している。   The light emitting device 100 is formed in an annular shape so as to protrude from the coating base surface 761, and has a coating convex back surface 752 (second coating back surface) that contacts the coating base surface 761 and a coating film facing the coating convex surface back surface 752. A convex surface 751 (second coating surface) and a coating convex peripheral surface 753 (second peripheral surface) formed from the edge α77, which is the outer periphery of the coating convex surface 751, to the outer periphery of the coating convex back surface 752. ). The coating convex outer peripheral surface 753 is located inside the coating base outer peripheral surface 763.

また、被膜基部76は、被膜基部表面761の内周縁から被膜基部裏面762の内周縁にわたって形成された被膜基部内周面764(第1の被膜内周面)を有し、被膜凸部75は、被膜凸部表面751の内周縁から被膜凸部裏面752の内周縁にわたって形成された被膜凸部内周面754(第1の被膜内周面)を有する。   The coating base 76 has a coating base inner peripheral surface 764 (first coating inner peripheral surface) formed from the inner periphery of the coating base surface 761 to the inner periphery of the coating base back surface 762. And a coating convex inner peripheral surface 754 (first coating inner peripheral surface) formed from the inner peripheral edge of the coating convex surface 751 to the inner peripheral edge of the coating convex back surface 752.

そして、被膜70は、被膜基部内周面764と被膜凸部内周面754とが連続して形成された1つの環状の斜面であって、実装面から発光方向に向かって環径が広がるように形成された内側斜面701を備える。   The coating 70 is an annular inclined surface in which the coating base inner peripheral surface 764 and the coating convex inner peripheral surface 754 are continuously formed so that the ring diameter increases from the mounting surface toward the light emitting direction. A formed inner slope 701 is provided.

図6は、本実施の形態の透光性材料80が流出した時の被膜70周辺の断面の拡大図である。図7は、第1のせき止め部と第2のせき止め部を並べた時の被膜70周辺の断面の拡大図である。第1のせき止め部と第2のせき止め部とを備えている被膜70の効果の詳細について、図6及び図7を用いて説明する。   FIG. 6 is an enlarged view of a cross section around the coating 70 when the translucent material 80 of the present embodiment flows out. FIG. 7 is an enlarged view of a cross section around the coating 70 when the first and second blocking portions are arranged. The detail of the effect of the film 70 provided with the 1st blocking part and the 2nd blocking part is demonstrated using FIG.6 and FIG.7.

図6は、実施の形態1において透光性材料80がエッジα77から流出し、エッジβ78によりせき止められた時の図を示したものである。実線の透光性材料80Cは透光性材料80が第1のせき止め部であるエッジα77でせき止められた場合の形状を示している。二点鎖線の透光性材料80Dは透光性材料80が第1のせき止め部であるエッジα77から流出し、第2のせき止め部であるエッジβ78によりせき止められた場合の形状を示している。   FIG. 6 shows a diagram when the translucent material 80 flows out from the edge α77 and is blocked by the edge β78 in the first embodiment. A solid line translucent material 80 </ b> C shows a shape when the translucent material 80 is blocked by the edge α <b> 77 which is the first blocking section. The two-dot chain line translucent material 80D shows a shape in a case where the translucent material 80 flows out from the edge α77 which is the first damming portion and is blocked by the edge β78 which is the second damming portion.

また、流出した透光性材料80の領域を流出領域Aとし、斜線をひいた。更に、透光性材料80Cの発光方向の表面と発光素子10との距離をc、透光性材料80Dの発光方向の表面と発光素子10との距離をdとした。また、発光素子10の中心O(図4参照)と第1のせき止め部であるエッジα77までの距離をa1、発光素子10の中心Oと第2のせき止め部であるエッジβ78までの距離をb1とした。   Moreover, the area | region of the translucent material 80 which flowed out was made into the outflow area A, and the oblique line was drawn. Further, the distance between the light emitting element 80C in the light emitting direction and the light emitting element 10 is c, and the distance between the light transmitting material 80D in the light emitting direction and the light emitting element 10 is d. Further, the distance from the center O of the light emitting element 10 (see FIG. 4) to the edge α77 which is the first blocking part is a1, and the distance from the center O of the light emitting element 10 to the edge β78 which is the second blocking part is b1. It was.

図7は、比較のための図であり、第1のせき止め部であるエッジα77と第2のせき止め部であるエッジβ78とを並べた発光装置100の図を示したものである。実線の透光性材料80Eは透光性材料80の量が第1のせき止め部でせき止められた場合の形状を示している。二点鎖線の透光性材料80Fは透光性材料80が第1のせき止め部から流出し、第2のせき止め部によりせき止められた場合の形状を示している。また流出した透光性材料80の領域を流出領域Bとし、斜線をひいた。更に、透光性材料80Eの発光方向の表面と発光素子10との距離をe、透光性材料80Fの発光方向の表面と発光素子10との距離をfとした。発光素子10の中心O(図4参照)と第1のせき止め部であるエッジα77までの距離をa2、発光素子10の中心Oと第2のせき止め部であるエッジβ78までの距離をb2とした。   FIG. 7 is a diagram for comparison, and shows a diagram of the light emitting device 100 in which an edge α77 as a first blocking portion and an edge β78 as a second blocking portion are arranged. A solid line translucent material 80E shows a shape when the amount of the translucent material 80 is blocked by the first blocking section. The two-dot chain line translucent material 80 </ b> F shows a shape in a case where the translucent material 80 flows out of the first damming portion and is blocked by the second damming portion. Moreover, the area | region of the translucent material 80 which flowed out was made into the outflow area | region B, and the oblique line was drawn. Further, e is the distance between the light emitting surface of the translucent material 80E and the light emitting element 10, and f is the distance between the light emitting surface of the translucent material 80F and the light emitting element 10. The distance between the center O of the light emitting element 10 (see FIG. 4) and the edge α77 as the first blocking portion is a2, and the distance between the center O of the light emitting element 10 and the edge β78 as the second blocking portion is b2. .

図6と図7とを比較した場合、(b1−a1)が(b2−a2)よりも小さくできるため、流出領域Aは流出領域Bよりも小さくなる。そのため、図6の透光性材料80の厚みの変化量(c−d)は、図7の透光性材料80の厚みの変化量(e−f)よりも小さくなる。このように、せき止め部の外周側に前記せき止め部よりも低い第2のせき止め部を設けることにより、透光性材料80が流出したときの透光性材料80の形状・厚みの変化量を小さくすることができる。また、透光性材料80の量のばらつきの許容値を大きくとることができ、樹脂量を管理する装置を低コスト化できる。また、エッジα77(第1のせき止め部)からの透光性材料80の流出する影響を小さくできるため、たとえ透光性材料80がエッジα77から流出したとしても、透光性材料80の形状をより半球形に近づけることができ、光の取り出し効率を向上させることができる。   When FIG. 6 is compared with FIG. 7, (b1-a1) can be made smaller than (b2-a2), so the outflow region A is smaller than the outflow region B. Therefore, the amount of change (cd) in the thickness of the translucent material 80 in FIG. 6 is smaller than the amount of change (ef) in the thickness of the translucent material 80 in FIG. In this way, by providing the second blocking portion lower than the blocking portion on the outer peripheral side of the blocking portion, the amount of change in the shape and thickness of the transparent material 80 when the transparent material 80 flows out is reduced. can do. In addition, the tolerance of variation in the amount of the translucent material 80 can be increased, and the cost of an apparatus for managing the amount of resin can be reduced. In addition, since the influence of the translucent material 80 flowing out from the edge α77 (first blocking portion) can be reduced, even if the translucent material 80 flows out from the edge α77, the shape of the translucent material 80 is changed. A hemispherical shape can be obtained, and the light extraction efficiency can be improved.

図6に示すように、被膜基部76断面の裏面(被膜基部裏面762)側の内周側の角度(実装面51と被膜基部内周面764との角度)を角度X、被膜凸部75断面の裏面(被膜凸部裏面752)側の内周側の角度(実装面51と被膜凸部内周面754との角度)を角度Yとすると、角度Xと角度Yは鋭角になっている事が好ましい。また角度Xと角度Yは等しくかつ、被膜凸部内周面754と被膜基部内周面764とが連続であるとなおよい。このように、被膜凸部内周面754と被膜基部内周面764とが連続した面が内側斜面701となる。角度Xと角度Yを鋭角にすることにより図4の経路13のように光を発光装置100外に効率よく反射でき、光の取り出し効率を向上させることができる。   As shown in FIG. 6, the angle on the inner peripheral side (angle between the mounting surface 51 and the coating base inner peripheral surface 764) on the back surface (the coating base rear surface 762) side of the coating base 76 cross section is the angle X, and the coating convex 75 cross section. Assuming that the angle on the inner peripheral side (the angle between the mounting surface 51 and the coating convex inner peripheral surface 754) on the back surface (the coating convex portion rear surface 752) side is an angle Y, the angle X and the angle Y may be acute. preferable. Further, it is more preferable that the angle X is equal to the angle Y, and the coating convex inner peripheral surface 754 and the coating base inner peripheral surface 764 are continuous. As described above, the inner slope 701 is a surface where the coating convex inner peripheral surface 754 and the coating base inner peripheral surface 764 are continuous. By making the angle X and the angle Y acute, light can be efficiently reflected outside the light emitting device 100 as shown by the path 13 in FIG. 4, and the light extraction efficiency can be improved.

被膜凸部75、被膜基部76は高反射性もしくは高透過性の樹脂であることが好ましい。このような構成によれば、光の反射・透過ロスを減らすことができるため、光の取り出し効率を向上させることができる。被膜凸部75、被膜基部76の形成方法は転写、塗布、印刷、露光、切削加工などが挙げられる。例えば、露光部位の現像液が残るネガ型のフォトレジストや、露光部位の現像液が除去されるポジ型のフォトレジストである。   The coating convex portion 75 and the coating base portion 76 are preferably made of a highly reflective or highly transmissive resin. According to such a configuration, light reflection / transmission loss can be reduced, so that light extraction efficiency can be improved. Examples of the method for forming the coating convex portion 75 and the coating base portion 76 include transfer, coating, printing, exposure, and cutting. For example, a negative photoresist in which the developer at the exposed portion remains, or a positive photoresist from which the developer at the exposed portion is removed.

図8は、本実施の形態1の被膜70の断面形状のバリエーションを示した図である。図8に示すように、被膜70の断面形状は、図5に示した形状以外では、例えば、図8(a)〜(g)の断面形状が挙げられる。被膜凸部75は、被膜基部76の被膜基部表面761に形成されているとともに、エッジβ78の内側(発光素子10側)にエッジα77を持つ。被膜凸部75は、被膜基部76の被膜基部表面761に形成されているとともにエッジβ78の内側(発光素子10側)にエッジα77を持つという形状であること以外に、被膜凸部75、被膜基部76、被膜70の形状、角度、段数、位置を指定するものではない。   FIG. 8 is a diagram showing variations in the cross-sectional shape of the coating 70 of the first embodiment. As shown in FIG. 8, the cross-sectional shape of the coating 70 includes, for example, the cross-sectional shapes shown in FIGS. 8A to 8G other than the shape shown in FIG. 5. The coating convex portion 75 is formed on the coating base surface 761 of the coating base portion 76, and has an edge α77 inside the edge β78 (light emitting element 10 side). The coating convex portion 75 is formed on the coating base surface 761 of the coating base portion 76 and has a shape having an edge α77 inside the edge β78 (light emitting element 10 side). 76, the shape, angle, number of steps, and position of the coating 70 are not specified.

前述のように透光性材料80は蛍光体材料を含む。蛍光体材料の材質は問わず、光を吸収し、波長変換した光を出光する材質であることとする。より長波長の光を出光する材質が好ましい。また、蛍光体材料は透光性材料80内に均一に分散されていることが好ましい。   As described above, the translucent material 80 includes a phosphor material. The material of the phosphor material is not limited, and it is a material that absorbs light and emits light after wavelength conversion. A material that emits light having a longer wavelength is preferable. Further, it is preferable that the phosphor material is uniformly dispersed in the translucent material 80.

また、透光性材料80は、図5に示すように、発光素子10を覆うと共にエッジα77の内側まで充填される。透光性材料80は、発光素子10の上で、かつ被膜凸部75に囲まれた領域内に半球状に形成される。透光性材料80は例えばシリコーン樹脂、エポキシ樹脂などの有機化合物や、低融点ガラスなどの無機化合物が挙げられる。   Further, as shown in FIG. 5, the translucent material 80 covers the light emitting element 10 and is filled up to the inside of the edge α77. The translucent material 80 is formed in a hemispherical shape on the light emitting element 10 and in a region surrounded by the coating convex portions 75. Examples of the translucent material 80 include organic compounds such as silicone resin and epoxy resin, and inorganic compounds such as low-melting glass.

透光性材料80は、液体の状態でエッジα77内の発光素子10に向けて滴下される。滴下された透光性材料80は重力に従い広がっていく。やがて透光性材料80は表面張力によりエッジα77でせき止められ、半球形になり、その状態のまま固化する。   The translucent material 80 is dropped toward the light emitting element 10 in the edge α77 in a liquid state. The dropped translucent material 80 spreads according to gravity. Eventually, the translucent material 80 is blocked by the edge α77 due to surface tension, becomes hemispherical, and solidifies in that state.

以上のように、本実施の形態に係る発光装置100によれば、発光素子10を囲む被膜70が前記発光素子10を囲む被膜凸部75を持ち、かつ前記被膜凸部75の外周側のエッジα77が被膜基部76の外周側のエッジβ78より内側に位置することにより、透光性材料80がエッジα77から流出したときの透光性材料80の形状・厚みの変化量を小さくでき、色むらを低減することができる。   As described above, according to the light emitting device 100 according to the present embodiment, the coating 70 surrounding the light emitting element 10 has the coating convex portion 75 surrounding the light emitting element 10, and the outer peripheral edge of the coating convex portion 75. Since α77 is positioned on the inner side of the outer peripheral edge β78 of the coating base portion 76, the amount of change in the shape and thickness of the translucent material 80 when the translucent material 80 flows out from the edge α77 can be reduced. Can be reduced.

また、本実施の形態に係る発光装置100によれば、透光性材料80の量のばらつきの許容値を大きくとることができ、透光性材料80の量を管理する装置を低コスト化できる。また、透光性材料80がエッジα77から流出した時の影響を小さくできるため、透光性材料80の量を増やし、透光性材料80の形状をより半球形に近づけることができる。そのため、光の取り出し効率を向上させることができる。   Further, according to the light emitting device 100 according to the present embodiment, the tolerance of variation in the amount of the light transmissive material 80 can be increased, and the cost of the device for managing the amount of the light transmissive material 80 can be reduced. . Moreover, since the influence when the translucent material 80 flows out from the edge α77 can be reduced, the amount of the translucent material 80 can be increased, and the shape of the translucent material 80 can be made closer to a hemispherical shape. Therefore, the light extraction efficiency can be improved.

以上のように、本実施の形態に係る発光装置100は、少なくとも1つ以上の発光素子10と、発光素子10が実装される実装面51と、前記発光素子10の周囲の実装面51を覆いかつ前記発光素子10を囲むように環状に形成された被膜(第1の被膜)と、前記発光素子10を覆う蛍光体材料を含む透光性材料を備える。発光装置100は、環状に形成された被膜(第1の被膜)において、実装面51と接する面を第1の被膜裏面とすると第1の被膜の表面(第1の被膜表面)側の外周側(外周縁)にエッジを備え、前記被膜は被膜表面に少なくとも1つの前記発光素子を囲む環状の少なくとも1つ以上の凸部を持ち、前記凸部は前記被膜と接する面を裏面とすると、凸部の表面側の外周側にエッジを備え、前記凸部の表面側の外周側のエッジは、前記被膜の表面側の外周側のエッジより内側に位置しており、前記発光素子を覆う透光性材料を前記凸部の外周側のエッジまで充填することを特徴とする。   As described above, the light emitting device 100 according to the present embodiment covers at least one or more light emitting elements 10, the mounting surface 51 on which the light emitting elements 10 are mounted, and the mounting surface 51 around the light emitting elements 10. A film (first film) formed in an annular shape so as to surround the light emitting element 10 and a translucent material including a phosphor material covering the light emitting element 10 are provided. In the light-emitting device 100, in the annularly formed film (first film), when the surface in contact with the mounting surface 51 is the first film back surface, the outer peripheral side on the surface (first film surface) side of the first film (Outer periphery) provided with an edge, and the coating has at least one annular convex portion surrounding at least one light emitting element on the coating surface, and the convex portion is convex when the surface in contact with the coating is the back surface. An outer edge on the outer peripheral side of the surface side of the convex portion, the outer peripheral edge on the front surface side of the convex portion is located on the inner side of the outer peripheral edge on the surface side of the coating, and covers the light emitting element The material is filled up to the outer peripheral edge of the convex portion.

本実施の形態に係る発光装置100によれば、凸部外周のエッジが第1のせき止め部に、前記被膜外周のエッジが第2のせき止め部になるため、凸部外周のエッジに関して、エッジの形成が不十分な場合や、エッジの欠損、エッジへのごみの付着、ばらつきによる発光素子を覆う透光性材料の過剰供給などにより凸部外周のエッジから透光性材料が流出しても、前記被膜の外周側のエッジによって発光素子を覆う透光性材料の流出範囲を限定することができ、発光素子を覆う被膜の形状・厚みを安定化することができる。そのため、色むらの少ない発光装置が得ることができ、製造不良を減らすことができる。また樹脂量のばらつきの許容値を大きくとることができ製造装置の低コスト化できる。また、接触角を制御することにより透光性材料がエッジから流出した時の影響を小さくできるため、樹脂量を増やし、樹脂形状をより半球形に近づけることができる。そのため光の取り出し効率を向上させることができる。   According to the light emitting device 100 according to the present embodiment, the edge on the outer periphery of the convex portion is the first damming portion, and the edge on the outer periphery of the coating is the second damming portion. Even if the light-transmitting material flows out from the edge of the outer periphery of the convex part due to insufficient formation, edge loss, dust adhesion to the edge, excessive supply of light-transmitting material covering the light emitting element due to variation, etc. The outflow range of the translucent material covering the light emitting element can be limited by the edge on the outer peripheral side of the film, and the shape and thickness of the film covering the light emitting element can be stabilized. Therefore, a light emitting device with less color unevenness can be obtained, and manufacturing defects can be reduced. Moreover, the tolerance of the variation in the resin amount can be increased, and the cost of the manufacturing apparatus can be reduced. Moreover, since the influence when the translucent material flows out from the edge can be reduced by controlling the contact angle, the amount of resin can be increased and the resin shape can be made closer to a hemispherical shape. Therefore, the light extraction efficiency can be improved.

実施の形態2.
本実施の形態では、実施の形態1において説明したエッジα77、エッジβ78の角度(エッジ角)の設定について説明する。
Embodiment 2. FIG.
In the present embodiment, the setting of the angles (edge angles) of the edges α77 and β78 described in the first embodiment will be described.

図9は、本実施の形態の被膜70周辺の断面図である。エッジα77の角度をα、エッジβ78の角度をβとする。このときα、βを90°>α>βになるよう設定する。このようにβをαより小さく設定することにより、せき止め部から流出した時の透光性材料80の厚みの変化量を低減することができる。この効果について以下に説明する。   FIG. 9 is a cross-sectional view around the coating 70 of the present embodiment. The angle of the edge α77 is α, and the angle of the edge β78 is β. At this time, α and β are set such that 90 °> α> β. Thus, by setting β smaller than α, it is possible to reduce the amount of change in the thickness of the translucent material 80 when it flows out from the damming portion. This effect will be described below.

まず、エッジの角度と接触角の関係について図10、図11を用いて説明する。図10は、固体表面に液体を滴下し、その液体が半球形になる時の力のつりあいを示した図である。γは固体の表面張力を、γは液体の表面張力を、γSLは固体と液体の界面張力を、θは接触角の角度を示している。γ、γ、γSL、θはヤングの式より式(1)、式(2)のように表すことができる。
γ=γcosθ+γSL 式(1)
cosθ=(γ−γSL)/γ 式(2)
First, the relationship between the edge angle and the contact angle will be described with reference to FIGS. FIG. 10 is a diagram showing the balance of force when a liquid is dropped on the solid surface and the liquid becomes hemispherical. γ S represents the surface tension of the solid, γ L represents the surface tension of the liquid, γ SL represents the interfacial tension between the solid and the liquid, and θ A represents the angle of the contact angle. γ S , γ L , γ SL , and θ A can be expressed by the formulas (1) and (2) from Young's formula.
γ S = γ L cos θ A + γ SL formula (1)
cos θ A = (γ S −γ SL ) / γ L formula (2)

図11は、エッジ部を有する固体表面に液体を滴下し、その液体が半球形になる時の力のつりあいを示した図である。γは固体の表面張力を、γは液体の表面張力を、γSLは固体と液体の界面張力を、θは接触角の角度を示している。固体上面の外側で、かつ、固体上面と同一面状の面R1からエッジ部の斜面までの二面角をSとし、固体上面からエッジ部の斜面までの角(エッジ角とも呼ぶ)をTとすると、SとTの和は180度である。このときヤングの式の変形型として式(3)、(4)が成り立つ。
γcosS=γSL+γcosθ 式(3)
cosθ=(γcosS−γSL)/γ 式(4)
FIG. 11 is a diagram showing the balance of forces when a liquid is dropped on a solid surface having an edge and the liquid becomes hemispherical. γ S represents the surface tension of the solid, γ L represents the surface tension of the liquid, γ SL represents the interfacial tension between the solid and the liquid, and θ B represents the angle of the contact angle. The dihedral angle from the surface R1 that is outside the solid top surface and is coplanar with the solid top surface to the slope of the edge portion is S, and the angle from the solid top surface to the slope of the edge portion (also called the edge angle) is T. Then, the sum of S and T is 180 degrees. At this time, Equations (3) and (4) are established as modified types of Young's equation.
γ S cos S = γ SL + γ L cos θ Formula B (3)
cos θ B = (γ S cos S −γ SL ) / γ L formula (4)

式(4)において、0度<S<180度のため、−1<cosS<1である。よって、cosθは式(2)のcosθよりも常に小さくなる。すなわち、エッジ部を有する場合は、エッジ部を有さない場合よりも接触角が大きくなる。また、エッジ角Tが小さいほどcosSが小さい値になり、cosθは小さい値をとる。つまり、エッジ部の角度(エッジ角T)が小さいほど、接触角θは大きくなる。更に、接触角を大きくし、透光性材料80の形状を半球状に近づけることで光の取り出し効率をより向上させることができる。このように、エッジα77、エッジβ78を鋭角にすることにより、エッジ角が略垂直であるエッジ部に比べ光の取り出し効率を向上させることができる。 In the equation (4), since 0 degree <S <180 degrees, −1 <cosS <1. Therefore, cos θ B is always smaller than cos θ A in equation (2). That is, the contact angle is larger when the edge portion is provided than when the edge portion is not provided. Further, as the edge angle T is smaller cosS becomes a small value, cos [theta] B takes a small value. That is, as the angle of the edge portion (edge angle T) is small, the contact angle theta B increases. Furthermore, the light extraction efficiency can be further improved by increasing the contact angle and making the shape of the translucent material 80 close to a hemispherical shape. As described above, by making the edges α77 and β78 have acute angles, it is possible to improve the light extraction efficiency as compared with the edge portion in which the edge angles are substantially vertical.

次に、接触角と透光性材料80の膜厚の関係について図12、図13を用いて説明する。図12は、図9においてエッジα77の角度が変化した場合の透光性材料80の形状と透光性材料80が増えた場合の透光性材料80の形状とを示した図である。   Next, the relationship between the contact angle and the film thickness of the translucent material 80 will be described with reference to FIGS. FIG. 12 is a diagram showing the shape of the translucent material 80 when the angle of the edge α77 in FIG. 9 is changed and the shape of the translucent material 80 when the translucent material 80 is increased.

図12において、実線の透光性材料80Cは、透光性材料80が第1のせき止め部である角度α(α>β)のエッジα77でせき止められた場合の形状を示している。発光方向の透光性材料80の界面と発光素子10との距離をcとする。   In FIG. 12, a solid line translucent material 80 </ b> C shows a shape in a case where the translucent material 80 is blocked by an edge α <b> 77 having an angle α (α> β) which is the first blocking portion. The distance between the interface of the translucent material 80 in the light emitting direction and the light emitting element 10 is c.

二点鎖線の透光性材料80Gは、透光性材料80が第1のせき止め部である角度β(α>β)のエッジα77でせき止められた場合の形状を示している。つまり、透光性材料80Gは、エッジα77のエッジ角がβである場合の透光性材料80の形状である。発光方向の透光性材料80Gの界面と発光素子10との距離をgとする。このとき、g>cとなる。この理由について以下に説明する。つまり、エッジ角が小さい方が、発光方向の透光性材料80の界面と発光素子10との距離が大きくなり、透光性材料80が半球状に近づくということを説明する。   A two-dot chain line translucent material 80G shows a shape when the translucent material 80 is blocked by an edge α77 having an angle β (α> β) which is the first blocking portion. That is, the translucent material 80G has the shape of the translucent material 80 when the edge angle of the edge α77 is β. Let g be the distance between the light emitting element 10 and the interface of the light transmitting material 80G in the light emitting direction. At this time, g> c. The reason for this will be described below. That is, it will be explained that when the edge angle is smaller, the distance between the interface of the light transmissive material 80 in the light emitting direction and the light emitting element 10 is larger, and the light transmissive material 80 approaches a hemispherical shape.

一点鎖線の透光性材料80Dは、透光性材料80が第1のせき止め部である角度αのエッジα77から流出し、第2のせき止め部である角度β(α>β)のエッジβ78によりせき止められた場合の形状を示している。   The one-dot chain line translucent material 80D flows out from the edge α77 of the angle α that is the first blocking portion, and the edge β78 of the angle β (α> β) that is the second blocking portion. The shape is shown when it is dammed up.

透光性材料80の輪郭形状を真円と近似するとθ/2法より、図10における液滴高さh、接触半径r、接触角θは式(5)の関係となる。
h=r×tan(θ/2) 式(5)
When the contour shape of the translucent material 80 is approximated to a perfect circle, the droplet height h, the contact radius r, and the contact angle θ in FIG.
h = r × tan (θ / 2) Equation (5)

θ<180°であるので、接触角θが小さいほど、液滴高さhは小さくなる。一方、式(4)よりエッジの角度が大きいほど接触角θは小さくなる。よってβ<αよりc<gとなり、エッジα77から流出した場合の透光性材料80の厚みの変化量を小さくすることができる。   Since θ <180 °, the smaller the contact angle θ, the smaller the droplet height h. On the other hand, the contact angle θ decreases as the angle of the edge increases from the equation (4). Therefore, c <g from β <α, and the amount of change in the thickness of the translucent material 80 when flowing out from the edge α77 can be reduced.

このように、β<αとすることにより、β≧αの場合と比較してエッジα77から流出した場合の透光性材料80の厚みの変化量を低減することができる。以上のように、エッジα77とエッジβ78を鋭角にし、更にβ<αとすることにより、従来の略垂直と比較して、透光性材料80の形状・厚みを安定化しつつ光の取出し効率を向上させることができる。   Thus, by setting β <α, it is possible to reduce the amount of change in the thickness of the translucent material 80 when it flows out from the edge α77 as compared with the case where β ≧ α. As described above, the edge α77 and the edge β78 are acute angles, and β <α, so that the light extraction efficiency is improved while stabilizing the shape and thickness of the translucent material 80 as compared with the conventional substantially vertical shape. Can be improved.

図13は、本実施の形態の被膜70の断面形状のバリエーションを示した図である。なお、図13(a)〜(g)に示すバリエーションは、被膜70のエッジα77とエッジβ78の角度以外は限定するものではない。エッジβ78以外指定していないため、被膜70の断面形状は例えば図13(a)〜(g)のいずれでもよい。   FIG. 13 is a diagram showing variations in the cross-sectional shape of the film 70 of the present embodiment. Note that the variations shown in FIGS. 13A to 13G are not limited except for the angles of the edge α77 and the edge β78 of the coating 70. Since no specification is made except for the edge β78, the cross-sectional shape of the coating 70 may be any of FIGS. 13A to 13G, for example.

また、エッジの角度(エッジ角)を変更する手段として、例えば、露光する光の波長を調整する方法がある。具体的には、ネガ型のフォトレジストの場合、露光する光の波長を短くすると、減衰しやすいため、深部まで光が届かず、形成されたレジストの断面は露光面を長辺とする台形になることを利用する方法がある。   As a means for changing the edge angle (edge angle), for example, there is a method of adjusting the wavelength of light to be exposed. Specifically, in the case of a negative type photoresist, if the wavelength of the light to be exposed is shortened, it tends to attenuate, so that light does not reach the deep part, and the formed resist has a trapezoidal shape with the exposure surface as the long side. There are ways to take advantage of.

以上のように、本実施の形態に係る発光装置100は、被膜凸部75の表面側の外周側のエッジの角度が、被膜基部76の表面側の外周側のエッジの角度より大きいことを特徴とする。すなわち、被膜凸部表面751と被膜凸部外周面753とにより形成されるエッジα77のエッジ角(第2の角度)は、被膜基部表面761と被膜基部外周面763とにより形成されるエッジβ78のエッジ角(第1の角度)より大きい。そして、エッジα77のエッジ角(第2の角度)とエッジβ78のエッジ角(第1の角度)とは、鋭角である。あるいは、略直角、鈍角でも構わない(図13(a)〜(g)参照)。   As described above, the light emitting device 100 according to the present embodiment is characterized in that the angle of the outer peripheral edge on the surface side of the coating convex portion 75 is larger than the angle of the outer peripheral edge on the surface side of the coating base 76. And That is, the edge angle (second angle) of the edge α77 formed by the coating convex surface 751 and the coating convex outer peripheral surface 753 is the edge angle 78 of the edge β78 formed by the coating base surface 761 and the coating base outer peripheral surface 763. It is larger than the edge angle (first angle). The edge angle (second angle) of the edge α77 and the edge angle (first angle) of the edge β78 are acute angles. Alternatively, it may be a substantially right angle or an obtuse angle (see FIGS. 13A to 13G).

以上のように、本実施の形態に係る発光装置100によれば、接触角を制御することにより被膜凸部表面751の外周側のエッジから透光性材料が流出した場合の透光性材料の厚みの変化量を低減し、色むらを低減することができる。   As described above, according to the light emitting device 100 according to the present embodiment, the translucent material in the case where the translucent material flows out from the outer peripheral edge of the coating convex surface 751 by controlling the contact angle. The amount of change in thickness can be reduced, and color unevenness can be reduced.

実施の形態3.
図14は、本実施の形態に係る発光装置103を上から見た平面図である。図15は、本実施の形態に係る発光装置103の被膜70Aと被膜70B周辺の断面図を示す。図16は、本実施の形態に係る発光装置103の被膜70Aと被膜70B周辺の断面の拡大図を示す。なお、図14において、透光性材料80は省略してある。
Embodiment 3 FIG.
FIG. 14 is a plan view of the light emitting device 103 according to the present embodiment as viewed from above. FIG. 15 is a cross-sectional view around the coating 70A and the coating 70B of the light emitting device 103 according to the present embodiment. FIG. 16 is an enlarged view of a cross section around the coating 70A and the coating 70B of the light emitting device 103 according to the present embodiment. In FIG. 14, the translucent material 80 is omitted.

図14は、実施の形態1で説明した図2に対応する図である。また、図15は、実施の形態1で説明した図1に対応する図である。図16は、実施の形態1で説明した図6に対応する図である。本実施の形態の発光装置103において、実施の形態1の発光装置100と異なる点は被膜70である。図14〜図16において、実施の形態1で説明したものと同様の機能を有する構成部については同一の符号を付し、その説明を省略する。   FIG. 14 is a diagram corresponding to FIG. 2 described in the first embodiment. FIG. 15 corresponds to FIG. 1 described in the first embodiment. FIG. 16 is a diagram corresponding to FIG. 6 described in the first embodiment. In the light emitting device 103 of the present embodiment, the film 70 is different from the light emitting device 100 of the first embodiment. 14 to 16, components having the same functions as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図14及び図15に示すように、具体的には、本実施の形態に係る発光装置103は、被膜70ではなく、発光素子10を囲むように環状(リング状)に形成された被膜70Aと、発光素子10と被膜70Aとを囲むように環状(リング状)に形成された少なくとも1つ以上の被膜70Bとを備える。   As shown in FIG. 14 and FIG. 15, specifically, the light emitting device 103 according to the present embodiment is not a film 70, but a film 70 </ b> A formed in an annular shape (ring shape) so as to surround the light emitting element 10. And at least one film 70B formed in an annular shape (ring shape) so as to surround the light emitting element 10 and the film 70A.

本実施の形態に係る発光装置103は、発光素子10の周囲を囲むように環状に形成された被膜70A(第2の被膜)であって、実装面51に当接する第2の被膜裏面と、第2の被膜裏面に対向する第2の被膜表面と、第2の被膜表面の外周縁から前記第2の被膜裏面の外周縁にわたって形成された第2の外周面とを有する被膜70Aを備える。また、発光装置103は、被膜70Aの周囲を囲むように環状に形成された被膜70B(第1の被膜)であって、実装面51に当接する第1の被膜裏面と、第1の被膜裏面に対向する第1の被膜表面と、第1の被膜表面の外周縁から第1の被膜裏面の外周縁にわたって形成された第1の外周面とを有する被膜70Bを備える。実装面51から第1の被膜表面までの高さは、実装面51から第2の被膜表面までの高さ以下である。   The light emitting device 103 according to the present embodiment is a film 70A (second film) formed in an annular shape so as to surround the periphery of the light emitting element 10, and includes a second film back surface that contacts the mounting surface 51, A coating 70A having a second coating surface facing the second coating back surface and a second outer peripheral surface formed from the outer periphery of the second coating surface to the outer periphery of the second coating back surface is provided. The light emitting device 103 is a coating 70B (first coating) formed in an annular shape so as to surround the coating 70A, and includes a first coating back surface that contacts the mounting surface 51, and a first coating back surface. And a first outer peripheral surface formed from the outer peripheral edge of the first coating surface to the outer peripheral edge of the first coating back surface. The height from the mounting surface 51 to the first coating surface is not more than the height from the mounting surface 51 to the second coating surface.

被膜70A、被膜70Bの形成方法は、転写、塗布、印刷、露光などが挙げられる。例えば、露光部位の現像液が残るネガ型のフォトレジストや、露光部位の現像液が除去されるポジ型のフォトレジストである。   Examples of the method for forming the coating 70A and the coating 70B include transfer, coating, printing, and exposure. For example, a negative photoresist in which the developer at the exposed portion remains, or a positive photoresist from which the developer at the exposed portion is removed.

図15に示すように、被膜70Aの高さL3および被膜70Bの高さL4は、発光素子10の高さL1より低いことが好ましい。また、被膜70Bの高さL4は、被膜70Aの高さL3と同じ高さ、もしくは被膜70Aの高さL3より低いことが好ましい。被膜70A、被膜70Bを発光素子10より低くすることにより、被膜70Aおよび被膜70Bに当たる光を低減し、光の取り出し効率を高めることができる。   As shown in FIG. 15, the height L3 of the coating 70A and the height L4 of the coating 70B are preferably lower than the height L1 of the light emitting element 10. In addition, the height L4 of the coating 70B is preferably the same height as the height L3 of the coating 70A or lower than the height L3 of the coating 70A. By making the film 70A and the film 70B lower than the light emitting element 10, light hitting the film 70A and the film 70B can be reduced and light extraction efficiency can be increased.

図16は、被膜70Aと被膜70Bとの周辺の断面の拡大図を示したものである。被膜70Aの基板50と接する面を「裏面」とすると、被膜70Aの外周側の表面側のエッジをエッジα’77’とし、その角度をα’とする。また、被膜70Bの基板50と接する面を「裏面」とすると、被膜70Bの外周側の表面側のエッジをエッジβ’78’とし、その角度をβ’とする。このとき、90°>α’>β’になるよう設定してある。   FIG. 16 is an enlarged view of a cross section around the coating 70A and the coating 70B. Assuming that the surface of the coating 70A that contacts the substrate 50 is a “back surface”, the edge on the outer peripheral side of the coating 70A is an edge α′77 ′, and the angle is α ′. Further, when the surface of the coating 70B that contacts the substrate 50 is a “rear surface”, the edge on the outer peripheral side of the coating 70B is an edge β′78 ′, and the angle is β ′. At this time, 90 °> α ′> β ′ is set.

被膜70Aの表面を被膜表面751A(第2の被膜表面)、裏面を被膜裏面752A(第2の被膜裏面)、外周面を被膜外周面753A(第2の外周面)とする。また、被膜70Bの表面を被膜表面761B(第1の被膜表面)、裏面を被膜裏面762B(第1の被膜裏面)、外周面を被膜外周面763B(第1の外周面)とする。エッジα’77’は、実施の形態1で説明した第1のせき止め部に対応し、エッジβ’78’は第2のせき止め部に対応する。   The surface of the coating 70A is a coating surface 751A (second coating surface), the back surface is a coating back surface 752A (second coating back surface), and the outer peripheral surface is a coating outer peripheral surface 753A (second outer peripheral surface). Further, the surface of the coating 70B is a coating surface 761B (first coating surface), the back surface is a coating back surface 762B (first coating back surface), and the outer peripheral surface is a coating outer peripheral surface 763B (first outer peripheral surface). The edge α′77 ′ corresponds to the first damming portion described in the first embodiment, and the edge β′78 ′ corresponds to the second damming portion.

以上のような構成とすることにより、エッジα’77’から透光性材料80が流出した場合、透光性材料80の厚みの変化量を小さくすることができる。この効果について図16を用いて説明する。   With the above configuration, when the translucent material 80 flows out from the edge α′77 ′, the amount of change in the thickness of the translucent material 80 can be reduced. This effect will be described with reference to FIG.

実線の透光性材料80C’は、透光性材料80が第1のせき止め部である角度α’(α’>β’)のエッジα’77’でせき止められた場合の形状を示している。つまり、被膜70Aの外周面は被膜外周面753A−1である場合である。このとき、透光性材料80の界面と発光素子10との距離をc’とする。   A solid-line translucent material 80C ′ shows a shape when the translucent material 80 is blocked by an edge α′77 ′ having an angle α ′ (α ′> β ′) which is the first blocking portion. . That is, the outer peripheral surface of the coating 70A is the coating outer peripheral surface 753A-1. At this time, the distance between the interface of the translucent material 80 and the light emitting element 10 is c ′.

二点鎖線の透光性材料80G’は、透光性材料80が第1のせき止め部である角度β’(α’>β’)のエッジα’77’でせき止められた場合の形状を示している。つまり、被膜70Aのエッジ角(被膜表面751Aと被膜外周面753Aとのなす角)がβ’である場合であり、被膜70Aの外周面は被膜外周面753A−2(点線で示した外周面)である場合である。このとき、透光性材料80G’の界面と発光素子10との距離をg’とする。   A two-dot chain line translucent material 80G ′ shows a shape when the translucent material 80 is dammed at the edge α′77 ′ having an angle β ′ (α ′> β ′) as the first damming portion. ing. That is, the edge angle of the coating 70A (the angle between the coating surface 751A and the coating outer peripheral surface 753A) is β ′, and the outer peripheral surface of the coating 70A is the coating outer peripheral surface 753A-2 (the outer peripheral surface indicated by the dotted line). This is the case. At this time, the distance between the interface of the translucent material 80G ′ and the light emitting element 10 is g ′.

一点鎖線の透光性材料80D’は、透光性材料80が第1のせき止め部である角度α’のエッジα’77’から流出し、第2のせき止め部である角度β’(α’>β’)のエッジβ’78’によりせき止められた場合の形状を示している。このとき、β’<α’よりc’<g’となり、透光性材料80がエッジα’77’から流出した場合の透光性材料80の厚みの変化量を小さくすることができる。このように、β’<α’とすることにより、β’≧α’の場合と比較して透光性材料80の厚みの変化量を低減することができる。   The one-dot chain line translucent material 80D ′ flows out from the edge α′77 ′ of the angle α ′, which is the first blocking portion, and the angle β ′ (α ′), which is the second blocking portion. The shape in the case of being blocked by the edge β′78 ′ of> β ′) is shown. At this time, since c ′ <g ′ from β ′ <α ′, the amount of change in the thickness of the translucent material 80 when the translucent material 80 flows out from the edge α′77 ′ can be reduced. In this way, by setting β ′ <α ′, the amount of change in the thickness of the translucent material 80 can be reduced as compared with the case where β ′ ≧ α ′.

また、90°>α’>β’とすることにより、エッジ角が垂直の場合と比較して、接触角を増やし、透光性樹脂の形状を半球形に近づけることができるため、光の取出し効率を向上させることができる。   Further, by setting 90 °> α ′> β ′, the contact angle can be increased and the shape of the translucent resin can be approximated to a hemispherical shape compared to the case where the edge angle is vertical, so that light extraction is possible. Efficiency can be improved.

以上のように、本実施の形態に係る発光装置103によれば、第1のせき止め部であるエッジα’77’より樹脂が流出しても、エッジβ’78が第2のせき止め部となるため、透光性樹脂がエッジα’77’から流出したときの透光性材料80の形状・厚みの変化量を小さくでき、色むらを低減することができる。また、透光性材料80の量のばらつきの許容値を大きくとることができ、透光性材料80の量を管理する装置を低コスト化できる。また、透光性材料80がエッジα’77’から流出した時の影響を小さくできるため、透光性材料80の量を増やし、透光性樹脂形状80の形状をより半球形に近づけることができる。そのため、光の取り出し効率を向上させることができる。さらに、β’≧α’の場合と比較して透光性材料80が流出した時の透光性材料80の厚みの変化量を低減できる。   As described above, according to the light emitting device 103 according to the present embodiment, even if the resin flows out from the edge α′77 ′ that is the first damming portion, the edge β′78 becomes the second damming portion. Therefore, the amount of change in the shape and thickness of the translucent material 80 when the translucent resin flows out from the edge α′77 ′ can be reduced, and color unevenness can be reduced. In addition, the tolerance of variation in the amount of the light transmissive material 80 can be increased, and the cost of an apparatus for managing the amount of the light transmissive material 80 can be reduced. Moreover, since the influence when the translucent material 80 flows out from the edge α′77 ′ can be reduced, the amount of the translucent material 80 can be increased and the shape of the translucent resin shape 80 can be made closer to a hemispherical shape. it can. Therefore, the light extraction efficiency can be improved. Furthermore, the amount of change in the thickness of the translucent material 80 when the translucent material 80 flows out can be reduced as compared with the case of β ′ ≧ α ′.

本実施の形態に係る発光装置103は、発光素子と、発光素子が実装される発光面と、発光素子の周囲の発光面を覆いかつ前記発光素子を囲むように環状に形成された第1の被膜(被膜70A)と、発光素子と前記環状に形成された被膜(被膜70A)を囲むように環状に形成された第2被膜(被膜70B)と、前記発光素子を覆う蛍光体材料を含む透光性材料を備えた発光装置であって、前記第1の被膜は発光面と接する面を被膜裏面とすると前記第1の被膜の表面側の外周側に第1のエッジを備え、前記第2の被膜は発光面と接する面を裏面とすると、前記第2の被膜の表面側の外周側に第2のエッジを備え、前記第1のエッジの角度が前記第2のエッジの角度より大きく、前記透光性材料を前記第1のエッジまで充填することを特徴とした。   The light-emitting device 103 according to the present embodiment includes a light-emitting element, a light-emitting surface on which the light-emitting element is mounted, and a first annular ring that covers the light-emitting surface around the light-emitting element and surrounds the light-emitting element. A transparent film including a coating (coating 70A), a second coating (coating 70B) formed in an annular shape so as to surround the light emitting element and the annular coating (coating 70A), and a phosphor material covering the light emitting device. A light-emitting device including a light-emitting material, wherein the first coating includes a first edge on an outer peripheral side on a front surface side of the first coating, and a surface that contacts the light-emitting surface is a first edge. When the surface of the coating is a back surface that is in contact with the light emitting surface, the second coating is provided with a second edge on the outer peripheral side on the surface side of the second coating, and the angle of the first edge is larger than the angle of the second edge, Filling the translucent material up to the first edge; It was.

以上のように、本実施の形態に係る発光装置103によれば、前記第1のエッジが第1のせき止め部に、前記第2エッジが第2のせき止め部になるため、前記第1のエッジに関してエッジの形成が不十分な場合や、エッジの欠損、エッジへのごみの付着、ばらつきによる発光素子を覆う透光性材料の過剰供給などにより前記第1のエッジから透光性材料が流出しても、前記第2のエッジによって透光性材料の流出範囲を限定することができ、発光素子を覆う被膜の形状・厚みを安定化することができる。そのため、色むらの少ない発光装置が得ることができ、製造不良を減らすことができる。また樹脂量のばらつきの許容値を大きくとることができ製造装置の低コスト化できる。透光性材料がエッジから流出した時の影響を小さくできるため、樹脂量を増やし、樹脂形状をより半球形に近づけることができる。そのため光の取り出し効率を向上させることができる。また、接触角を制御することにより、前記凸部表面の外周側のエッジから透光性材料が流出した場合の透光性材料の厚みの変化量を低減し、色むらを低減することができる。   As described above, according to the light emitting device 103 according to the present embodiment, the first edge serves as the first damming portion and the second edge serves as the second damming portion. The light-transmitting material flows out of the first edge due to insufficient edge formation, edge loss, dust adhering to the edge, excessive supply of light-transmitting material covering the light-emitting element due to variations, etc. However, the outflow range of the translucent material can be limited by the second edge, and the shape and thickness of the coating covering the light emitting element can be stabilized. Therefore, a light emitting device with less color unevenness can be obtained, and manufacturing defects can be reduced. Moreover, the tolerance of the variation in the resin amount can be increased, and the cost of the manufacturing apparatus can be reduced. Since the influence when the translucent material flows out from the edge can be reduced, the amount of resin can be increased and the resin shape can be made closer to a hemispherical shape. Therefore, the light extraction efficiency can be improved. Further, by controlling the contact angle, it is possible to reduce the amount of change in the thickness of the translucent material when the translucent material flows out from the outer peripheral edge of the convex surface, and to reduce color unevenness. .

実施の形態4.
図17は、本実施の形態に係る被膜70周辺の断面の拡大図である。本実施の形態では、実施の形態1、2の記載で説明した発光装置100の被膜凸部75が、撥油剤を含む被膜凸部75aであることを特徴とする。図17は、実施の形態1において説明した図5に対応する図であり、同様の機能を有する構成部には同一の符号を付し、その説明を省略する。
Embodiment 4 FIG.
FIG. 17 is an enlarged view of a cross section around the coating 70 according to the present embodiment. The present embodiment is characterized in that the coating convex portion 75 of the light emitting device 100 described in the description of the first and second embodiments is a coating convex portion 75a containing an oil repellent. FIG. 17 is a diagram corresponding to FIG. 5 described in the first embodiment. Components having the same functions are denoted by the same reference numerals, and description thereof is omitted.

また、以下に説明する実施の形態では、実施の形態1で説明した被膜凸部75及び被膜基部76に対応する被膜凸部75a,75b及び被膜基部76a,76bの部位を示す構成部については、被膜凸部75a,75b及び被膜基部76a,76bと同様に、a,bの添え字を付して表記するものとする。   In the embodiment described below, the constituent parts indicating the portions of the film convex portions 75a and 75b and the film base portions 76a and 76b corresponding to the film convex portion 75 and the film base portion 76 described in the first embodiment are as follows. Similar to the coating convex portions 75a and 75b and the coating base portions 76a and 76b, the subscripts a and b are given for description.

図17において、被膜70は、被膜凸部75aと被膜基部76aとからなる。被膜凸部75a(第2の被膜)は、被膜凸部75と同じ位置にあり、撥油剤を含んでいる。被膜基部76a(第1の被膜)は、被膜基部76と同じ位置にあり、撥油剤を含んでいない。   In FIG. 17, the coating 70 includes a coating convex portion 75 a and a coating base portion 76 a. The coating convex portion 75a (second coating) is located at the same position as the coating convex portion 75 and contains an oil repellent. The film base 76a (first film) is located at the same position as the film base 76 and does not contain an oil repellent.

被膜凸部75aのうち、外周側の部分(被膜凸部外周面753a)のみ撥油剤を含んでいることが好ましい。なお、撥油剤は撥油性を有するものであればよい。またα>βであることが好ましい。   Of the coating convex portion 75a, it is preferable that only the outer peripheral portion (coating convex portion outer peripheral surface 753a) contains the oil repellent. The oil repellent may be any oil repellent. Moreover, it is preferable that α> β.

撥油成分を含む被膜凸部75aは、撥油成分を含まない場合に比べて、透光性樹脂との接触角が小さくなる。したがって、本実施の形態に係る発光装置100によれば、撥油成分を含むことにより、撥油剤を含まない場合と比較してエッジα77から流出しない時の透光性材料80の高さを小さくできる。そのため、エッジα77から透光性材料80が流出した時の透光性材料80の厚みの変化量を低減できる。   The coating convex portion 75a containing the oil repellent component has a smaller contact angle with the translucent resin than when the oil repellent component is not included. Therefore, according to the light emitting device 100 according to the present embodiment, by including the oil repellent component, the height of the translucent material 80 when it does not flow out from the edge α77 is smaller than when the oil repellent is not included. it can. Therefore, the amount of change in the thickness of the translucent material 80 when the translucent material 80 flows out from the edge α77 can be reduced.

また、被膜凸部75aのうち外周側の部分(被膜凸部外周面753a)のみ撥油剤を含んでいることとすることにより、撥油剤を含む部位に当たる光を低減できるため、光の取出し効率を向上させることができる。   In addition, since only the outer peripheral side portion of the coating convex portion 75a (the coating convex portion outer peripheral surface 753a) contains the oil repellent, the light hitting the portion containing the oil repellent can be reduced, so that the light extraction efficiency is improved. Can be improved.

以上のように、本実施の形態に係る発光装置100は、被膜表面の発光素子を囲む環状の凸部(被膜凸部75a)が撥油剤を含み、発光素子を囲むように環状に形成された被膜(被膜基部76a)が撥油剤を含まないことを特徴する。   As described above, the light emitting device 100 according to the present embodiment is formed in an annular shape so as to surround the light emitting element, with the annular convex portion (the coating convex portion 75a) surrounding the light emitting element on the surface of the film including the oil repellent. The coating (coating base 76a) is characterized by not containing an oil repellent.

本実施の形態に係る発光装置100は、被膜の表面の濡れ性を制御することにより、被膜凸部75aの表面の外周側のエッジα77から透光性材料が流出しエッジβ78によりせき止められた場合の透光性材料の厚みの変化量を低減し、色むらを低減することができる。また、撥油剤の使用範囲を減らし、光の取り出し効率を向上させることができる。   In the light emitting device 100 according to the present embodiment, when the wettability of the surface of the coating is controlled, the translucent material flows out from the edge α77 on the outer peripheral side of the surface of the coating convex portion 75a and is blocked by the edge β78. The amount of change in the thickness of the translucent material can be reduced, and color unevenness can be reduced. In addition, the use range of the oil repellent can be reduced, and the light extraction efficiency can be improved.

実施の形態5.
図18は、本実施の形態の被膜70A、70B周辺の断面の拡大図である。本実施の形態では、実施の形態3において説明した発光装置103の被膜70Aが、撥油剤を含む被膜70Aaであることを特徴とする。図18は、実施の形態3において説明した図16に対応する図であり、同様の機能を有する構成部には同一の符号を付し、その説明を省略する。
Embodiment 5 FIG.
FIG. 18 is an enlarged view of a cross section around the coatings 70A and 70B of the present embodiment. The present embodiment is characterized in that the film 70A of the light-emitting device 103 described in Embodiment 3 is a film 70Aa containing an oil repellent. FIG. 18 is a diagram corresponding to FIG. 16 described in the third embodiment. Components having the same functions are denoted by the same reference numerals, and description thereof is omitted.

また、以下に説明する実施の形態では、実施の形態3で説明した被膜70A及び70Bに対応する被膜70Aa,70Ab及び被膜70Ba,70Bbの部位を示す構成部については、被膜70Aa,70Ab及び被膜70Ba,70Bbと同様に、a,bの添え字を付して表記するものとする。   Further, in the embodiment described below, the constituent parts indicating the portions of the coatings 70Aa and 70Ab and the coatings 70Ba and 70Bb corresponding to the coatings 70A and 70B described in the third embodiment are described as coatings 70Aa and 70Ab and coating 70Ba. , 70Bb, a and b are added and expressed.

図18において、被膜70Aaは撥油剤を含んでおり、被膜70Baは撥油剤を含んでいない。被膜70Aaのうち、外周側(被膜外周面753Aa)の部分のみ撥油剤を含んでいることが好ましい。その理由は、実施の形態4で説明したものと同様である。なお、撥油剤は撥油性を有するものであればよい。   In FIG. 18, the coating 70Aa contains an oil repellent, and the coating 70Ba does not contain an oil repellent. Of the coating 70Aa, it is preferable that only the portion on the outer peripheral side (the coating outer peripheral surface 753Aa) contains the oil repellent. The reason is the same as that described in the fourth embodiment. The oil repellent may be any oil repellent.

以上のように、本実施の形態に係る発光装置103によれば、撥油成分を含むことにより撥油剤を含まない場合と比較してエッジα’77’から流出しない時の透光性材料80の高さを小さくできる。そのため、エッジα’77’から透光性材料80が流出した時の透光性材料80の厚みの変化量を低減できる。   As described above, according to the light emitting device 103 according to the present embodiment, the translucent material 80 when it does not flow out from the edge α′77 ′ as compared with the case where the oil repellent component is not included due to the oil repellent component being included. Can be reduced in height. Therefore, the amount of change in the thickness of the translucent material 80 when the translucent material 80 flows out from the edge α′77 ′ can be reduced.

以上のように、本実施の形態に係る発光装置103によれば、第2の被膜(被膜70A)が撥油剤を含み、第1の被膜(被膜70B)が撥油剤を含まないように、表面の濡れ性を制御することにより、第2のエッジ(エッジα’77’)から透光性材料が流出し第1のエッジ(エッジβ’78’)によりせき止められた場合の透光性材料の厚みの変化量を低減し、色むらを低減することができる。   As described above, according to the light emitting device 103 according to the present embodiment, the second coating (coating 70A) includes the oil repellent and the first coating (coating 70B) does not include the oil repellent. By controlling the wettability of the translucent material, the translucent material flows out from the second edge (edge α′77 ′) and is blocked by the first edge (edge β′78 ′). The amount of change in thickness can be reduced, and color unevenness can be reduced.

実施の形態6.
図19は、本実施の形態の被膜70周辺の断面の拡大図である。本実施の形態では、実施の形態1,2,4において説明した発光装置100において、被膜基部76が撥水剤を含む被膜基部76bであることを特徴とする。図19は、実施の形態1において説明した図5、実施の形態4において説明した図17に対応する図であり、同様の機能を有する構成部には同一の符号を付し、その説明を省略する。
Embodiment 6 FIG.
FIG. 19 is an enlarged view of a cross section around the film 70 of the present embodiment. In the present embodiment, the light emitting device 100 described in the first, second, and fourth embodiments is characterized in that the film base 76 is a film base 76b containing a water repellent. FIG. 19 is a diagram corresponding to FIG. 5 described in the first embodiment and FIG. 17 described in the fourth embodiment. Components having similar functions are denoted by the same reference numerals, and description thereof is omitted. To do.

本実施の形態では、被膜凸部75bは撥水剤を含んでおらず、被膜基部76bは撥水剤を含んでいる。被膜基部76bのうち、発光素子10がある内周面側(被膜基部内周面764b)は撥水剤を含まないことが好ましい。それは、被膜基部76bのうち外周側の部分(被膜基部外周面763b)のみ撥水剤を含んでいることとすることにより、撥水剤を含む部位に当たる光を低減できるため、光の取出し効率を向上させることができるからである。なお、撥水剤は撥水性を有するものであればよい。   In the present embodiment, the coating convex portion 75b does not contain a water repellent, and the coating base portion 76b contains a water repellent. Of the coating base 76b, the inner peripheral surface side (the coating base inner peripheral surface 764b) where the light emitting element 10 is provided preferably does not contain a water repellent. It is possible to reduce the light hitting the portion containing the water repellent agent by including the water repellent agent only in the outer peripheral side portion (the coat base outer peripheral surface 763b) of the coat base portion 76b, so that the light extraction efficiency is improved. This is because it can be improved. In addition, the water repellent agent should just have water repellency.

以上のように、本実施の形態に係る発光装置100によれば、被膜基部76bが撥水成分を含むことにより、透光性材料80が流出した時のエッジβ78における接触角を大きくすることができる。したがって、透光性材料80が流出した場合の透光性材料80の厚みの変化量を低減できるとともに、光の取り出し効率を向上させることができる。   As described above, according to the light emitting device 100 according to the present embodiment, the contact angle at the edge β78 when the translucent material 80 flows out can be increased because the film base 76b includes the water repellent component. it can. Therefore, the amount of change in the thickness of the translucent material 80 when the translucent material 80 flows out can be reduced, and the light extraction efficiency can be improved.

以上のように、本実施の形態に係る発光装置100によれば、実装面51の発光素子を囲む環状の被膜凸部75b(第2の被膜)が撥水剤を含まず、発光素子を囲むように環状に形成された被膜基部76b(第1の被膜)が撥水剤を含むように、表面の濡れ性を制御することにより、前記凸部表面の外周側のエッジから透光性材料が流出した場合の透光性材料の厚みの変化量を低減し、色むらを低減することができる。   As described above, according to the light emitting device 100 according to the present embodiment, the annular coating convex portion 75b (second coating) surrounding the light emitting element on the mounting surface 51 does not contain a water repellent and surrounds the light emitting element. By controlling the wettability of the surface so that the annular film base 76b (first film) contains a water repellent, the translucent material is removed from the outer peripheral edge of the convex surface. The amount of change in the thickness of the translucent material when it flows out can be reduced, and color unevenness can be reduced.

実施の形態7.
図20は、本実施の形態の被膜70A、70B周辺の断面の拡大図である。本実施の形態では、実施の形態3,5において説明した発光装置103の被膜70Bが、撥水剤を含む被膜70Bbであることを特徴とする。図20は、実施の形態3において説明した図16、実施の形態4において説明した図18に対応する図であり、同様の機能を有する構成部には同一の符号を付し、その説明を省略する。
Embodiment 7 FIG.
FIG. 20 is an enlarged view of a cross section around the coatings 70A and 70B of the present embodiment. The present embodiment is characterized in that the film 70B of the light-emitting device 103 described in Embodiments 3 and 5 is a film 70Bb containing a water repellent. FIG. 20 corresponds to FIG. 16 described in the third embodiment and FIG. 18 described in the fourth embodiment. Components having the same functions are denoted by the same reference numerals, and description thereof is omitted. To do.

本実施の形態では、被膜70Ab(第2の被膜)は撥水剤を含んでおらず、被膜70Bb(第1の被膜)は撥水剤を含んでいる。被膜70Bbのうち、発光素子10がある内周面側(被膜内周面764Bb)は撥水剤を含まないことが好ましい。なお、撥水剤は撥水性を有するものであればよい。   In the present embodiment, the coating 70Ab (second coating) does not contain a water repellent, and the coating 70Bb (first coating) contains a water repellent. Of the coating 70Bb, the inner peripheral surface side (the inner peripheral surface 764Bb) where the light emitting element 10 is provided preferably does not contain a water repellent. In addition, the water repellent agent should just have water repellency.

以上のように、本実施の形態に係る発光装置103によれば、被膜70Bbが撥水成分を含むことにより、透光性材料80が流出した時のエッジβ’77’における接触角を大きくできる。したがって、透光性材料80が流出した場合の透光性材料80の厚みの変化量を低減できるとともに、光の取り出し効率を向上させることができる。   As described above, according to the light emitting device 103 according to the present embodiment, the coating 70Bb includes the water repellent component, so that the contact angle at the edge β′77 ′ when the translucent material 80 flows out can be increased. . Therefore, the amount of change in the thickness of the translucent material 80 when the translucent material 80 flows out can be reduced, and the light extraction efficiency can be improved.

以上のように、本実施の形態に係る発光装置103によれば、第2の被膜(被膜70Ab)が撥水剤を含まず、第1の被膜(被膜70Bb)が撥水剤を含むように、表面の濡れ性を制御することにより、第2のエッジ(エッジα’77’)から透光性材料が流出した場合の透光性材料の厚みの変化量を低減し、色むらを低減することができる。   As described above, according to the light emitting device 103 according to the present embodiment, the second coating (coating 70Ab) does not include the water repellent, and the first coating (coating 70Bb) includes the water repellent. By controlling the wettability of the surface, the amount of change in the thickness of the translucent material when the translucent material flows out from the second edge (edge α′77 ′) is reduced, and color unevenness is reduced. be able to.

実施の形態8.
図21は、本実施の形態に係る発光装置100におけるエッチングの方法の説明図1である。図22は、本実施の形態に係る発光装置100のエッチングの方法の説明図2である。図21及び図22を用いて、本実施の形態に係る発光装置100のエッチングの方法について説明する。
Embodiment 8 FIG.
FIG. 21 is an explanatory diagram 1 of an etching method in the light emitting device 100 according to the present embodiment. FIG. 22 is an explanatory diagram 2 of the etching method of the light emitting device 100 according to the present embodiment. An etching method of the light emitting device 100 according to this embodiment will be described with reference to FIGS.

本実施の形態では、実施の形態1,2,4,6で説明した発光装置100において、被膜基部76の表面にアルカリ溶液を塗布し、エッチング処理したことを特徴とする。以下に、図21を用いて、被膜基部76及び被膜凸部75を形成するための基板50へのエッチングの処理の手順を示す。   The present embodiment is characterized in that in the light emitting device 100 described in the first, second, fourth, and sixth embodiments, an alkaline solution is applied to the surface of the film base 76 and an etching process is performed. Hereinafter, the procedure of the etching process on the substrate 50 for forming the film base 76 and the film convex part 75 will be described with reference to FIG.

図21(a)に示すように、基板50に回路パターン60を形成した後、ネガ型フォトレジスト1010を塗布する。更に、ネガ型フォトレジスト1010上に、被膜基部76を形成したい場所に露光の光1000が当たらないようにマスク1010を配置し、露光する。露光すると、露光された箇所は現像液への溶解性が増大し、マスク1010により露光されなかった箇所は現像液で溶解しない。   As shown in FIG. 21A, after forming a circuit pattern 60 on the substrate 50, a negative photoresist 1010 is applied. Further, a mask 1010 is arranged on the negative photoresist 1010 so as not to be exposed to the exposure light 1000 at a place where the film base 76 is to be formed, and is exposed. When exposed, the exposed portion increases the solubility in the developer, and the portion not exposed by the mask 1010 is not dissolved by the developer.

次に、図21(b)に示すように、基板50のフォトレジスト1010へアルカリ性の現像液1030を塗布し、その状態で一定時間置く。   Next, as shown in FIG. 21B, an alkaline developer 1030 is applied to the photoresist 1010 of the substrate 50, and is left in that state for a certain period of time.

その後、アルカリ性の現像液とともに溶解したフォトレジスト1010を洗い流すと、図21(c)の状態になる。図21(c)に示すように、マスク1010を配置した箇所のフォトレジスト1010が被膜基部76として形成される。   Thereafter, when the photoresist 1010 dissolved together with the alkaline developer is washed away, the state shown in FIG. As shown in FIG. 21C, a photoresist 1010 at a position where the mask 1010 is disposed is formed as a film base 76.

次に、図21(d)に示すように、ポジ型のフォトレジスト1050液を基板50の被膜基部76がある面に被膜基部76よりフォトレジスト1050液面が高くなるよう塗布する。被膜凸部75を形成したい場所のみが露光されるように、被膜凸部75を形成したい場所以外をマスク1060を用いてマスクし、露光の光1040が当たらないようにして基板50を露光する。   Next, as shown in FIG. 21 (d), a positive type photoresist 1050 liquid is applied to the surface of the substrate 50 where the film base 76 is present so that the liquid level of the photoresist 1050 is higher than the film base 76. The substrate 50 is exposed so as not to be exposed to the exposure light 1040 by masking the portion other than the portion where the coating convex portion 75 is to be formed using the mask 1060 so that only the portion where the coating convex portion 75 is to be formed is exposed.

露光すると、図21(e)に示すように、露光された箇所は現像液への溶解性が低下し、露光されなかった箇所は現像液への溶解性が増大する。   When exposed, as shown in FIG. 21 (e), the solubility in the developer is reduced at the exposed portion, and the solubility in the developer is increased at the non-exposed portion.

その後、現像液でフォトレジスト1050を洗い流すと、図21(f)に示す状態になる。図21(f)に示すように、露光されて現像液により溶解されなかったフォトレジスト1050部分が被膜凸部75として残存する。なお、エッチング処理は発光素子10を実装する前が好ましい。   Thereafter, when the photoresist 1050 is washed away with a developing solution, the state shown in FIG. As shown in FIG. 21 (f), the portion of the photoresist 1050 that has been exposed and not dissolved by the developer remains as the film convex portion 75. Note that the etching process is preferably performed before the light emitting element 10 is mounted.

次に、図22を用いて、被膜基部76の疎水性を高める方法について説明する。被膜基部76の疎水性を高めることにより、透光性樹脂が被膜基部76のエッジβ78によりせき止められた場合の透光性樹脂の接触角を大きくすることができる。   Next, a method for increasing the hydrophobicity of the coating base 76 will be described with reference to FIG. By increasing the hydrophobicity of the coating base 76, the contact angle of the translucent resin when the translucent resin is blocked by the edge β78 of the coating base 76 can be increased.

図22に示すように、被膜凸部75を形成した後に、被膜基部76のエッチングしたい位置以外をマスク1080で隠し、アルカリ溶液1090を塗布しエッチングする。なお、本実施の形態は、アルカリ溶液1090の塗布方法に関する形態であり、被膜凸部75、被膜基部76の形成方法、材質を限定するものではない。   As shown in FIG. 22, after forming the coating convex portion 75, the portion other than the position where the coating base portion 76 is to be etched is hidden by a mask 1080, and an alkaline solution 1090 is applied and etched. The present embodiment relates to a method for applying the alkaline solution 1090, and does not limit the formation method and material of the coating convex portion 75 and the coating base 76.

本実施の形態に示すように、被膜基部76にアルカリ溶液1090を塗布しエッチング処理することにより、被膜基部76の表面の親水性の高い部分が溶出する。そのため、被膜基部76の疎水性が高まり、被膜基部76のエッジβ78での接触角を大きくすることができる。また、エッチングにより被膜基部76と透光性材料80との界面の表面積が増えるため、透光性材料80の接触角を大きくすることができる。   As shown in the present embodiment, by applying an alkaline solution 1090 to the coating base 76 and performing an etching process, a highly hydrophilic portion of the surface of the coating base 76 is eluted. Therefore, the hydrophobicity of the coating base 76 is increased, and the contact angle at the edge β78 of the coating base 76 can be increased. Moreover, since the surface area of the interface between the film base 76 and the translucent material 80 is increased by etching, the contact angle of the translucent material 80 can be increased.

以上のように、少なくとも被膜基部76の表面にアルカリ溶液を塗布し、エッチング処理することにより、接触角を大きくし、光の取り出し効率を向上させることができる。   As described above, the contact angle can be increased and the light extraction efficiency can be improved by applying an alkali solution to at least the surface of the film base 76 and performing an etching process.

本実施の形態に係る発光装置100の製造方法は、発光素子と、発光素子が実装される発光面と、前記発光素子の周囲の発光面を覆いかつ前記発光素子を囲むように環状に形成された被膜と、前記発光素子を覆う蛍光体材料を含む透光性材料を備えた発光装置であって、前記環状に形成された被膜は発光面と接する面を被膜裏面とすると被膜表面の外周側にエッジを備え、かつ前記被膜はアルカリ溶液にてエッチング処理され、前記発光素子を覆う透光性材料を前記凸部の外周側のエッジまで充填することを特徴とする。このように、本実施の形態に係る発光装置100の製造方法によれば、撥水剤を使わずに接触角を大きくでき、光の取り出し効率を向上させることができる。   The method for manufacturing the light emitting device 100 according to the present embodiment is formed in an annular shape so as to cover the light emitting element, the light emitting surface on which the light emitting element is mounted, and the light emitting surface around the light emitting element. And a translucent material including a phosphor material that covers the light emitting element, wherein the annularly formed coating is formed on the outer peripheral side of the coating surface when the surface contacting the light emitting surface is the coating back surface. And the coating film is etched with an alkaline solution, and a translucent material covering the light emitting element is filled up to the edge on the outer peripheral side of the convex portion. Thus, according to the method for manufacturing light emitting device 100 according to the present embodiment, the contact angle can be increased without using a water repellent, and the light extraction efficiency can be improved.

また、本実施の形態に係る発光装置100の製造方法によれば、被膜表面の前記発光素子を囲む環状の凸部がアルカリ溶液にてエッチング処理されておらず、前記発光素子を囲むように環状に形成された被膜がアルカリ溶液にてエッチング処理することで表面の濡れ性を制御することにより、前記凸部表面の外周側のエッジから透光性材料が流出した場合の透光性材料の厚みの変化量を低減し、色むらを低減することができる。   In addition, according to the method for manufacturing light emitting device 100 according to the present embodiment, the annular convex portion surrounding the light emitting element on the surface of the coating is not etched with an alkaline solution, and is annular so as to surround the light emitting element. The thickness of the translucent material when the translucent material flows out from the outer peripheral edge of the convex surface by controlling the surface wettability by etching the coating formed on the surface with an alkaline solution. The amount of change in color can be reduced, and color unevenness can be reduced.

実施の形態9.
本実施の形態に係る発光装置103のエッチングの方法について説明する。本実施の形態では、実施の形態3,5,7で説明した発光装置103において、被膜70Bの表面にアルカリ溶液を塗布し、エッチング処理したことを特徴とする。以下の説明では、図20を参照するものとする。
Embodiment 9 FIG.
An etching method of the light emitting device 103 according to this embodiment is described. The present embodiment is characterized in that, in the light emitting device 103 described in the third, fifth, and seventh embodiments, an alkali solution is applied to the surface of the coating 70B and etched. In the following description, reference is made to FIG.

被膜70Bにアルカリ溶液を塗布しエッチング処理することにより、被膜70Bの表面の親水性の高い部分が溶出する。そのため、被膜70Bの疎水性が高まり、接触角を大きくすることができる。また、エッチングにより被膜70Bと透光性材料80の界面の表面積が増えるため、接触角を大きくすることができる。このように、少なくとも被膜70Bの表面にアルカリ溶液を塗布し、エッチング処理することにより、接触角を大きくし、透光性樹脂がエッジα’77’から流出しエッジβ’78’でせき止められた場合での光の取り出し効率を向上させることができる。   By applying an alkaline solution to the coating 70B and performing an etching process, a highly hydrophilic portion of the surface of the coating 70B is eluted. Therefore, the hydrophobicity of the coating 70B is increased, and the contact angle can be increased. In addition, since the surface area of the interface between the coating 70B and the translucent material 80 is increased by etching, the contact angle can be increased. Thus, by applying an alkaline solution to at least the surface of the film 70B and performing an etching process, the contact angle was increased, and the translucent resin flowed out of the edge α'77 'and was dammed by the edge β'78'. In some cases, the light extraction efficiency can be improved.

本実施の形態に係る発光装置103は、第2の被膜(被膜70A)がアルカリ溶液にてエッチング処理されておらず、第1の被膜(被膜70B)がエッチング処理されていることを特徴とする。これにより、第2のエッジ(エッジα’77’)から透光性材料が流出した場合の透光性材料の厚みの変化量を低減し、色むらを低減することができる。   The light emitting device 103 according to the present embodiment is characterized in that the second film (film 70A) is not etched with an alkaline solution, and the first film (film 70B) is etched. . Thereby, when the translucent material flows out from the second edge (edge α′77 ′), the amount of change in the thickness of the translucent material can be reduced, and color unevenness can be reduced.

実施の形態10.
図23は、本実施の形態に係る発光装置110を上から見た平面図である。図24は、本実施の形態に係る被膜70周辺の断面の拡大図であり、(a)は被膜基部外周部76oLを通る断面の拡大図であり、(b)が被膜基部外周部76oHを通る断面の拡大図である。図25は、本実施の形態に係る発光装置110の一例を上から見た平面図である。図26は、本実施の形態において透光性材料80がエッジα77から流出した際の透光性材料80を上から見たときの概形図である。
Embodiment 10 FIG.
FIG. 23 is a plan view of the light emitting device 110 according to the present embodiment as viewed from above. FIG. 24 is an enlarged view of a cross section around the coating 70 according to the present embodiment, (a) is an enlarged view of a cross section passing through the coating base outer peripheral portion 76 oL, and (b) passes through the coating base outer peripheral portion 76 oH. It is an enlarged view of a cross section. FIG. 25 is a plan view of an example of the light emitting device 110 according to the present embodiment as seen from above. FIG. 26 is a schematic view of the translucent material 80 as seen from above when the translucent material 80 flows out from the edge α77 in the present embodiment.

本実施の形態に係る発光装置110は、実施の形態1,2,4,6,8において説明した被膜基部76のうち、被膜凸部75より外周側にある部分が周方向に少なくとも2種類以上の高さを有していることを特徴とする。   In the light emitting device 110 according to the present embodiment, at least two types of portions on the outer peripheral side of the coating convex portion 75 in the coating base portion 76 described in the first, second, fourth, sixth, and eighth embodiments in the circumferential direction. It is characterized by having a height.

発光装置110は、被膜基部76のうち、被膜凸部外周面753より外周側の部分を被膜基部外周部76oとし、それ以外の部分を被膜基部内周部76iとする。被膜基部外周部76oは、複数の高さの被膜基部外周部76oHと被膜基部外周部76oLとから構成されている。例えば、被膜基部外周部76oHの高さT2は、被膜基部外周部76oLの高さT1よりも高い。   In the light emitting device 110, a portion of the coating base 76 on the outer peripheral side of the coating convex outer peripheral surface 753 is a coating base outer peripheral portion 76o, and the other portion is a coating base inner peripheral portion 76i. The coating base outer peripheral portion 76o is composed of a coating base outer peripheral portion 76oH and a coating base outer peripheral portion 76oL having a plurality of heights. For example, the height T2 of the coating base outer periphery 76oH is higher than the height T1 of the coating base outer periphery 76oL.

図24(a)は、被膜基部外周部76oHを通る断面の拡大図であり、図24(b)は、被膜基部外周部76oLを通る断面の拡大図である。被膜基部外周部76oLの高さをT1とし、被膜基部外周部76oHの高さをT2とし、被膜凸部75の高さをT3とするとT1<T2<T3になるよう設定されている。また、図23に示すように、被膜基部外周部76oLと被膜基部外周部76oHとは、被膜70の周方向において交互に配置されるように形成されている。   FIG. 24A is an enlarged view of a cross section passing through the coating base outer periphery 76oH, and FIG. 24B is an enlarged view of a cross section passing through the coating base outer periphery 76oL. When the height of the coating base outer peripheral portion 76oL is T1, the height of the coating base outer peripheral portion 76oH is T2, and the height of the coating convex portion 75 is T3, T1 <T2 <T3 is set. As shown in FIG. 23, the coating base outer peripheral portion 76oL and the coating base outer peripheral portion 76oH are formed so as to be alternately arranged in the circumferential direction of the coating 70.

次に、本実施の形態に係る被膜70の効果について説明する。被膜基部外周部76oHが外周側にあるエッジα77の一部において、ゴミの付着、エッジの欠損などの理由によって透光性材料80がエッジα77より流出した時、透光性材料80はエッジα77の外周側にある被膜基部外周部76oHに流れ込む。被膜基部外周部76oHの周囲に被膜基部76oHより高く、かつ被膜凸部75より低いものがないため、表面張力により、透光性材料80の流出は、この1つの被膜基部外周部76oHによりせき止められる。   Next, the effect of the film 70 according to the present embodiment will be described. When the translucent material 80 flows out of the edge α77 due to dust adhesion, edge loss, or the like at a part of the edge α77 where the coating base outer peripheral portion 76oH is on the outer peripheral side, the translucent material 80 is It flows into the coating base outer peripheral portion 76oH on the outer peripheral side. Since there is nothing higher than the coating base portion 76oH and lower than the coating convex portion 75 around the coating base outer peripheral portion 76oH, the outflow of the translucent material 80 is blocked by this single coating base outer peripheral portion 76oH. .

また、被膜基部外周部76oLが外周側にあるエッジα77の一部からゴミの付着、エッジの欠損などの理由によって透光性材料80がエッジα77より流出した時、透光性材料80はエッジα77の外周側にある被膜基部外周部76oLに流れ込む。被膜基部外周部76oLの周囲には、被膜基部外周部76oLより高く、かつ被膜凸部75より低い被膜基部外周部76oHが2つある。つまり、被膜基部外周部76oLの周方向の両側に2つの被膜基部外周部76oHがある。   Further, when the translucent material 80 flows out from the edge α77 due to dust adhering, missing edge, or the like from a part of the edge α77 where the coating base outer peripheral portion 76oL is on the outer peripheral side, the translucent material 80 is moved to the edge α77. Flows into the coating base outer peripheral portion 76oL on the outer peripheral side. Around the coating base outer periphery 76oL, there are two coating base outer peripheral portions 76oH that are higher than the coating base outer periphery 76oL and lower than the coating convex 75. That is, there are two coating base outer peripheral portions 76oH on both sides in the circumferential direction of the coating base outer peripheral portion 76oL.

そのため、エッジα77から流出した透光性材料80は、これら2つの被膜基部外周部76oHに流れ込む。被膜基部外周部76oHの周囲に被膜基部外周部76oHより高く、かつ被膜凸部75より低いものがないため、表面張力により、透光性材料80の流出は前記1つの被膜基部外周部76oLと前記2つの被膜基部76oHによりせき止められる。   Therefore, the translucent material 80 that has flowed out from the edge α77 flows into the two coating base outer peripheral portions 76oH. Since there is nothing higher than the coating base outer peripheral portion 76oH and lower than the coating convex portion 75 around the coating base outer peripheral portion 76oH, the outflow of the translucent material 80 is caused by the surface tension and the one coating base outer peripheral portion 76oL. It is dammed by the two coating bases 76oH.

以上のように、第1のせき止め部(エッジα77)の外周側に周方向に互い違いに高さの異なる第2のせき止め部(エッジβ78)を設けることにより、透光性材料80の流出範囲を限定し、樹脂の形状・厚みを安定化させ、色むらを低減することができる。   As described above, by providing the second damming portions (edge β78) having different heights in the circumferential direction on the outer peripheral side of the first damming portion (edge α77), the outflow range of the translucent material 80 can be reduced. It is possible to limit, stabilize the shape and thickness of the resin, and reduce color unevenness.

図25に示すように、被膜基部外周部76oは、被膜凸部75の被膜凸部外周面753に沿って被膜基部外周部76oHが弓なりになった形状に形成されているのが好ましい。弓なり形状の被膜基部外周部76oHは、周方向に連続して配置され、隣り合う弓なり形状の被膜基部外周部76oH同士の間に、略三角形状の被膜基部外周部76oLが形成されることが好ましい。   As shown in FIG. 25, the coating base outer peripheral portion 76 o is preferably formed in a shape in which the coating base outer peripheral portion 76 o H is formed in a bow shape along the coating convex outer peripheral surface 753 of the coating convex portion 75. It is preferable that the bow-shaped film base outer peripheral part 76oH is continuously arranged in the circumferential direction, and a substantially triangular film base outer peripheral part 76oL is formed between the adjacent bow-shaped film base outer peripheral parts 76oH. .

以上のような構成によれば、被膜基部外周部76oHが外周側にあるエッジα77の一部において、ゴミの付着、エッジの欠損などの理由によって透光性材料80がエッジα77より流出した時、透光性材料80はエッジα77の外周側にある被膜基部外周部76oHに流れ込む。その時の透光性材料80の形状は、上から見ると図26(a),(b)のようになる。   According to the configuration as described above, when the translucent material 80 flows out of the edge α77 due to reasons such as dust adhesion and edge loss in a part of the edge α77 where the coating base outer peripheral portion 76oH is on the outer peripheral side, The translucent material 80 flows into the coating base outer peripheral portion 76oH on the outer peripheral side of the edge α77. The shape of the translucent material 80 at that time is as shown in FIGS. 26A and 26B when viewed from above.

図26(a)は、被膜基部外周部76oが被膜凸部75の被膜凸部外周面753に沿って弓なりになった形状にした場合の図である。図26(b)は、被膜凸部75の被膜凸部外周面753に沿って、弓なり形状でなく扇形状の被膜基部外周部76oHと被膜基部外周部76oLとが交互に配置されている場合の図である。すなわち、図23に示すように、被膜基部外周部76oHと被膜基部外周部76oLとが交互に配置されている場合である。   FIG. 26A is a diagram in the case where the coating base outer peripheral portion 76o has a bow shape along the coating convex outer peripheral surface 753 of the coating convex portion 75. FIG. FIG. 26 (b) shows a case in which fan-shaped film base outer peripheral portions 76oH and film base outer peripheral portions 76oL are alternately arranged along the film convex outer peripheral surface 753 of the film convex 75 instead of the bow shape. FIG. That is, as shown in FIG. 23, the coating base outer periphery 76oH and the coating base outer periphery 76oL are alternately arranged.

図26(a)と図26(b)とを比較すると、図26(a)の方がより球形に近い。このように、被膜基部外周部76oの被膜基部外周部76oHの形状を弓なり形状にすることにより、透光性材料80が一部のエッジα77から流出し被膜基部外周部76oH部分によりせき止められた場合でも、透光性材料80をより球形に近い形でせき止めることができる。したがって、光の取出し効率を向上させるとともに、樹脂の形状・厚みを安定化させ、色むらを低減することができる。   Comparing FIG. 26 (a) and FIG. 26 (b), FIG. 26 (a) is more spherical. Thus, when the shape of the coating base outer peripheral portion 76oH of the coating base outer peripheral portion 76o is made into a bow shape, the translucent material 80 flows out from a part of the edge α77 and is blocked by the coating base outer peripheral portion 76oH portion. However, the translucent material 80 can be damped in a more spherical shape. Therefore, it is possible to improve the light extraction efficiency, stabilize the shape and thickness of the resin, and reduce color unevenness.

本実施の形態に係る発光装置110は、発光素子を囲むように環状に形成された被膜(被膜基部76)の内、前記凸部(被膜凸部75)より外周側にある部分が、周方向に前記凸部より低い少なくとも2種類以上の高さを有しているので、前記第2のエッジ(エッジα77)から透光性材料が流出した場合、流出範囲を限定することができ、透光性材料の形状・厚みの変化を抑制し、色むらを低減することができる。   In the light emitting device 110 according to the present embodiment, a portion of the coating film (coating base portion 76) formed in an annular shape so as to surround the light emitting element is located on the outer peripheral side of the convex portion (coating convex portion 75). Therefore, when the translucent material flows out from the second edge (edge α77), the outflow range can be limited, and the translucent material can be limited. It is possible to suppress changes in the shape and thickness of the conductive material and reduce color unevenness.

実施の形態11.
図27は、本実施の形態に係る発光装置111を上から見た平面図である。説明の便宜のため、透光性樹脂は省略している。実施の形態1〜10で説明した発光装置100,103,110において、被膜70もしくは被膜70Aの内側に複数の発光素子10が存在しても良い。
Embodiment 11 FIG.
FIG. 27 is a plan view of the light emitting device 111 according to the present embodiment as viewed from above. For convenience of explanation, the translucent resin is omitted. In the light-emitting devices 100, 103, and 110 described in Embodiments 1 to 10, a plurality of light-emitting elements 10 may exist inside the coating 70 or the coating 70A.

図27に示すように、本実施の形態に係る発光装置111は、環状に形成された被膜70内に複数の発光素子10を実装している。発光装置111は、基板50に4つの発光素子10を円形に配置している。したがって、被膜70は、円形の環状(リング状)に形成することができる。このような構成によれば透光性材料80の滴下が1回で済むため、生産性を向上させることができる。   As shown in FIG. 27, the light-emitting device 111 according to the present embodiment has a plurality of light-emitting elements 10 mounted in a film 70 formed in an annular shape. In the light emitting device 111, the four light emitting elements 10 are arranged in a circle on the substrate 50. Therefore, the film 70 can be formed in a circular ring shape (ring shape). According to such a configuration, the translucent material 80 can be dropped once, so that productivity can be improved.

実施の形態12.
図28は、本実施の形態の発光装置112を上から見た平面図である。説明の便宜のため、透光性樹脂は省略している。実施の形態1〜10で説明した発光装置100,103,110,111において、被膜70もしくは被膜70Aの形状は円状でなく、例えば楕円、長方形、ひし形、多角形などの任意の形状でも良い。
Embodiment 12 FIG.
FIG. 28 is a plan view of the light emitting device 112 of the present embodiment as viewed from above. For convenience of explanation, the translucent resin is omitted. In the light emitting devices 100, 103, 110, and 111 described in Embodiments 1 to 10, the shape of the coating 70 or the coating 70A is not circular, and may be any shape such as an ellipse, a rectangle, a rhombus, or a polygon.

図28に示すように、本実施の形態に係る発光装置112は、楕円形の環状に形成された被膜70内に、複数の発光素子10を実装している。発光装置112は、基板50に3つの発光素子10を直列に並べて配置している。被膜70は、楕円形の環状(リング状)に形成することができる。このような構成によれば透光性材料80の滴下が1回で済むため、生産性を向上させることができる。また、被膜70は、上述したように任意の形状に形成することが可能であるため、任意の形状に配置された光源(発光素子10)に対して実施の形態1〜11を適用することができる。   As shown in FIG. 28, the light emitting device 112 according to the present embodiment has a plurality of light emitting elements 10 mounted in a film 70 formed in an elliptical annular shape. In the light emitting device 112, the three light emitting elements 10 are arranged in series on the substrate 50. The coating 70 can be formed in an elliptical annular shape (ring shape). According to such a configuration, the translucent material 80 can be dropped once, so that productivity can be improved. Moreover, since the film 70 can be formed in an arbitrary shape as described above, Embodiments 1 to 11 can be applied to a light source (light emitting element 10) arranged in an arbitrary shape. it can.

実施の形態13.
本実施の形態では、透光性材料80について説明する。実施の形態1〜12において透光性材料80は蛍光体材料を含まなくても良い。また、無機フィラーを含んでいても良い。無機フィラーは一次粒子径が数nmのナノシリカが好ましい。また無機フィラーは透光性材料80内に均一に分布していることが好ましい。蛍光体を含まないことにより、光の波長を変えたくないが、発光素子を保護し、かつ光の取出し効率を向上したい場合に使用することができる。また無機フィラーを含むことにより、透光性材料80の粘性を大きくすることで、滴下装置から滴下されるまでの時間を調整することができ、製造を容易化できる。
Embodiment 13 FIG.
In the present embodiment, the translucent material 80 will be described. In the first to twelfth embodiments, the translucent material 80 may not include a phosphor material. Moreover, the inorganic filler may be included. The inorganic filler is preferably nano silica having a primary particle size of several nm. The inorganic filler is preferably distributed uniformly in the translucent material 80. By not including a phosphor, it can be used when it is not desired to change the wavelength of light, but it is desired to protect the light emitting element and improve the light extraction efficiency. Moreover, by including an inorganic filler, by increasing the viscosity of the translucent material 80, it is possible to adjust the time until it is dropped from the dropping device, and the manufacturing can be facilitated.

上述した発光装置では、発光面から発光素子の高さが発光面から被膜の高さより高いので、被膜へ当たる光を減らし、光の取出し効率を向上させることができる。   In the light-emitting device described above, the height of the light-emitting element from the light-emitting surface is higher than the height of the coating from the light-emitting surface, so that light hitting the coating can be reduced and light extraction efficiency can be improved.

また、上述した発光装置では、透光性材料がシリコーン樹脂、エポキシ樹脂、低融点ガラスのいずれかであり、液体の状態で前記被膜内に滴下され、前記エッジによりせき止められたことを特徴とする。透光性材料の透過率が高く、かつ融点が低いため、光の取出し効率が高く、かつ容易に製造することができる。   In the above-described light-emitting device, the light-transmitting material is any one of a silicone resin, an epoxy resin, and a low-melting glass, and is dropped into the film in a liquid state and blocked by the edge. . Since the translucent material has a high transmittance and a low melting point, it has a high light extraction efficiency and can be easily manufactured.

また、上述した発光装置では、透光性樹脂は、無機フィラーを含むことを特徴とするので、滴下装置から滴下されるまでの時間を調整することができ、製造を容易化できる。   Moreover, in the light-emitting device described above, the light-transmitting resin includes an inorganic filler. Therefore, the time until the liquid is dropped from the dropping device can be adjusted, and the manufacturing can be facilitated.

また、上述した発光装置では、透光性樹脂は、蛍光体材料を含まないことを特徴とするので、蛍光体を含まないことにより、光の波長を変えたくないが、発光素子を保護し、かつ光の取出し効率を向上したい場合に使用することができる。   Further, in the light emitting device described above, the translucent resin is characterized by not including a phosphor material. Therefore, by not including the phosphor, it is not desired to change the wavelength of light, but the light emitting element is protected. It can also be used to improve the light extraction efficiency.

以上、実施の形態1〜13について説明したが、これらの13の実施の形態の中から部分的に組み合わせてもよい。またこれらのある1つの実施の形態を部分的に実施してもよい。   Although the first to thirteenth embodiments have been described above, the thirteen embodiments may be partially combined. One of these embodiments may be partially implemented.

10 発光素子、11 光の経路、11A,11B,12,13,14 経路、20 ワイヤ、30 接合剤、40 バンプ、50 基板、51 実装面、60 回路パターン、70,70A,70Aa,70Ab,70B,70Ba,70Bb,71 被膜、75,75a,75b 被膜凸部、76,76a,76b 被膜基部、76i 被膜基部内周部、76o,76oH,76oL 被膜基部外周部、77 エッジα、78 エッジβ、80,80A,80B,80C,80D,80E,80F,80G 透光性材料、100,103,110,111,112,200 発光装置、201 せき止め部、701 内側斜面、751 被膜凸部表面、751A 被膜表面、752 被膜凸部裏面、752A 被膜裏面、753 被膜凸部外周面、753A,753A−1,753A−2 被膜外周面、754 被膜凸部内周面、761 被膜基部表面、761B 被膜表面、762 被膜基部裏面、762B 被膜裏面、763 被膜基部外周面、763B 被膜外周面、764 被膜基部内周面、1000 光、1010 フォトレジスト、1020 マスク、1030 アルカリ性の現像液、1040 光、1050 フォトレジスト、1060 マスク、1070 現像液、1080 マスク、1090 アルカリ溶液。   10 light emitting elements, 11 light paths, 11A, 11B, 12, 13, 14 paths, 20 wires, 30 bonding agents, 40 bumps, 50 substrates, 51 mounting surfaces, 60 circuit patterns, 70, 70A, 70Aa, 70Ab, 70B , 70Ba, 70Bb, 71 coating, 75, 75a, 75b coating convex, 76, 76a, 76b coating base, 76i coating base inner periphery, 76o, 76oH, 76oL coating base outer periphery, 77 edge α, 78 edge β, 80, 80A, 80B, 80C, 80D, 80E, 80F, 80G Translucent material, 100, 103, 110, 111, 112, 200 Light emitting device, 201 Damping portion, 701 Inner slope, 751 Coating convex surface, 751A Coating Front surface, 752 Coating film back surface, 752A Coating film back surface, 753 Coating film projection outer peripheral surface, 753A 753A-1, 753A-2 Coated outer peripheral surface, 754 Coated convex inner peripheral surface, 761 Coated base surface, 761B Coated surface, 762 Coated base rear surface, 762B Coated back surface, 763 Coated base outer peripheral surface, 763B Coated outer peripheral surface, 764 Coated base Inner peripheral surface, 1000 light, 1010 photoresist, 1020 mask, 1030 alkaline developer, 1040 light, 1050 photoresist, 1060 mask, 1070 developer, 1080 mask, 1090 alkali solution.

Claims (12)

発光素子が実装される発光面を備えた発光装置において、
前記発光素子の周囲を囲むように環状に形成された第1の被膜であって、前記発光面に当接する第1の被膜裏面と、前記第1の被膜裏面に対向する第1の被膜表面と、前記第1の被膜表面の外周縁から前記第1の被膜裏面の外周縁にわたって形成された第1の外周面とを有する第1の被膜と、
前記第1の被膜表面から突き出すように環状に形成された第2の被膜であって、前記第1の被膜表面に当接する第2の被膜裏面と、前記第2の被膜裏面に対向する第2の被膜表面と、前記第2の被膜表面の外周縁から前記第2の被膜裏面の外周縁にわたって形成された第2の外周面とを有する第2の被膜と
を備え、
前記第2の外周面は、前記第1の外周面よりも内側に位置していることを特徴とする発光装置。
In a light emitting device having a light emitting surface on which a light emitting element is mounted,
A first film formed in an annular shape so as to surround the periphery of the light emitting element, a first film back surface contacting the light emitting surface, and a first film surface facing the first film back surface; A first coating having a first outer peripheral surface formed from an outer peripheral edge of the first coating surface to an outer peripheral edge of the first coating back surface;
A second coating formed in an annular shape so as to protrude from the first coating surface, a second coating back surface contacting the first coating surface, and a second coating facing the second coating back surface And a second coating having a second outer peripheral surface formed from an outer peripheral edge of the second coating surface to an outer peripheral edge of the second coating back surface,
The light emitting device, wherein the second outer peripheral surface is located on an inner side than the first outer peripheral surface.
前記第1の被膜は、前記第1の被膜表面の内周縁から前記第1の被膜裏面の内周縁にわたって形成された第1の内周面を有し、
前記第2の被膜は、前記第2の被膜表面の内周縁から前記第2の被膜裏面の内周縁にわたって形成された第2の内周面を有し、
前記発光装置は、さらに、
前記第1の内周面と前記第2の内周面とが連続して形成された1つの環状の斜面であって、前記発光面から発光方向に向かって環径が広がるように形成された斜面を備えることを特徴とする請求項1に記載の発光装置。
The first coating has a first inner peripheral surface formed from an inner peripheral edge of the first coating surface to an inner peripheral edge of the first coating back surface,
The second coating has a second inner peripheral surface formed from the inner peripheral edge of the second coating surface to the inner peripheral edge of the second coating back surface,
The light emitting device further includes:
The first inner peripheral surface and the second inner peripheral surface are one annular inclined surface formed continuously, and are formed so that the ring diameter increases from the light emitting surface toward the light emitting direction. The light emitting device according to claim 1, further comprising a slope.
発光素子が実装される発光面を備えた発光装置において、
前記発光素子の周囲を囲むように環状に形成された第2の被膜であって、前記発光面に当接する第2の被膜裏面と、前記第2の被膜裏面に対向する第2の被膜表面と、前記第2の被膜表面の外周縁から前記第2の被膜裏面の外周縁にわたって形成された第2の外周面とを有する第2の被膜と、
前記第2の被膜の周囲を囲むように環状に形成された第1の被膜であって、前記発光面に当接する第1の被膜裏面と、前記第1の被膜裏面に対向する第1の被膜表面と、前記第1の被膜表面の外周縁から前記第1の被膜裏面の外周縁にわたって形成された第1の外周面とを有する第1の被膜とを備え、
前記発光面から前記第1の被膜表面までの高さは、前記発光面から前記第2の被膜表面までの高さ以下であることを特徴とする発光装置。
In a light emitting device having a light emitting surface on which a light emitting element is mounted,
A second coating formed in an annular shape so as to surround the periphery of the light emitting element, a second coating back surface contacting the light emitting surface, and a second coating surface facing the second coating back surface A second coating having a second outer peripheral surface formed from an outer peripheral edge of the second coating surface to an outer peripheral edge of the second coating back surface;
A first coating formed in an annular shape so as to surround the second coating, the first coating back contacting the light emitting surface, and the first coating facing the first coating back A first coating having a surface and a first outer peripheral surface formed from an outer peripheral edge of the first coating surface to an outer peripheral edge of the first coating back surface;
The height from the said light emission surface to the said 1st film surface is below the height from the said light emission surface to the said 2nd film surface, The light-emitting device characterized by the above-mentioned.
前記第2の被膜表面と前記第2の外周面とにより形成される第2の角度は、前記第1の被膜表面と前記第1の外周面とにより形成される第1の角度より大きいことを特徴とする請求項1〜3のいずれかに記載の発光装置。   The second angle formed by the second coating surface and the second outer peripheral surface is larger than the first angle formed by the first coating surface and the first outer peripheral surface. The light emitting device according to any one of claims 1 to 3. 前記第1の角度は、鋭角であることを特徴とする請求項4に記載の発光装置。   The light emitting device according to claim 4, wherein the first angle is an acute angle. 前記第2の角度は、鋭角であることを特徴とする請求項4または5に記載の発光装置。   The light emitting device according to claim 4, wherein the second angle is an acute angle. 前記第1の被膜は、前記第1の被膜のうち前記第2の外周面より外側にある部分の前記発光面から前記第1の被膜表面までの高さが、少なくとも2種類以上の高さを有していることを特徴とする請求項1〜6のいずれかに記載の発光装置。   The first coating has at least two kinds of heights from the light emitting surface to the first coating surface in a portion outside the second outer peripheral surface of the first coating. It has, The light-emitting device in any one of Claims 1-6 characterized by the above-mentioned. 前記第2の被膜は、撥油剤を含み、前記第1の被膜は、撥油剤を含まないことを特徴する請求項1〜7のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the second film includes an oil repellent, and the first film does not include an oil repellent. 前記第2の被膜は、撥水剤を含まず、前記第1の被膜は、撥水剤を含むことを特徴する請求項1〜8のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the second film does not contain a water repellent, and the first film contains a water repellent. 前記第1の被膜は、アルカリ溶液にてエッチング処理され、前記第2の被膜は、アルカリ溶液にてエッチング処理されていないことを特徴する請求項1〜7のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the first film is etched with an alkaline solution, and the second film is not etched with an alkaline solution. 前記発光面から前記第2の被膜表面までの高さは、前記発光面から前記発光素子までの高さよりも低いことを特徴とする請求項1〜10のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein a height from the light emitting surface to the surface of the second film is lower than a height from the light emitting surface to the light emitting element. 前記発光装置は、さらに、
液体から固体へ変化する透光性材料であって、液体の状態で前記発光素子に液滴として滴下され、滴下された液滴の拡がりが前記第2の被膜表面の外周縁により堰き止められた状態で固化した透光性材料を備えたことを特徴とする請求項1〜11のいずれかに記載の発光装置。
The light emitting device further includes:
A translucent material that changes from a liquid to a solid, dropped as a droplet on the light emitting element in a liquid state, and spreading of the dropped droplet is blocked by the outer peripheral edge of the second coating surface The light-emitting device according to claim 1, comprising a translucent material solidified in a state.
JP2012115236A 2012-05-21 2012-05-21 Light emitting device Pending JP2013243237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012115236A JP2013243237A (en) 2012-05-21 2012-05-21 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115236A JP2013243237A (en) 2012-05-21 2012-05-21 Light emitting device

Publications (1)

Publication Number Publication Date
JP2013243237A true JP2013243237A (en) 2013-12-05

Family

ID=49843851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115236A Pending JP2013243237A (en) 2012-05-21 2012-05-21 Light emitting device

Country Status (1)

Country Link
JP (1) JP2013243237A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204623A (en) * 2015-08-20 2017-11-16 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
US9859480B2 (en) 2015-08-20 2018-01-02 Nichia Corporation Light emitting device and method of manufacturing light emitting device
WO2018021287A1 (en) * 2016-07-28 2018-02-01 シーシーエス株式会社 Led light-emission device and manufacturing method for same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204623A (en) * 2015-08-20 2017-11-16 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
US9859480B2 (en) 2015-08-20 2018-01-02 Nichia Corporation Light emitting device and method of manufacturing light emitting device
US10153411B2 (en) 2015-08-20 2018-12-11 Nichia Corporation Light emitting device and method of manufacturing light emitting device
WO2018021287A1 (en) * 2016-07-28 2018-02-01 シーシーエス株式会社 Led light-emission device and manufacturing method for same
JP2018018951A (en) * 2016-07-28 2018-02-01 シーシーエス株式会社 Led light emitting device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP6646593B2 (en) LED lighting unit
TWI711787B (en) Optical lens and light emitting module having the same
JP6152801B2 (en) Light emitting device and manufacturing method thereof
JP3773525B2 (en) LED lighting source
JP5622494B2 (en) Light emitting device and manufacturing method thereof
US8486733B2 (en) Package having light-emitting element and fabrication method thereof
US8342720B2 (en) Vehicle light and road illumination device
JP6056336B2 (en) Light emitting device
JP2012519976A (en) LED module for improved lamp and improved LED lamp
JP6541963B2 (en) Light emitting device and method of manufacturing the same
WO2013088790A1 (en) Light emitting apparatus, illuminating apparatus, display apparatus, and method for manufacturing light emitting apparatus
JP2017139464A (en) Light emitting device and manufacturing method of the same
JP2003318449A (en) Led light source and its fabricating method
TWI832948B (en) Light emitting device and method of manufacturing light emitting device
JP2017527948A (en) Small LED lighting unit
JP2017152475A (en) Light-emitting device
JP2012195350A (en) Light-emitting device and method of manufacturing the same
JP2017212301A (en) Light-emitting device, luminaire, vehicle luminaire, and method for manufacturing light-emitting device
JP2013243237A (en) Light emitting device
US20070194691A1 (en) Light emitting diode package structure having high light extraction efficiency and method of manufacturing the same
TWI741339B (en) Light emitting device and method of manufacturing the same
JP2021022605A (en) Manufacturing method of light-emitting device and light-emitting device, and wiring board for mounting element and manufacturing method of wiring board for mounting element
JP2010225437A (en) Vehicle light, and road illumination device
JP5970215B2 (en) Light emitting device and manufacturing method thereof
KR101861232B1 (en) Light emitting module