JP2014102911A - Electrode material for all-solid battery, method of manufacturing the same and all-solid battery using the same - Google Patents

Electrode material for all-solid battery, method of manufacturing the same and all-solid battery using the same Download PDF

Info

Publication number
JP2014102911A
JP2014102911A JP2012252574A JP2012252574A JP2014102911A JP 2014102911 A JP2014102911 A JP 2014102911A JP 2012252574 A JP2012252574 A JP 2012252574A JP 2012252574 A JP2012252574 A JP 2012252574A JP 2014102911 A JP2014102911 A JP 2014102911A
Authority
JP
Japan
Prior art keywords
active material
solid electrolyte
solid
electrode
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012252574A
Other languages
Japanese (ja)
Inventor
Yasumasa Oguma
泰正 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012252574A priority Critical patent/JP2014102911A/en
Publication of JP2014102911A publication Critical patent/JP2014102911A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode material having high volume energy density, and Li ionic conductivity.SOLUTION: Disclosed is an electrode material for an all-solid battery containing a solid electrolyte and an active material, and the active material is a spherical particle-shaped active material having an average aspect ratio which is 1 or more and less than 1.15.

Description

本発明は、全固体電池用電極材及びその製造方法並びにそれを使用した全固体電池に関する。   The present invention relates to an electrode material for an all-solid battery, a method for producing the same, and an all-solid battery using the same.

電解質が固体電解質から成る全固体電池は、電池内に可燃性の有機溶媒を用いないため、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。特に、近年、ハイブリッド自動車等の需要が高まるにつれて、全固体二次電池について、より高いエネルギー密度及び出力密度と、より小型化を図ることが求められている。
かかる全固体電池の分野において、焼結法などによって酸化物型電極材を製造することが報告されている。焼結法では、同時に多くの製品を製造できるため、製造コストの面で有利であるが、高温で焼結処理が実施されるため、活物質と他の電極成分との反応が起こることが懸念される。また、電極の体積エネルギー密度を高めるために、焼結密度を高めることが望ましい。高温での焼成による活物質と固体電解質の間の反応を防止するため、及び、焼成後の電極の密度を高めるために、比較的低い温度で軟化する固体電解質(例えばLi1.5Al0.5Ge0.5(PO(以下、「LAGP」と表す))を活物質と混合した後、100kg/cm以上の加圧下で焼成(プレス焼成)することにより正極及び負極を形成することが特許文献1に提案された。特許文献1に提案されたようなプレス焼成法は、緻密な電極を得るには有効な方法であるものの、比較的大きなサイズの電池(例えば車載用電池)を製造するには、プレス焼成のための大規模な装置が必要であり、それに伴い生産設備の複雑化及びコストの増加を招くことから、電池の量産には不向きであった。そのため、当該技術分野では、プレス焼成の必要なしに体積エネルギー密度が向上した電極を製造することが望まれていた。
さらに、電極の体積エネルギー密度を向上させるには、電極材中の活物質の比率を高めることが重要であるが、焼結法により製造された酸化物型電極材では、活物質の比率を高めることに伴って固体電解質による活物質粒子の結着及びリチウム(Li)イオン伝導パスが減少するため、体積エネルギー密度とLiイオン伝導率をバランスよく両立することは困難であった。
An all-solid battery in which the electrolyte is a solid electrolyte does not use a flammable organic solvent in the battery, and thus it is considered that the safety device can be simplified and that the manufacturing cost and productivity are excellent. In particular, in recent years, as the demand for hybrid vehicles and the like increases, it is demanded that an all-solid-state secondary battery has a higher energy density and output density and a smaller size.
In the field of such all-solid-state batteries, it has been reported that an oxide type electrode material is manufactured by a sintering method or the like. The sintering method is advantageous in terms of manufacturing cost because many products can be manufactured at the same time, but since the sintering process is performed at a high temperature, there is a concern that the reaction between the active material and other electrode components may occur. Is done. It is also desirable to increase the sintering density in order to increase the volume energy density of the electrode. In order to prevent the reaction between the active material and the solid electrolyte due to firing at a high temperature and to increase the density of the electrode after firing, the solid electrolyte that softens at a relatively low temperature (for example, Li 1.5 Al 0. 5 Ge 0.5 (PO 4 ) 3 (hereinafter referred to as “LAGP”) is mixed with the active material, followed by firing (press firing) under a pressure of 100 kg / cm 2 or more to form a positive electrode and a negative electrode. To do so was proposed in Patent Document 1. The press firing method proposed in Patent Document 1 is an effective method for obtaining a dense electrode. However, in order to produce a relatively large size battery (for example, a vehicle-mounted battery), the press firing method is used. Is necessary for mass production of batteries because it requires complicated equipment and increases costs. Therefore, in this technical field, it has been desired to produce an electrode having an improved volume energy density without the need for press firing.
Furthermore, in order to improve the volumetric energy density of the electrode, it is important to increase the ratio of the active material in the electrode material, but in the oxide type electrode material manufactured by the sintering method, the ratio of the active material is increased. Along with this, the binding of active material particles by the solid electrolyte and the lithium (Li) ion conduction path are reduced, and it is difficult to achieve a balance between volume energy density and Li ion conductivity.

特開2010−225390号公報JP 2010-225390 A

上記の課題に鑑み、本発明は、高い体積エネルギー密度及びLiイオン伝導率を有する電極材を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an electrode material having high volume energy density and Li ion conductivity.

本発明者は、上記課題につき鋭意検討した結果、固体電解質と1以上1.15未満の特定の平均アスペクト比を有する球状粒子状の活物質の混合物を固体電解質の軟化点以上の温度で焼結させることによって、プレス焼成しなくても、空隙が少ない高い相対密度(又は「焼結密度」)を有する緻密な電極材が得られることを見出した。本発明の電極材は、空隙が少なく緻密であるために活物質の充填率が高く、その結果、高いエネルギー密度を有する。さらに、本発明の電極材は、空隙が少なく緻密であるために、高いLiイオン伝導度を有する。活物質として、上記のとおりの特定の範囲内の平均アスペクト比を有する球状粒子状の活物質を使用した場合には、上記の特定の範囲を超える平均アスペクト比を有する活物質粒子を使用する場合と比べて、高い相対密度を有する緻密な電極材が得られる。高い相対密度を有する緻密な電極材が得られる理由は、1以上1.15未満の特定の平均アスペクト比を有する球状粒子状の活物質を使用する場合には、当該球状粒子状の活物質と固体電解質との混合物を固体電解質の軟化点以上の温度で焼結して固体電解質を軟化させた際に、活物質粒子間の摩擦及び引っ掛かりが少なく、軟化した固体電解質が毛管作用により活物質粒子間に浸透することにより、活物質粒子が自発的に再配列しやすくなると考えられる。活物質粒子の再配列と同時に、軟化した固体電解質の表面張力が駆動力となって、活物質粒子と軟化した固体電解質の凝集が起こり、その結果、活物質と固体電解質との混合物中の空隙が減少し、高い相対密度(又は「焼結密度」)を有する緻密な電極材が得られるものと考えられる。   As a result of intensive studies on the above problems, the present inventor has sintered a mixture of a solid electrolyte and a spherical particulate active material having a specific average aspect ratio of 1 to less than 1.15 at a temperature equal to or higher than the softening point of the solid electrolyte. It has been found that a dense electrode material having a high relative density (or “sintered density”) with few voids can be obtained without performing press firing. Since the electrode material of the present invention is dense with few voids, the filling rate of the active material is high, and as a result, it has a high energy density. Furthermore, since the electrode material of the present invention is dense with few voids, it has high Li ion conductivity. When the active material particles having an average aspect ratio exceeding the specific range are used when the active material is a spherical particle active material having an average aspect ratio within the specific range as described above. Compared to, a dense electrode material having a high relative density can be obtained. The reason why a dense electrode material having a high relative density is obtained is that when a spherical particle-shaped active material having a specific average aspect ratio of 1 or more and less than 1.15 is used, When the solid electrolyte is softened by sintering the mixture with the solid electrolyte at a temperature equal to or higher than the softening point of the solid electrolyte, there is less friction and catching between the active material particles, and the softened solid electrolyte is activated by the capillary action. It is considered that the active material particles easily rearrange spontaneously by penetrating in between. Simultaneously with the rearrangement of the active material particles, the surface tension of the softened solid electrolyte becomes a driving force, causing the active material particles and the softened solid electrolyte to aggregate, resulting in voids in the mixture of the active material and the solid electrolyte. It is considered that a dense electrode material having a high relative density (or “sintered density”) is obtained.

すなわち、本発明の一態様によれば、固体電解質と球状粒子状の活物質を含む全固体電池用電極材であって、活物質が1以上1.15未満の平均アスペクト比を有する球状粒子状の活物質である全固体電池用電極材が提供される。   That is, according to one aspect of the present invention, an electrode material for an all-solid battery containing a solid electrolyte and a spherical particulate active material, wherein the active material has a spherical particulate shape having an average aspect ratio of 1 or more and less than 1.15. An electrode material for an all-solid battery that is an active material is provided.

本発明の別の態様によれば、正極と、負極と、正極と負極の間に配置された固体電解質を含み、正極又は負極が集電体とその片面上に形成された上記の全固体電池用電極材からなる層を含むか、正極活物質が負極活物質の酸化還元電位よりも貴な電位を示すことを条件として正極及び負極のそれぞれが集電体とその片面上に形成された上記の全固体電池用電極材からなる層を含む、全固体電池が提供される。   According to another aspect of the present invention, the all solid state battery includes a positive electrode, a negative electrode, and a solid electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode or the negative electrode is formed on a current collector and one surface thereof. Each of the positive electrode and the negative electrode is formed on the current collector and one side thereof on the condition that the electrode material layer is included or the positive electrode active material exhibits a potential nobler than the redox potential of the negative electrode active material. An all-solid-state battery including a layer made of the electrode material for all-solid-state batteries is provided.

本発明のさらに別の態様によれば、
(a)固体電解質と1以上1.15未満の平均アスペクト比を有する球状粒子状の活物質とを混合する工程、
(b)工程(a)から得られた混合物をプレス成形して予備成形体を形成する工程、及び
(c)工程(b)で形成された予備成形体を不活性ガス雰囲気下で固体電解質の軟化点以上の温度で焼結させる工程、
を含む、全固体電池用電極材の製造方法が提供される。
According to yet another aspect of the invention,
(A) a step of mixing a solid electrolyte and a spherical particle-shaped active material having an average aspect ratio of 1 or more and less than 1.15;
(B) a step of press-molding the mixture obtained from step (a) to form a preform, and (c) the preform formed in step (b) of the solid electrolyte in an inert gas atmosphere. Sintering at a temperature above the softening point;
The manufacturing method of the electrode material for all-solid-state batteries containing is provided.

本発明の全固体電池用電極材は、固体電解質と、活物質として1以上1.15未満の平均アスペクト比を有する球状粒子状の活物質を含むことにより、高い焼結密度を実現し、その結果、高い体積エネルギー密度及び高い導電率を達成することができる。   The electrode material for an all-solid-state battery of the present invention includes a solid electrolyte and a spherical particulate active material having an average aspect ratio of 1 or more and less than 1.15 as an active material, thereby realizing a high sintering density. As a result, high volume energy density and high conductivity can be achieved.

図1は、比較例1及び2のペレット状焼結体の相対密度(%)を示すグラフを示す。FIG. 1 is a graph showing the relative density (%) of the pellet-shaped sintered bodies of Comparative Examples 1 and 2. 図2(a)及び(b)は、それぞれ、比較例1及び2のペレット状焼結体の走査型電子顕微鏡(SEM)写真を示す。FIGS. 2A and 2B show scanning electron microscope (SEM) photographs of the pellet-like sintered bodies of Comparative Examples 1 and 2, respectively. 図3(a)〜(e)は、それぞれ、比較例3、実施例1及び比較例4〜6で使用した活物質のSEM写真を示す。3A to 3E show SEM photographs of the active materials used in Comparative Example 3, Example 1, and Comparative Examples 4 to 6, respectively. 図4は、活物質粒子の平均アスペクト比を横軸、焼結体の相対密度(%)を縦軸にプロットしたグラフを示す。FIG. 4 shows a graph in which the average aspect ratio of the active material particles is plotted on the horizontal axis and the relative density (%) of the sintered body is plotted on the vertical axis. 図5は、比較例3及び実施例1の焼結前の予備成形体の相対密度(%)及び予備成形体を焼結して得られた焼結体(電極材)の相対密度(%)を比較するためのグラフを示す。FIG. 5 shows the relative density (%) of the preform before sintering of Comparative Example 3 and Example 1 and the relative density (%) of the sintered body (electrode material) obtained by sintering the preform. The graph for comparing is shown. 図6(a)及び(b)は、それぞれ、比較例3及び実施例1の焼結体のSEM写真を示す。6A and 6B show SEM photographs of the sintered bodies of Comparative Example 3 and Example 1, respectively. 図7は、電極材について、活物質/(活物質+固体電解質)を横軸、Liイオン伝導率(S/cm)を縦軸にプロットしたグラフを示す。FIG. 7 shows a graph in which active material / (active material + solid electrolyte) is plotted on the horizontal axis and Li ion conductivity (S / cm) is plotted on the vertical axis for the electrode material. 図8(a)及び(b)は、それぞれ、活物質/(活物質+固体電解質)が0.70である電極材と活物質/(活物質+固体電解質)が0.75である電極材のSEM写真を示す。FIGS. 8A and 8B show an electrode material having an active material / (active material + solid electrolyte) of 0.70 and an electrode material having an active material / (active material + solid electrolyte) of 0.75, respectively. The SEM photograph of is shown.

本発明の全固体電池用電極材に使用できる固体電解質の例としては、焼成温度で軟化するガラス質の固体電解質、例えばLiPO、LiSiO、LiSiO、Li1+xAlTi2−x(PO(0≦x≦2)、Li1+xAlGe2−x(PO(0≦x≦2)、LiO−B、LiO−Al、LiTaO、LiS−P、LiI−LiS−Pが挙げられる。固体電解質としては、高い導電率を有し、還元電位が安定であるという観点から、Li1+xAlGe2−x(PO(0≦x≦2)、特に導電率の観点から、Li1.5Al0.5Ge1.5(PO(以下、「LAGP」と表す)が好ましい。特に、LAGPは、結晶化温度が590℃であり、結晶化するとリチウムイオン伝導性が向上することが知られており、また、軟化点が540℃であることから、従来の焼結法と比べてかなり低い600℃程度での焼結温度で電極を製造することが可能である。 Examples of the solid electrolyte that can be used for the electrode material for an all-solid battery of the present invention include a glassy solid electrolyte that softens at the firing temperature, for example, LiPO 4 , Li 2 SiO 2 , Li 2 SiO 4 , Li 1 + x Al x Ti 2. -x (PO 4) 3 (0 ≦ x ≦ 2), Li 1 + x Al x Ge 2-x (PO 4) 3 (0 ≦ x ≦ 2), Li 2 O-B 2 O 3, Li 2 O-Al 2 O 3, LiTaO 3, Li 2 S-P 2 S 5, Li is 2 I-Li 2 S-P 2 S 5 and the like. As the solid electrolyte, Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ≦ x ≦ 2), particularly from the viewpoint of conductivity, from the viewpoint of having high conductivity and a stable reduction potential, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (hereinafter referred to as “LAGP”) is preferable. In particular, LAGP has a crystallization temperature of 590 ° C., and it is known that the lithium ion conductivity is improved when crystallized. Also, since the softening point is 540 ° C., it is compared with the conventional sintering method. It is possible to produce electrodes at sintering temperatures as low as 600 ° C.

本発明の全固体電池用電極材に使用できる球状粒子状の活物質の例としては、当該活物質が負極活物質として使用される場合、Nb、WO、TiO、LiTi12、又はこれらの1又は2種以上の組み合わせが挙げられる。さらに、本発明の全固体電池用電極材に使用できる球状粒子状の活物質の例としては、当該活物質が正極活物質として使用される場合、LiCoO、LiNi1/3Mn1/3Co1/3、LiNiPO、LiMnPO、LiNiO、LiMnO、LiCoMnO、Li(PO、又はこれらの1又は2種以上の組み合わせが挙げられる。球状粒子状の活物質としては、熱処理温度でLAGPと反応しない点で、Nb、TiO、WOが好ましく、Nbがより好ましい。 Examples of the active material in the form of spherical particles that can be used for the electrode material for an all-solid battery of the present invention include Nb 2 O 5 , WO 2 , TiO 2 , Li 4 Ti when the active material is used as a negative electrode active material. 5 O 12 , or one or a combination of two or more thereof may be mentioned. Furthermore, as an example of the active material in the form of spherical particles that can be used for the electrode material for an all solid state battery of the present invention, when the active material is used as a positive electrode active material, LiCoO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNiPO 4 , LiMnPO 4 , LiNiO 2 , LiMnO 2 , LiCoMnO 4 , Li 3 V 2 (PO 4 ) 3 , or one or a combination of two or more thereof can be given. As the spherical particle-like active material, Nb 2 O 5 , TiO 2 , and WO 2 are preferable, and Nb 2 O 5 is more preferable in that it does not react with LAGP at the heat treatment temperature.

球状粒子状の活物質は、1以上1.15未満の平均アスペクト比を有する。本明細書において、平均アスペクト比は、電子顕微鏡の写真像から、任意の粒子100個を選んで、スケールを用いて測定した粒子像の長径(DL)と短径(DS)の比(DL/DS)の平均値と定義される。かかる平均アスペクト比を有する球状粒子状の活物質は、例えば、活物質粉末(例えば、Nb粉末)をキャリアガス(例えばOガス)により気流搬送し、別途供給した燃料を酸素バーナーで燃焼させて生じた高温火炎に通過させて粉末粒子を溶融させ、溶融液の表面張力により球状化させることにより製造することができる。 The spherical particulate active material has an average aspect ratio of 1 or more and less than 1.15. In this specification, the average aspect ratio is the ratio of the major axis (DL) to the minor axis (DS) of a particle image measured using a scale by selecting 100 arbitrary particles from a photographic image of an electron microscope (DL / DS) is defined as the average value. The active material in the form of spherical particles having such an average aspect ratio is, for example, an active material powder (for example, Nb 2 O 5 powder) air-flowed with a carrier gas (for example, O 2 gas), and separately supplied fuel with an oxygen burner. It can be produced by passing through a high-temperature flame generated by combustion to melt the powder particles and spheroidizing by the surface tension of the melt.

本発明の全固体電池用電極材において、球状の活物質粒子の体積分率が高くなるほど、体積エネルギー密度がより高くなるが、実用上望ましい導電率を確保するために、好ましくは、固体電解質及び球状粒子状の活物質の総体積にする球状粒子状の活物質の総体積の体積%が70体積%以下、すなわち、(球状の活物質粒子の総体積)/[(球状の活物質粒子の総体積)+(固体電解質の総体積)]が0.7以下となるような量で球状の活物質粒子が電極材中に存在することが好ましい。球状粒子状の活物質と固体電解質との体積比は、より好ましくは70:30〜30:70、最も好ましくは70:30〜50:50である。球状粒子状の活物質と固体電解質との比率は、例えばICP(誘導結合プラズマ)発光分光分析法などの公知の方法により求めることができ、空隙の割合は、例えば水銀圧入法などの公知の方法により求めることができる。本発明の全固体電池用電極材は87%以上の相対密度を有することが好ましい。   In the electrode material for an all-solid-state battery of the present invention, the higher the volume fraction of the spherical active material particles, the higher the volume energy density, but in order to ensure a practically desirable conductivity, preferably a solid electrolyte and The volume percentage of the total volume of the spherical particle active material to be the total volume of the spherical particle active material is 70% by volume or less, that is, (total volume of the spherical active material particles) / [(of the spherical active material particles The spherical active material particles are preferably present in the electrode material in such an amount that the total volume) + (total volume of the solid electrolyte)] is 0.7 or less. The volume ratio of the spherical particulate active material to the solid electrolyte is more preferably 70:30 to 30:70, and most preferably 70:30 to 50:50. The ratio between the active material in the form of spherical particles and the solid electrolyte can be determined by a known method such as ICP (inductively coupled plasma) emission spectroscopy, and the void ratio can be determined by a known method such as mercury intrusion. It can ask for. The all-solid-state battery electrode material of the present invention preferably has a relative density of 87% or more.

本発明の電極材は、必要に応じて、全固体電池用電極の固体材料として当該技術分野で知られている任意成分、例えば、導電助剤(例えばカーボンブラック、カーボンファイバーなど)、結着剤(バインダー)などを含んでもよい。しかし、本発明の電極材は、上記のとおり、固体電解質と球状の活物質粒子の組み合わせにより高い導電率を達成することができるため、本発明の電極材が導電助剤を含む場合には、導電助剤の量はより少ないことが好ましく、より高い体積エネルギー密度を達成するには、導電助剤を含まないことが好ましい。また、本発明の電極材において、固体電解質が、上記のとおり、球状粒子状の活物質に対する結着剤として作用することができるため、高い導電率を達成するには、結着剤を含まないことが好ましい。   The electrode material of the present invention may be an optional component known in the art as a solid material for an electrode for an all solid state battery, for example, a conductive additive (for example, carbon black, carbon fiber, etc.), a binder, if necessary. (Binder) may be included. However, as described above, since the electrode material of the present invention can achieve high conductivity by the combination of the solid electrolyte and the spherical active material particles, when the electrode material of the present invention contains a conductive additive, The amount of conductive aid is preferably less, and in order to achieve a higher volumetric energy density, it is preferred not to include a conductive aid. Further, in the electrode material of the present invention, since the solid electrolyte can act as a binder for the active material in the form of spherical particles as described above, no binder is included to achieve high conductivity. It is preferable.

本発明の電極材は、
(a)固体電解質と1以上1.15未満の平均アスペクト比を有する球状粒子状の活物質(及び、必要に応じて、任意成分)とを混合する工程、
(b)工程(a)から得られた混合物をプレス成形して予備成形体を形成する工程、及び
(c)工程(b)で形成された予備成形体を不活性ガス雰囲気下で固体電解質の軟化点以上の温度で焼結させる工程、
を含む方法により製造することができる。
The electrode material of the present invention is
(A) a step of mixing a solid electrolyte and a spherical particle-shaped active material having an average aspect ratio of 1 or more and less than 1.15 (and optional components if necessary);
(B) a step of press-molding the mixture obtained from step (a) to form a preform, and (c) the preform formed in step (b) of the solid electrolyte in an inert gas atmosphere. Sintering at a temperature above the softening point;
It can manufacture by the method containing.

1以上1.15未満の平均アスペクト比を有する球状粒子状の活物質を使用することによって、活物質を固体電解質と混合しプレス成形して得られる予備成形体(焼結前)の成形密度を向上させることができる。さらに、プレス成形により得られる予備成形体を、不活性ガス雰囲気下で固体電解質の軟化点以上の温度で焼結させることによって、上記のように、軟化した固体電解質が毛管作用により活物質粒子間に浸透することにより、活物質粒子が自発的に再配列しやすくなると考えられる。活物質粒子の再配列と同時に、軟化した固体電解質の表面張力が駆動力となって、活物質粒子と軟化した固体電解質の凝集が起こり、活物質粒子間に固体電解質がさらに浸透し、予備成形体の収縮が起こり、その結果、予備成形体中に存在していた空隙を減少させることができ、より緻密な、すなわちより高い相対密度を有する焼結体(電極材)が得られるものと考えられる。   By using a spherical particle-shaped active material having an average aspect ratio of 1 or more and less than 1.15, the molding density of a preform (before sintering) obtained by mixing the active material with a solid electrolyte and press-molding is reduced. Can be improved. Further, by sintering the preform obtained by press molding at a temperature equal to or higher than the softening point of the solid electrolyte in an inert gas atmosphere, the softened solid electrolyte is intercalated between the active material particles by capillary action as described above. It is thought that the active material particles easily rearrange spontaneously by penetrating into. Simultaneously with the rearrangement of the active material particles, the surface tension of the softened solid electrolyte becomes the driving force, causing the active material particles and the softened solid electrolyte to agglomerate. It is considered that the shrinkage of the body occurs, and as a result, the voids existing in the preform can be reduced, and a denser, that is, sintered body (electrode material) having a higher relative density can be obtained. It is done.

上記工程(a)は、粉末状の固体電解質と1以上1.15未満の平均アスペクト比を有する球状粒子状の活物質とを、(球状の活物質粒子の総体積)/[(球状の活物質粒子の総体積)+(固体電解質の総体積)]が0.7以下となるような比率で、例えば、室温で混合することにより行うことができる。混合は、例えば、乳鉢混合、ボールミル混合により行うことができる。   In the step (a), a powdered solid electrolyte and a spherical particle-shaped active material having an average aspect ratio of 1 or more and less than 1.15 are expressed by (total volume of spherical active material particles) / [(spherical active material). The mixing can be performed, for example, at room temperature in such a ratio that the total volume of the substance particles) + (the total volume of the solid electrolyte)] is 0.7 or less. Mixing can be performed, for example, by mortar mixing or ball mill mixing.

上記工程(b)は、工程(a)から得られた混合物を、プレス成形して、例えば、ペレット状、フィルム状などの形状の予備成形体を形成する工程である。プレス成形は、公知の方法により実施できる。プレス成形は、例えば、工程(a)から得られた混合物を金型に充填し、一軸プレス、冷間等方圧加圧(CIP)装置、ホットプレスなどのプレス装置を使用して、例えば、およそ室温(20℃)〜約150℃の温度、約0.2〜約20ton/cmの圧力で、約3秒間〜約30分間プレスすることにより実施できる。 The step (b) is a step in which the mixture obtained from the step (a) is press-molded to form a preformed body having a shape such as a pellet or a film. Press molding can be performed by a known method. In press molding, for example, the mixture obtained from step (a) is filled in a mold, and using a pressing device such as a uniaxial press, a cold isostatic pressing (CIP) device, or a hot press, for example, The pressing can be performed at a temperature of about room temperature (20 ° C.) to about 150 ° C. and a pressure of about 0.2 to about 20 ton / cm 2 for about 3 seconds to about 30 minutes.

上記工程(c)は、工程(b)で形成された予備成形体を、例えば、不活性ガス(例えばアルゴンガス)雰囲気下で、固体電解質の軟化点以上の温度(ただし、固体電解質及び活物質の分解温度より低い温度)で焼結させることにより行うことができる。得られた焼結体は、室温に放冷する。
なお、本発明の電極材は、プレス焼成せずに高い体積エネルギー密度及び高いLiイオン伝導度を達成するものであるが、より緻密な又はより相対密度が高い電極材を得るためにプレス焼成を排除するものではない。
In the step (c), the preform formed in the step (b) is heated to a temperature equal to or higher than the softening point of the solid electrolyte in an inert gas (eg, argon gas) atmosphere (however, the solid electrolyte and the active material). And a temperature lower than the decomposition temperature). The obtained sintered body is allowed to cool to room temperature.
The electrode material of the present invention achieves high volume energy density and high Li ion conductivity without press firing, but press firing is performed in order to obtain a denser or higher relative density electrode material. It is not excluded.

上記工程(c)で形成された電極材の片面に、当該技術分野で知られている方法により集電体を形成することにより電極(負極若しくは正極、又は負極及び正極の両方)を得ることができる。例えば、フィルム状、箔状の集電体材料(例えば、銅、アルミニウム、金)を、工程(c)で形成された電極材の片面に適用するか、又は集電体材料を工程(c)で形成された電極材の片面に蒸着することにより電極を得ることができる。   An electrode (a negative electrode or a positive electrode, or both a negative electrode and a positive electrode) can be obtained by forming a current collector on one surface of the electrode material formed in the step (c) by a method known in the art. it can. For example, a film-like or foil-like current collector material (for example, copper, aluminum, gold) is applied to one side of the electrode material formed in the step (c), or the current collector material is used in the step (c). An electrode can be obtained by vapor-depositing on one side of the electrode material formed in (1).

本発明の電極材は、負極材として使用しても正極材として使用してもよい。従って、負極材又は正極材が本発明の電極材からなる全固体電池を構成することができる。また、負極材及び正極材の両方が本発明の電極材からなる全固体電池を構成することもできる。すなわち、負極材及び正極材のうちの少なくとも一方に本発明の電極材を使用して全固体電池を構成することができる。ただし、負極材及び正極材の両方が本発明の電極材からなる全固体電池を構成する場合には、正極活物質が負極活物質の酸化還元電位よりも貴な電位を示すことを条件とする。さらに、負極材及び正極材の両方が本発明の電極材からなる全固体電池を構成する場合には、負極材及び正極材について、それぞれ独立に、球状粒子状の活物質が1以上1.15未満の平均アスペクト比を有するという条件を満たす。   The electrode material of the present invention may be used as a negative electrode material or a positive electrode material. Therefore, the all-solid-state battery which a negative electrode material or a positive electrode material consists of the electrode material of this invention can be comprised. Moreover, all the solid-state batteries which both a negative electrode material and a positive electrode material consist of the electrode material of this invention can also be comprised. That is, an all-solid battery can be constructed using the electrode material of the present invention for at least one of a negative electrode material and a positive electrode material. However, in the case where both the negative electrode material and the positive electrode material constitute an all-solid battery comprising the electrode material of the present invention, the positive electrode active material is required to exhibit a potential nobler than the redox potential of the negative electrode active material. . Furthermore, when both the negative electrode material and the positive electrode material constitute an all-solid battery comprising the electrode material of the present invention, the negative electrode material and the positive electrode material each independently have an active material in the form of spherical particles of 1 or more and 1.15. The condition of having an average aspect ratio of less than is satisfied.

正極と負極の間に配置される固体電解質は、固体電解質として機能することができる材料から構成されたものであれば特に限定されない。固体電解質としては、全固体電池において一般的に用いられるものと同様のものを用いることができる。固体電解質の例としては、例えば、硫化物系固体電解質(例えばLiS−P、LiI−LiS−P)、酸化物系固体電解質(例えばLiPO、LiSiO、LiSiO、Li1.5Al0.5Ti1.5(PO、Li1.5Al0.5Ge1.5(PO、LiO−B、LiO−Al)等が挙げられる。固体電解質は、全固体電池の意図する用途に応じて任意のサイズ及び形状で負極と正極の間に配置され、固体電解質の種類及び形状は、特に限定されず、全固体電池の用途に応じて適宜選択することができる。 The solid electrolyte disposed between the positive electrode and the negative electrode is not particularly limited as long as it is made of a material that can function as a solid electrolyte. As the solid electrolyte, those similar to those generally used in all solid state batteries can be used. Examples of solid electrolytes include, for example, sulfide-based solid electrolytes (eg, Li 2 S—P 2 S 5 , Li 2 I—Li 2 S—P 2 S 5 ), oxide-based solid electrolytes (eg, LiPO 4 , Li 2 SiO 2 , Li 2 SiO 4 , Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 2 O—B 2 O 3 , Li 2 O—Al 2 O 3 ) and the like. The solid electrolyte is disposed between the negative electrode and the positive electrode in any size and shape depending on the intended use of the all-solid battery, and the type and shape of the solid electrolyte are not particularly limited, and depend on the use of the all-solid battery. It can be selected appropriately.

本発明の電極材を使用して得られる全固体電池は、上述した部材の他に、正極集電体及び負極集電体に接続された正極端子及び負極端子などを有することができる。これらの部材の種類及び形状は、全固体電池の用途に応じて適宜選択することができる。   The all solid state battery obtained by using the electrode material of the present invention can have a positive electrode terminal and a negative electrode terminal connected to the positive electrode current collector and the negative electrode current collector in addition to the above-described members. The types and shapes of these members can be appropriately selected according to the use of the all solid state battery.

以下に示す実施例及び比較例を参照して本発明をさらに詳しく説明するが、本発明の範囲は、これらの実施例によって限定されるものでないことは言うまでもない。   The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but it goes without saying that the scope of the present invention is not limited by these Examples.

比較例1:固体電解質(LAGP)ペレットのプレス焼成
アルゴンガス雰囲気下で0.3gの固体電解質Li1.5Al0.5Ge0.5(PO(LAGP)粉末(ホソカワミクロン(株)から入手、平均粒子径200nm)をカーボンダイス(内径10mm)内に充填し、ホットプレス機によりアルゴンガス雰囲気下で600℃で0.5ton/cmの圧力で0.5時間加熱することによりペレット状焼結体を得た。
Comparative Example 1: Press firing of solid electrolyte (LAGP) pellets 0.3 g of solid electrolyte Li 1.5 Al 0.5 Ge 0.5 (PO 4 ) 3 (LAGP) powder (Hosokawa Micron Corporation) under an argon gas atmosphere Obtained, and filled in a carbon die (inner diameter 10 mm) and heated by a hot press machine at 600 ° C. under a pressure of 0.5 ton / cm 2 for 0.5 hour under an argon gas atmosphere. A shaped sintered body was obtained.

比較例2:固体電解質(LAGP)単体ペレットの焼成(プレス荷重なし)
アルゴンガス雰囲気下で0.3gのLAGP粉末(ホソカワミクロン(株)から入手、平均粒子径200nm)をダイス内(内径10mm)内に充填し、1.5ton/cmの圧力で1分間プレスすることによりペレット状成形体を得た。次に、ペレット状成形体をダイスから取り出し、雰囲気制御炉によりアルゴンガス雰囲気下で600℃で2時間焼成し、ペレット状焼結体を得た。
Comparative Example 2: Solid electrolyte (LAGP) single pellet firing (no press load)
In an argon gas atmosphere, 0.3 g of LAGP powder (obtained from Hosokawa Micron Co., Ltd., average particle size 200 nm) is filled in a die (inner diameter 10 mm) and pressed at a pressure of 1.5 ton / cm 2 for 1 minute. A pellet-like molded body was obtained. Next, the pellet-shaped formed body was taken out of the die and fired at 600 ° C. for 2 hours in an argon gas atmosphere by an atmosphere control furnace to obtain a pellet-shaped sintered body.

比較例1及び2で得られたペレット状焼結体について、相対密度(又は焼結密度)(%)はそれぞれ65%及び84%であった。比較例1及び2で得られたペレット状焼結体について、走査型電子顕微鏡(SEM)写真を撮影(JEOL製のJSM−6610LAを使用、以下同様)した。相対密度の結果を図1に示し、比較例1及び2のSEM写真をそれぞれ図2(a)及び(b)に示す。
比較例1及び2について、相対密度(%)は、下記式により求めた。
相対密度(%)=100×焼結体の嵩密度(g/cm3)/固体電解質の真密度(g/cm3
図1に示されるように、ホットプレス機を用いて得られた比較例1のペレット状焼結体は、予想に反して、プレス荷重なしで焼成することにより形成された比較例2の焼結体よりも相対密度がかなり低い。
図2(a)及び(b)のSEM写真から、比較例1のペレット状焼結体は、ホットプレス機によりプレス焼成したものであるにもかかわらず、固体電解質の溶融組織は観察されず、空隙の多い組織を有することが確認された。比較例1のペレット状焼結体を赤外線吸収法炭素硫黄分析装置によりさらに調べると、カーボンが検出された。比較例1のペレット状焼結体は、カーボンにより緻密化が阻害されたと考えられる。酸化物型固体電解質として有望な電解質であるLAGPに対して、ホットプレスは有効な緻密化手段でないことが明らかになった。
About the pellet-shaped sintered compact obtained in Comparative Examples 1 and 2, the relative density (or sintered density) (%) was 65% and 84%, respectively. About the pellet-shaped sintered compact obtained by the comparative examples 1 and 2, the scanning electron microscope (SEM) photograph was image | photographed (JSMOL JSM-6610LA was used, and so on). The relative density results are shown in FIG. 1, and SEM photographs of Comparative Examples 1 and 2 are shown in FIGS. 2 (a) and 2 (b), respectively.
For Comparative Examples 1 and 2, the relative density (%) was determined by the following formula.
Relative density (%) = 100 × bulk density of sintered body (g / cm 3 ) / true density of solid electrolyte (g / cm 3 )
As shown in FIG. 1, the pellet-like sintered body of Comparative Example 1 obtained using a hot press machine, contrary to expectation, was sintered by Comparative Example 2 formed by firing without a press load. The relative density is much lower than the body.
From the SEM photographs of FIGS. 2 (a) and (b), the pellet-like sintered body of Comparative Example 1 was not subjected to the observation of the melt structure of the solid electrolyte, despite being press-fired by a hot press machine. It was confirmed to have a structure with many voids. When the pellet-like sintered body of Comparative Example 1 was further examined with an infrared absorption carbon sulfur analyzer, carbon was detected. The pellet-like sintered body of Comparative Example 1 is considered to be densified by carbon. It became clear that hot pressing is not an effective densification means for LAGP, which is a promising electrolyte as an oxide solid electrolyte.

実施例1及び比較例3〜6
三井金属(株)から入手した五酸化ニオブ(Nb)粉末(以下、「原料粉」という)(平均アスペクト比2.14)をキャリアガス(Oガス)により気流搬送し、別途供給した燃料を酸素バーナーで燃焼させて生じた高温火炎に通過させて粉末粒子を溶融させ、溶融液の表面張力により球状化させ、球状粒子状のNb(平均アスペクト比1.08)(以下、「球状粉」ともいう)を得た。
五酸化ニオブ(Nb)は、熱処理により柱状化する性質を有するため、上記の球状粒子状のNb(球状粉)を1000℃で2時間熱処理することにより平均アスペクト比が1.15であるNb粒子(以下、「1000℃仮焼粉」という)を得、球状粒子状のNb(球状粉)を1100℃で2時間熱処理することにより平均アスペクト比が1.21であるNb粒子(以下、「1100℃仮焼粉」という)を得、球状粒子状のNb(球状粉)を1200℃で2時間熱処理することにより平均アスペクト比が1.28であるNb粒子(以下、「1200℃仮焼粉」という)を得た。
なお、これらのNb粒子の平均アスペクト比は、電子顕微鏡の写真像から、任意の粒子100個を選んで、スケールを用いて粒子像の長径(DL)と短径(DS)を測定し、比(DL/DS)の平均値を計算することにより求めた。上記の原料粉、球状粉、1000℃仮焼粉、1100℃仮焼粉及び1200℃仮焼粉のSEM写真を図3(a)〜(e)に示す。
Example 1 and Comparative Examples 3-6
Niobium pentoxide (Nb 2 O 5 ) powder (hereinafter referred to as “raw powder”) (average aspect ratio 2.14) obtained from Mitsui Kinzoku Co., Ltd. is air-flowed with a carrier gas (O 2 gas) and supplied separately. The resulting fuel is passed through a high-temperature flame generated by burning with an oxygen burner to melt the powder particles, and spheroidized by the surface tension of the melt, to form spherical particles of Nb 2 O 5 (average aspect ratio 1.08) ( Hereinafter also referred to as “spherical powder”.
Since niobium pentoxide (Nb 2 O 5 ) has the property of being columnarized by heat treatment, an average aspect ratio of 1 is obtained by heat-treating the spherical particle-shaped Nb 2 O 5 (spherical powder) at 1000 ° C. for 2 hours. .15 Nb 2 O 5 particles (hereinafter referred to as “1000 ° C. calcined powder”), and the spherical particles of Nb 2 O 5 (spherical powder) are heat-treated at 1100 ° C. for 2 hours to obtain an average aspect ratio. An average aspect ratio is obtained by obtaining Nb 2 O 5 particles (hereinafter referred to as “1100 ° C. calcined powder”) of 1.21, and heat treating the spherical Nb 2 O 5 (spherical powder) at 1200 ° C. for 2 hours. Nb 2 O 5 particles (hereinafter referred to as “1200 ° C. calcined powder”) having an A of 1.28.
The average aspect ratio of these Nb 2 O 5 particles was determined by selecting 100 arbitrary particles from a photographic image of an electron microscope and measuring the major axis (DL) and minor axis (DS) of the particle image using a scale. And it calculated | required by calculating the average value of ratio (DL / DS). The SEM photograph of said raw material powder, spherical powder, 1000 degreeC calcined powder, 1100 degreeC calcined powder, and 1200 degreeC calcined powder is shown to Fig.3 (a)-(e).

上記の原料粉を、固体電解質(LAGP)と体積比50:50でアルゴンガス雰囲気下、乳鉢により室温で混合し、次に、得られた混合物をプレス成形機(三庄インダストリー(株)製のニュートンプレス機)を使用して1.5ton/cmの圧力でプレス成形(一軸成形)してペレット状の予備成形体を形成した。このペレット状の予備成形体の相対密度は58%であった。得られた予備成形体を雰囲気制御炉によりアルゴンガス雰囲気下で600℃で2時間焼結させ、室温に放冷した。得られた焼結体の相対密度は59.3%であった(比較例3)。
原料粉を球状粉に置き換えたことを除いて比較例3と同様にしてペレット状の予備成形体を形成した。この予備成形体の相対密度は65.2%であった。得られたペレット状の予備成形体を雰囲気制御炉によりアルゴンガス雰囲気下で2時間焼結させ、得られた焼結体を室温に放冷した。得られた焼結体の相対密度は87.7%であった(実施例1)。
原料粉を1000℃仮焼粉に置き換えたことを除いて比較例3と同様に焼結体(電極材)を得た後、焼結体の相対密度を求めた。焼結体の相対密度は67%であった(比較例4)。
原料粉を1100℃仮焼粉に置き換えたことを除いて比較例3と同様に焼結体(電極材)を得た後、焼結体の相対密度を求めた。焼結体の相対密度は65%であった(比較例5)。
原料粉を1200℃仮焼粉に置き換えたことを除いて比較例3と同様に焼結体(電極材)を得た後、焼結体の相対密度を求めた。焼結体の相対密度は65%であった(比較例6)。
各焼結体について求められた平均アスペクト比を横軸、焼結体の相対密度(%)を縦軸にプロットしたグラフを図4に示す。さらに、比較例3及び実施例1の予備成形体(焼結前)及び焼結後に得られた焼結体(電極材)の相対密度(%)を比較するグラフを図5に示す。
なお、実施例1及び比較例3〜6について、相対密度(%)は、下記式により求めた。
相対密度(%)=100×d/{(m+m)/(m/d+m/d)}
上式中、dは焼結体の嵩密度(g/cm3)であり、dは固体電解質の真密度(g/cm3)であり、dは活物質の真密度(g/cm3)であり、mは固体電解質の質量(g)であり、mは活物質の質量(g)である。
The above raw material powder was mixed with a solid electrolyte (LAGP) at a volume ratio of 50:50 in an argon gas atmosphere at room temperature using a mortar, and the resulting mixture was then made into a press molding machine (manufactured by Sansho Industry Co., Ltd.). Using a Newton press machine, press molding (uniaxial molding) was performed at a pressure of 1.5 ton / cm 2 to form a pellet-shaped preform. The relative density of the pellet-shaped preform was 58%. The obtained preform was sintered for 2 hours at 600 ° C. under an argon gas atmosphere in an atmosphere control furnace and allowed to cool to room temperature. The relative density of the obtained sintered body was 59.3% (Comparative Example 3).
A pellet-shaped preform was formed in the same manner as in Comparative Example 3 except that the raw material powder was replaced with a spherical powder. The relative density of this preform was 65.2%. The obtained pellet-shaped preform was sintered in an atmosphere control furnace for 2 hours under an argon gas atmosphere, and the obtained sintered body was allowed to cool to room temperature. The relative density of the obtained sintered body was 87.7% (Example 1).
A sintered body (electrode material) was obtained in the same manner as in Comparative Example 3 except that the raw material powder was replaced with calcined powder at 1000 ° C., and then the relative density of the sintered body was determined. The relative density of the sintered body was 67% (Comparative Example 4).
After obtaining a sintered body (electrode material) in the same manner as in Comparative Example 3 except that the raw material powder was replaced with calcined powder at 1100 ° C., the relative density of the sintered body was determined. The relative density of the sintered body was 65% (Comparative Example 5).
A sintered body (electrode material) was obtained in the same manner as in Comparative Example 3 except that the raw material powder was replaced with 1200 ° C. calcined powder, and then the relative density of the sintered body was determined. The relative density of the sintered body was 65% (Comparative Example 6).
FIG. 4 shows a graph in which the average aspect ratio obtained for each sintered body is plotted on the horizontal axis and the relative density (%) of the sintered body is plotted on the vertical axis. Furthermore, the graph which compares the relative density (%) of the preformed body (before sintering) of Comparative Example 3 and Example 1 and the sintered body (electrode material) obtained after sintering is shown in FIG.
In addition, about Example 1 and Comparative Examples 3-6, the relative density (%) was calculated | required by the following formula.
Relative density (%) = 100 × d 0 / {(m 1 + m 2 ) / (m 1 / d 1 + m 2 / d 2 )}
In the above formula, d 0 is the bulk density (g / cm 3 ) of the sintered body, d 1 is the true density of the solid electrolyte (g / cm 3 ), and d 2 is the true density of the active material (g / cm 3 ). cm 3 ), m 1 is the mass (g) of the solid electrolyte, and m 2 is the mass (g) of the active material.

図4から、平均アスペクト比が1.15未満では、相対密度が急激に増加することが判る。図5から、実施例1の予備成形体及び焼結後に得られた焼結体の相対密度が比較例3と比べてかなり高いことが判る。   From FIG. 4, it can be seen that when the average aspect ratio is less than 1.15, the relative density increases rapidly. 5 that the relative density of the preformed body of Example 1 and the sintered body obtained after sintering is considerably higher than that of Comparative Example 3.

<Liイオン伝導率の測定>
上記の実施例1及び比較例3の焼結体について、温度25℃で10mVの交流電圧、1MHz〜0.1MHzの範囲で交流インピーダンス法によりLiイオン伝導率を求めた。比較例3のLiイオン伝導率は3.3×10−6S/cmであったのに対し、実施例1のLiイオン伝導率は1.3×10−5S/cmであり、実施例1は、驚くべきことに、比較例3の約4倍のLiイオン伝導率を示した。
<Measurement of Li ion conductivity>
About the sintered compact of said Example 1 and Comparative Example 3, Li ion conductivity was calculated | required by the alternating current impedance method in the range of 10 mV alternating current voltage and 1 MHz-0.1 MHz at the temperature of 25 degreeC. The Li ion conductivity of Comparative Example 3 was 3.3 × 10 −6 S / cm, whereas the Li ion conductivity of Example 1 was 1.3 × 10 −5 S / cm. 1 surprisingly showed a Li ion conductivity about 4 times that of Comparative Example 3.

図6(a)及び(b)に、それぞれ、比較例3及び実施例1の焼結体のSEM写真を示す。図6(a)及び(b)から、比較例3の焼結体と比べて、実施例1の焼結体は、より空隙が少なく、より緻密であることが判る。さらに、比較例3の焼結体のSEM写真(図6(a))から、ネットワーク状に連続する空隙が存在することが認められるのに対し、実施例1の焼結体のSEM写真(図6(b))からは、比較例3で認められたようなネットワーク状の連続する空隙は認められない。ネットワーク状の連続する空隙が電極材中に存在すると、Liイオン伝導パスが長くなり、低いLiイオン伝導率をもたらす。実施例1の焼結体は、Liイオン伝導パスを形成する固体電解質が活物質粒子間に密に充填されているために、高いLiイオン伝導度を示したと考えられる。   6A and 6B show SEM photographs of the sintered bodies of Comparative Example 3 and Example 1, respectively. 6 (a) and 6 (b), it can be seen that the sintered body of Example 1 has fewer voids and is denser than the sintered body of Comparative Example 3. Further, from the SEM photograph of the sintered body of Comparative Example 3 (FIG. 6A), it is recognized that there are continuous voids in a network form, whereas the SEM photograph of the sintered body of Example 1 (Figure From 6 (b), no network-like continuous voids as observed in Comparative Example 3 are observed. When network-like continuous voids are present in the electrode material, the Li ion conduction path becomes long, resulting in low Li ion conductivity. The sintered body of Example 1 is considered to exhibit high Li ion conductivity because the solid electrolyte forming the Li ion conduction path is closely packed between the active material particles.

次に、固体電解質(LAGP)と実施例1で使用した球状粒子状の活物質(「球状粉」)とを下記表1に示す配合比率で混合し、上記比較例3と同様に焼結体(電極材)を得た後、得られた焼結体(電極材1〜7)について、温度25℃で10mVの交流電圧、1MHz〜0.1MHzの範囲で交流インピーダンス法によりLiイオン伝導率を求めた。なお、電極材2は実施例1の焼結体である。   Next, the solid electrolyte (LAGP) and the active material in the form of spherical particles (“spherical powder”) used in Example 1 were mixed at the blending ratio shown in Table 1 below, and the sintered body was the same as in Comparative Example 3 above. After obtaining (electrode material), about the obtained sintered compact (electrode materials 1-7), Li ion conductivity is measured by the alternating current impedance method in the range of AC voltage of 10mV at the temperature of 25 degreeC, and 1MHz-0.1MHz. Asked. The electrode material 2 is the sintered body of Example 1.

得られた電極材1〜7について、活物質/(活物質+固体電解質)を横軸、Liイオン伝導率を縦軸にプロットしたグラフを図7に示す。   About the obtained electrode materials 1-7, the graph which plotted the active material / (active material + solid electrolyte) on the horizontal axis | shaft and Li ion conductivity on the vertical axis | shaft is shown in FIG.

図7から、活物質/(活物質+固体電解質)が0.70(図7で太字の点線で示されている)を超えると、Liイオン伝導率が急激に減少することが判る。
図8(a)及び(b)にそれぞれ示す電極材4[活物質/(活物質+固体電解質)=0.70]及び電極材5[活物質/(活物質+固体電解質)=0.75]のSEM写真から判るように、活物質/(活物質+固体電解質)が0.70を超えると、電極材中に連続空隙が多数存在する。連続空隙によりリチウムイオン伝導パスが長くなると、Liイオン伝導率が減少する。活物質/(活物質+固体電解質)が0.70を超えたときのLiイオン伝導率の減少は、Liイオン伝導パスが減少することによるものと考えられる。
From FIG. 7, it can be seen that when the active material / (active material + solid electrolyte) exceeds 0.70 (indicated by a bold dotted line in FIG. 7), the Li ion conductivity rapidly decreases.
Electrode material 4 [active material / (active material + solid electrolyte) = 0.70] and electrode material 5 [active material / (active material + solid electrolyte) = 0.75 shown in FIGS. 8 (a) and 8 (b), respectively. ], The active material / (active material + solid electrolyte) exceeds 0.70, and there are many continuous voids in the electrode material. When the lithium ion conduction path becomes longer due to the continuous air gap, the Li ion conductivity decreases. The decrease in the Li ion conductivity when the active material / (active material + solid electrolyte) exceeds 0.70 is considered to be due to the decrease in the Li ion conduction path.

Claims (7)

固体電解質と活物質を含む全固体電池用電極材であって、前記活物質が1以上1.15未満の平均アスペクト比を有する球状粒子状の活物質である、全固体電池用電極材。   An electrode material for an all solid state battery comprising a solid electrolyte and an active material, wherein the active material is an active material in the form of spherical particles having an average aspect ratio of 1 or more and less than 1.15. 前記固体電解質が酸化物固体電解質である、請求項1に記載の全固体電池用電極材。   The electrode material for all-solid-state batteries according to claim 1, wherein the solid electrolyte is an oxide solid electrolyte. 前記固体電解質及び前記球状粒子状の活物質の総体積に対する前記球状粒子状の活物質の体積%が70体積%以下である、請求項1又は2に記載の全固体電池用電極材。   The electrode material for an all-solid-state battery according to claim 1 or 2, wherein the volume percentage of the spherical particulate active material with respect to the total volume of the solid electrolyte and the spherical particulate active material is 70 volume% or less. 前記酸化物固体電解質がLi1+xAlGe2−x(PO(0≦x≦2)である、請求項2に記載の全固体電池用電極材。 The oxide solid electrolyte is Li 1 + x Al x Ge 2 -x (PO 4) 3 (0 ≦ x ≦ 2), all solid state battery electrode material according to claim 2. 前記球状粒子状の活物質が五酸化ニオブである、請求項1〜4のいずれか一項に記載の全固体電池用電極材。   The electrode material for an all-solid-state battery according to any one of claims 1 to 4, wherein the spherical particulate active material is niobium pentoxide. 正極と、負極と、前記正極と前記負極の間に配置された固体電解質を含み、前記正極又は負極が集電体とその片面上に形成された請求項1〜5のいずれか一項に記載の全固体電池用電極材からなる層を含むか、正極活物質が負極活物質の酸化還元電位よりも貴な電位を示すことを条件として前記正極及び負極のそれぞれが集電体とその片面上に形成された請求項1〜5のいずれか一項に記載の全固体電池用電極材からなる層を含む、全固体電池。   The positive electrode, the negative electrode, and a solid electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode or the negative electrode is formed on a current collector and one surface thereof. Each of the positive electrode and the negative electrode on the one side of the current collector on the condition that the positive electrode active material exhibits a potential nobler than the redox potential of the negative electrode active material. The all-solid-state battery containing the layer which consists of the electrode material for all-solid-state batteries as described in any one of Claims 1-5 formed in this. (a)固体電解質と1以上1.15未満の平均アスペクト比を有する球状粒子状の活物質とを混合する工程、
(b)工程(a)から得られた混合物をプレス成形して予備成形体を形成する工程、及び
(c)工程(b)で形成された予備成形体を不活性ガス雰囲気下で前記固体電解質の軟化点以上の温度で焼結させる工程、
を含む、全固体電池用電極材の製造方法。
(A) a step of mixing a solid electrolyte and a spherical particle-shaped active material having an average aspect ratio of 1 or more and less than 1.15;
(B) a step of pressing the mixture obtained from step (a) to form a preform, and (c) the solid electrolyte formed in step (b) under an inert gas atmosphere. Sintering at a temperature equal to or higher than the softening point of
The manufacturing method of the electrode material for all-solid-state batteries containing.
JP2012252574A 2012-11-16 2012-11-16 Electrode material for all-solid battery, method of manufacturing the same and all-solid battery using the same Pending JP2014102911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012252574A JP2014102911A (en) 2012-11-16 2012-11-16 Electrode material for all-solid battery, method of manufacturing the same and all-solid battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012252574A JP2014102911A (en) 2012-11-16 2012-11-16 Electrode material for all-solid battery, method of manufacturing the same and all-solid battery using the same

Publications (1)

Publication Number Publication Date
JP2014102911A true JP2014102911A (en) 2014-06-05

Family

ID=51025277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012252574A Pending JP2014102911A (en) 2012-11-16 2012-11-16 Electrode material for all-solid battery, method of manufacturing the same and all-solid battery using the same

Country Status (1)

Country Link
JP (1) JP2014102911A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170092988A1 (en) * 2015-09-24 2017-03-30 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
WO2018092434A1 (en) * 2016-11-17 2018-05-24 株式会社村田製作所 All-solid-state battery, electronic device, electronic card, wearable device, and electric vehicle
WO2018181577A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 All-solid-state battery
WO2018181288A1 (en) * 2017-03-28 2018-10-04 Tdk株式会社 All-solid-state lithium ion secondary battery and package
WO2018181545A1 (en) * 2017-03-29 2018-10-04 Tdk株式会社 All-solid-state lithium ion secondary battery
WO2018181379A1 (en) * 2017-03-28 2018-10-04 Tdk株式会社 All-solid-state secondary battery
JP2019145489A (en) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 Production method of solid electrolyte, solid electrolyte, active material layer, formation method of active material layer, separator layer, formation method of separator layer, and all-solid-state battery
US11967703B2 (en) 2020-12-23 2024-04-23 Panasonic Intellectual Property Management Co., Ltd. Positive electrode layer and all-solid-state battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135090A (en) * 2008-12-02 2010-06-17 Toyota Motor Corp All-solid battery
JP2013229132A (en) * 2012-04-24 2013-11-07 Toyota Motor Corp Electrode sintered body and electrode sintered body manufacturing method
JP2014035818A (en) * 2012-08-07 2014-02-24 Tdk Corp All-solid-state lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135090A (en) * 2008-12-02 2010-06-17 Toyota Motor Corp All-solid battery
JP2013229132A (en) * 2012-04-24 2013-11-07 Toyota Motor Corp Electrode sintered body and electrode sintered body manufacturing method
JP2014035818A (en) * 2012-08-07 2014-02-24 Tdk Corp All-solid-state lithium ion secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170092988A1 (en) * 2015-09-24 2017-03-30 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
CN106558681A (en) * 2015-09-24 2017-04-05 丰田自动车株式会社 The method of the method and manufacture all-solid-state battery of manufacture electrode laminated body
CN106558681B (en) * 2015-09-24 2019-08-13 丰田自动车株式会社 Manufacture the method for electrode laminated body and the method for manufacture all-solid-state battery
WO2018092434A1 (en) * 2016-11-17 2018-05-24 株式会社村田製作所 All-solid-state battery, electronic device, electronic card, wearable device, and electric vehicle
WO2018181288A1 (en) * 2017-03-28 2018-10-04 Tdk株式会社 All-solid-state lithium ion secondary battery and package
JP7056647B2 (en) 2017-03-28 2022-04-19 Tdk株式会社 All-solid-state lithium-ion secondary battery and mount
WO2018181379A1 (en) * 2017-03-28 2018-10-04 Tdk株式会社 All-solid-state secondary battery
JPWO2018181379A1 (en) * 2017-03-28 2019-07-11 Tdk株式会社 All solid secondary battery
US11588173B2 (en) 2017-03-28 2023-02-21 Tdk Corporation All-solid-state lithium ion secondary battery having fluorine and carbon-containing liquid repellent film and mounted body
US11069898B2 (en) 2017-03-28 2021-07-20 Tdk Corporation All-solid-state secondary battery
JPWO2018181288A1 (en) * 2017-03-28 2020-02-06 Tdk株式会社 All-solid lithium-ion secondary battery and package
JPWO2018181545A1 (en) * 2017-03-29 2020-05-14 Tdk株式会社 All-solid-state lithium-ion secondary battery
WO2018181545A1 (en) * 2017-03-29 2018-10-04 Tdk株式会社 All-solid-state lithium ion secondary battery
JP7188380B2 (en) 2017-03-29 2022-12-13 Tdk株式会社 All-solid-state lithium-ion secondary battery
JPWO2018181577A1 (en) * 2017-03-30 2020-02-06 Tdk株式会社 All-solid-state battery
WO2018181577A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 All-solid-state battery
US11631850B2 (en) 2017-03-30 2023-04-18 Tdk Corporation All-solid-state battery
JP2019145489A (en) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 Production method of solid electrolyte, solid electrolyte, active material layer, formation method of active material layer, separator layer, formation method of separator layer, and all-solid-state battery
US11967703B2 (en) 2020-12-23 2024-04-23 Panasonic Intellectual Property Management Co., Ltd. Positive electrode layer and all-solid-state battery

Similar Documents

Publication Publication Date Title
JP2014102911A (en) Electrode material for all-solid battery, method of manufacturing the same and all-solid battery using the same
Wu et al. Progress in thermal stability of all‐solid‐state‐Li‐ion‐batteries
JP5358825B2 (en) All solid battery
JP5358522B2 (en) Solid electrolyte material and lithium battery
JP7075760B2 (en) Positive electrode active material for sodium ion secondary batteries
JP2011060649A (en) Electrode active material layer, all solid battery, manufacturing method for electrode active material layer, and manufacturing method for all solid battery
JP7344345B2 (en) Method for producing sulfide-based inorganic solid electrolyte material
JP2015204215A (en) Lithium ion-conducting solid electrolyte, manufacturing method thereof, and all-solid battery
JP2016062683A (en) Lithium ion secondary battery
JP2015099785A (en) Electrode material and lithium ion battery using the same
KR20190019430A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JPWO2012043566A1 (en) Battery sintered body, method for producing battery sintered body, and all-solid lithium battery
JP5825077B2 (en) Glass ceramics
CN106058166B (en) Battery and positive electrode material for battery
WO2013088712A1 (en) Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2011028893A (en) All solid-battery system
JP2018041671A (en) Sulfide solid electrolyte, lithium solid battery and method for manufacturing sulfide solid electrolyte
JP2014096289A (en) Electric power storage device
CN114303267A (en) Lithium ion conductive oxide
WO2016063607A1 (en) Solid electrolyte powder, all-solid lithium ion secondary battery, and method for preparing solid electrolyte powder
JPWO2019003903A1 (en) Positive electrode active material for sodium ion secondary battery
JP2012094482A (en) Sulfide solid electrolyte, sulfide solid electrolyte sheet and all-solid lithium battery
JP2016103381A (en) Method for manufacturing all-solid battery
JP2017033858A (en) Solid electrolyte material
JP5601615B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRIC STORAGE DEVICE AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006