JP2014034367A - サスペンション装置 - Google Patents

サスペンション装置 Download PDF

Info

Publication number
JP2014034367A
JP2014034367A JP2012178299A JP2012178299A JP2014034367A JP 2014034367 A JP2014034367 A JP 2014034367A JP 2012178299 A JP2012178299 A JP 2012178299A JP 2012178299 A JP2012178299 A JP 2012178299A JP 2014034367 A JP2014034367 A JP 2014034367A
Authority
JP
Japan
Prior art keywords
oil
differential pressure
hydraulic cylinder
oil passage
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012178299A
Other languages
English (en)
Inventor
Masaaki Oishi
正明 大石
Satoshi Komatsu
悟志 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2012178299A priority Critical patent/JP2014034367A/ja
Publication of JP2014034367A publication Critical patent/JP2014034367A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

【課題】左右の車輪の上下動に連係して収縮・伸長する左右の油圧シリンダの間に流れるオイルを制御して車体の姿勢を安定させるサスペンション装置を構成する。
【解決手段】一方の油圧シリンダCの上部油室6Uと、他方の油圧シリンダCの下部油室6Lとを連通させる第1クロス油路11と第2クロス油路12を備えた。第1クロス油路11と第2クロス油路12とに接続するアキュムレータAを備え、左右の油圧シリンダCには伸長時にオイルをアキュムレータAに送り出す第1バイパス油路17又は第2バイパス油路18を設け、これらにはオイル量を制御する流量制御弁Fを備えた。流量制御弁FはアキュムレータAに供給されるオイルの差圧が大きいほど流量を抑制する。
【選択図】図1

Description

本発明は、サスペンション装置に関し、詳しくは、車両の左右の車輪の上下動に連係して圧縮・伸長する左右の油圧シリンダのオイルの制御により車両の乗り心地を改善する技術に関する。
上記のように構成されたサスペンション装置(文献では4輪用懸架装置)として特許文献1には、右車輪用のメインダンパと左車輪用のメインダンパとを備えている。この左右のメインダンパは、シリンダの内部にピストンを収容することにより、ピストンの上側に上部オイル室を形成し、ピストンの下側に下部オイル室を形成している。
このサスペンション装置では、左側のメインダンパの上部オイル室と右側のメインダンパの下部オイル室とを連通管で連通し、これと同様に、右側のメインダンパの上部オイル室と左側のメインダンパの下部オイル室とを連通管で連通し、一対の連通管夫々にオイル(文献では作動油)の給排が可能なロールダンパを備えている。
この特許文献1のサスペンション装置では、連通管と上部オイル室との接続部位にオイルの流れに抵抗を作用させる絞り部材を備え、ロールダンパにも通過するオイルに抵抗を作用させる小孔で成る絞りを備えている。これにより、ピッチングやバウンシング等の左右のメインダンパが同時に伸縮する場合には、絞り部材と絞りとでオイルの流れに抵抗を作用させてショックを減衰させている。また、車体がローリングした場合にも絞り部材と絞りとでオイルの流れに抵抗を作用させてショックを減衰させている。
特開平5‐213040号公報
乗用車等の車両では、車体がローリングした場合のように左右の車輪が逆方向に移動する場合には、車体の姿勢を左右に傾斜させるものであるため、車体の姿勢を安定させ操縦安定性を向上させるためにも左右の油圧シリンダの収縮・伸長を減衰させる必要がある。これに対して、車体のピッチングやバウンス(特許文献1のバウンシング)のように左右の車輪の同時に上下動する場合には、車体を左右に傾斜させるものではないため、乗り心地向上のため左右の油圧シリンダの作動を大きく減衰させる必要はない。
ただし、左右の車輪はサスペンションスプリングにより下方に突出する方向に付勢されているため、ピッチングやバウンスにおいて、左右の車輪が下方に変位する場合には、サスペンションスプリングの付勢力により下方に変位しやすい傾向にある。従って、左右の車輪が同時に下方に変位する場合には、車体重心の上方へのシフトを抑制する観点からも、この変位を抑制することが望ましい。
ここで、左右の車輪が同時に同じ方向に作動する際の作動を減衰させる力をバウンス減衰力と称し、左右の車輪が逆方向に作動する際の作動を減衰させる力をロール減衰力と称する。
前述した特許文献1の構成では、バウンス減衰力よりロール減衰力が大きいことが記載されているが、油圧シリンダが伸長する場合でも、収縮する場合でもオイルには絞り部等から決まった抵抗が作用するため車輪の下降方向への作動を特別に抑制するものではなく、車輪の下方への突出量を大きくして車体重心を上方にシフトさせることや、乗り心地を悪化させることも考えられた。
ロール減衰力を高めるために、例えば、車体のローリングと、バウンスとを区別するセンサを備え、油路に電磁式に開度の調節が可能な流量制御弁を備え、センサの検出結果に基づいて流量制御弁によるオイルの流れを制御することも考えられるが、制御構成が複雑となり、コスト上昇を招くことから改善の余地があった。特に、電気的な制御によりオイルの流れを制御するものでは、制御遅れにより車体の変位に追従できないことも考えられ、迅速な作動により車体の姿勢を安定させ、乗り心地を向上させるサスペンション装置が望まれている。
本発明の目的は、左右の車輪の上下動に連係して収縮・伸長する左右の油圧シリンダの間に流れるオイルの制御により車体の姿勢を安定させ、乗り心地を向上させるサスペンション装置を合理的に構成する点にある。
本発明の特徴は、左車輪の上下動を受ける左油圧シリンダと、右車輪の上下動を受ける右油圧シリンダとを備え、前記左油圧シリンダと前記右油圧シリンダとが、中空のシリンダと、このシリンダの内部に移動自在に収容したピストンとを有すると共に、前記シリンダの内部で前記ピストンより上側の上部油室と、前記ピストンより下側の下部油室とを備えて構成され、前記左油圧シリンダの前記上部油室と、前記右油圧シリンダの前記下部油室とを連通させる第1クロス油路を備え、前記右油圧シリンダの前記上部油室と、前記左油圧シリンダの前記下部油室とを連通させる第2クロス油路を備え、前記第1クロス油路のオイルの流れを抑制する第1減衰ユニットと、前記第2クロス油路のオイルの流れを抑制する第2減衰ユニットとを備え、前記第1クロス油路から分岐する第1分岐油路に接続する第1アキュムレータと、この第1分岐油路において前記第1アキュムレータにオイルが流れる際に差圧を発生させる第1差圧発生機構と、前記第2クロス油路から分岐する第2分岐油路に接続する第2アキュムレータと、この第2分岐油路において第2アキュムレータにオイルが流れる際に差圧を発生させる第2差圧発生機構とを備え、前記右油圧シリンダの前記ピストンのピストンロッドが前記シリンダから伸び出す伸長に伴って、この右油圧シリンダの前記下部油室又は前記上部油室から送り出されるオイルを、前記第1差圧発生機構を通過させずに前記第1アキュムレータに供給する第1バイパス油路と、前記左油圧シリンダの前記ピストンのピストンロッドが前記シリンダから伸び出す伸長に伴って、この左油圧シリンダの前記下部油室又は前記上部油室から送り出されるオイルを、前記第2差圧発生機構を通過させずに前記第2アキュムレータに供給する第2バイパス油路とを備え、前記第1バイパス油路には、前記第1差圧発生機構で発生する差圧が高いほど、この第1バイパス油路のオイル流量を抑制する第1流量制御弁を備え、前記第2バイパス油路には、前記第2差圧発生機構で発生する差圧が高いほど、この第2バイパス油路のオイル流量を抑制する第2流量制御弁を備えている点にある。
油圧シリンダとしてシリンダから下方にピストンロッドが突出する構成を想定すると、例えば、バウンス時に、左油圧シリンダと右油圧シリンダとが同時に伸長する場合には、一方の油圧シリンダの下部油室の容積が縮小し、他方の油圧シリンダの上部油室の容積が増大する。このような理由から、第1クロス油路と第2クロス油路とにオイルが流れ、これらの油路の両方においてピストンロッドの容積に対応するオイルが不足するため、第1アキュムレータ又は第2アキュムレータからオイルが送り出され、ピストンロッドの容積に対応するオイルが不足するものでは、第1アキュムレータ又は第2アキュムレータからオイルが送り出される。これにより、第1クロス油路と第2クロス油路とのオイル圧の上昇は低い。この現象は、バウンス時に左油圧シリンダと右油圧シリンダとが同時に収縮する場合にも同様に起きるものであり、第1アキュムレータ又は第2アキュムレータに流れるオイル量も過剰ではないため、第1差圧発生機構と第2差圧発生機構とで発生する差圧の値も低い。
更に、バウンス時には、第1クロス油路でのオイルの流れを第1減衰ユニットが抑制し、第2クロス油路でのオイルの流れを第2減衰ユニットが抑制し、左油圧シリンダと右油圧シリンダとの急激な作動を抑制するバウンス減衰力を得る。
油圧シリンダとしてシリンダから下方にピストンロッドが突出する構成を想定すると、例えば、ロール時に、右油圧シリンダが収縮し、左油圧シリンダが伸長する場合には、右油圧シリンダの上部油室のオイルが第2クロス油路に流れ、左油圧シリンダの下部油室のオイルが第2クロス油路に流れる。つまり、2つの油室からのオイルが合流するため、第2クロス油路のオイル圧が上昇し、これに接続する第2分岐油路から第2アキュムレータに流れるオイルのオイル圧が増大し、第2差圧発生機構で発生する差圧が上昇する。このロール時には左油圧シリンダの下部油室のオイルが第2バイパス油路に流れ、第2流量制御弁を介して第2アキュムレータに流れる。しかし、第2差圧発生機構で発生する差圧が上昇するため、第2流量制御弁に流れるオイルの流量が抑制され、右油圧シリンダの伸長に減衰力が作用する。これと逆方向へのローリング時にも同様に、伸長する油圧シリンダの作動が抑制される。第1差圧発生機構で発生する差圧は、ロール速度が高速であるほど上昇するため、短時間に大きくロールする場合に伸長側の油圧シリンダのオイルの流れを一層強く抑制して車体のロールを抑制する。
また、ロール時には第1クロス油路に流れるオイルを第1減衰ユニットが抑制し、第2クロス油路に流れるオイルを第2減衰ユニットが抑制することで左油圧シリンダと右油圧シリンダとの急激な作動を抑制するロール減衰力を得る。
従って、バウンス時には左油圧シリンダと右油圧シリンダとの収縮・伸長時にオイルの流れを抑制して必要とするバウンス減衰力により車体の動揺を抑制し良好な乗り心地を現出する。これに加えて、ロール時には左右の車輪の上下動をオイルの流れを抑制することによりロール減衰力を得ると共に、伸長側の油圧シリンダの作動を積極的に拘束することにより、車体のロール量を小さくして車体の姿勢を安定させ、乗り心地を向上させるサスペンション装置が構成された。
本発明は、前記第1差圧発生機構と前記第2差圧発生機構とが、アキュムレータ側のオイル圧と、このオイル圧を基準にした分岐油路側のオイル圧との差圧が所定値を越えた際に開放する導入用チェック弁を備えると共に、この導入用チェック弁と並列する位置に、分岐油路側のオイル圧と、このオイル圧を基準にしたアキュムレータ側のオイル圧との差圧が所定値を越えた際に開放する排出用チェック弁を備え、前記第1差圧発生機構の前記導入用チェック弁において前記アキュムレータ側のオイル圧を基準にする前記分岐油路側のオイル圧を差圧として前記第1流量制御弁に作用させ、前記第2差圧発生機構の前記導入用チェック弁において前記アキュムレータ側のオイル圧を基準にする前記分岐油路側のオイル圧を差圧として前記第2流量制御弁に作用させても良い。
これによると、ロール時には、第1クロス油路又は第2クロス油路の一方の圧力がバウンス時より上昇し、第1分岐油路又は第2分岐油路の一方の圧力が上昇する。これに伴い、第1差圧発生機構又は第2差圧発生機構の一方の導入用チェック弁のアキュムレータ側のオイル圧と、分岐油路側のオイル圧との差圧の上昇に伴い、第1流路制御弁又は第2流路制御弁の一方に作用し、第1バイパス油路又は第2バイパス油路に流れるオイル量を減ずることになり、結果として、左油圧シリンダ又は右油圧シリンダの収縮・伸長の速度を低減し、ロール減衰力を高めて車体の姿勢を安定させる。
本発明は、前記第1差圧発生機構と前記第2差圧発生機構とがオリフィスを備えて構成され、前記第1差圧発生機構の前記オリフィスにおいて前記アキュムレータ側のオイル圧を基準にする前記分岐油路側のオイル圧を差圧として前記第1流量制御弁に作用させ、前記第2差圧発生機構の前記オリフィスにおいて前記アキュムレータ側のオイル圧を基準にする前記分岐油路側のオイル圧を差圧として前記第2流量制御弁に作用させても良い。
これによると、ロール時には、第1クロス油路又は第2クロス油路の一方の圧力がバウンス時より上昇し、第1分岐油路又は第2分岐油路の一方の圧力が上昇する。これに伴い、第1差圧発生機構又は第2差圧発生機構の一方のオリフィスのアキュムレータ側のオイル圧と、分岐油路側のオイル圧との差圧の上昇に伴い、第1流路制御弁又は第2流路制御弁の一方に作用し、第1バイパス油路又は第2バイパス油路に流れるオイル量を減ずることになり、結果として、左油圧シリンダ又は右油圧シリンダの収縮・伸長の速度を低減し、ロール減衰力を高めて車体の姿勢を安定させる。
本発明は、前記第1流量制御弁と前記第2流量制御弁とが、バイパス油路側からのオイルを受け入れる導入ポートと、オイルをアキュムレータ側に送り出す吐出ポートと、前記差圧が作用する差圧作用ポートを有すると共に、前記導入ポートからのオイルを前記吐出ポートに導く流路に流れるオイル量を制御する弁体と、この弁体をオイル量が増大する方向に付勢する付勢機構とを有して構成され、前記吐出ポートに作用するオイル圧と前記差圧作用ポートに作用するオイル圧との圧力差が大きいほど、前記弁体を前記付勢機構に付勢力に抗して作動し前記流路に流れるオイル量を低減しても良い。
これによると、第1差圧発生機構又は第2差圧発生機構における差圧が上昇するほど、付勢機構の付勢力に抗して弁体が作動して流路に流れるオイル量を低減するため、ロールが高速で行われた場合のように、差圧が短時間のうちに上昇に上昇した場合にはアキュムレータ側に流れるオイルを抑制してロール減衰力を高め、車体の安定化を実現する。
本発明は、前記差圧作用ポートに対して差圧を作用させる差圧作用油路が形成され、この差圧作用油路へ流れるオイル量を制限するオイル量制限部を備えても良い。
これによると、高速で逆相の入力があった場合にも、差圧作用ポートに作用する差圧の上昇が、オイル量制限部が抑制するため、第1流量制御弁又は第2流量制御弁でオイルの流れを抑制するため、オイルの流れを急激に抑制することがない。よって、ショックを招くことがなく乗り心地を悪化させることもない。
本発明は、前記左油圧シリンダと前記右油圧シリンダとして、前記ピストンロッドが前記シリンダの下方に突出する構成のものが使用され、前記第1減衰ユニットが、前記左油圧シリンダの上部油室から前記第1クロス油路に送り出されるオイルの流れを抑制する第1上部減衰機構と、前記右油圧シリンダの下部油室から前記第1クロス油路に送り出されるオイルの流れを抑制する第1下部減衰機構とを備え、前記第2減衰ユニットが、前記右油圧シリンダの上部油室から前記第2クロス油路に送り出されるオイルの流れを抑制する第2上部減衰機構と、前記左油圧シリンダの下部油室から前記第2クロス油路に送り出されるオイルの流れを抑制する第2下部減衰機構とを備え、前記第1上部減衰機構と前記第1下部減衰機構と前記第2上部減衰機構と前記第2下部減衰機構とが、油圧シリンダ側からのオイルのオイル圧の上昇により開放する開閉弁を備えて構成され、前記第1下部減衰機構の前記開閉弁が開放するオイル圧を前記第2上部減衰機構の前記開閉弁が開放するオイル圧より高く設定し、前記第2下部減衰機構の前記開閉弁が開放するオイル圧を前記第1上部減衰機構の前記開閉弁が開放するオイル圧より高く設定しても良い。
これによると、第1下部減衰機構の開閉弁が開放するオイル圧を、第2上部減衰機構の開閉弁のオイル圧より高く設定しているので、右油圧シリンダが伸長する際には、収縮する際と比較してオイルの流れを強く制限する。これと同様に第2下部減衰機構の開閉弁が開放するオイル圧を第1上部減衰機構の前記開閉弁が開放するオイル圧より高く設定しているので左油圧シリンダが伸長する際には、収縮する際と比較してオイルの流れを強く制限する。その結果、車輪が下方に変位する作動を、車輪が上方に変位する作動より制限することになり、バウンスでは車体重心の上方へのシフトを抑制して車体を安定させ、ロール時には、車輪が下方に変位する作動を抑制する形態でロール減衰力を強く作用させて車体の姿勢を安定化させる。
サスペンション装置の構成を模式的に示す図である。 流量制御弁の断面図である。 収縮側バウンス時におけるオイルの流れを示す油圧回路図である。 伸長側バウンス時におけるオイルの流れを示す油圧回路図である。 ロール時におけるオイルの流れを模式的に示す図である。 ピストン速度と減衰力との関係をグラフ化した図である。 別実施形態(a)のサスペンション装置の油圧回路図である。 別実施形態(a)の構成でピストン速度と減衰力との関係をグラフ化した図である。 別実施形態(b)のサスペンション装置の油圧回路図である。 別実施形態(b)の構成でピストン速度と減衰力との関係をグラフ化した図である。 別実施形態(c)の流量制御弁の断面図である。
以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
図1には乗用車等の車両の車体1に対し、左車輪2Aと右車輪2Bとを独立して上下移動自在に懸架すると共に、左車輪2Aと右車輪2Bとを油圧式に連係させ、上下変位に減衰力を作用させるサスペンション装置が示されている。
本発明のサスペンション装置は、車体1のバウンス時とロール時とにおいて左車輪2Aと右車輪2Bとの上下変位に減衰力を作用させて車体1の姿勢を安定させ、乗り心地を向上させる。このサスペンション装置は、車体1の前車輪と後車輪との双方に備えても良いが、前車輪と後車輪との一方を懸架するように備えても良い。因みに、このサスペンション装置で後車輪を懸架し、個別のショックアブソーバで前車輪を懸架しても良い。この実施形態では、車体1の前後方向に沿う軸芯を中心にして回動する運動をロールと称し、車体1がロールすることなく上下動する運動をバウンスと称する。
車体1の左側部と右側部とには支持部3Sを中心にして揺動自在にサスペンションアーム3が支持され、左側のサスペンションアーム3の揺動端に左車輪2Aが支持され、右側のサスペンションアーム3の揺動端に右車輪2Bが支持されている。左右のサスペンションアーム3と車体1との間にはサスペンションスプリング4と、油圧シリンダCとを備えている。サスペンションスプリング4は、サスペンションアーム3の揺動端を押し下げる方向に付勢力を作用させる圧縮コイル型に構成されている。油圧シリンダCは、車輪の上下方向への変位に減衰力を作用させるダンパとして機能する。特に、左側の油圧シリンダCを左油圧シリンダCaと称し、右側の油圧シリンダCを右油圧シリンダCbと称する。
油圧シリンダCは、中空のシリンダチューブ6の内部にスライド移動自在にピストン7を収容し、ピストン7に連結するピストンロッド8を下方に突出させた姿勢で使用されている。この構成からピストン7より上側に上部油室6Uが形成され、ピストン7より下側に下部油室6Lが形成されている。シリンダチューブ6の上端の上部連結部6Sが車体1に連結支持され、ピストンロッド8の下端の下部連結部8Sをサスペンションアーム3に連結されている。
この油圧シリンダCとして、シリンダチューブ6の内部スライド移動自在にピストン7を備え、ピストンロッド8を上方に突出する構成のものを使用することも可能である。ピストンロッド8が下方に突出する構成の油圧シリンダCでは、ピストン7のピストンロッド8がシリンダチューブ6から伸び出す伸長に伴って下部油室6Lのオイル圧が上昇してオイルが送り出されるが、ピストンロッド8を上方に突出した構成の油圧シリンダCでは、ピストン7のピストンロッド8がシリンダチューブ6から伸び出す伸長に伴って上部油室6Uのオイル圧が上昇してオイルが送り出される。この構成の油圧シリンダCを用いる場合の油圧系等は〔別実施形態〕において説明する。
〔サスペンション装置の油路系の概要〕
本発明のサスペンション装置では、左油圧シリンダCaの上部油室6Uと、右油圧シリンダCbの下部油室6Lとを連通させる第1クロス油路11を備え、右油圧シリンダCbの上部油室6Uと、左油圧シリンダCaの下部油室6Lとを連通させる第2クロス油路12を備えている。第1クロス油路11にはオイルの流れを抑制する第1減衰ユニットD1を備え、第2クロス油路12にはオイルの流れを抑制する第2減衰ユニットD2を備えている。第1クロス油路11には中間位置から分岐する第1分岐油路13が形成され、第2クロス油路12には中間位置から分岐する第2分岐油路14が形成され、第1分岐油路13に第1アキュムレータA1が接続し、第2分岐油路14に第2アキュムレータA2が接続している。
第1アキュムレータA1と、第2アキュムレータA2とは、容器の内部にオイルが給排されるオイル室と、ガスが充填されるガス室とを、可動壁体等で分離した共通の構成を有しており、これらをアキュムレータAと総称する。このアキュムレータAは、分岐油路側のオイル圧の上昇に伴いガス圧に抗してオイル室の容積を拡大してオイルの導入を許容し、分岐油路側のオイル圧の低下に伴い、ガス室の圧力によりオイル室のオイルの送り出しを行う。
第1分岐油路13には、第1アキュムレータA1にオイルが流れる際に差圧を発生させる第1差圧発生機構E1を備え、第2分岐油路14には、第2アキュムレータA2にオイルが流れる際に差圧を発生させる第2差圧発生機構E2を備えている。尚、第1差圧発生機構E1と第2差圧発生機構E2とは、共通する構成を有しており、これらを差圧発生機構Eと総称する。
この油路系では、右油圧シリンダCbの伸長に伴い、この右油圧シリンダCbの下部油室6Lから送り出されるオイルを、第1差圧発生機構E1を通過させずに第1アキュムレータA1に供給する第1バイパス油路17を備えている。これと同様に、左油圧シリンダCaの伸長に伴い、この左油圧シリンダCaの下部油室6Lから送り出されるオイルを、第2差圧発生機構E2を通過させずに第2アキュムレータA2に供給する第2バイパス油路18を備えている。
第1バイパス油路17には、第1差圧発生機構E1で発生する差圧が高いほど、この第1バイパス油路17のオイル流量を抑制する第1流量制御弁F1を備えている。これと同様に、第2バイパス油路18には、差圧発生機構Eで発生する差圧が高いほど、この第2バイパス油路18のオイル流量を抑制する第2流量制御弁F2を備えている。更に、第1分岐油路13と第2分岐油路14との間には、一方のオイル量が低下した場合に他方へのオイルの供給を行う流量均等化弁19を備えている。尚、第1流量制御弁F1と第2流量制御弁F2とは共通する構成を有しており、これらを流量制御弁Fと総称する。
このように左右の油圧シリンダCを備えると共に、第1,第2クロス油路11,12と、第1,第2減衰ユニットD1,D2と、2つのアキュムレータAと、第1,第2分岐油路13,14と、2つの差圧発生機構Eと、第1,第2バイパス油路17,18と、2つの流量制御弁Fと、流量均等化弁19とを備えてサスペンション装置が構成されている。
このサスペンション装置は、左右の油圧シリンダCと、これに連通する油路系に対してオイルを充填した状態で使用され、油圧シリンダCに外力が作用して伸長又は収縮する際に油圧シリンダCから排出されるオイルを制御することにより、油圧シリンダCの作動に減衰力を作用させる。また、バウンス時の減衰力と比較してロール時の減衰力を大きい値に設定すると共に、油圧シリンダCが伸長する際に作用する減衰力を、収縮する際に作用する減衰力より大きい値に設定することにより、車体1の姿勢を安定させ、乗り心地を向上させている。このように減衰力を作用させる構成の詳細を以下に説明する。
〔減衰ユニット〕
第1減衰ユニットD1は、左油圧シリンダCaの上部油室6Uから第1クロス油路11に送り出されるオイルの流れを抑制する第1上部減衰機構21と、右油圧シリンダCbの下部油室6Lから第1クロス油路11に送り出されるオイルの流れを抑制する第1下部減衰機構23とを備えて構成されている。これと同様に、第2減衰ユニットD2は、右油圧シリンダCbの上部油室6Uから第2クロス油路12に送り出されるオイルの流れを抑制する第2上部減衰機構22と、左油圧シリンダCaの下部油室6Lから第2クロス油路12に送り出されるオイルの流れを抑制する第2下部減衰機構24とを備えて構成されている。
第1上部減衰機構21と第2上部減衰機構22とは、油圧シリンダCの上部油室6Uからのオイルの差圧が所定値を越えて上昇することで開放する開閉弁としての排出抑制チェック弁25と、油圧シリンダCの上部油室6Uに送られるオイルの差圧が所定値を越えて上昇することにより開放する導入抑制チェック弁27とを並列位置に備えて構成されている。
第1下部減衰機構23と第2下部減衰機構24とは、油圧シリンダCの下部油室6Lからのオイルのオイル圧がリリーフ圧を越えて上昇することにより開放する開閉弁としてのリリーフ弁26と、油圧シリンダCの上部油室6Uへ流れるオイルの差圧が設定値を越えて上昇することで開放する導入抑制チェック弁27とを並列位置に備えて構成されている。
この減衰ユニットでは、第1下部減衰機構23のリリーフ弁26が開放するリリーフ圧を、第2上部減衰機構22の排出抑制チェック弁25が開放する所定値(差圧)より高く設定している。これと同様に、第2下部減衰機構24のリリーフ弁26が開放するリリーフ圧を第1上部減衰機構21の排出抑制チェック弁25が開放する所定値(差圧)より高く設定している。尚、第1下部減衰機構23と第2下部減衰機構24とのリリーフ弁26が開放するに必要なリリーフ圧は等しい値に設定され、第1上部減衰機構21と第2上部減衰機構22との排出抑制チェック弁25が開放するに必要な差圧(所定値)も等しい値に設定されている。
この構成により、油圧シリンダCが伸長する場合には、収縮する場合と比較してのオイルの流れを強く抑制することになり、伸長作動が抑制される。
更に、第1下部減衰機構23には右油圧シリンダCbの下部油室6Lから送り出されるオイルに抵抗を作用させるオリフィス28を備え、これに前述した第1バイパス油路17が接続している。これと同様に第2下部減衰機構24には左油圧シリンダCaの下部油室6Lから送り出されるオイルに抵抗を作用させるオリフィス28を備え、これに前述した第2バイパス油路18が接続している。このようにオリフィス28を備えることにより、下部油室6LからアキュムレータAに流れるオイルを制限し、第1下部減衰機構23、あるいは、第2下部減衰機構24の減衰機能を有効にする。
〔差圧発生機構・流量制御弁〕
第1分岐油路13は、第1クロス油路11のうち、第1上部減衰機構21と第1下部減衰機構23との中間位置から分岐して形成されている。これと同様に第2分岐油路14は、第2クロス油路12のうち、第2上部減衰機構22と第2下部減衰機構24との中間位置から分岐して形成されている。
差圧発生機構Eは、導入用チェック弁31と排出用チェック弁32とを並列配置して構成されている。導入用チェック弁31は、アキュムレータ側のオイル圧と、このオイル圧を基準にした分岐油路側のオイル圧との差圧が所定の導入圧を越えた際に開放する。排出用チェック弁32は、分岐油路側のオイル圧と、このオイル圧を基準にしたアキュムレータ側のオイル圧との差圧が所定の排出圧を越えた際に開放する。
第1差圧発生機構E1と第1分岐油路13との接続部位の差圧を第1流量制御弁F1に作用させる差圧作用油路37と、第2差圧発生機構E2と第2分岐油路14との接続部位の差圧を第2流量制御弁F2に作用させる差圧作用油路37とが形成されている。これにより、アキュムレータAにオイルが流れる際には、導入用チェック弁31で発生する差圧が流量制御弁Fに作用する。
流量制御弁Fは、図2に示すように、弁ケース33の内部に移動自在に弁体34を支持すると共に、この弁体34を付勢する付勢機構としての制御スプリング35を備えて構成されている。弁ケース33には、差圧作用油路37からオイルを受ける導入ポート33Aと、オイルをアキュムレータ側に送り出す吐出ポート33Bと、前記差圧が作用する差圧作用ポート33Cが形成されている。
弁ケース33の内部には、導入ポート33Aから供給されるオイルを吐出ポート33Bに送る流路が形成され、この流路においてオイル量を制御する位置に弁体34が配置されている。制御スプリング35は、流路に流れるオイル量を増大させる方向に変位させるように弁体34に付勢力を作用させており、弁体34は、差圧作用ポート33Cから作用する差圧が上昇するほど、制御スプリング35の付勢力に抗する方向に作動し、流路に流れるオイル量を低減する作動を行う。
〔作動形態・収縮側バウンス〕
左車輪2Aと右車輪2Bとがともに上方に変位するバウンス時には、図3に矢印で示すように、左油圧シリンダCaと右油圧シリンダCbとが収縮する方向に外力が作用する。この作動として左油圧シリンダCaを注目すると、左油圧シリンダCaの収縮により上部油室6Uのオイル圧が上昇し、このオイルが第1クロス油路11に送り出される。これに対して右油圧シリンダCbは収縮により下部油室6Lのオイル圧が低下するので、この下部油室6Lに第1クロス油路11からオイルを吸引する。
図1及び図2に示すように、第1クロス油路11にオイルが流れる際には第1上部減衰機構21の排出抑制チェック弁25に作用する差圧が所定値を越え、第1下部減衰機構23の導入抑制チェック弁27に作用する差圧が所定値を越える。このように第1クロス油路11にオイルが流れることで左油圧シリンダCaの収縮が実現する。更に、大きい外力によって収縮する場合にも、オイル圧が高い状態であることが必要となるため外力に減衰力が作用し収縮作動が抑制される。
また、収縮により左油圧シリンダCaの上部油室6Uのオイルが第1クロス油路11から右油圧シリンダCbに下部油室6Lに供給される際にはピストンロッド8の容積に対応する量のオイルが過剰となる。この理由から第1クロス油路11のオイル圧が上昇し、第1差圧発生機構E1の導入用チェック弁31に作用する差圧が導入圧より上昇する結果、この導入用チェック弁31が開放し、余剰分のオイルが第1アキュムレータA1に送り込まれる。
特に、バウンス時には、左油圧シリンダCaの下部油室6Lのオイル圧が低下する状況にあるので、第2クロス油路12のオイルは、第2バイパス油路18に殆ど送り出されることはない。
これと同様の作動は、右油圧シリンダCbにおいても行われ、この右油圧シリンダCbの上部油室6Uのオイルが第2クロス油路12から左油圧シリンダCaの下部油室6Lに送られる。また、この第2クロス油路12の余剰分のオイルが第2アキュムレータA2に送り込まれる。
〔作動形態・伸長側バウンス〕
左車輪2Aと右車輪2Bとがともに下方に変位するバウンス時には、図4に矢印で示すように、左油圧シリンダCaと右油圧シリンダCbとが伸長する方向に外力が作用する。この作動として左油圧シリンダCaを注目すると、左油圧シリンダCaの伸長により下部油室6Lのオイル圧が上昇し、このオイルが第2クロス油路12に送り出される。これに対して右油圧シリンダCbは伸長により上部油室6Uのオイル圧が低下し、この上部油室6Uに第2クロス油路12からオイルを吸引する。
図1及び図3に示すように、第2クロス油路12にオイルが流れる際には第2下部減衰機構24のオイル圧がリリーフ弁26のリリーフ圧を越え、第2上部減衰機構22の導入抑制チェック弁27に作用する差圧が所定値を越える。このように第2クロス油路12にオイルが流れることで左油圧シリンダCaの伸長が実現する。更に、大きい外力によって伸長する場合にも、オイル圧が高い状態であることが必要になるため外力に減衰力が作用し収縮作動が抑制される。
また、伸長により左油圧シリンダCaの下部油室6Lのオイルが第2クロス油路12から右油圧シリンダCbの上部油室6Uに供給される際にはピストンロッド8の容積に対応する量のオイルが不足する。この理由から第2クロス油路12のオイル圧が低下し、第2差圧発生機構E2の排出用チェック弁32に作用する差圧が上昇する結果、排出用チェック弁32が開放し、不足分のオイルが第2アキュムレータA2から第2クロス油路12に送り出される。
特に、このバウンス時には、左油圧シリンダCaの下部油室6Lのオイルの一部が、第2下部減衰機構24のオリフィス28を介して第2バイパス油路18に送り出される。また、このバウンス時には第2アキュムレータA2から送り出される状態にあるので、第2差圧発生機構E2から第2流量制御弁F2に作用するオイル圧は極めて低い状態にあり、第2流量制御弁F2は開放する状態にある。これにより、左油圧シリンダCaの下部油室6Lからのオイルの一部は、第2バイパス油路18から第2アキュムレータA2に供給される。
これと同様の作動は、右油圧シリンダCbにおいても行われ、この右油圧シリンダCbの下部油室6Lのオイルが第1クロス油路11から、左油圧シリンダCaの上部油室6Uに送られる。また、この第1クロス油路11に対して不足分のオイルが第1アキュムレータA1から供給される。特に、右油圧シリンダCbの下部油室6Lのオイルは第2下部減衰機構24のオリフィス28を介して第1バイパス油路17に送り出され、第1アキュムレータA1に送り込まれる。
〔作動形態・ロール〕
ロール時には、左車輪2Aと右車輪2Bとが逆方向に変位するため、一方の油圧シリンダCに伸長方向に外力が作用し、他方の油圧シリンダCに収縮方向に外力が作用する。このロール時の具体的な作動形態として、図5に示すように、左油圧シリンダCaが伸長し、右油圧シリンダCbが収縮する作動に注目すると、左油圧シリンダCaの伸長により下部油室6Lのオイル圧が上昇するため、第2下部減衰機構24のリリーフ弁26が開放してオイルが第2クロス油路12に送り出される。これと同時に右油圧シリンダCbの収縮により上部油室6Uのオイル圧が上昇するため、第2上部減衰機構22の排出抑制チェック弁25が開放してオイルが第2クロス油路12に送り出される。このように2つの油室のオイルが第2クロス油路12に同時に供給されることにより、この第2クロス油路12のオイル圧が急激に上昇する。
また、左油圧シリンダCaが伸長する際には、左油圧シリンダCaの下部油室6Lのオイルの一部が第2下部減衰機構24のオリフィス28を介して第2バイパス油路18に送り出される。このロール時には、前述したように第2クロス油路12のオイル圧が大きく上昇するため、オリフィス28から第2バイパス油路18に流れようとするオイル量は増大する傾向となる。
このロール時には、前述したように第2クロス油路12の圧力が急激に上昇するため、第2差圧発生機構E2の導入用チェック弁31に作用する差圧が高い値に達し、第2クロス油路12のオイルの一部は第2アキュムレータA2に流れ込む。これに連係して第2流量制御弁F2の差圧作用ポート33Cに作用する差圧の上昇により弁体34は、弁ケース33の内部の油路を閉塞する方向に変位し、この第2バイパス油路18から第2アキュムレータA2に流れるオイルが制限される。前述したように第2クロス油路12のオイル圧が上昇することにより、第2バイパス油路18に流れるオイル量は増大する傾向となるが、第2流量制御弁F2に流れるオイル量は極めて低い値に制限され、この第2バイパス油路18に流れるオイル量も抑制される。
このロール時には左油圧シリンダCaの伸長により上部油室6Uのオイル圧が低下し、これにより第1上部減衰機構21の導入抑制チェック弁27に作用する差圧が所定値を越える。また、右油圧シリンダCbの収縮により下部油室6Lのオイル圧が低下し、これにより第1下部減衰機構23の導入抑制チェック弁27に作用する差圧が所定値を越える。これにより、第1クロス油路11の圧力が低下し、第1差圧発生機構E1の排出用チェック弁32に作用する差圧が排出圧を越えることにより第1アキュムレータA1のオイルが第1クロス油路11に供給される。
このロール時において、オイル圧が第2下部減衰機構24のリリーフ弁26のリリーフ圧を越え、右油圧シリンダCbの上部油室6Uのオイル圧が第2上部減衰機構22の排出抑制チェック弁25を開放させるに必要な差圧を越えることにより、第2クロス油路12に流れる。更に、第2バイパス油路18に対してオイルが殆ど流れない状態にあるので、第2クロス油路12のオイル圧の上昇により第2差圧発生機構E2の導入用チェック弁31が開放した後に第2アキュムレータA2に供給が開始され、この状況に達して左右の油圧シリンダCの作動が可能となる。
特に、第2下部減衰機構24のリリーフ弁26の差圧がリリーフ圧に達する以前に、第2上部減衰機構22の排出抑制チェック弁25が開放する作動形態となるので、左油圧シリンダCaの伸長には大きい減衰力が作用し、しかも、第2下部減衰機構24のオリフィス28から第2バイパス油路18に対してオイルが殆ど流れない状態となるので、左油圧シリンダCaの伸長には一層大きい減衰力が作用する。
これと同様の作動は、左油圧シリンダCaが収縮し、右油圧シリンダCbが伸長する作動時にも行われ、この作動時には第1クロス油路11のオイル圧が大きく上昇し、この第1クロス油路11のオイルは第1アキュムレータA1に供給される。これとは逆に、第2クロス油路12のオイル圧は低下し、第2クロス油路12に対して第2アキュムレータA2からオイルが供給される。このロール時には、右油圧シリンダCbの下部油室6Lの圧力が低下するので、この下部油室6Lから第1バイパス油路17にオイルが送り出されることはない。
特に、このサスペンション装置では、左右何れの方向にロールが行われる場合でも、そのロールが高速度で行われる状況では、差圧発生機構Eの導入用チェック弁31に作用する差圧が短時間のうちに高い値に上昇し、流量制御弁Fに対して高い差圧が作用するため、ロールが高速であるほど油圧シリンダCの作動に大きい減衰力を作用させて車体1のロールを阻止する。
〔減衰力〕
図6には、図1に示すスペンション装置においてバウンス時及びロール時において油圧シリンダCに作用する減衰力の特性を示している。つまり、横軸にピストン7の作動速度を取り、縦軸に減衰力の大きさを取っており、この縦軸方向で上側に油圧シリンダCが伸長する際の減衰力を示し、下側に油圧シリンダCが収縮する際の減衰力を示している。バウンス時には油圧シリンダCに対してバウンス減衰力Sが作用し、ロール時には油圧シリンダCに対してロール減衰力Tが作用する。
前述したように、第1下部減衰機構23と第2下部減衰機構24とのリリーフ弁26が開放するに必要なリリーフ圧を、第1上部減衰機構21と第2上部減衰機構22との排出抑制チェック弁25が開放するに必要な差圧(所定値)より高い値に設定している。
この理由から、バウンス時において左右の油圧シリンダCが収縮する際のバウンス減衰力S(下側に示す減衰力)と比較して、左右の油圧シリンダCが伸長する際に作用するバウンス減衰力S(上側に示す減衰力)が大きくなる特性を得ている。
また、差圧発生機構Eは、ロール時において、バウンス減衰力Sより大きい減衰力を作用させるロール減衰バルブとして機能する。つまり、オイルが対応するアキュムレータAに供給される際には、差圧発生機構Eでの差圧が上昇した後に導入用チェック弁31が開放するため、バウンス減衰力Sを基準にして差圧制御領域Wに相当するだけ大きい減衰力となる中間減衰力Mを得る。
更に、流量制御弁Fは、油圧シリンダCが伸長する際において、この油圧シリンダCに対して強い減衰力を作用させる伸長抑制バルブとして機能する。これにより、ロール時において油圧シリンダCが伸長する方向に作動する際には、中間減衰力Mを基準にして流量制御領域Xだけ減衰力が増大した位置にロール減衰力Tを得る。この実施形態では、流量制御弁Fが、油圧シリンダCが伸長する際にのみ作用するため、油圧シリンダCが収縮する方向に作動する際には流量制御領域Xは形成されず、前述した中間減衰力Mと一致する位置にロール減衰力Tを得る。
〔実施形態の作用・効果〕
このような構成により、バウンス時には所定の減衰力を左右の油圧シリンダCに作用させることにより車体1の上下方向への動揺を抑制して乗り心地を良好にする。特に、油圧シリンダCが収縮する場合と比較して伸長する場合における減衰力を大きくすることにより、サスペンションスプリング4の付勢力による左右の車輪の下方への変位を抑制して左右の車輪の位置を安定させることが可能となる。
また、ロール時には、第1クロス油路11又は第2クロス油路12のオイル圧が高い値まで上昇する現象を利用することにより、第1バイパス油路17又は第2バイパス油路18から対応するアキュムレータAに流れるオイルを流量制御弁Fが制限する。これにより、油圧シリンダCの伸長方向への作動に強い減衰力を作用させ、車体1のロールを強力に抑制する。このように作用する減衰力は、バウンス時に油圧シリンダCに作用する減衰力より大きい値に達する。
従って、車体1がバウンスする場合には、左右の車輪の多少の上下動を許して車体1が上下に僅かに動揺する現象を許容するものであるが、特に、左右の車輪の下方への突出を良好に抑制する。また、車体1がロールする場合には、車輪の下方への変位を積極的に抑制することにより、車体1のロール量を小さくして、車体1の姿勢を安定させ、乗り心地を良好に維持する。特に、バウンスでもロールでも高速で行われる場合には、油圧シリンダCの伸長又は収縮の速度が高速であるほど、大きい減衰力を作用させ、左右の車輪の上下動を抑制して車体1を安定させ、乗り心地を一層良好にする。
また、この構成では第1上部減衰機構21と第2上部減衰機構22とがチェック弁で構成されるため、リリーフ弁26を用いる構成と比較して部品点数が少なくて済み、組み立てを容易にするだけではなく、コストダウンを実現する。
〔別実施形態〕
本発明は、上記した実施形態以外に以下のように構成しても良い。
(a)図7に示すように油路系を構成する。つまり、実施形態のサスペンション装置の油路系の第1上部減衰機構21と第2上部減衰機構22とを、排出抑制チェック弁25に代えてリリーフ弁26を備えて構成する。また、第1上部減衰機構21において左油圧シリンダCaの上部油室6Uに連通する油路からオリフィス28を介して第1バイパス油路17に接続する油路を形成する。これ同様に、第2上部減衰機構22において右油圧シリンダCbの上部油室6Uに連通する油路からオリフィス28を介して第2バイパス油路18に接続する油路を形成する。
この別実施形態(a)において、バウンス時及びロール時に油圧シリンダCに作用する減衰力を図8に示している。つまり、横軸にピストン7の作動速度を取り、縦軸に減衰力を取っており、この縦軸方向で上側に油圧シリンダCが伸長する際の減衰力を示し、下側に油圧シリンダCが収縮する際の減衰力を示している。
同図から明らかなように、バウンス時には油圧シリンダCに対してバウンス減衰力Sが作用し、ロール時には油圧シリンダCに対してロール減衰力Tが作用する。また、油圧シリンダCが伸長する際に作用する減衰力は、前述した実施形態と変わらないが、油圧シリンダCの収縮時にも流量制御弁Fが減衰力を作用させるため、油圧シリンダCが収縮する方向にも流量制御領域Xが形成される。これにより、油圧シリンダCが収縮する側においても中間減衰力Mを基準にして流量制御領域Xだけ増大したロール減衰力Tを得る。
(b)図9に示すように油路系を構成する。つまり、実施形態のサスペンション装置の油路系の差圧発生機構Eとして差圧発生用オリフィス42を備え、この差圧発生用オリフィス42で発生する差圧を差圧作用油路37に作用させるように構成する。
この別実施形態(b)では、前述した別実施形態(a)と同様に実施形態のサスペンション装置の油路系の第1上部減衰機構21と第2上部減衰機構22とを、排出抑制チェック弁25に代えてリリーフ弁26を備えて構成する。また、第1上部減衰機構21において左油圧シリンダCaの上部油室6Uに連通する油路からオリフィス28を介して第1バイパス油路17に接続する油路を形成する。これ同様に、第2上部減衰機構22において右油圧シリンダCbの上部油室6Uに連通する油路からオリフィス28を介して第2バイパス油路18に接続する油路を形成している。
この別実施形態(b)において、バウンス時及びロール時に油圧シリンダCに作用する減衰力を図10に示している。つまり、横軸にピストン7の作動速度を取り、縦軸に減衰力を取っており、この縦軸方向で上側に油圧シリンダCが伸長する際の減衰力を示し、下側に油圧シリンダCが収縮する際の減衰力を示している。
同図から明らかなように、バウンス時には油圧シリンダCに対してバウンス減衰力Sが作用し、ロール時には油圧シリンダCに対してロール減衰力Tが作用する。この別実施形態(b)の構成では、前述した別実施形態(a)と同様の減衰力のバウンス減衰力Sを得るものであるが、実施形態に示した差圧発生機構Eを備えていないため、差圧制御領域Wが作り出されず、バウンス減衰力Sを基準として、流量制御領域Xだけ増大したロール減衰力Tを得る。
この別実施形態(b)では、差圧発生機構Eが単一の差圧発生用オリフィス42を備えて構成できるので、構成が単純化して組み立てが容易になるだけではなく、コストの低減が実現する。
(c)図11に示すように、流量制御弁Fは、差圧作用ポート33Cに作用する差圧の急激な変化を抑制するため、オイル量制限部としてオイル量制限オリフィス43を備えて構成することができる。
このオイル量制限オリフィス43を備える構成では、小径の開口を形成した構造のプレートを差圧作用ポート33Cに嵌め込むだけの単純な改良で済む。これにより、差圧発生機構Eからの差圧が急激に上昇する場合でも、弁体34に作用する差圧の上昇速度を低下させ、結果として、油圧シリンダCに強い外力が作用する状況でも、油圧シリンダCに作用する減衰力の高まりを緩和して、ソフトな減衰により乗り心地を良好にする。
(d)本発明のサスペンション装置は、別実施形態(b)と別実施形態(c)との第1上部減衰機構21と第2上部減衰機構22とを、実施形態のように排出抑制チェック弁25と導入抑制チェック弁27とを備えて構成しても良い。
(e)本発明のサスペンション装置は、実施形態の差圧発生機構Eと、別実施形態(b)の差圧発生機構Eに代えて別実施形態(c)のようにオリフィス42を用いた差圧発生機構Eを備えて構成しても良い。
(f)実施例中にも一部説明したが、油圧シリンダCとしてシリンダチューブ6の上方にピストンロッド8が突出する構成のものを使用してサスペンション装置を構成しても良い。その場合、ピストンロッド8を車体1に連結支持し、シリンダチューブ6をサスペンションアーム3に連結支持することになる。
この別実施形態(f)では、実施形態の油路系であっても、別実施形態(a)の油路系であっても、左油圧シリンダCaの場合には、この左油圧シリンダCaに連なる油路系をそのままにして上下を逆にし、これと同様に、右油圧シリンダCaの場合には、この右油圧シリンダCbに連なる油路系をそのままにして上下を逆にする構成となる。これにより、位置的には上部となる油室(ピストンロッド8が挿通する油室)に対してオリフィス28を介してバイパス油路が連通することになる。
この別実施形態(f)では、油圧シリンダCが伸長した場合には、位置的には上部となる油室(ピストンロッドが挿通する油室)からオイルが送り出されることになり、このオイルが、クロス油路とバイパス油路とに送り出される。これにより、バウンス時にはバウンス減衰力を得ることになり、ロール時にはロール減衰力を得る。特に、バウンス時でもロール時でも伸長する油圧シリンダCに大きい減衰力を作用させ、車体の姿勢を安定させ、乗り心地を向上させることが可能となる。
本発明は、車両の左右の車輪の上下動に連係して圧縮・伸長する左右の油圧シリンダのオイルを制御する構成のサスペンション装置に利用することができる。
2A 左車輪
2B 右車輪
6 シリンダ(シリンダチューブ)
6U 上部油室
6L 下部油室
7 ピストン
8 ピストンロッド
11 第1クロス油路
12 第2クロス油路
13 第1分岐油路
14 第2分岐油路
15 第1アキュムレータ
16 第2アキュムレータ
17 第1バイパス油路
18 第2バイパス油路
21 第1上部減衰機構
22 第2上部減衰機構
23 第1下部減衰機構
24 第2下部減衰機構
25 開閉弁(排出抑制チェック弁)
26 開閉弁(リリーフ弁)
31 導入用チェック弁
32 排出用チェック弁
33A 導入ポート
33B 吐出ポート
33C 差圧作用ポート
34 弁体
35 付勢機構(制御スプリング)
37 差圧作用油路
42 オリフィス(差圧発生用オリフィス)
43 オイル量制限部(オイル量制限オリフィス)
Ca 左油圧シリンダ
Cb 右油圧シリンダ
D1 第1減衰ユニット
D2 第2減衰ユニット
E1 第1差圧発生機構
E2 第2差圧発生機構
F1 第1流量制御弁
F2 第2流量制御弁

Claims (6)

  1. 左車輪の上下動を受ける左油圧シリンダと、右車輪の上下動を受ける右油圧シリンダとを備え、
    前記左油圧シリンダと前記右油圧シリンダとが、中空のシリンダと、このシリンダの内部に移動自在に収容したピストンとを有すると共に、前記シリンダの内部で前記ピストンより上側の上部油室と、前記ピストンより下側の下部油室とを備えて構成され、
    前記左油圧シリンダの前記上部油室と、前記右油圧シリンダの前記下部油室とを連通させる第1クロス油路を備え、前記右油圧シリンダの前記上部油室と、前記左油圧シリンダの前記下部油室とを連通させる第2クロス油路を備え、
    前記第1クロス油路のオイルの流れを抑制する第1減衰ユニットと、前記第2クロス油路のオイルの流れを抑制する第2減衰ユニットとを備え、
    前記第1クロス油路から分岐する第1分岐油路に接続する第1アキュムレータと、この第1分岐油路において前記第1アキュムレータにオイルが流れる際に差圧を発生させる第1差圧発生機構と、前記第2クロス油路から分岐する第2分岐油路に接続する第2アキュムレータと、この第2分岐油路において第2アキュムレータにオイルが流れる際に差圧を発生させる第2差圧発生機構とを備え、
    前記右油圧シリンダの前記ピストンのピストンロッドが前記シリンダから伸び出す伸長に伴って、この右油圧シリンダの前記下部油室又は前記上部油室から送り出されるオイルを、前記第1差圧発生機構を通過させずに前記第1アキュムレータに供給する第1バイパス油路と、前記左油圧シリンダの前記ピストンのピストンロッドが前記シリンダから伸び出す伸長に伴って、この左油圧シリンダの前記下部油室又は前記上部油室から送り出されるオイルを、前記第2差圧発生機構を通過させずに前記第2アキュムレータに供給する第2バイパス油路とを備え、
    前記第1バイパス油路には、前記第1差圧発生機構で発生する差圧が高いほど、この第1バイパス油路のオイル流量を抑制する第1流量制御弁を備え、前記第2バイパス油路には、前記第2差圧発生機構で発生する差圧が高いほど、この第2バイパス油路のオイル流量を抑制する第2流量制御弁を備えているサスペンション装置。
  2. 前記第1差圧発生機構と前記第2差圧発生機構とが、アキュムレータ側のオイル圧と、このオイル圧を基準にした分岐油路側のオイル圧との差圧が所定値を越えた際に開放する導入用チェック弁を備えると共に、この導入用チェック弁と並列する位置に、分岐油路側のオイル圧と、このオイル圧を基準にしたアキュムレータ側のオイル圧との差圧が所定値を越えた際に開放する排出用チェック弁を備え、
    前記第1差圧発生機構の前記導入用チェック弁において前記アキュムレータ側のオイル圧を基準にする前記分岐油路側のオイル圧を差圧として前記第1流量制御弁に作用させ、
    前記第2差圧発生機構の前記導入用チェック弁において前記アキュムレータ側のオイル圧を基準にする前記分岐油路側のオイル圧を差圧として前記第2流量制御弁に作用させている請求項1記載のサスペンション装置。
  3. 前記第1差圧発生機構と前記第2差圧発生機構とがオリフィスを備えて構成され、
    前記第1差圧発生機構の前記オリフィスにおいて前記アキュムレータ側のオイル圧を基準にする前記分岐油路側のオイル圧を差圧として前記第1流量制御弁に作用させ、
    前記第2差圧発生機構の前記オリフィスにおいて前記アキュムレータ側のオイル圧を基準にする前記分岐油路側のオイル圧を差圧として前記第2流量制御弁に作用させている請求項1記載のサスペンション装置。
  4. 前記第1流量制御弁と前記第2流量制御弁とが、バイパス油路側からのオイルを受け入れる導入ポートと、オイルをアキュムレータ側に送り出す吐出ポートと、前記差圧が作用する差圧作用ポートを有すると共に、前記導入ポートからのオイルを前記吐出ポートに導く流路に流れるオイル量を制御する弁体と、この弁体をオイル量が増大する方向に付勢する付勢機構とを有して構成され、前記吐出ポートに作用するオイル圧と前記差圧作用ポートに作用するオイル圧との圧力差が大きいほど、前記弁体を前記付勢機構に付勢力に抗して作動し前記流路に流れるオイル量を低減する請求項1〜3のいずれか一項に記載のサスペンション装置。
  5. 前記差圧作用ポートに対して差圧を作用させる差圧作用油路が形成され、この差圧作用油路へ流れるオイル量を制限するオイル量制限部を備えている請求項4記載のサスペンション装置。
  6. 前記左油圧シリンダと前記右油圧シリンダとして、前記ピストンロッドが前記シリンダの下方に突出する構成のものが使用され、
    前記第1減衰ユニットが、前記左油圧シリンダの上部油室から前記第1クロス油路に送り出されるオイルの流れを抑制する第1上部減衰機構と、前記右油圧シリンダの下部油室から前記第1クロス油路に送り出されるオイルの流れを抑制する第1下部減衰機構とを備え、
    前記第2減衰ユニットが、前記右油圧シリンダの上部油室から前記第2クロス油路に送り出されるオイルの流れを抑制する第2上部減衰機構と、前記左油圧シリンダの下部油室から前記第2クロス油路に送り出されるオイルの流れを抑制する第2下部減衰機構とを備え、
    前記第1上部減衰機構と前記第1下部減衰機構と前記第2上部減衰機構と前記第2下部減衰機構とが、油圧シリンダ側からのオイルのオイル圧の上昇により開放する開閉弁を備えて構成され、
    前記第1下部減衰機構の前記開閉弁が開放するオイル圧を前記第2上部減衰機構の前記開閉弁が開放するオイル圧より高く設定し、前記第2下部減衰機構の前記開閉弁が開放するオイル圧を前記第1上部減衰機構の前記開閉弁が開放するオイル圧より高く設定している請求項1〜5のいずれか一項に記載のサスペンション装置。
JP2012178299A 2012-08-10 2012-08-10 サスペンション装置 Pending JP2014034367A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178299A JP2014034367A (ja) 2012-08-10 2012-08-10 サスペンション装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178299A JP2014034367A (ja) 2012-08-10 2012-08-10 サスペンション装置

Publications (1)

Publication Number Publication Date
JP2014034367A true JP2014034367A (ja) 2014-02-24

Family

ID=50283604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178299A Pending JP2014034367A (ja) 2012-08-10 2012-08-10 サスペンション装置

Country Status (1)

Country Link
JP (1) JP2014034367A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061178A (ja) * 2015-09-24 2017-03-30 Kyb株式会社 サスペンション装置
CN110370879A (zh) * 2019-08-23 2019-10-25 杨成 汽车防侧倾系统
CN112173088A (zh) * 2020-09-25 2021-01-05 中国直升机设计研究所 一种具备流速控制的组合式蓄压器及液压刹车系统
CN113550997A (zh) * 2021-07-09 2021-10-26 合肥工业大学 一种基于数字控制式液压缸组的液电式馈能减振器系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061178A (ja) * 2015-09-24 2017-03-30 Kyb株式会社 サスペンション装置
WO2017051752A1 (ja) * 2015-09-24 2017-03-30 Kyb株式会社 サスペンション装置
CN110370879A (zh) * 2019-08-23 2019-10-25 杨成 汽车防侧倾系统
CN112173088A (zh) * 2020-09-25 2021-01-05 中国直升机设计研究所 一种具备流速控制的组合式蓄压器及液压刹车系统
CN113550997A (zh) * 2021-07-09 2021-10-26 合肥工业大学 一种基于数字控制式液压缸组的液电式馈能减振器系统

Similar Documents

Publication Publication Date Title
CN108626294B (zh) 车辆减震器及其控制方法
CN103930288B (zh) 车辆的悬架装置
US9580115B2 (en) Vehicle seat or vehicle cab with a suspension system, and utility vehicle
KR101243447B1 (ko) 차량 서스펜션 유압 시스템
KR101673641B1 (ko) 차량용 쇽업소버
US7751959B2 (en) Semi-active suspension system with anti-roll for a vehicle
US8544863B2 (en) Hydraulic suspension system
JP6134238B2 (ja) 緩衝器
CN110869224B (zh) 具有可变弹簧刚度的弹簧减振器系统和弹簧常数控制方法
US20020121416A1 (en) Hydraulic cylinder apparatus
US20140049013A1 (en) Air spring and damper unit with height adjustment
JP2001191778A (ja) 四輪車用懸架装置
US20070175718A1 (en) Self-pumping hydropneumatic spring strut
JP2014034367A (ja) サスペンション装置
JP3306526B2 (ja) 減衰力調整式油圧緩衝器
JP5672502B2 (ja) 車両のサスペンション装置
CN105196822A (zh) 减振系统
JP6361414B2 (ja) 車両のサスペンション装置
CN105313632B (zh) 减振系统
JP6305102B2 (ja) 流体圧緩衝器
JP5549889B2 (ja) 車両のサスペンション装置
JP2013071523A (ja) サスペンションシステム
EP1628039B1 (en) Hydraulic shock absorber
AU2003291836B2 (en) Hydraulic suspension system
JP2020020374A (ja) 免震用ダンパ