JP2014035818A - All-solid-state lithium ion secondary battery - Google Patents

All-solid-state lithium ion secondary battery Download PDF

Info

Publication number
JP2014035818A
JP2014035818A JP2012175016A JP2012175016A JP2014035818A JP 2014035818 A JP2014035818 A JP 2014035818A JP 2012175016 A JP2012175016 A JP 2012175016A JP 2012175016 A JP2012175016 A JP 2012175016A JP 2014035818 A JP2014035818 A JP 2014035818A
Authority
JP
Japan
Prior art keywords
solid electrolyte
particles
layer
active material
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012175016A
Other languages
Japanese (ja)
Other versions
JP5692184B2 (en
Inventor
Norihiko Shigeta
徳彦 繁田
Yoriji Tanabe
順志 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012175016A priority Critical patent/JP5692184B2/en
Publication of JP2014035818A publication Critical patent/JP2014035818A/en
Application granted granted Critical
Publication of JP5692184B2 publication Critical patent/JP5692184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an all-solid-state high capacity lithium ion secondary battery having excellent output characteristics, by preventing short circuit between positive and negative electrodes.SOLUTION: In an all-solid-state high capacity lithium ion secondary battery, a positive electrode layer and a negative electrode layer are laminated while sandwiching a solid electrolyte layer. At least any one of the positive electrode layer and negative electrode layer is an electrode mixture layer containing active material particles and ion conductive assistant particles. When the surface roughness Rmax formed by the active material particles on the surface of the electrode mixture layer on the solid electrolyte layer side is prescribed, average particle size of solid electrolyte particles forming the solid electrolyte layer is 0.1-1.0 times of the Rmax, and the thickness of the solid electrolyte layer is 5 times or more of the Rmax, and less than 100 times of the average particle size of the solid electrolyte particles forming the solid electrolyte layer.

Description

本発明は、全固体リチウムイオン二次電池に関する。   The present invention relates to an all solid lithium ion secondary battery.

リチウムイオン二次電池は、体積や重量あたりの容量が大きいことから携帯機器等に広く使われており、今後は電気自動車などさらに大容量用途に向けた研究開発が盛んに進められている。   Lithium ion secondary batteries are widely used in portable devices because of their large capacity per unit volume and weight, and in the future, research and development for higher capacity applications such as electric vehicles are being actively promoted.

リチウムイオン二次電池は、主として、正極と、負極と、正極と負極との間に配置される液状の電解質層とから構成されている。従来から、上記正極及び/又は負極は、それぞれの電極活物質と、結着剤と、導電助剤とを含む電極形成用の塗布液(例えば、スラリー状或いはペースト状のもの)を用いて形成されている。   A lithium ion secondary battery mainly includes a positive electrode, a negative electrode, and a liquid electrolyte layer disposed between the positive electrode and the negative electrode. Conventionally, the positive electrode and / or the negative electrode are formed by using an electrode-forming coating solution (for example, slurry or paste) containing each electrode active material, a binder, and a conductive additive. Has been.

液状の電解質は可燃性の有機溶媒を用いるため、液漏れ防止のための構造対策が必要となる。この電池が大型化および大容量化されるほど、この対策の必要性が増す。   Since the liquid electrolyte uses a flammable organic solvent, a structural measure for preventing liquid leakage is required. The need for this measure increases as the battery size and capacity increase.

電解質層に固体電解質を用いた全固体リチウムイオン二次電池は、可燃性の有機溶媒を用いないため、従来電池の液漏れを抜本的に解決できる可能性があり、このため精力的にその検討が進められている。   All-solid-state lithium ion secondary batteries that use a solid electrolyte as the electrolyte layer do not use flammable organic solvents, so there is a possibility of drastically solving the battery leakage of conventional batteries. Is underway.

一方で、電池容量を向上させるために、リチウム金属に対し5V以上の電位を持つ材料の開発が近年進められている。しかしながら、液状の電解質の電位窓が狭いために電池作動時に電解質が分解する問題が指摘されている。これに対し、固体電解質を用いた場合は、広い電位窓を有し電解質の分解が抑えられ、高容量の電池が得られるという利点が得られる。   On the other hand, in order to improve battery capacity, development of materials having a potential of 5 V or more with respect to lithium metal has been advanced in recent years. However, since the potential window of the liquid electrolyte is narrow, there is a problem that the electrolyte is decomposed when the battery is operated. On the other hand, when a solid electrolyte is used, there is an advantage that a high-capacity battery can be obtained by having a wide potential window and suppressing decomposition of the electrolyte.

固体電解質には、有機材料としてポリエチレンオキサイドなどのイオン導電性高分子、無機材料として酸化物系固体電解質、硫化物系固体電解質がある。しかしながら、これらの固体電解質は、液状の電解液と比較してリチウムイオン導電率が低いために出力特性に劣るという課題があった。このような課題を解決する手段のひとつとして、硫化物系固体電解質が、液状の電解質と同等のイオン導電率が得られたとの報告がなされ、高出力の全固体リチウムイオン二次電池実現への期待が高まっている。(例えば非特許文献1)   Solid electrolytes include ionic conductive polymers such as polyethylene oxide as organic materials, and oxide-based solid electrolytes and sulfide-based solid electrolytes as inorganic materials. However, these solid electrolytes have a problem that output characteristics are inferior because lithium ion conductivity is low as compared with liquid electrolytes. As one of the means for solving such problems, it has been reported that the ionic conductivity of the sulfide-based solid electrolyte is equivalent to that of the liquid electrolyte, and the realization of a high-power all-solid lithium ion secondary battery has been made. Expectations are rising. (For example, Non-Patent Document 1)

特開2005−327528号公報JP 2005-327528 A 特開1996−195219号公報JP-A-1996-195219 特開2011−65982号公報JP2011-65982A 特開2009−93947号公報JP 2009-93947 A

Nature Materials、published online、 31 July 2011Nature Materials, published online, 31 July 2011

しかしながら、それでも全固体リチウムイオン二次電池の出力特性は、液状の電解質を用いた従来電池に比べ十分ではない。これは、液状の電解質を用いた従来電池の正極負極間の距離が、セパレーターの厚みによって規定される数10μm前後に設定されているのに対し、全固体リチウムイオン二次電池の正負極間距離は、以下のような理由によりその10倍以上を必要とするためである。   However, the output characteristics of the all-solid-state lithium ion secondary battery are still not sufficient as compared with the conventional battery using a liquid electrolyte. This is because the distance between the positive and negative electrodes of a conventional battery using a liquid electrolyte is set to about several tens of μm defined by the thickness of the separator, whereas the distance between the positive and negative electrodes of an all-solid lithium ion secondary battery. This is because 10 times or more is required for the following reasons.

液状の電解質を用いた従来電池では、液状電解液が電極中の活物質粒子と容易に接触可能であるため、電解質と活物質粒子間の良好なリチウムイオン伝導が確保できる。それに対し、固体電解質を用いた全固体リチウムイオン二次電池では、電極合材中のリチウムイオン伝導を確保するため、正極合材では、活物質粒子にイオン導電性助剤である固体電解質粒子および、場合によってはカーボンブラック等の電子導電性助剤粒子を分散させて用いている。そして、この合材を加圧成型するなどして正極合材層(電極合材層)を形成し、その上に固体電解質粉のみからなる固体電解質層を設ける。さらに、固体電解質層の上には負極合材層またはLi、Li−In合金などからなる負極層を配置する。   In a conventional battery using a liquid electrolyte, since the liquid electrolyte can easily contact the active material particles in the electrode, good lithium ion conduction between the electrolyte and the active material particles can be ensured. On the other hand, in an all-solid lithium ion secondary battery using a solid electrolyte, in order to ensure lithium ion conduction in the electrode mixture, in the positive electrode mixture, the active material particles include solid electrolyte particles that are ion conductive assistants and In some cases, electronically conductive auxiliary particles such as carbon black are dispersed and used. Then, a positive electrode composite material layer (electrode composite material layer) is formed by, for example, pressure molding the composite material, and a solid electrolyte layer made of only solid electrolyte powder is provided thereon. Further, a negative electrode mixture layer or a negative electrode layer made of Li, Li—In alloy or the like is disposed on the solid electrolyte layer.

電極合材に含まれるLiCoOやLiNiOなどの活物質粒子は、通常数μmから数10μmの粒子径の粒子からなる(例えば特許文献1、2、3)。これは、粒子径を小さくすると表面積が増大し粒界の抵抗が大きくなり、電池の出力、容量ともに低下する傾向があるためで、高容量で高出力の電池を得るためには、リチウムイオン伝導の妨げとなる粒界の少ない粒子を用いることが好ましい。 Active material particles such as LiCoO 2 and LiNiO 2 contained in the electrode mixture are usually particles having a particle diameter of several μm to several tens of μm (for example, Patent Documents 1, 2, and 3). This is because when the particle size is reduced, the surface area increases, the resistance of the grain boundary increases, and both the output and capacity of the battery tend to decrease. To obtain a battery with high capacity and high output, lithium ion conduction is required. It is preferable to use particles with few grain boundaries that hinder the prevention.

しかしながら、こうした電極合材層は、粒子を加圧成型した圧粉体であり、電極合材層の表面にも必然的に数多くの活物質粒子が存在する。活物質粒子が正負極間を貫通してショートを引き起こさせないためには、少なくとも活物質粒子の最大粒子径よりも固体電解質層を厚くする必要がある。充放電サイクルによる活物質粒子の膨張収縮等を考慮すれば、粒子に対して数倍以上もの層厚を必要とする。これが、固体電解質のリチウムイオン導電率が、液状の電解質と同等であっても、全固体リチウムイオン二次電池としての出力が液状の電解質を用いた従来電池に劣る原因の一つと考えられる。   However, such an electrode mixture layer is a green compact obtained by pressure-molding particles, and a large number of active material particles necessarily exist on the surface of the electrode mixture layer. In order to prevent the active material particles from passing between the positive and negative electrodes and causing a short circuit, it is necessary to make the solid electrolyte layer thicker than at least the maximum particle diameter of the active material particles. Considering the expansion and contraction of the active material particles due to the charge / discharge cycle, the layer thickness is several times or more that of the particles. This is considered to be one of the causes that the output as the all-solid-state lithium ion secondary battery is inferior to that of the conventional battery using the liquid electrolyte even if the lithium ion conductivity of the solid electrolyte is equivalent to that of the liquid electrolyte.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、正負極間のショートを防止し、高容量で高出力の出力特性に優れた全固体リチウムイオン二次電池を得ることを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and it is possible to obtain an all-solid lithium ion secondary battery that prevents short-circuit between positive and negative electrodes, and has high capacity and high output characteristics. Objective.

上記目的を達成するために、本発明に係る全固体リチウムイオン二次電池は、正極層および負極層が固体電解質層をはさんで積層してなり、前記正極層と前記負極層との少なくともいずれかが、活物質粒子とイオン導電性助剤粒子とを含む電極合材層であり、 前記電極合材層の固体電解質層側の表面において前記活物質粒子が形成する表面粗さRmaxを規定したとき、前記固体電解質層を形成する固体電解質粒子の平均粒子径はRmaxの0.1倍以上1.0倍未満であり、前記固体電解質層の厚さは、Rmaxの5倍以上、前記固体電解質層を形成する前記固体電解質粒子の平均粒子径の100倍未満、であることを特徴とする。   In order to achieve the above object, an all-solid-state lithium ion secondary battery according to the present invention comprises a positive electrode layer and a negative electrode layer laminated with a solid electrolyte layer interposed therebetween, and at least one of the positive electrode layer and the negative electrode layer. Is an electrode mixture layer including active material particles and ion conductive auxiliary particles, and the surface roughness Rmax formed by the active material particles on the surface of the electrode mixture layer on the solid electrolyte layer side is defined. The average particle diameter of the solid electrolyte particles forming the solid electrolyte layer is 0.1 times or more and less than 1.0 times Rmax, and the thickness of the solid electrolyte layer is 5 times or more of Rmax. It is less than 100 times the average particle diameter of the solid electrolyte particles forming the layer.

このようにすることで、電極合材層と固体電解質層の接触抵抗を低減し、固体電解質層の固体電解質粒子間の界面抵抗がリチウムイオン伝導の律速になることを防ぐことができるため、高容量で高出力の出力特性に優れた全固体リチウムイオン二次電池を得ることができる。また、正負極間のショートを確実に防ぐことができる。   By doing so, the contact resistance between the electrode mixture layer and the solid electrolyte layer can be reduced, and the interface resistance between the solid electrolyte particles of the solid electrolyte layer can be prevented from becoming the rate-limiting factor for lithium ion conduction. It is possible to obtain an all-solid-state lithium ion secondary battery that has high capacity and high output characteristics. Moreover, the short circuit between positive and negative electrodes can be prevented reliably.

さらに本発明に係る全固体リチウムイオン二次電池は、イオン導電性助剤粒子として、硫化物固体電解質を含むのが好ましい。   Furthermore, the all solid lithium ion secondary battery according to the present invention preferably contains a sulfide solid electrolyte as the ion conductive auxiliary particles.

これにより、電極合材層中の活物質粒子と、イオン導電性助剤粒子との間の接触抵抗を低くすることができ、高出力の全固体リチウムイオン二次電池が得られる。   Thereby, the contact resistance between the active material particles in the electrode mixture layer and the ion conductive auxiliary particles can be lowered, and a high-power all-solid lithium ion secondary battery can be obtained.

さらに本発明に係る全固体リチウムイオン二次電池は、電極合材層において活物質粒子が形成するRmaxが1.0μm未満であることが好ましい。   Furthermore, in the all-solid-state lithium ion secondary battery according to the present invention, Rmax formed by the active material particles in the electrode mixture layer is preferably less than 1.0 μm.

これにより、正負極間のショートを起こすことなく固体電解質層を薄層化することが可能になり、高出力の全固体リチウムイオン二次電池が得られる。   As a result, the solid electrolyte layer can be thinned without causing a short circuit between the positive and negative electrodes, and a high-power all-solid lithium ion secondary battery can be obtained.

さらに本発明に係る全固体リチウムイオン二次電池は、固体電解質層に含有される固体電解質粒子の平均粒子径の50倍以下の厚さの固体電解質層を備えることが好ましい。   Furthermore, the all-solid-state lithium ion secondary battery according to the present invention preferably includes a solid electrolyte layer having a thickness of 50 times or less the average particle diameter of the solid electrolyte particles contained in the solid electrolyte layer.

これにより、固体電解質層に含有される固体電解質粒子間の粒界抵抗を下げ、高い出力の全固体リチウムイオン二次電池が得られる。   Thereby, the intergranular resistance between the solid electrolyte particles contained in the solid electrolyte layer is lowered, and a high-power all-solid lithium ion secondary battery is obtained.

本発明によれば、正負極間のショートを防止し、高容量で高出力の出力特性に優れた全固体リチウムイオン二次電池を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the short circuit between positive / negative electrodes can be prevented, and the all-solid-state lithium ion secondary battery excellent in the output characteristic of high capacity | capacitance and high output can be obtained.

本発明の一実施形態における全固体リチウムイオン二次電池の断面図である。It is sectional drawing of the all-solid-state lithium ion secondary battery in one Embodiment of this invention. 本発明の一実施形態における、電極合材層表面において活物質粒子が形成するRmaxの算出方法を示す断面図である。It is sectional drawing which shows the calculation method of Rmax which an active material particle forms in the electrode compound-material layer surface in one Embodiment of this invention.

図1は、本発明の好適な一実施形態である全固体リチウムイオン二次電池の模式断面図である。全固体リチウムイオン二次電池は、一例として、正極集電体11上に正極活物質粒子21とイオン導電性助剤粒子22を含む正極用電極合材層20を設け、その上に固体電解質粒子31を含む固体電解質層30を配置し、さらにその上に負極層40と負極集電体12が積層されてなる。   FIG. 1 is a schematic cross-sectional view of an all solid lithium ion secondary battery which is a preferred embodiment of the present invention. As an example, the all-solid-state lithium ion secondary battery includes a positive electrode active material particle 21 and an ion conductive auxiliary agent particle 20 on a positive electrode current collector 11 and a positive electrode mixture layer 20 on which solid electrolyte particles are formed. The solid electrolyte layer 30 containing 31 is arrange | positioned, and the negative electrode layer 40 and the negative electrode collector 12 are laminated | stacked further on it.

本実施形態における全固体リチウムイオン二次電池は、電解質が実質固体成分からなるものである。   In the all solid lithium ion secondary battery in the present embodiment, the electrolyte is composed of a substantially solid component.

(電極合材層)
本実施形態に係る電極合材層の一例である正極活物質層である正極用電極合材層20は、本実施の形態の活物質粒子である正極活物質粒子21とイオン導電性助剤粒子22を含む。正極活物質粒子21としては、LiCoO、LiNiO、LiNi1−xCo、LiCo1/3Ni1/3Mn1/3、LiMnなどの遷移金属酸化物、一般式LiMPO(式中、MはFe、Mn、Co、Ni、V、VO又はCu等)で表されるオリビン構造を有する材料、TiS、MoS2、FeSなどの遷移金属硫化物、バナジウム酸化物、有機硫黄化合物等が用いることができる。
(Electrode mixture layer)
The positive electrode active material layer 20, which is a positive electrode active material layer that is an example of the electrode composite material layer according to the present embodiment, includes positive electrode active material particles 21 that are active material particles according to the present embodiment and ion conductive auxiliary particles. 22 is included. Examples of the positive electrode active material particles 21 include transition metal oxides such as LiCoO 2 , LiNiO 2 , LiNi 1-x Co x O 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and LiMn 2 O 4 , Materials having an olivine structure represented by the formula LiMPO 4 (wherein M is Fe, Mn, Co, Ni, V, VO, Cu, etc.), transition metal sulfides such as TiS 2 , MoS 2, FeS 2 , vanadium Oxides, organic sulfur compounds, and the like can be used.

また、負極活物質層の場合では、本実施の形態の活物質粒子である負極活物質粒子として、黒鉛、カーボンブラック、カーボンファイバー、カーボンナノチューブ等の炭素材料、Si、SiO、Sn、SnO、CuSn、LiInなどの合金材料、LiTi12等の酸化物、Li金属等が用いることができる。 In the case of the negative electrode active material layer, the negative electrode active material particles that are the active material particles of the present embodiment include carbon materials such as graphite, carbon black, carbon fiber, and carbon nanotube, Si, SiO, Sn, SnO, and CuSn. An alloy material such as LiIn, an oxide such as Li 4 Ti 5 O 12 , Li metal, or the like can be used.

イオン導電性助剤粒子22としては、リチウムイオン導電性を有する以下に例示される無機材料が好ましい。
(1)LiS−P系、LiS−SiS−LiPO系、LiS−SiS−LiI系などのLi、Sを含む硫化物ガラスおよびガラスセラミックス、
(2)Li4−xGe1−x、Li4−xSi1−x、Li10GeP12などのチオリシコン型結晶、
(3)Li1.3Al0.3Ti1.7(PO、Li1.5Al0.5Ge1.5(POなどのナシコン型結晶、
(4)Li0.35La0.55TiO、LiSrTiTaOなどのペロブスカイト型結晶、
(5)LiLaZr12などのガーネット型結晶、
(6)Li14ZnGeなどのリシコン型結晶、
(7)LiNbO3、LiTaO3などの酸化物結晶およびガラス、
(8)Liドープβ−Al結晶、
(9)LiO−SiO−B系、LiO−SiO−ZrO、LiO−SiO−V系などの酸化物ガラス、
(10)LiPONガラス(Li−P−N−Oガラス)、
(11)LiI結晶、
(12)LiPO結晶およびガラス。
The ion conductive auxiliary particles 22 are preferably inorganic materials exemplified below having lithium ion conductivity.
(1) Li 2 S—P 2 S 5 series, Li 2 S—SiS 2 —LiPO 3 series, Li 2 S—SiS 2 —LiI series sulfide glass and glass ceramics containing Li and S,
(2) Thioricicon type crystals such as Li 4-x Ge 1-x P x S 4 , Li 4-x Si 1-x P x S 4 , Li 10 GeP 2 S 12 ,
(3) NASICON type crystals such as Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ,
(4) Perovskite crystals such as Li 0.35 La 0.55 TiO 3 , LiSr 2 TiTaO 6 ,
(5) Garnet-type crystals such as Li 7 La 3 Zr 2 O 12 ,
(6) a silicon type crystal such as Li 14 ZnGe 4 O 4 ;
(7) Oxide crystals such as LiNbO3 and LiTaO3 and glass,
(8) Li-doped β-Al 2 O 3 crystal,
(9) Oxide glass such as Li 2 O—SiO 2 —B 2 O 3 system, Li 2 O—SiO 2 —ZrO 2 , Li 2 O—SiO 2 —V 2 O 5 system,
(10) LiPON glass (Li-P-N-O glass),
(11) LiI crystal,
(12) Li 3 PO 4 crystal and glass.

この中でも、硫化物ガラスおよびガラスセラミックス、またはチオリシコン型結晶などの硫化物固体電解質は、高いイオン導電性を有するため好ましい。硫化物固体電解質は、酸化物固体電解質と比較して粒界の抵抗が低いため、焼結を必要としない点で有利である。そのため硫化物固体電解質は、圧粉体でも高いイオン導電率が得られ、容易に高出力の全固体リチウムイオン二次電池を得ることができるためより好ましい。   Of these, sulfide solid electrolytes such as sulfide glass and glass ceramics, or thiolysicon type crystals are preferable because they have high ionic conductivity. Sulfide solid electrolytes are advantageous in that they do not require sintering because they have lower grain boundary resistance than oxide solid electrolytes. Therefore, a sulfide solid electrolyte is more preferable because high ionic conductivity can be obtained even with a green compact, and a high-power all-solid lithium ion secondary battery can be easily obtained.

これら硫化物ガラスの作成には、メカニカルミリング法および溶融急冷法を用いれば良く、中でも簡便なメカニカルミリング法が好ましい。メカニカルミリング法によれば、室温でガラス作成が可能で、装置の簡略化およびプロセスコストの低減が可能になる。ガラスセラミックスは、硫化物ガラスを熱処理することで得られ、ガラスより高いイオン導電率が得られる傾向がある。熱処理温度はたとえば200℃から400℃の間の温度で行うのが好ましい。チオリシコン型結晶などの硫化物結晶の作成には、例えば固相反応法を用い、反応温度は400℃から700℃程度で行うのが好ましい。   For the production of these sulfide glasses, a mechanical milling method and a melt quenching method may be used, and among them, a simple mechanical milling method is preferable. According to the mechanical milling method, glass can be produced at room temperature, and the apparatus can be simplified and the process cost can be reduced. Glass ceramics are obtained by heat-treating sulfide glass and tend to have higher ionic conductivity than glass. The heat treatment temperature is preferably performed at a temperature between 200 ° C. and 400 ° C., for example. For producing a sulfide crystal such as a thiolysicon type crystal, for example, a solid phase reaction method is preferably used, and the reaction temperature is preferably about 400 ° C. to 700 ° C.

活物質粒子とイオン導電性助剤粒子22の割合は特に制限はないが、イオン導電パスを構築できる範囲内で活物質粒子比率をできるだけ高めた方が、電池体積あたりの容量を高めることができるため好ましい。具体的には、活物質粒子とイオン導電性助剤粒子の重量比で95:5〜20:80とするのが好ましい。活物質粒子の重量比がこの範囲を超えると、イオン導電性助剤粒子によるイオン導電パスが形成されにくくなるため電池の出力が低くなる傾向があり、活物質粒子の重量比がこの範囲を下回ると電池の容量が低くなる傾向がある。   The ratio between the active material particles and the ion conductive auxiliary particles 22 is not particularly limited, but the capacity per battery volume can be increased by increasing the active material particle ratio as much as possible within the range in which the ion conductive path can be constructed. Therefore, it is preferable. Specifically, the weight ratio between the active material particles and the ion conductive auxiliary particles is preferably 95: 5 to 20:80. If the weight ratio of the active material particles exceeds this range, the ionic conductive path due to the ion conductive auxiliary particles becomes difficult to form, so the output of the battery tends to be low, and the weight ratio of the active material particles is below this range. And battery capacity tends to be low.

イオン導電性助剤粒子22の粒子径は、活物質粒子の最大粒子径より小さいことが望ましい。このようにすることで、電極合材層内で活物質粒子とイオン導電性助剤粒子22が密に接触し、イオン導電パスが確実に形成され、電池の出力を高めることができる。本実施形態におけるイオン導電性助剤粒子22の最大粒子径は、任意の領域を走査型電子顕微鏡でその視野内に粒子が100〜500個程度観察される倍率で観察し、観察像より得られたフェレー径(定方向径)の最大粒子径とする。具体的な測定倍率は、5000〜20000倍程度である。   The particle diameter of the ion conductive auxiliary particles 22 is desirably smaller than the maximum particle diameter of the active material particles. By doing so, the active material particles and the ion conductive auxiliary particles 22 are in close contact with each other in the electrode mixture layer, and an ion conductive path is reliably formed, and the output of the battery can be increased. The maximum particle diameter of the ion conductive auxiliary particles 22 in the present embodiment is obtained from an observation image obtained by observing an arbitrary region with a scanning electron microscope at a magnification at which about 100 to 500 particles are observed in the field of view. The maximum particle diameter of the ferret diameter (constant direction diameter). The specific measurement magnification is about 5000 to 20000 times.

電極合材層は、例えば活物質粒子とイオン導電性助剤粒子22を含む電極合材を圧縮成形することで形成される。圧縮成型以外にも、バインダーや溶媒などの成分を添加してペーストとし、このペーストを塗布乾燥することで電極合材層を形成してもよい。溶媒は乾燥して除去するだけではなく、カーボネート系溶媒にLiPFなどのLi塩を溶解したものや、イオン液体を電極合材層や固体電解質層30に残存させても良い。 The electrode mixture layer is formed, for example, by compression molding an electrode mixture containing active material particles and ion conductive auxiliary particles 22. In addition to compression molding, a component such as a binder or a solvent may be added to form a paste, and the electrode mixture layer may be formed by applying and drying this paste. The solvent is not only removed by drying, but a solution obtained by dissolving a Li salt such as LiPF 6 in a carbonate-based solvent or an ionic liquid may be left in the electrode mixture layer or the solid electrolyte layer 30.

活物質粒子とイオン導電性助剤粒子22を含む電極合材層は、粒子の粒子径、形状、分散度、圧縮率等によりある一定の表面粗さを有する。本実施形態における、電極合材層表面において活物質粒子が形成するRmaxとは、電極合材層と固体電解質層界面の任意の0.1mm以上の長さが観察できる断面において、固体電解質層30と電極合材層との境界部分(電極合材層の固体電解質層30側の表面)における、活物質粒子のみによって形成される面の最大粗さを意味する。   The electrode mixture layer including the active material particles and the ion conductive auxiliary particles 22 has a certain surface roughness depending on the particle diameter, shape, degree of dispersion, compressibility, and the like of the particles. In the present embodiment, Rmax formed by the active material particles on the surface of the electrode mixture layer is a solid electrolyte layer 30 in a cross section where an arbitrary length of 0.1 mm or more between the electrode mixture layer and the solid electrolyte layer interface can be observed. The maximum roughness of the surface formed only by the active material particles at the boundary portion between the electrode material layer and the electrode mixture layer (the surface of the electrode mixture layer on the solid electrolyte layer 30 side).

断面観察は走査型電子顕微鏡を用い、5000〜20000倍程度の倍率で行うことができる。図2に図1の拡大図で一例を示すと、電極合材層である正極用電極合材層20が固体電解質層30との界面を、電極合材層である正極用電極合材層20中の活物質粒子である正極活物質粒子21の表面を描画し界面における活物質粒子の粗さを計測できるように、凹凸面を境界線aで示した。正極集電体11と略平行な基準線A1を境界線aの正極集電体11側に最凹部に接するように設け、これに平行な最凸部に接する線A2との距離を測定しその距離をRmaxとする。   Cross-sectional observation can be performed using a scanning electron microscope at a magnification of about 5000 to 20000 times. FIG. 2 shows an example of the enlarged view of FIG. 1. The positive electrode mixture layer 20 that is an electrode mixture layer has an interface with the solid electrolyte layer 30, and the positive electrode mixture layer 20 that is an electrode mixture layer. The uneven surface is indicated by a boundary line a so that the surface of the positive electrode active material particles 21 which are the active material particles therein can be drawn and the roughness of the active material particles at the interface can be measured. The reference line A1 substantially parallel to the positive electrode current collector 11 is provided on the positive electrode current collector 11 side of the boundary line a so as to be in contact with the most concave portion, and the distance from the line A2 in contact with the most convex portion parallel to this is measured. Let the distance be Rmax.

この境界線aの粗さの程度が、全固体リチウムイオン二次電池の正負極間のショートに影響する。このため、粗さの最大値であるRmaxを制御することが、ショートを確実に防止することができるということを見出したのである。くわえるとRmaxを制御するのは、たとえばRa(算術平均粗さ)がRa以上の粗さ部分を多数含む可能性があり、Raの制御だけでは、電池の正負極間のショートを確実に防止するため確実な効果をえることができない。   The degree of roughness of the boundary line a affects the short circuit between the positive and negative electrodes of the all-solid lithium ion secondary battery. For this reason, it has been found that controlling Rmax, which is the maximum value of roughness, can reliably prevent a short circuit. In addition, controlling Rmax may include, for example, a large number of roughness portions where Ra (arithmetic mean roughness) is equal to or higher than Ra, and short-circuiting between the positive and negative electrodes of the battery can be reliably prevented only by controlling Ra. Therefore, a certain effect cannot be obtained.

電極合材層である正極用電極合材層20の表面において活物質粒子が形成するRmaxは、1.0μm未満とすることが望ましい。このようにすることで電池の正負極間のショートを起こすことなく固体電解質層30を薄層化することが可能になり、高い出力を示す全固体リチウムイオン二次電池を得ることができる。   Rmax formed by the active material particles on the surface of the positive electrode mixture layer 20 which is an electrode mixture layer is preferably less than 1.0 μm. By doing so, the solid electrolyte layer 30 can be thinned without causing a short circuit between the positive and negative electrodes of the battery, and an all solid lithium ion secondary battery showing high output can be obtained.

電極合材層の表面において活物質粒子が形成するRmaxを小さくするには、金型を用いて成形する場合にその金型の表面粗さをなるべく小さなものにすることが好ましい。これには、成形時の電極合材層の圧縮圧力を成形体の破壊が起こらない程度に大きくすることが望ましく、具体的には1MPa以上100MPa未満とすることが好ましい。このようにすることで、電極合材層の密度が向上して、体積あたりの充放電容量が向上するほか、活物質粒子とイオン導電性助剤粒子22の接触が密になることで電池の出力が向上する効果が得られる。   In order to reduce Rmax formed by the active material particles on the surface of the electrode mixture layer, it is preferable to make the surface roughness of the mold as small as possible when molding using a mold. For this purpose, it is desirable to increase the compression pressure of the electrode mixture layer at the time of molding to such an extent that the molded body does not break. Specifically, it is preferable to set the pressure to 1 MPa or more and less than 100 MPa. In this way, the density of the electrode mixture layer is improved, the charge / discharge capacity per volume is improved, and the contact between the active material particles and the ion conductive auxiliary particles 22 becomes dense, so that the battery The effect of improving the output is obtained.

電極合材層の表面において活物質粒子が形成するRmaxを1.0μm未満とするためには、電極合材層表面の活物質粒子の最大粒子径を1.0μm未満程度に小さくすることが好ましい。本実施形態における電極合材層の活物質の粒子の最大粒子径は、走査電子顕微鏡で視野内に粒子が100〜500個程度観察できる倍率で観察し、得られた観察像よりフェレー径(定方向径)の最大粒子径とする。具体的な測定倍率は、5000〜20000倍程度である。   In order to make Rmax formed by the active material particles on the surface of the electrode mixture layer less than 1.0 μm, it is preferable to reduce the maximum particle diameter of the active material particles on the surface of the electrode mixture layer to less than about 1.0 μm. . The maximum particle diameter of the active material particles in the electrode mixture layer in this embodiment is observed at a magnification at which about 100 to 500 particles can be observed in the field of view with a scanning electron microscope. The maximum particle diameter in the direction direction). The specific measurement magnification is about 5000 to 20000 times.

LiCoOやLiNiOなどの電子導電性の高い活物質粒子は、高い電池容量と出力を得るために粒界の少ない粒子を用いることが好ましく、さらに、通常1.0μmから10μm程度の粒子径の粒子を用いることが好ましい。これらの活物質を用いた電極合材層の活物質粒子が形成するRmaxを1.0μm未満とするためには、最大粒子径1.0μm未満の粒子を混合して電極合材層を形成することが好ましい。 Active material particles having high electronic conductivity such as LiCoO 2 and LiNiO 2 are preferably particles having few grain boundaries in order to obtain a high battery capacity and output, and usually have a particle size of about 1.0 μm to 10 μm. It is preferable to use particles. In order to make Rmax formed by the active material particles of the electrode mixture layer using these active materials less than 1.0 μm, particles having a maximum particle diameter of less than 1.0 μm are mixed to form the electrode mixture layer. It is preferable.

また、最大粒子径数μm以上の粒子径の粒子を用いて第1の電極合材層を形成し、その表面に最大粒子径1.0μm未満の粒子を含む第2の電極合材層を形成しても良い。このようにすることで、LiCoOやLiNiOなど高い電池容量と出力を得るために通常数μmから数10μmの粒子径の粒子を用いる活物質が、電極合材層においても活物質粒子が形成するRmaxを1.0μm未満とすることができる。 Further, a first electrode mixture layer is formed using particles having a maximum particle diameter of several μm or more, and a second electrode mixture layer containing particles having a maximum particle diameter of less than 1.0 μm is formed on the surface thereof. You may do it. In this way, an active material using particles having a particle diameter of several μm to several tens of μm, such as LiCoO 2 or LiNiO 2 , usually forms active material particles even in the electrode mixture layer. Rmax to be set can be less than 1.0 μm.

一般式LiMPO(式中、MはFe、Mn、Co、Ni、V、VO又はCu等)で表されるオリビン構造を有する材料は、耐熱性の高い活物質材料として、粒子径100nm以下の活物質粒子の表面を導電助剤でコーティングするなどしたハイブリッド化したものを用いることができる。本実施形態においては、このようなハイブリット化した粒子径100nm以下のオリビン構造を有する活物質材料を用いることが好ましく、さらに容易に電極合材層表面において、活物質粒子が形成するRmaxを1.0μm未満にすることができる。 A material having an olivine structure represented by a general formula LiMPO 4 (wherein M is Fe, Mn, Co, Ni, V, VO, Cu, etc.) is a highly heat-resistant active material having a particle diameter of 100 nm or less. A hybridized material obtained by coating the surface of the active material particles with a conductive auxiliary agent can be used. In the present embodiment, it is preferable to use an active material having such a hybridized olivine structure with a particle diameter of 100 nm or less, and the Rmax formed by the active material particles on the surface of the electrode mixture layer is more easily set to 1. It can be less than 0 μm.

粒子径が100nm以下の活物質粒子を得る方法としては、通常の固相焼成法、過剰のリチウム源を用いて焼成する方法(リチウム過剰法)、液相レーザーアブレーション法、噴霧熱分解法、ゾルーゲル法、マイクロ波加熱法、水熱合成法などを用いることが出来る。得られた粒子をボールミル等の各種既知の手段で、粉砕し微粉化してもよい。   The active material particles having a particle size of 100 nm or less can be obtained by a normal solid phase firing method, a method using an excess lithium source (lithium excess method), a liquid phase laser ablation method, a spray pyrolysis method, a sol-gel. Method, microwave heating method, hydrothermal synthesis method and the like can be used. The obtained particles may be pulverized and pulverized by various known means such as a ball mill.

電極合材層において活物質粒子が形成するRmaxを下げるためには、鋭利な突起を持つ活物質粒子や、または、アスペクト比が大きい活物質粒子よりも、粒子表面の凹凸が小さく球形に近いものが好適に用いられる。粒子表面を平滑で球状にするためには、例えば特許文献4に開示されているような、装置内で粒子を機械的に擦り合わせる方法、気流中で粒子同士を擦り合わせる方法、等を適宜用いることができる。   In order to reduce the Rmax formed by the active material particles in the electrode mixture layer, the active material particles having sharp protrusions or those having a particle surface with a small concavo-convex shape closer to a sphere than the active material particles having a large aspect ratio Are preferably used. In order to make the particle surface smooth and spherical, for example, as disclosed in Patent Document 4, a method of mechanically rubbing particles in an apparatus, a method of rubbing particles in an air stream, or the like is appropriately used. be able to.

電極合材層を形成後、その表面を処理により、活物質粒子が形成するRmaxを下げることが出来る。それには、例えばサンドブラスト法、プラズマ中での逆スパッタリング法、イオンビームを用いたイオンミリング法などが用いることが出来る。   After forming the electrode mixture layer, Rmax formed by the active material particles can be lowered by treating the surface of the electrode mixture layer. For example, a sand blast method, a reverse sputtering method in plasma, an ion milling method using an ion beam, or the like can be used.

活物資粒子表面には、固体電解質との界面抵抗を低減するため、コーティングを施しても良い。コーティング材料としては、LiNbO、LiTaO、LiTi12、LiLa(2−x)/3TiO(0.1≦x≦0.5)、Li7+xLaZr12+(x/2)(−5≦x≦3)、Li3.6Si0.60.4、Li1.3Al0.3Ti1.7(PO、Li1.8Cr0.8Ti1.2(PO、Li1.4In0.4Ti1.6(POなどを用いることが出来る。コーティングの厚さは1nmから10nmが好ましい。 The surface of the active material particles may be coated to reduce the interfacial resistance with the solid electrolyte. Coating materials include LiNbO 3 , LiTaO 3 , Li 4 Ti 5 O 12 , Li x La (2-x) / 3 TiO 3 (0.1 ≦ x ≦ 0.5), Li 7 + x La 3 Zr 2 O 12+ (X / 2) (−5 ≦ x ≦ 3), Li 3.6 Si 0.6 P 0.4 O 4 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1. 8 Cr 0.8 Ti 1.2 (PO 4 ) 3, Li 1.4 In 0.4 Ti 1.6 (PO 4) 3 , etc. can be used. The thickness of the coating is preferably 1 nm to 10 nm.

電極合材層は、電子導電性を付与するために導電助剤を含んでも良い。その導電助剤には、アセチレンブラック、ケッチェンブラック等のカーボンブラックやカーボンファイバー等の炭素材料が好適に用いられる。   The electrode mixture layer may contain a conductive additive in order to impart electronic conductivity. As the conductive auxiliary agent, carbon materials such as carbon black such as acetylene black and ketjen black and carbon fiber are preferably used.

(固体電解質層)
電極合材層の表面には固体電解質層30を設ける。固体電解質層30は、例えば焼結体のような一体化された部材であっても良く、固体電解質粒子31の圧粉体であっていても良い。また、固体電解質層30は必要に応じてアルミナ、シリカなどの絶縁性の無機粒子を含んでも良い。固体電解質層30に用いる固体電解質粒子31は、イオン導電性助剤粒子22とは異なる材料であっても良い。ただし、イオン導電性助剤粒子22に用いたものと同じ材料は界面抵抗を低下できる傾向があるためより好適に用いられる。中でも硫化物固体電解質の場合、圧粉体でも高いイオン導電率が得られるため、容易に電極合材層と固体電解質層30との良好なイオンパスが形成され、全固体リチウムイオン二次電池の出力を高めることができる。
(Solid electrolyte layer)
A solid electrolyte layer 30 is provided on the surface of the electrode mixture layer. The solid electrolyte layer 30 may be an integrated member such as a sintered body, or may be a green compact of the solid electrolyte particles 31. The solid electrolyte layer 30 may include insulating inorganic particles such as alumina and silica as necessary. The solid electrolyte particles 31 used for the solid electrolyte layer 30 may be made of a material different from that of the ion conductive auxiliary particles 22. However, since the same material as that used for the ion conductive auxiliary particles 22 tends to reduce the interface resistance, it is more preferably used. In particular, in the case of a sulfide solid electrolyte, a high ion conductivity can be obtained even with a green compact, so that a good ion path between the electrode mixture layer and the solid electrolyte layer 30 can be easily formed, and the output of the all-solid lithium ion secondary battery Can be increased.

固体電解質粒子31としては、イオン導電性助剤粒子22と同じ以下に例示される無機材料を用いることが好ましい。
(1)LiS−P系、LiS−SiS−LiPO系、LiS−SiS−LiI系などのLi、Sを含む硫化物ガラスおよびガラスセラミックス、
(2)Li4−xGe1−x、Li4−xSi1−x、Li10GeP12などのチオリシコン型結晶、
(3)Li1.3Al0.3Ti1.7(PO、Li1.5Al0.5Ge1.5(POなどのナシコン型結晶、
(4)Li0.35La0.55TiO、LiSrTiTaOなどのペロブスカイト型結晶、
(5)LiLaZr12などのガーネット型結晶、
(6)Li14ZnGeなどのリシコン型結晶、
(7)LiNbO3、LiTaO3などの酸化物結晶およびガラス、
(8)Liドープβ−Al結晶、
(9)LiO−SiO−B系、LiO−SiO−ZrO、LiO−SiO−V系などの酸化物ガラス、
(10)LiPONガラス(Li−P−N−Oガラス)、
(11)LiI結晶、
(12)LiPO結晶およびガラス。
As the solid electrolyte particles 31, it is preferable to use the same inorganic materials exemplified below as those of the ion conductive auxiliary particles 22.
(1) Li 2 S—P 2 S 5 series, Li 2 S—SiS 2 —LiPO 3 series, Li 2 S—SiS 2 —LiI series sulfide glass and glass ceramics containing Li and S,
(2) Thioricicon type crystals such as Li 4-x Ge 1-x P x S 4 , Li 4-x Si 1-x P x S 4 , Li 10 GeP 2 S 12 ,
(3) NASICON type crystals such as Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ,
(4) Perovskite crystals such as Li 0.35 La 0.55 TiO 3 , LiSr 2 TiTaO 6 ,
(5) Garnet-type crystals such as Li 7 La 3 Zr 2 O 12 ,
(6) a silicon type crystal such as Li 14 ZnGe 4 O 4 ;
(7) Oxide crystals such as LiNbO3 and LiTaO3 and glass,
(8) Li-doped β-Al 2 O 3 crystal,
(9) Oxide glass such as Li 2 O—SiO 2 —B 2 O 3 system, Li 2 O—SiO 2 —ZrO 2 , Li 2 O—SiO 2 —V 2 O 5 system,
(10) LiPON glass (Li-P-N-O glass),
(11) LiI crystal,
(12) Li 3 PO 4 crystal and glass.

本実施形態において、固体電解質層30中の固体電解質粒子31の平均粒子径は電極合材層表面において活物質粒子が形成するRmaxの0.1倍以上1.0倍未満である。このようにすることで、電極合材層表面の活物質粒子と効果的に固体電解質粒子31が接触してイオン導電パスを構築し、電池容量・出力を高めることができる。1.0倍以上では固体電解質粒子31と電極合材層表面の活物質粒子との接触面積が不足することから電池の出力が低下し、0.1倍未満では固体電解質粒子間の界面抵抗が無視できなくなってリチウムイオンの拡散が抑制される傾向により、電池の出力が低下する。本実施形態における平均粒子径は、走査型電子顕微鏡により視野内に粒子が100〜500個程度観察される倍率で測定した像により得られたフェレー径(定方向径)の個数平均粒子径である。具体的な測定倍率は、5000〜20000倍程度である。   In this embodiment, the average particle diameter of the solid electrolyte particles 31 in the solid electrolyte layer 30 is 0.1 times or more and less than 1.0 times Rmax formed by the active material particles on the surface of the electrode mixture layer. By doing in this way, the active material particle of the electrode compound-material layer surface and the solid electrolyte particle 31 can contact effectively, an ion conductive path can be constructed | assembled, and battery capacity and output can be improved. If it is 1.0 times or more, the contact area between the solid electrolyte particles 31 and the active material particles on the surface of the electrode mixture layer is insufficient, so that the output of the battery is lowered. If it is less than 0.1 times, the interface resistance between the solid electrolyte particles is low. The output of the battery decreases due to the tendency to suppress the diffusion of lithium ions because it cannot be ignored. The average particle diameter in the present embodiment is the number average particle diameter of the ferret diameter (constant direction diameter) obtained from an image measured with a scanning electron microscope at a magnification at which about 100 to 500 particles are observed in the field of view. . The specific measurement magnification is about 5000 to 20000 times.

また、本実施形態における固体電解質層30の厚さは、電極合材層表面において活物質粒子が形成するRmaxの5倍以上である。このようにすることで正負極間のショートが確実に防止された全固体リチウムイオン二次電池を得ることができる。5倍未満とすると、容量や出力が一時的に向上することがあるが、充放電を繰り返すことで正負極間のショートが起き、電池として機能しなくなることがある。   Moreover, the thickness of the solid electrolyte layer 30 in this embodiment is 5 times or more of Rmax formed by the active material particles on the surface of the electrode mixture layer. By doing in this way, the all-solid-state lithium ion secondary battery by which the short circuit between positive and negative electrodes was prevented reliably can be obtained. If it is less than 5 times, the capacity and output may be temporarily improved. However, repeating charging and discharging may cause a short circuit between the positive and negative electrodes, and may not function as a battery.

さらに、本実施形態における固体電解質層30の厚さは、固体電解質層30中の固体電解質粒子31の平均粒子径の100倍未満である。このようにすることで、固体電解質層30中の固体電解質粒子間の界面抵抗によるリチウムイオン導電性の低下を防ぐことが可能となり、より高出力の全固体リチウムイオン二次電池を得ることができる。   Furthermore, the thickness of the solid electrolyte layer 30 in the present embodiment is less than 100 times the average particle diameter of the solid electrolyte particles 31 in the solid electrolyte layer 30. By doing in this way, it becomes possible to prevent the lithium ion electroconductivity fall by the interface resistance between the solid electrolyte particles in the solid electrolyte layer 30, and a higher output all-solid-state lithium ion secondary battery can be obtained. .

固体電解質層30の厚さは、固体電解質粒子31の平均粒子径の10倍以上とすることが好ましい。10倍未満では固体電解質層30として一体化するのが難しくなる傾向があり、圧縮成型後に金型から成形体を抜き出すときに強度が低下して割れや欠けが生じる傾向がある。   The thickness of the solid electrolyte layer 30 is preferably 10 times or more the average particle diameter of the solid electrolyte particles 31. If it is less than 10 times, it tends to be difficult to be integrated as the solid electrolyte layer 30, and when the molded body is extracted from the mold after compression molding, the strength tends to decrease and cracks and chips are likely to occur.

(電池セル化)
全固体リチウムイオン二次電池は、一例として、正極集電体11上に正極活物質粒子21とイオン導電性助剤粒子22を含む電極合材を、金型などを用いて圧縮成形して正極用電極合材層20を形成する。正極用電極合材層20の、正極集電体11とは反対側の面には固体電解質粒子31を圧縮成形して固体電解質層30を形成する。あらかじめ固体電解質粒子31を圧縮成形したペレットを用いても良い。圧縮成型以外にも、バインダーや溶媒などの成分を添加してペーストとし、このペーストを塗布乾燥することで電極合材層や固体電解質層30を形成してもよい。ここでの溶媒は乾燥して除去するだけではなく、カーボネート系溶媒にLiPFなどのLi塩を溶解したものや、イオン液体を電極合材層や固体電解質層30に残存させても良い。
(Battery cell)
As an example, the all solid lithium ion secondary battery is formed by compressing and molding an electrode mixture containing positive electrode active material particles 21 and ion conductive auxiliary particles 22 on a positive electrode current collector 11 using a mold or the like. The electrode composite material layer 20 is formed. The solid electrolyte layer 30 is formed by compression-molding the solid electrolyte particles 31 on the surface of the positive electrode mixture layer 20 opposite to the positive electrode current collector 11. You may use the pellet which compression-molded the solid electrolyte particle 31 previously. In addition to compression molding, a component such as a binder or a solvent may be added to obtain a paste, and the electrode mixture layer or the solid electrolyte layer 30 may be formed by applying and drying the paste. The solvent here is not only removed by drying, but a carbonate salt solvent in which a Li salt such as LiPF 6 is dissolved, or an ionic liquid may be left in the electrode mixture layer or the solid electrolyte layer 30.

固体電解質層30の正極用電極合材層20とは反対側の面には、LiやLi−In合金などの金属箔からなる負極層40、または活物質粒子と固体電解質粒子31を含む負極合材を圧縮成形するなどした負極合材層を設ける。負極層40または負極合材層の固体電解質層30とは反対側の面には負極集電体12を設ける。   On the surface of the solid electrolyte layer 30 opposite to the positive electrode mixture layer 20, a negative electrode layer 40 made of a metal foil such as Li or a Li—In alloy, or a negative electrode composite containing active material particles and solid electrolyte particles 31. A negative electrode mixture layer obtained by compression-molding the material is provided. The negative electrode current collector 12 is provided on the surface of the negative electrode layer 40 or the negative electrode mixture layer opposite to the solid electrolyte layer 30.

集電体としては、構成された電池に用いることができる電子導電体であれば、特に限定されない。   The current collector is not particularly limited as long as it is an electronic conductor that can be used in a configured battery.

正極集電体11の材料としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウム等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極集電体材料としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面を酸化処理することも可能である。これらの形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ、エキスパンドされた形状、ラス体、多孔質体、発砲体、繊維群の形成体等が用いることができる。   The positive electrode current collector 11 may be made of aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, or the like, for the purpose of improving adhesiveness, conductivity, and oxidation resistance. A material obtained by treating the surface such as carbon, nickel, titanium, silver, or the like can be used. Negative electrode current collector materials include copper, stainless steel, nickel, aluminum, titanium, baked carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as improved adhesion, conductivity, and oxidation resistance For this purpose, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. The surface of these materials can be oxidized. As for these shapes, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched shape, an expanded shape, a lath body, a porous body, a foamed body, a formed body of a fiber group, and the like can be used.

以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、いろいろな変形および変更が本発明の特許請求範囲内で可能なこと、またそうした変形例および変更も本発明の特許請求の範囲にあることは当業者に理解されるところである。従って、本明細書での記述および図面は限定的ではなく例証的に扱われるべきものである。   The present invention has been described based on the embodiments. It will be understood by those skilled in the art that the embodiments are illustrative, and that various modifications and changes are possible within the scope of the claims of the present invention, and that such modifications and changes are also within the scope of the claims of the present invention. By the way. Accordingly, the description and drawings herein are to be regarded as illustrative rather than restrictive.

(実施例1)
(正極用電極合材層)
正極活物質粒子として、LiCoO(最大粒子径2.00μm)を用いた。イオン導電性助剤として平均粒子径1.00μmの酸化物固体電解質Li1.5Al0.5Ge1.5(POを用い、正極用電極合材の組成比を、正極活物質粒子80wt%、イオン導電性助剤粒子10wt%、導電助剤(アセチレンブラック、電気化学工業製デンカブラックDAB50)10wt%とし、秤量した混合粒子を乳鉢で混合分散し、錠剤成型機を用いてこの混合粒子を20MPaで圧縮することで正極用電極合材層を得た。
Example 1
(Electrode mixture layer for positive electrode)
LiCoO 2 (maximum particle diameter 2.00 μm) was used as the positive electrode active material particles. An oxide solid electrolyte Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 having an average particle diameter of 1.00 μm was used as an ion conductive auxiliary, and the composition ratio of the electrode mixture for positive electrode was determined according to the positive electrode active material. 80 wt% of particles, 10 wt% of ionic conductive auxiliary particles, 10 wt% of conductive auxiliary (acetylene black, Denka Black DAB50 manufactured by Denki Kagaku Kogyo Co., Ltd.), and the weighed mixed particles are mixed and dispersed in a mortar. The mixed particles were compressed at 20 MPa to obtain a positive electrode mixture layer.

(固体電解質層)
モル比75:25のLiS粒子(高純度化学研究所、型番LII06PB)およびP粒子(Aldrich社、型番232106)を遊星型ボールミル(Fritch社)に投入し、350rpm、6時間粉砕混合した。得られた粒子を250℃2時間熱処理することでガラスセラミックス化した。これを再度遊星型ボールミルで350rpm、1時間粉砕し、平均粒子径0.70μmの硫化物固体電解質粒子を得た。この固体電解質粒子を錠剤成型機中の正極用電極合材層表面に投入し、錠剤成型機で圧縮することで正極用電極合材層と固体電解質層が一体化された積層体を得た。これらの材料および配合比一覧を表1に合わせ示す。
(Solid electrolyte layer)
Li 2 S particles (high purity chemical research laboratory, model number LII06PB) and P 2 S 5 particles (Aldrich company, model number 232106) with a molar ratio of 75:25 were put into a planetary ball mill (Fritch company), and pulverized at 350 rpm for 6 hours. Mixed. The obtained particles were heat treated at 250 ° C. for 2 hours to form glass ceramics. This was again pulverized with a planetary ball mill at 350 rpm for 1 hour to obtain sulfide solid electrolyte particles having an average particle size of 0.70 μm. The solid electrolyte particles were put on the surface of the positive electrode mixture layer in the tablet molding machine and compressed by the tablet molding machine to obtain a laminate in which the positive electrode mixture layer and the solid electrolyte layer were integrated. Table 1 shows a list of these materials and blending ratios.

(電池セルの作成)
積層体を取り出し、固体電解質層の正極用電極合材層とは反対側の面にLi箔(高純度化学研究所、厚さ0.25μm)を貼り付け、得られた積層体を約1MPaの圧力で加圧する冶具に取り付け電池セルとした。同じ構成の電池セルを6個作成した。
(Create battery cells)
The laminated body is taken out, Li foil (High Purity Chemical Laboratory, thickness 0.25 μm) is pasted on the surface of the solid electrolyte layer opposite to the positive electrode mixture layer, and the obtained laminated body is about 1 MPa. The battery cell was attached to a jig that was pressurized with pressure. Six battery cells having the same configuration were prepared.

(電池セル評価)
作成した6個中5個の電池について、0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.0V/3.0V(充電終止電圧/放電終止電圧)の条件で充放電を行い、平均84mAh/gの放電容量(実効容量の67%)を得た。3C条件では平均放電容量57mAh/gが得られ、0.1C条件の68%の放電容量が得られた。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。評価結果を表2に合わせ示す。
(Battery cell evaluation)
About 5 of the 6 batteries created, charge / discharge was performed under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.0 V / 3.0 V (end of charge voltage / end of discharge voltage). And an average discharge capacity of 84 mAh / g (67% of effective capacity) was obtained. Under the 3C condition, an average discharge capacity of 57 mAh / g was obtained, and a 68% discharge capacity under the 0.1C condition was obtained. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit. The evaluation results are shown in Table 2.

(活物質断面の評価)
電池セル評価を行わなかった1個の電池について、走査型電子顕微鏡による断面観察(日立製作所製 S−4700、加速電圧5kV)を行った。実施形態の図2に示した方法で電極合材層表面において活物質粒子が形成するRmaxを求めたところ1.70μmであり、固体電解質層の厚さは45.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.70μmであった。固体電解質粒子の平均粒子径はRmaxの0.41倍、固体電解質の厚さはRmaxの26.5倍かつ固体電解質粒子の64.3倍であった。
(Evaluation of active material cross section)
For one battery that was not subjected to battery cell evaluation, cross-sectional observation (S-4700, manufactured by Hitachi, Ltd., acceleration voltage 5 kV) was performed using a scanning electron microscope. When the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined by the method shown in FIG. 2 of the embodiment, it was 1.70 μm, the thickness of the solid electrolyte layer was 45.0 μm, and the solid electrolyte of the solid electrolyte layer The average particle size of the particles was 0.70 μm. The average particle diameter of the solid electrolyte particles was 0.41 times Rmax, the thickness of the solid electrolyte was 26.5 times Rmax, and 64.3 times that of the solid electrolyte particles.

(実施例2)
イオン導電性助剤粒子として実施例1の固体電解質層に用いた硫化物固体電解質粒子を用い、正極用電極合材層の組成比を正極活物質粒子75wt%、イオン導電性助剤粒子15wt%、導電助剤(アセチレンブラック)10wt%としたほかは表1に示すように実施例1と同様に電池セルを作成した。
(Example 2)
The sulfide solid electrolyte particles used in the solid electrolyte layer of Example 1 were used as the ion conductive auxiliary particles, and the composition ratio of the electrode mixture layer for positive electrode was 75 wt% for positive electrode active material particles and 15 wt% for ion conductive auxiliary particles. As shown in Table 1, a battery cell was prepared in the same manner as in Example 1 except that the conductive assistant (acetylene black) was 10 wt%.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均放電容量は89mAh/g(実効容量の71%)であった。3C条件での平均放電容量は64mAh/gで、0.1C条件の72%であった。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, the average discharge capacity was 89 mAh / g (71% of the effective capacity). there were. The average discharge capacity under the 3C condition was 64 mAh / g, which was 72% of the 0.1C condition. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ1.50μmであり、固体電解質層の厚さは45.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.70μmであった。固体電解質粒子の平均粒子径はRmaxの0.47倍、固体電解質の厚さはRmaxの30.0倍かつ固体電解質粒子の64.3倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 1.50 μm, the thickness of the solid electrolyte layer was 45.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 0.70 μm. The average particle diameter of the solid electrolyte particles was 0.47 times Rmax, the thickness of the solid electrolyte was 30.0 times Rmax, and 64.3 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(実施例3)
正極活物質粒子としてLiCoO(最大粒子径2.50μm)を用いた。硫化物固体電解質の加熱処理後の再粉砕を500rpmで2時間行い、平均粒子径0.20μmの硫化物固体電解質粒子を得た。この粒子を正極用電極合材層のイオン導電性助剤粒子および固体電解質層の固体電解質粒子として用い、表1に示すように実施例2と同様の電極合材層の組成比で電池セルを作成した。固体電解質層の固体電解質粒子の投入量は、実施例1の0.45倍とした。
(Example 3)
LiCoO 2 (maximum particle diameter 2.50 μm) was used as the positive electrode active material particles. The pulverization after the heat treatment of the sulfide solid electrolyte was performed at 500 rpm for 2 hours to obtain sulfide solid electrolyte particles having an average particle diameter of 0.20 μm. Using these particles as the ion conductive auxiliary particles of the positive electrode mixture layer and the solid electrolyte particles of the solid electrolyte layer, as shown in Table 1, the battery cell was formed with the same composition ratio of the electrode mixture layer as in Example 2. Created. The input amount of solid electrolyte particles in the solid electrolyte layer was 0.45 times that in Example 1.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均放電容量は93mAh/g(実効容量の74%)であった。3C条件での平均放電容量は70mAh/gで、0.1C条件の75%であった。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, the average discharge capacity was 93 mAh / g (74% of the effective capacity). there were. The average discharge capacity under the 3C condition was 70 mAh / g, which was 75% of the 0.1C condition. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ2.00μmであり、固体電解質層の厚さは20.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.20μmであった。固体電解質粒子の平均粒子径はRmaxの0.10倍、固体電解質の厚さはRmaxの10.0倍かつ固体電解質粒子の100.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 2.00 μm, the thickness of the solid electrolyte layer was 20.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 0.20 μm. The average particle diameter of the solid electrolyte particles was 0.10 times Rmax, the thickness of the solid electrolyte was 10.0 times Rmax, and 100.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(実施例4)
正極活物質粒子としてLiCoO(最大粒子径0.50μm)を用いた以外は、実施例3と同様の材料を用い、固体電解質層の固体電解質粒子の投入量を実施例1の0.30倍として表1に示すように電池セルを作成した。
Example 4
The same material as in Example 3 was used except that LiCoO 2 (maximum particle diameter 0.50 μm) was used as the positive electrode active material particles, and the amount of solid electrolyte particles charged in the solid electrolyte layer was 0.30 times that in Example 1. As shown in Table 1, battery cells were prepared.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均放電容量は95mAh/g(実効容量の76%)であった。3C条件での平均放電容量は73mAh/gで、0.1C条件の77%であった。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, the average discharge capacity was 95 mAh / g (76% of the effective capacity). there were. The average discharge capacity under the 3C condition was 73 mAh / g, 77% of the 0.1C condition. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.80μmであり、固体電解質層の厚さは14.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.20μmであった。固体電解質粒子の平均粒子径はRmaxの0.25倍、固体電解質の厚さはRmaxの17.5倍かつ固体電解質粒子の70.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 0.80 μm, the thickness of the solid electrolyte layer was 14.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 0.20 μm. The average particle diameter of the solid electrolyte particles was 0.25 times Rmax, the thickness of the solid electrolyte was 17.5 times Rmax, and 70.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(実施例5)
固体電解質層に平均粒子径0.70μmの硫化物固体電解質粒子を用いた以外は実施例4と同様の材料を用い、固体電解質層の固体電解質粒子の投入量を実施例1の0.15倍として表1に示すように電池セルを作成した。
(Example 5)
The same material as in Example 4 was used except that sulfide solid electrolyte particles having an average particle diameter of 0.70 μm were used for the solid electrolyte layer, and the amount of solid electrolyte particles in the solid electrolyte layer was 0.15 times that in Example 1. As shown in Table 1, battery cells were prepared.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均放電容量は103mAh/g(実効容量の82%)であった。3C条件での平均放電容量は87mAh/gで、0.1C条件の84%であった。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, the average discharge capacity was 103 mAh / g (82% of the effective capacity). there were. The average discharge capacity under the 3C condition was 87 mAh / g, which was 84% of the 0.1C condition. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.80μmであり、固体電解質層の厚さは7.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.70μmであった。固体電解質粒子の平均粒子径はRmaxの0.88倍、固体電解質の厚さはRmaxの8.8倍かつ固体電解質粒子の10.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 0.80 μm, the thickness of the solid electrolyte layer was 7.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 0.70 μm. The average particle diameter of the solid electrolyte particles was 0.88 times Rmax, the thickness of the solid electrolyte was 8.8 times Rmax, and 10.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(実施例6)
表1に示すように実施例5と同様の材料と配合比で正極用電極合材層と固体電解質層が一体化された圧粉体を作成した。負極活物質として、最大粒子径0.10μmのSi(Aldrich)を用い、負極活物質粒子55wt%、イオン導電性助剤粒子として平均粒子径0.20μmの硫化物固体電解質粒子25wt%、導電助剤(アセチレンブラック)20wt%を秤量した混合粒子を乳鉢で混合分散し、これを固体電解質層上に投入して圧縮成型し、正極用電極合材層と固体電解質層と負極用電極合材層が一体化された積層体を得た。積層体を取り出し、約1MPaの圧力で加圧する冶具に取り付け電池セルとした。
(Example 6)
As shown in Table 1, a green compact in which the electrode mixture layer for positive electrode and the solid electrolyte layer were integrated with the same material and mixing ratio as in Example 5 was prepared. Si (Aldrich) with a maximum particle size of 0.10 μm was used as the negative electrode active material, 55 wt% of the negative electrode active material particles, 25 wt% of sulfide solid electrolyte particles with an average particle size of 0.20 μm as the ion conductive auxiliary particles, The mixed particles weighed 20 wt% of the agent (acetylene black) are mixed and dispersed in a mortar, and the mixture is put on the solid electrolyte layer and compression molded, and the positive electrode mixture layer, the solid electrolyte layer, and the negative electrode mixture layer Was obtained. The laminate was taken out and attached to a jig that was pressurized with a pressure of about 1 MPa to form a battery cell.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均放電容量は100mAh/g(実効容量の80%)であった。3C条件での平均放電容量は82mAh/gで、0.1C条件の82%であった。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, the average discharge capacity was 100 mAh / g (80% of the effective capacity). there were. The average discharge capacity under the 3C condition was 82 mAh / g, which was 82% of the 0.1C condition. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、正極用電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.80μmであり、固体電解質層の厚さは7.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.70μmであった。固体電解質粒子の平均粒子径はRmaxの0.88倍、固体電解質の厚さはRmaxの8.8倍かつ固体電解質粒子の10.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not subjected to battery cell evaluation, the Rmax formed by the active material particles on the surface of the positive electrode mixture layer was determined to be 0.80 μm, and the thickness of the solid electrolyte layer was 7.0 μm. The average particle size of the solid electrolyte particles in the electrolyte layer was 0.70 μm. The average particle diameter of the solid electrolyte particles was 0.88 times Rmax, the thickness of the solid electrolyte was 8.8 times Rmax, and 10.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(実施例7)
表1に示すように実施例4と同様の材料を用い、固体電解質層の固体電解質粒子の投入量を実施例1の0.20倍として電池セルを作成した。
(Example 7)
As shown in Table 1, the same material as in Example 4 was used, and the amount of solid electrolyte particles in the solid electrolyte layer was 0.20 times that in Example 1 to produce a battery cell.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均101mAh/gの放電容量(実効容量の81%)を得た。3C条件では平均放電容量84mAh/gが得られ、0.1C条件の83%の放電容量が得られた。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, an average discharge capacity of 101 mAh / g (81% of the effective capacity) was Obtained. Under the 3C condition, an average discharge capacity of 84 mAh / g was obtained, and a discharge capacity of 83% of the 0.1C condition was obtained. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.80μmであり、固体電解質層の厚さは8.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.20μmであった。固体電解質粒子の平均粒子径はRmaxの0.25倍、固体電解質の厚さはRmaxの10.0倍かつ固体電解質粒子の40.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not subjected to battery cell evaluation, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 0.80 μm, the thickness of the solid electrolyte layer was 8.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 0.20 μm. The average particle size of the solid electrolyte particles was 0.25 times Rmax, the thickness of the solid electrolyte was 10.0 times Rmax, and 40.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(実施例8)
正極活物質粒子として最大粒子径30.0μmのLiCoO、イオン導電性助剤粒子として平均粒子径0.70μmの硫化物固体電解質粒子、導電助剤としてアセチレンブラックからなる正極合剤混合粒子を錠剤成型機で加圧圧縮することで第一の正極用電極合材層を形成した。この上に、正極活物質として最大粒子径0.50μmのLiCoO、イオン導電性助剤粒子として平均粒子径0.20μmの硫化物固体電解質粒子、導電助剤としてアセチレンブラックからなる正極合材混合粒子を錠剤成型機に投入し、加圧圧縮して第二の正極用電極合材層を形成し、含有する最大粒子径の異なる2層からなる積層正極用電極合材層を形成した。各正極用電極合材層の組成比は、表1に示すように正極活物質粒子75wt%、イオン導電性助剤粒子15wt%、導電助剤10wt%とした。その後、平均粒子径0.70μmの固体電解質粒子を用い、投入量を実施例1の0.15倍として固体電解質層を形成し、電池セルを作成した。
(Example 8)
LiPoO 2 with a maximum particle size of 30.0 μm as positive electrode active material particles, sulfide solid electrolyte particles with an average particle size of 0.70 μm as ionic conductive auxiliary particles, and positive electrode mixture mixed particles consisting of acetylene black as a conductive auxiliary agent A first positive electrode mixture layer was formed by pressure compression with a molding machine. On top of this, a positive electrode mixture comprising LiCoO 2 having a maximum particle size of 0.50 μm as a positive electrode active material, sulfide solid electrolyte particles having an average particle size of 0.20 μm as ion conductive auxiliary particles, and acetylene black as a conductive auxiliary agent The particles were put into a tablet molding machine and compressed to form a second positive electrode mixture layer, and a laminated positive electrode mixture layer composed of two layers having different maximum particle diameters was formed. As shown in Table 1, the composition ratio of each positive electrode mixture layer was set to 75 wt% positive electrode active material particles, 15 wt% ion conductive auxiliary particles, and 10 wt% conductive auxiliary agents. Thereafter, solid electrolyte particles having an average particle diameter of 0.70 μm were used, the input amount was 0.15 times that of Example 1, a solid electrolyte layer was formed, and a battery cell was produced.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均114mAh/gの放電容量(実効容量の91%)を得た。3C条件では平均放電容量99mAh/gが得られ、0.1C条件の87%の放電容量が得られた。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, an average discharge capacity of 114 mAh / g (91% of the effective capacity) was Obtained. Under the 3C condition, an average discharge capacity of 99 mAh / g was obtained, and a discharge capacity of 87% of the 0.1C condition was obtained. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.80μmであり、固体電解質層の厚さは7.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.70μmであった。固体電解質粒子の平均粒子径はRmaxの0.88倍、固体電解質の厚さはRmaxの8.8倍かつ固体電解質粒子の10.0倍であった。また、第一の正極用電極合材層と第二の正極用電極合材層の厚さの比は4:1であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 0.80 μm, the thickness of the solid electrolyte layer was 7.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 0.70 μm. The average particle diameter of the solid electrolyte particles was 0.88 times Rmax, the thickness of the solid electrolyte was 8.8 times Rmax, and 10.0 times that of the solid electrolyte particles. The ratio of the thicknesses of the first positive electrode mixture layer and the second positive electrode mixture layer was 4: 1. The evaluation results are shown in Table 2.

(実施例9)
表1に示すように実施例2と同様の材料および配合比で正極用電極合材層を形成した。この正極用電極合材層をスパッタリング用のチャンバーに導入し、10−4Paまで真空引きした後にArガスを導入し、0.5Paの圧力下200Wの出力で正極用電極合材層表面をRFスパッタリングした。
Example 9
As shown in Table 1, a positive electrode mixture layer was formed with the same material and blending ratio as in Example 2. This positive electrode mixture layer is introduced into a sputtering chamber, evacuated to 10 −4 Pa, Ar gas is introduced, and the surface of the positive electrode mixture layer is RFed at an output of 200 W under a pressure of 0.5 Pa. Sputtered.

正極用電極合材層を錠剤成型機に戻し、この上に投入量を実施例1の0.20倍として平均粒子径0.20μmの硫化物固体電解質粒子を用いて固体電解質層を形成し、電池セルを作成した。   The positive electrode mixture layer is returned to the tablet molding machine, and a solid electrolyte layer is formed thereon using sulfide solid electrolyte particles having an average particle diameter of 0.20 μm with an input amount 0.20 times that of Example 1. A battery cell was created.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均110mAh/gの放電容量(実効容量の88%)を得た。3C条件では平均放電容量92mAh/gが得られ、0.1C条件の84%の放電容量が得られた。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, an average discharge capacity of 110 mAh / g (88% of the effective capacity) was obtained. Obtained. Under the 3C condition, an average discharge capacity of 92 mAh / g was obtained, and a discharge capacity of 84% of the 0.1C condition was obtained. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.70μmであり、固体電解質層の厚さは8.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.20μmであった。固体電解質粒子の平均粒子径はRmaxの0.29倍、固体電解質の厚さはRmaxの11.4倍かつ固体電解質粒子の40.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 0.70 μm, the thickness of the solid electrolyte layer was 8.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 0.20 μm. The average particle diameter of the solid electrolyte particles was 0.29 times Rmax, the thickness of the solid electrolyte was 11.4 times Rmax, and 40.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(実施例10)
表1に示すように実施例2と同様の材料および配合比で正極用電極合材層を形成した。この正極用電極合材層をスパッタリング用のチャンバーに導入し、10−4Paまで真空引きした後にArガスを導入し、0.5Paの圧力下200Wの出力でLiCoOを合材層表面にRFスパッタリングした。
(Example 10)
As shown in Table 1, a positive electrode mixture layer was formed with the same material and blending ratio as in Example 2. This positive electrode mixture layer is introduced into a sputtering chamber, evacuated to 10 −4 Pa, Ar gas is introduced, and LiCoO 2 is RF-fed onto the mixture layer surface at an output of 200 W under a pressure of 0.5 Pa. Sputtered.

正極用電極合材層を錠剤成型機に戻し、この上に投入量を実施例1の0.15倍として平均粒子径0.70μmの硫化物固体電解質粒子を用いて固体電解質層を形成し、電池セルを作成した。   The positive electrode mixture layer is returned to the tablet molding machine, and a solid electrolyte layer is formed thereon using sulfide solid electrolyte particles having an average particle diameter of 0.70 μm with an input amount 0.15 times that of Example 1. A battery cell was created.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均108mAh/gの放電容量(実効容量の86%)を得た。3C条件では平均放電容量90mAh/gが得られ、0.1C条件の83%の放電容量が得られた。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, an average discharge capacity of 108 mAh / g (86% of the effective capacity) was Obtained. Under the 3C condition, an average discharge capacity of 90 mAh / g was obtained, and a discharge capacity of 83% of the 0.1C condition was obtained. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.90μmであり、固体電解質層の厚さは7.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.70μmであった。固体電解質粒子の平均粒子径はRmaxの0.78倍、固体電解質の厚さはRmaxの7.8倍かつ固体電解質粒子の10.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 0.90 μm, the thickness of the solid electrolyte layer was 7.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 0.70 μm. The average particle diameter of the solid electrolyte particles was 0.78 times Rmax, the thickness of the solid electrolyte was 7.8 times Rmax, and 10.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(実施例11)
表1に示すように実施例2と同様の材料および配合比で正極用電極合材層を形成した。この正極用電極合材層をスパッタリング用のチャンバーに導入し、10−4Paまで真空引きした後にArガスを導入し、0.5Paの圧力下200Wの出力で合材層表面をRFスパッタリングした。
(Example 11)
As shown in Table 1, a positive electrode mixture layer was formed with the same material and blending ratio as in Example 2. This positive electrode mixture layer was introduced into a sputtering chamber, and after evacuation to 10 −4 Pa, Ar gas was introduced, and the mixture layer surface was RF-sputtered at an output of 200 W under a pressure of 0.5 Pa.

正極用電極合材層を錠剤成型機に戻し、この上に投入量を実施例1の0.08倍として平均粒子径0.70μmの硫化物固体電解質粒子を用いて固体電解質層を形成し、電池セルを作成した。   The positive electrode mixture layer is returned to the tablet molding machine, and the solid electrolyte layer is formed thereon using sulfide solid electrolyte particles having an average particle diameter of 0.70 μm, with the input amount being 0.08 times that of Example 1. A battery cell was created.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均109mAh/gの放電容量(実効容量の87%)を得た。3C条件では平均放電容量93mAh/gが得られ、0.1C条件の85%の放電容量が得られた。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, an average discharge capacity of 109 mAh / g (87% of the effective capacity) was Obtained. Under the 3C condition, an average discharge capacity of 93 mAh / g was obtained, and a discharge capacity of 85% of the 0.1C condition was obtained. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、実施例1と同様に電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.70μmであり、固体電解質層の厚さは3.5μm、固体電解質層の固体電解質粒子の平均粒子径は0.70μmであった。固体電解質粒子の平均粒子径はRmaxの1.00倍、固体電解質の厚さはRmaxの5.0倍かつ固体電解質粒子の5.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined in the same manner as in Example 1, and found to be 0.70 μm. The thickness of the solid electrolyte layer was 3 The average particle diameter of the solid electrolyte particles in the solid electrolyte layer was 0.70 μm. The average particle size of the solid electrolyte particles was 1.00 times Rmax, and the thickness of the solid electrolyte was 5.0 times Rmax and 5.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(実施例12)
正極活物質粒子としてLiFePO(最大粒子径0.30μm)を用いた以外は表1に示すように実施例4と同様の材料を用い、固体電解質層の硫化物固体電解質粒子の投入量を実施例1の0.10倍として電池セルを作成した。
(Example 12)
Except that LiFePO 4 (maximum particle size 0.30 μm) was used as the positive electrode active material particles, the same material as in Example 4 was used as shown in Table 1, and the amount of sulfide solid electrolyte particles in the solid electrolyte layer was charged. A battery cell was prepared as 0.10 times of Example 1.

0.1C(実効容量140mAh/gで算出)、充放電終止電圧4.0V/3.0Vの条件で電池セル評価を行った結果、平均放電容量は133mAh/g(実効容量の95%)であった。3C条件での平均放電容量は122mAh/gで、0.1C条件の92%であった。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 140 mAh / g) and a charge / discharge end voltage of 4.0 V / 3.0 V, the average discharge capacity was 133 mAh / g (95% of the effective capacity). there were. The average discharge capacity under the 3C condition was 122 mAh / g, which was 92% of the 0.1C condition. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、実施例1と同様に電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.50μmであり、固体電解質層の厚さは5.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.20μmであった。固体電解質粒子の平均粒子径はRmaxの0.40倍、固体電解質の厚さはRmaxの10.0倍かつ固体電解質粒子の25.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined in the same manner as in Example 1, and it was 0.50 μm. The thickness of the solid electrolyte layer was 5 The average particle diameter of the solid electrolyte particles of the solid electrolyte layer was 0.20 μm. The average particle diameter of the solid electrolyte particles was 0.40 times Rmax, the thickness of the solid electrolyte was 10.0 times Rmax, and 25.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(比較例1)
表1に示すように実施例4と同様の材料および配合比で正極用電極合材層を形成した。
(Comparative Example 1)
As shown in Table 1, a positive electrode mixture layer was formed with the same material and blending ratio as in Example 4.

硫化物固体電解質の加熱処理後の再粉砕を600rpmで5時間行い、平均粒子径0.06μmの硫化物固体電解質粒子を得た。この平均粒子径0.06μmの硫化物固体電解質粒子を用い、投入量を実施例1の0.10倍として固体電解質層を形成した以外は、実施例4と同様に電池セルを作成した。   The pulverization after the heat treatment of the sulfide solid electrolyte was performed at 600 rpm for 5 hours to obtain sulfide solid electrolyte particles having an average particle diameter of 0.06 μm. A battery cell was produced in the same manner as in Example 4 except that the sulfide solid electrolyte particles having an average particle size of 0.06 μm were used and the amount of the charged electrolyte was 0.10 times that of Example 1 to form a solid electrolyte layer.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均69mAh/gの放電容量(実効容量の55%)を得た。3C条件での平均放電容量は33mAh/gで、0.1C条件の48%に留まった。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, an average discharge capacity of 69 mAh / g (55% of the effective capacity) was Obtained. The average discharge capacity under the 3C condition was 33 mAh / g, which was 48% of the 0.1C condition. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.80μmであり、固体電解質層の厚さは5.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.06μmであった。固体電解質粒子の平均粒子径はRmaxの0.08倍、固体電解質の厚さはRmaxの6.3倍かつ固体電解質粒子の83.3倍であった。評価結果を表2に合わせ示す。   For one battery that was not subjected to battery cell evaluation, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 0.80 μm, the thickness of the solid electrolyte layer was 5.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 0.06 μm. The average particle diameter of the solid electrolyte particles was 0.08 times Rmax, the thickness of the solid electrolyte was 6.3 times Rmax, and 83.3 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(比較例2)
表1に示すように実施例4と同様の材料および配合比で正極用電極合材層を形成した。硫化物固体電解質の加熱処理後の再粉砕を250rpmで30分行い、平均粒子径1.00μmの硫化物固体電解質粒子を得た。この平均粒子径1.00μmの硫化物固体電解質粒子を用い、投入量を実施例1の0.10倍として固体電解質層を形成した以外は、実施例4と同様に電池セルを作成した。
(Comparative Example 2)
As shown in Table 1, a positive electrode mixture layer was formed with the same material and blending ratio as in Example 4. The pulverization of the sulfide solid electrolyte after the heat treatment was performed at 250 rpm for 30 minutes to obtain sulfide solid electrolyte particles having an average particle diameter of 1.00 μm. A battery cell was produced in the same manner as in Example 4 except that the sulfide solid electrolyte particles having an average particle size of 1.00 μm were used, and the solid electrolyte layer was formed with the input amount being 0.10 times that of Example 1.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均65mAh/gの放電容量(実効容量の52%)を得た。3C条件での平均放電容量は29mAh/gで、0.1C条件の44%に留まった。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, an average discharge capacity of 65 mAh / g (52% of the effective capacity) was Obtained. The average discharge capacity under the 3C condition was 29 mAh / g, which was 44% of the 0.1C condition. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.80μmであり、固体電解質層の厚さは5.0μm、固体電解質層の固体電解質粒子の平均粒子径は1.00μmであった。固体電解質粒子の平均粒子径はRmaxの1.25倍、固体電解質の厚さはRmaxの6.3倍かつ固体電解質粒子の5.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not subjected to battery cell evaluation, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 0.80 μm, the thickness of the solid electrolyte layer was 5.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 1.00 μm. The average particle diameter of the solid electrolyte particles was 1.25 times Rmax, the thickness of the solid electrolyte was 6.3 times Rmax, and 5.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(比較例3)
表1に示すように実施例4と同様の材料および配合比で正極用電極合材層を形成した。平均粒子径0.20μmの硫化物固体電解質粒子を用い、投入量を実施例1の0.08倍として固体電解質層を形成した以外は、実施例4と同様に電池セルを作成した。
(Comparative Example 3)
As shown in Table 1, a positive electrode mixture layer was formed with the same material and blending ratio as in Example 4. A battery cell was prepared in the same manner as in Example 4 except that sulfide solid electrolyte particles having an average particle size of 0.20 μm were used and the amount of the input was set to 0.08 times that of Example 1 to form a solid electrolyte layer.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均113mAh/gの放電容量(実効容量の90%)を得た。3C条件での平均放電容量は98mAh/gで、0.1C条件の87%であった。その後、0.1Cで20サイクル充放電を繰り返したところ、5個中2個の電池が電極間のショートにより充放電ができなくなった。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, an average discharge capacity of 113 mAh / g (90% of the effective capacity) was Obtained. The average discharge capacity under the 3C condition was 98 mAh / g, which was 87% of the 0.1C condition. Thereafter, when 20 cycles of charge and discharge were repeated at 0.1 C, two of the five batteries could not be charged or discharged due to a short circuit between the electrodes.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.80μmであり、固体電解質層の厚さは3.5μm、固体電解質層の固体電解質粒子の平均粒子径は0.20μmであった。固体電解質粒子の平均粒子径はRmaxの0.25倍、固体電解質の厚さはRmaxの4.4倍かつ固体電解質粒子の17.5倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 0.80 μm, the thickness of the solid electrolyte layer was 3.5 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 0.20 μm. The average particle diameter of the solid electrolyte particles was 0.25 times Rmax, the thickness of the solid electrolyte was 4.4 times Rmax, and 17.5 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(比較例4)
表1に示すように実施例4と同様の材料および配合比で正極用電極合材層を形成した。平均粒子径0.20μmの硫化物固体電解質粒子を用い、投入量を実施例1の0.55倍として固体電解質層を形成した以外は実施例4と同様に電池セルを作成した。
(Comparative Example 4)
As shown in Table 1, a positive electrode mixture layer was formed with the same material and blending ratio as in Example 4. A battery cell was prepared in the same manner as in Example 4 except that sulfide solid electrolyte particles having an average particle size of 0.20 μm were used, and the solid electrolyte layer was formed with an input amount 0.55 times that of Example 1.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均61mAh/gの放電容量(実効容量の49%)を得た。3C条件での平均放電容量は31mAh/gで、0.1C条件の51%に留まった。その後、0.1Cで20サイクル充放電を繰り返し、全数ショートのないことを確認した。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, an average discharge capacity of 61 mAh / g (49% of the effective capacity) was obtained. Obtained. The average discharge capacity under the 3C condition was 31 mAh / g, remaining at 51% of the 0.1C condition. Then, 20 cycles charge / discharge was repeated at 0.1 C, and it was confirmed that there was no short circuit.

電池セル評価を行わなかった1個の電池について、実施例1と同様に電極合材層表面において活物質粒子が形成するRmaxを求めたところ0.80μmであり、固体電解質層の厚さは25.0μm、固体電解質層の固体電解質粒子の平均粒子径は0.20μmであった。固体電解質粒子の平均粒子径はRmaxの0.25倍、固体電解質の厚さはRmaxの31.3倍かつ固体電解質粒子の125.0倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined in the same manner as in Example 1 and found to be 0.80 μm. The thickness of the solid electrolyte layer was 25 The average particle diameter of the solid electrolyte particles of the solid electrolyte layer was 0.20 μm. The average particle diameter of the solid electrolyte particles was 0.25 times Rmax, the thickness of the solid electrolyte was 31.3 times Rmax, and 125.0 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

(比較例5)
正極活物質粒子として、LiCoO(最大粒子径30.0μm)を用いた。硫化物固体電解質の加熱処理後の再粉砕を行うことなく、イオン導電性助剤粒子として用いた。導電助剤としてアセチレンブラックを用い、配合比を正極活物質粒子80wt%、イオン導電性助剤粒子10wt%、導電助剤10wt%として正極用電極合材層を形成した。正極用電極合材層に用いたイオン導電性助剤粒子を、固体電解質層の固体電解質粒子としても用い、投入量を実施例1の3.0倍として表1に示すように比較例4と同様に電池セルを作成した。
(Comparative Example 5)
LiCoO 2 (maximum particle diameter 30.0 μm) was used as the positive electrode active material particles. The sulfide solid electrolyte was used as ion conductive auxiliary particles without re-grinding after heat treatment. The positive electrode mixture layer was formed using acetylene black as the conductive auxiliary agent, with the compounding ratio of 80 wt% positive electrode active material particles, 10 wt% ionic conductive auxiliary particles, and 10 wt% conductive auxiliary agent. As shown in Table 1, the ion conductive auxiliary particles used for the electrode mixture layer for the positive electrode were also used as solid electrolyte particles of the solid electrolyte layer, and the input amount was 3.0 times that of Example 1, as shown in Table 1. Similarly, a battery cell was prepared.

0.1C(実効容量125mAh/gで算出)、充放電終止電圧4.2V/3.0Vの条件で電池セル評価を行った結果、平均58mAh/gの平均放電容量(実効容量の46%)を得た。3C条件での平均放電容量は23mAh/gで、0.1C条件の40%に留まった。その後、0.1Cで20サイクル充放電を繰り返したところ、5個中4個の電池が電極間のショートにより充放電ができなくなった。   As a result of battery cell evaluation under the conditions of 0.1 C (calculated with an effective capacity of 125 mAh / g) and a charge / discharge end voltage of 4.2 V / 3.0 V, an average discharge capacity of 58 mAh / g on average (46% of the effective capacity) Got. The average discharge capacity under the 3C condition was 23 mAh / g, which was only 40% of the 0.1C condition. Thereafter, when 20 cycles of charge and discharge were repeated at 0.1 C, 4 out of 5 batteries could not be charged or discharged due to a short circuit between the electrodes.

電池セル評価を行わなかった1個の電池について、電極合材層表面において活物質粒子が形成するRmaxを求めたところ27.0μmであり、固体電解質層の厚さは125.0μm、固体電解質層の固体電解質粒子の平均粒子径は3.00μmであった。固体電解質粒子の平均粒子径はRmaxの0.11倍、固体電解質の厚さはRmaxの4.6倍かつ固体電解質粒子の41.7倍であった。評価結果を表2に合わせ示す。   For one battery that was not evaluated for battery cells, the Rmax formed by the active material particles on the surface of the electrode mixture layer was determined to be 27.0 μm, the thickness of the solid electrolyte layer was 125.0 μm, and the solid electrolyte layer The average particle diameter of the solid electrolyte particles was 3.00 μm. The average particle diameter of the solid electrolyte particles was 0.11 times Rmax, the thickness of the solid electrolyte was 4.6 times Rmax, and 41.7 times that of the solid electrolyte particles. The evaluation results are shown in Table 2.

これら実施例および比較例の材料および配合比一覧を表1に、結果を表2に示す。さらには、正極層および負極層が固体電解質層をはさんで積層してなり、正極層と負極層との少なくともいずれかが活物質粒子とイオン導電性助剤粒子を含む電極合材層を含んで構成され、電極合材層表面において活物質粒子が形成する表面粗さをRmax、固体電解質層に含有される固体電解質粒子の平均粒子径を「A」、固体電解質層の厚さを「B」とした場合の測定結果として示す。これら実施例の全固体リチウムイオン二次電池は、0.1×Rmax≦「A」<1.0×Rmax、5.0×Rmax≦「B」<100「A」を満足することが確認された。   Table 1 shows a list of materials and blending ratios of these examples and comparative examples, and Table 2 shows the results. Further, the positive electrode layer and the negative electrode layer are laminated with the solid electrolyte layer interposed therebetween, and at least one of the positive electrode layer and the negative electrode layer includes an electrode mixture layer containing active material particles and ion conductive auxiliary particles. The surface roughness formed by the active material particles on the surface of the electrode mixture layer is Rmax, the average particle diameter of the solid electrolyte particles contained in the solid electrolyte layer is “A”, and the thickness of the solid electrolyte layer is “B” As a measurement result. The all solid lithium ion secondary batteries of these examples were confirmed to satisfy 0.1 × Rmax ≦ “A” <1.0 × Rmax and 5.0 × Rmax ≦ “B” <100 “A”. It was.

Figure 2014035818
Figure 2014035818

Figure 2014035818
Figure 2014035818

実施例1〜10より、固体電解質層に用いる固体電解質粒子の平均粒子径が電極合材層表面において活物質粒子が形成するRmaxの0.1倍以上1.0倍未満で、固体電解質層の厚さがRmaxの5倍以上かつ固体電解質層に用いる固体電解質粒子の平均粒子径の100倍以下のとき、0.1C条件において大きな放電容量が得られ、0.1C条件に対する3C条件での容量の割合も高い、すなわち出力特性が高いことが確認された。また、全実施例においてショートは確認されなかった。   From Examples 1 to 10, the average particle diameter of the solid electrolyte particles used in the solid electrolyte layer is 0.1 times or more and less than 1.0 times Rmax formed by the active material particles on the surface of the electrode mixture layer. When the thickness is not less than 5 times Rmax and not more than 100 times the average particle diameter of the solid electrolyte particles used in the solid electrolyte layer, a large discharge capacity is obtained under the 0.1C condition, and the capacity under the 3C condition with respect to the 0.1C condition. It was confirmed that the ratio was high, that is, the output characteristics were high. Moreover, no short circuit was observed in all examples.

固体電解質層に用いる固体電解質粒子の平均粒子径が電極合材層表面において活物質粒子が形成するRmaxの0.1倍未満である比較例1では、0.1C条件の放電容量および0.1C条件に対する3C条件での容量の割合は全実施例より低かった。   In Comparative Example 1 in which the average particle diameter of the solid electrolyte particles used for the solid electrolyte layer is less than 0.1 times Rmax formed by the active material particles on the surface of the electrode mixture layer, the discharge capacity under the condition of 0.1 C and 0.1 C The ratio of the capacity under the 3C condition relative to the condition was lower than in all examples.

固体電解質層に用いる固体電解質粒子の平均粒子径が電極合材層表面において活物質粒子が形成するRmaxの1.0倍以上である比較例2では、0.1C条件の放電容量および0.1C条件に対する3C条件での容量の割合は全実施例より低かった。   In Comparative Example 2 in which the average particle diameter of the solid electrolyte particles used in the solid electrolyte layer is 1.0 times or more of Rmax formed by the active material particles on the surface of the electrode mixture layer, the discharge capacity under the condition of 0.1 C and 0.1 C The ratio of the capacity under the 3C condition relative to the condition was lower than in all examples.

固体電解質層の厚さが電極合材層表面において活物質粒子が形成するRmaxの5倍以下である比較例3および5では、充放電試験中ショートにより充放電ができなかったものがあり、二次電池として実用に耐えないことが確認された。   In Comparative Examples 3 and 5 in which the thickness of the solid electrolyte layer is 5 times or less the Rmax formed by the active material particles on the surface of the electrode mixture layer, there are cases where charging / discharging could not be performed due to a short circuit during the charge / discharge test. It was confirmed that it could not withstand practical use as a secondary battery.

固体電解質層の厚さが固体電解質層に用いる固体電解質粒子の平均粒子径の100倍以上である比較例4では、0.1C条件の放電容量および0.1C条件に対する3C条件での容量の割合は全実施例より低かった。   In Comparative Example 4 in which the thickness of the solid electrolyte layer is 100 times or more the average particle diameter of the solid electrolyte particles used in the solid electrolyte layer, the discharge capacity under the 0.1C condition and the ratio of the capacity under the 3C condition to the 0.1C condition Was lower than in all examples.

実施例1〜2の対比より、電極合材層中に含まれる固体電解質が酸化物よりも硫化物のとき、0.1C条件でより大きい放電容量が得られ、0.1C条件に対する3C条件での容量の割合がより高いことが確認された。   From the comparison of Examples 1-2, when the solid electrolyte contained in the electrode mixture layer is a sulfide rather than an oxide, a larger discharge capacity is obtained under the 0.1C condition, and under the 3C condition with respect to the 0.1C condition. It was confirmed that the capacity ratio of was higher.

実施例2〜4の対比より、電極合材層表面において活物質粒子が形成するRmaxが1.0μm未満のとき、0.1C条件でより大きい放電容量が得られ、0.1C条件に対する3C条件での容量の割合がより高いことが確認された。   From the comparison of Examples 2 to 4, when Rmax formed by the active material particles on the surface of the electrode mixture layer is less than 1.0 μm, a larger discharge capacity is obtained under the 0.1C condition, and the 3C condition with respect to the 0.1C condition. It was confirmed that the percentage of capacity at was higher.

実施例5〜12の対比より、固体電解質層の厚さが固体電解質層に用いる固体電解質粒子の平均粒子径の50倍未満のとき、0.1C条件でより大きい放電容量が得られ、0.1C条件に対する3C条件での容量の割合がより高いことが確認された。   From the comparison of Examples 5 to 12, when the thickness of the solid electrolyte layer is less than 50 times the average particle diameter of the solid electrolyte particles used in the solid electrolyte layer, a larger discharge capacity is obtained under the 0.1 C condition. It was confirmed that the ratio of the capacity under the 3C condition to the 1C condition was higher.

以上の結果、本発明の実施によれば、高容量かつ出力特性に優れた全固体リチウムイオン二次電池を得られることが確認された。   As a result, it was confirmed that according to the embodiment of the present invention, an all-solid lithium ion secondary battery having a high capacity and excellent output characteristics can be obtained.

本発明に係る、高容量かつ出力特性に優れた全固体リチウムイオン二次電池は、携帯電子機器の電源として好適に用いられ、電気自動車や家庭および産業用蓄電池としても用いられる。   The all-solid-state lithium ion secondary battery according to the present invention having a high capacity and excellent output characteristics is suitably used as a power source for portable electronic devices, and is also used as an electric vehicle, a household and an industrial storage battery.

11 正極集電体、12 負極集電体、20 正極用電極合材層、21 正極活物質粒子、22 イオン導電性助剤粒子、30 固体電解質層、31 固体電解質粒子、40 負極層

DESCRIPTION OF SYMBOLS 11 Positive electrode collector, 12 Negative electrode collector, 20 Electrode compound layer for positive electrodes, 21 Positive electrode active material particles, 22 Ion conductive auxiliary agent particles, 30 Solid electrolyte layer, 31 Solid electrolyte particle, 40 Negative electrode layer

Claims (4)

正極層および負極層が固体電解質層をはさんで積層してなり、
前記正極層と前記負極層との少なくともいずれかが、活物質粒子とイオン導電性助剤粒子とを含む電極合材層であり、
前記電極合材層の固体電解質層側の表面において前記活物質粒子が形成する表面粗さRmaxを規定したとき、
前記固体電解質層を形成する固体電解質粒子の平均粒子径はRmaxの0.1倍以上1.0倍未満であり、
前記固体電解質層の厚さは、Rmaxの5倍以上、前記固体電解質層を形成する前記固体電解質粒子の平均粒子径の100倍未満であることを特徴とする全固体リチウムイオン二次電池。
The positive electrode layer and the negative electrode layer are laminated with the solid electrolyte layer sandwiched between them.
At least one of the positive electrode layer and the negative electrode layer is an electrode mixture layer containing active material particles and ion conductive auxiliary particles,
When the surface roughness Rmax formed by the active material particles on the surface of the electrode mixture layer on the solid electrolyte layer side is defined,
The average particle diameter of the solid electrolyte particles forming the solid electrolyte layer is 0.1 times or more and less than 1.0 times Rmax,
The all-solid-state lithium ion secondary battery, wherein the thickness of the solid electrolyte layer is not less than 5 times Rmax and less than 100 times the average particle diameter of the solid electrolyte particles forming the solid electrolyte layer.
前記イオン導電性助剤粒子が、硫化物固体電解質を含むことを特徴とする請求項1に記載の全固体リチウムイオン二次電池。   The all-solid-state lithium ion secondary battery according to claim 1, wherein the ion conductive auxiliary particles include a sulfide solid electrolyte. 前記Rmaxが1.0μm未満であることを特徴とする請求項1または2に記載の全固体リチウムイオン二次電池。   The all solid lithium ion secondary battery according to claim 1, wherein the Rmax is less than 1.0 μm. 前記固体電解質粒子の平均粒子径の50倍未満の厚さの前記固体電解質層を備える請求項1〜3いずれかに記載の全固体リチウムイオン二次電池。   The all-solid-state lithium ion secondary battery in any one of Claims 1-3 provided with the said solid electrolyte layer of thickness less than 50 times the average particle diameter of the said solid electrolyte particle.
JP2012175016A 2012-08-07 2012-08-07 All solid lithium ion secondary battery Active JP5692184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012175016A JP5692184B2 (en) 2012-08-07 2012-08-07 All solid lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012175016A JP5692184B2 (en) 2012-08-07 2012-08-07 All solid lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2014035818A true JP2014035818A (en) 2014-02-24
JP5692184B2 JP5692184B2 (en) 2015-04-01

Family

ID=50284728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012175016A Active JP5692184B2 (en) 2012-08-07 2012-08-07 All solid lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5692184B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102911A (en) * 2012-11-16 2014-06-05 Toyota Motor Corp Electrode material for all-solid battery, method of manufacturing the same and all-solid battery using the same
WO2015147280A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 All-solid-state secondary cell, method for manufacturing electrode sheet for cell, and method for manufacturing all-solid-state secondary cell
JP2015220012A (en) * 2014-05-15 2015-12-07 富士通株式会社 Solid electrolyte structure and all-solid-state battery
JP2016001598A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
JP2016001596A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
JP2016066584A (en) * 2014-05-09 2016-04-28 ソニー株式会社 Electrode, method of producing the same, battery, and electronic device
WO2016117499A1 (en) * 2015-01-23 2016-07-28 日本碍子株式会社 Positive electrode plate for all-solid-state battery, and all-solid-state battery
JP2016160127A (en) * 2015-02-27 2016-09-05 国立大学法人富山大学 Li ION CONDUCTIVE FINE PARTICLE AND PRODUCTION METHOD THEREOF, AMORPHOUS LiPON FINE PARTICLE AND PRODUCTION METHOD THEREFOR, PRODUCTION METHOD OF ELECTROLYTE LAYER AND ELECTRODE LAYER, LITHIUM ION SECONDARY BATTERY AND PRODUCTION METHOD THEREFOR
JP2017103065A (en) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 All-solid battery system
WO2017104405A1 (en) * 2015-12-16 2017-06-22 富士フイルム株式会社 Material for electrodes, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
EP3220447A1 (en) * 2016-03-16 2017-09-20 Kabushiki Kaisha Toshiba Laminate, secondary battery, battery pack, and vehicle
WO2019077825A1 (en) * 2017-10-19 2019-04-25 昭和電工株式会社 Method for manufacturing lithium ion secondary battery, and lithium ion secondary battery
CN110165300A (en) * 2018-02-14 2019-08-23 丰田自动车株式会社 The manufacturing method of all-solid-state battery
CN110383559A (en) * 2017-06-28 2019-10-25 日本电气硝子株式会社 Total solids sodium ion secondary battery
EP3605664A1 (en) * 2018-08-02 2020-02-05 Toyota Jidosha Kabushiki Kaisha All solid state battery and method for producing all solid state battery
JP2020053115A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Production method of all-solid battery and all-solid battery
JP2020161364A (en) * 2019-03-27 2020-10-01 マクセルホールディングス株式会社 All-solid-state lithium secondary battery and manufacturing method thereof
JP2020198254A (en) * 2019-06-04 2020-12-10 本田技研工業株式会社 Negative electrode material for solid battery, and solid battery
CN112310340A (en) * 2019-07-29 2021-02-02 通用汽车环球科技运作有限责任公司 Micron-sized secondary particles with enhanced ionic conductivity for solid state electrodes
US20210257606A1 (en) * 2020-02-18 2021-08-19 Samsung Electronics Co., Ltd. All-solid secondary battery, and method of manufacturing all-solid secondary battery
US11450881B2 (en) * 2018-10-30 2022-09-20 Samsung Electronics Co., Ltd. All-solid secondary battery and method for preparing all-solid secondary battery
US11710855B2 (en) 2017-04-04 2023-07-25 Murata Manufacturing Co., Ltd. All-solid-state battery, electronic device, electronic card, wearable device, and electric motor vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340257A (en) * 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd Lithium secondary battery
JP2006086102A (en) * 2004-08-17 2006-03-30 Ohara Inc Lithium ion secondary battery and solid electrolyte
JP2006252882A (en) * 2005-03-09 2006-09-21 Nissan Motor Co Ltd Battery
WO2011105574A1 (en) * 2010-02-26 2011-09-01 日本ゼオン株式会社 All solid state secondary battery and method for manufacturing all solid state secondary battery
WO2012026480A1 (en) * 2010-08-26 2012-03-01 住友電気工業株式会社 Nonaqueous electrolyte battery and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340257A (en) * 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd Lithium secondary battery
JP2006086102A (en) * 2004-08-17 2006-03-30 Ohara Inc Lithium ion secondary battery and solid electrolyte
JP2006252882A (en) * 2005-03-09 2006-09-21 Nissan Motor Co Ltd Battery
WO2011105574A1 (en) * 2010-02-26 2011-09-01 日本ゼオン株式会社 All solid state secondary battery and method for manufacturing all solid state secondary battery
WO2012026480A1 (en) * 2010-08-26 2012-03-01 住友電気工業株式会社 Nonaqueous electrolyte battery and method for manufacturing same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102911A (en) * 2012-11-16 2014-06-05 Toyota Motor Corp Electrode material for all-solid battery, method of manufacturing the same and all-solid battery using the same
WO2015147280A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 All-solid-state secondary cell, method for manufacturing electrode sheet for cell, and method for manufacturing all-solid-state secondary cell
JP2016066584A (en) * 2014-05-09 2016-04-28 ソニー株式会社 Electrode, method of producing the same, battery, and electronic device
JP2015220012A (en) * 2014-05-15 2015-12-07 富士通株式会社 Solid electrolyte structure and all-solid-state battery
JP2016001598A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
JP2016001596A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
WO2016117499A1 (en) * 2015-01-23 2016-07-28 日本碍子株式会社 Positive electrode plate for all-solid-state battery, and all-solid-state battery
JP2016160127A (en) * 2015-02-27 2016-09-05 国立大学法人富山大学 Li ION CONDUCTIVE FINE PARTICLE AND PRODUCTION METHOD THEREOF, AMORPHOUS LiPON FINE PARTICLE AND PRODUCTION METHOD THEREFOR, PRODUCTION METHOD OF ELECTROLYTE LAYER AND ELECTRODE LAYER, LITHIUM ION SECONDARY BATTERY AND PRODUCTION METHOD THEREFOR
US10141762B2 (en) 2015-11-30 2018-11-27 Toyota Jidosha Kabushiki Kaisha All-solid-state battery system
JP2017103065A (en) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 All-solid battery system
WO2017104405A1 (en) * 2015-12-16 2017-06-22 富士フイルム株式会社 Material for electrodes, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JPWO2017104405A1 (en) * 2015-12-16 2018-09-20 富士フイルム株式会社 Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
US20180277901A1 (en) * 2015-12-16 2018-09-27 Fujifilm Corporation Material for electrode, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
US10693190B2 (en) 2015-12-16 2020-06-23 Fujifilm Corporation Material for electrode, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
EP3220447A1 (en) * 2016-03-16 2017-09-20 Kabushiki Kaisha Toshiba Laminate, secondary battery, battery pack, and vehicle
JP2017168317A (en) * 2016-03-16 2017-09-21 株式会社東芝 Laminate, secondary battery, battery pack, and vehicle
CN107204416A (en) * 2016-03-16 2017-09-26 株式会社东芝 Layered product, secondary cell, battery bag and vehicle
US10396331B2 (en) 2016-03-16 2019-08-27 Kabushiki Kaisha Toshiba Laminate, secondary battery, battery pack, and vehicle
US11710855B2 (en) 2017-04-04 2023-07-25 Murata Manufacturing Co., Ltd. All-solid-state battery, electronic device, electronic card, wearable device, and electric motor vehicle
CN110383559A (en) * 2017-06-28 2019-10-25 日本电气硝子株式会社 Total solids sodium ion secondary battery
CN110383559B (en) * 2017-06-28 2023-05-26 日本电气硝子株式会社 All-solid sodium ion secondary battery
WO2019077825A1 (en) * 2017-10-19 2019-04-25 昭和電工株式会社 Method for manufacturing lithium ion secondary battery, and lithium ion secondary battery
CN110165300B (en) * 2018-02-14 2022-06-14 丰田自动车株式会社 Method for manufacturing all-solid-state battery
CN110165300A (en) * 2018-02-14 2019-08-23 丰田自动车株式会社 The manufacturing method of all-solid-state battery
EP3605664A1 (en) * 2018-08-02 2020-02-05 Toyota Jidosha Kabushiki Kaisha All solid state battery and method for producing all solid state battery
JP7293595B2 (en) 2018-09-21 2023-06-20 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery and all-solid-state battery
JP2020053115A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Production method of all-solid battery and all-solid battery
US11450881B2 (en) * 2018-10-30 2022-09-20 Samsung Electronics Co., Ltd. All-solid secondary battery and method for preparing all-solid secondary battery
JP2020161364A (en) * 2019-03-27 2020-10-01 マクセルホールディングス株式会社 All-solid-state lithium secondary battery and manufacturing method thereof
JP7345263B2 (en) 2019-03-27 2023-09-15 マクセル株式会社 Manufacturing method for all-solid-state lithium secondary battery
JP7069086B2 (en) 2019-06-04 2022-05-17 本田技研工業株式会社 Negative electrode material for solid-state batteries and solid-state batteries
JP2020198254A (en) * 2019-06-04 2020-12-10 本田技研工業株式会社 Negative electrode material for solid battery, and solid battery
CN112310340A (en) * 2019-07-29 2021-02-02 通用汽车环球科技运作有限责任公司 Micron-sized secondary particles with enhanced ionic conductivity for solid state electrodes
US20210257606A1 (en) * 2020-02-18 2021-08-19 Samsung Electronics Co., Ltd. All-solid secondary battery, and method of manufacturing all-solid secondary battery
US11777076B2 (en) * 2020-02-18 2023-10-03 Samsung Electronics Co., Ltd. All-solid secondary battery, and method of manufacturing all-solid secondary battery

Also Published As

Publication number Publication date
JP5692184B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5692184B2 (en) All solid lithium ion secondary battery
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
WO2019135319A1 (en) Solid electrolyte material and battery
WO2012008422A1 (en) All-solid-state battery
KR102198115B1 (en) Electrode, method of producing the same, battery, and electronic device
WO2017046915A1 (en) Composite electrolyte for secondary batteries, secondary battery and battery pack
JP5348607B2 (en) All-solid lithium secondary battery
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
JP7042426B2 (en) Solid electrolytes and batteries
WO2021157361A1 (en) Positive electrode material and battery
KR20220105120A (en) Preparation method of dry electrode for energy storage device, dry electrode for energy storage device, and secondary battery comprising the same
JPWO2020059550A1 (en) Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery
KR102312684B1 (en) Composite structure, lithium battery, and method of producing composite structure
JP6840946B2 (en) Solid electrolytes, all-solid-state batteries, and how to make them
US20230223535A1 (en) Negative electrode and secondary battery including the same
JP6748348B2 (en) All solid state battery
JP2017224459A (en) All-solid battery
WO2015159331A1 (en) Solid-state battery, electrode for solid-state battery, and production processes therefor
JP6652705B2 (en) Solid electrolyte and all solid state battery
WO2023007939A1 (en) Negative electrode material, negative electrode, battery, and method for producing same
JP2015072816A (en) Capacity improvement method of all-solid-state secondary battery and all-solid-state secondary battery having enhanced capacity
JP2019179669A (en) Method for manufacturing all-solid battery, and all-solid battery
TWI843818B (en) Manufacturing method of all-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5692184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150