JP2014034307A - 車両衝突判定装置 - Google Patents

車両衝突判定装置 Download PDF

Info

Publication number
JP2014034307A
JP2014034307A JP2012176977A JP2012176977A JP2014034307A JP 2014034307 A JP2014034307 A JP 2014034307A JP 2012176977 A JP2012176977 A JP 2012176977A JP 2012176977 A JP2012176977 A JP 2012176977A JP 2014034307 A JP2014034307 A JP 2014034307A
Authority
JP
Japan
Prior art keywords
collision
vehicle
collision determination
unit
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2012176977A
Other languages
English (en)
Inventor
Tatsuji Osaki
達治 大▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2012176977A priority Critical patent/JP2014034307A/ja
Publication of JP2014034307A publication Critical patent/JP2014034307A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Air Bags (AREA)

Abstract

【課題】コスト上昇を招くことなく、乗員保護性能の向上を図ることができる車両衝突判定装置を提供する。
【解決手段】衝突時に車両に生じる音響帯域の高周波振動を検出する振動検出手段11と、振動検出手段11の検出結果に基づいて、乗員保護装置の起動を必要とする正面衝突が発生したか否かを判定する正面衝突判定手段と、を備え、振動検出手段11が車体フレームに固定される車両衝突判定装置1において、振動検出手段11は、車体フレーム50のうち、衝突時の衝撃を吸収する衝撃吸収部59よりも後方側、かつ、ミドルクロスメンバ55よりも前方側の領域に固定される。
【選択図】図2

Description

本発明は、車両衝突判定装置に関する。
一般的に、車両衝突時に乗員を保護するためのシステムとして、SRS(Supplemental Restraint System)エアバッグシステムが知られている。このSRSエアバッグシステムとは、車両の各部に設置された加速度センサから取得した加速度データを基に、車両衝突の発生を検知してエアバッグ等の乗員保護装置を起動するものである。
車両衝突を検出するために、車両中央部に設置されたSRSユニット(SRSエアバッグシステムを統括制御するECU)に内蔵された加速度センサと、車両前部に設けた複数のフロントクラッシュセンサ(FCS:Front Crash Sensor)とを用いて、衝突が発生したか否かの判定を行い、その衝突判定結果に応じて乗員保護装置の起動制御を行う技術が知られている(引用文献1)。
近年では、加速度センサよりも高い周波数の振動(音)を検出する音響センサを用いて、衝突が発生したか否かの判定を行って乗員保護装置の起動制御を行う技術も開発されている(引用文献2)。
特開2006−088912号公報 特表2001−519268号公報
FCSは、衝突を迅速に検出する必要性から車両前部に設けられる。このため、FCSとSRSユニットとをワイヤーハーネスにより接続する必要があり、コストアップになる等の問題がある。
一方、音響センサは、FCSよりも迅速に衝突を検出できるが、車両の損壊以外の振動(飛石等の局所打撃)を検出してしまう。また、車両の構造・材質によって、検出される音響データが大きく異なる。このため、このような車両の損壊以外の振動を可能な限り排除して、正確な衝突判断を行うことが求められている。
本発明は、上述した事情に鑑みてなされたものであり、コスト上昇を招くことなく、乗員保護性能の向上を図ることができる車両衝突判定装置を提供することを目的とする。
上記目的を達成するために、本発明では、以下の手段を採用した。
本発明の第一態様に係る車両衝突判定装置は、衝突時に車両に生じる音響帯域の高周波振動を検出する振動検出手段と、前記振動検出手段の検出結果に基づいて、乗員保護装置の起動を必要とする正面衝突が発生したか否かを判定する正面衝突判定手段と、を備え、前記振動検出手段が車体フレームに固定される車両衝突判定装置において、前記振動検出手段は、前記車体フレームのうち、衝突時の衝撃を吸収する衝撃吸収部よりも後方側、かつ、ミドルクロスメンバよりも前方側の領域に固定されることを特徴とする。
本発明の第二態様に係る車両衝突判定装置は、第一態様に係る車両衝突判定装置において、前記振動検出手段は、左右のフロントサイドフレーム、フロントクロスメンバ又はトンネルメンバのいずれかの部材に固定されることを特徴とする。
本発明の第三態様に係る車両衝突判定装置は、第一態様又は第二態様に係る車両衝突判定装置において、前記振動検出手段は、溶接又は硬化接着剤を用いて、前記車体フレームに対して固定されることを特徴とする。
本発明の第四態様に係る車両衝突判定装置は、第一態様から第三態様のいずれかに係る車両衝突判定装置において、前記振動検出手段は、前記高周波振動として周波数帯域5kHz〜20kHzの振動を検出することを特徴とする。
本発明によれば、音響センサを衝突検出に最適な場所に設置可能とすることにより、乗員保護性能の向上を図ることができる。また、FCSを用いることなく、SRS−ECU内の音響センサを用いることにより乗員保護装置の起動を必要とする正面衝突を迅速且つ正確に判別できる。したがって、乗員保護性能の向上とシステム全体のコスト削減を両立可能な車両衝突判定装置を提供できる。
第一実施形態のSRSエアバッグシステム及びSRSユニット1の要部ブロック構成図である。 車体フレーム50におけるSRSユニット1の設置位置を示す図である。 第一演算部の算出処理、衝突判定に用いられる二次元マップ及びセーフィング判定部の算出処理を示す図である。 第二実施形態のSRSユニット2の要部ブロック構成図である。
以下、本発明の実施形態について、図面を参照しながら説明する。
〔第一実施形態〕
図1(a)は、第一実施形態のSRSエアバッグシステムの構成概略図である。
第一実施形態のSRSエアバッグシステムは、車両100の中央部に設置されたSRSユニット1(車両衝突判定装置)と、運転席及び助手席の前方に設置されたエアバッグ20(乗員保護装置)と、から構成されている。
SRSユニット1は、内蔵する音響センサ11及び加速度センサ12の出力信号に基づいて、車両100に衝突が発生したか否かの判定(衝突判定)を行い、その衝突判定結果に応じてエアバッグ20の起動制御を行うECU(Electronic Control Unit)である。
エアバッグ20は、SRSユニット1から入力される点火信号に応じて展開し、車両100の衝突により乗員が前方に二次衝突することで負う傷害を軽減する乗員保護装置である。
車両100には、エアバッグ20の他、サイドエアバッグ、シートベルトプリテンショナ等の他の乗員保護装置も設けられているが、図1(a)では図示を省略している。
図1(b)は、SRSユニット1の要部ブロック構成図である。
SRSユニット1は、音響センサ11(振動検出手段)、加速度センサ12、メイン衝突判定部13、セーフィング判定部14及びAND部15を備えている。
なお、メイン衝突判定部13、セーフィング判定部14及びAND部15は、本発明の衝突検出手段を構成する。
音響センサ11は、SRSユニット1に内蔵された振動センサであり、車両100に生じる音響帯域の高周波振動を検出し、その検出結果を音響データSa(t)としてメイン衝突判定部13へ出力する。
具体的には、この音響センサ11は、音響帯域の高周波振動として周波数帯域5kHz〜20kHzの振動(構造音響)を検出する。この音響センサ11から得られる音響データSa(t)は、衝突によって車両100が変形(損壊)する特徴をよく捉えたものである。
加速度センサ12は、SRSユニット1に内蔵された振動センサであり、車両100の長さ方向(図中のX軸方向)及び幅方向(図中のY軸方向)に生じる、音響帯域より低い帯域の低周波振動を検出し、その検出結果を加速度データG(t)としてメイン衝突判定部13及びセーフィング判定部14へ出力する。
具体的には、この加速度センサ12は、音響帯域より低い帯域の低周波振動として周波数帯域0Hz〜500Hzの振動を検出する。この加速度センサ12から得られる加速度データG(t)は、衝突によて車両100に生じるX軸方向及びY軸方向の減速度をよく捉えたものである。
このように、音響センサ11と加速度センサ12との違いは、検出対象振動の周波数帯域が異なるだけであり、どちらも振動センサに属するものである。これらの音響センサ11及び加速度センサ12は、本発明における振動検出手段を構成している。
図1(a)に示すように、SRSユニット1において、音響センサ11及び加速度センサ12をそれぞれ別個に設けても良いし、或いは1つのセンサセル内に音響センサ11と加速度センサ12を内蔵するようにしても良い。
メイン衝突判定部13は、音響センサ11から入力される音響データSa(t)及び加速度センサ12から入力される加速度データG(t)に基づいて、エアバッグ20の展開(起動)を必要とする衝突が発生したか否かを判定するものである。
第一演算部13a、第二演算部13b及びマップ判定部13cを備えている。
図2は、車体フレーム50におけるSRSユニット1の設置位置を示す図である。
図2に示すように、車体フレーム50は、フロントバンパー51、フロントサイドフレーム52、フロントクロスメンバ53、サイドシル54、ミドルクロスメンバ55、リアクロスメンバ56、リヤサイドフレーム57及びトンネルメンバ58を主たる要素として構成される。
左右のフロントサイドフレーム52は、車両前方に配置されるエンジンルームの両側においてそれぞれ車両前後方向に延在する。フロントバンパー51は、車両100の最前部において車幅方向に延在する。また、フロントバンパー51は、フロントサイドフレーム52の前端間を接続する。フロントクロスメンバ53は、フロントサイドフレーム52の後端間を接続する。
フロントバンパー51と左右のフロントサイドフレーム52との間には、エクステンション部59が設けられる。
エクステンション部59(衝撃吸収部)は、車両100が正面衝突した際に、車体フレーム50のうちで最も早く変形する部位である。つまり、車両100が正面衝突すると、逸早く変形して衝突のエネルギを吸収して、乗員への衝撃伝達を軽減する部位である。
左右のサイドシル54は、フロントクロスメンバ53の両端から車両後方に向けてそれぞれ延在する。ミドルクロスメンバ55は、サイドシル54の中央間を接続する。リアクロスメンバ56は、サイドシル54の後端間を接続する。そして、左右のリヤサイドフレーム57は、サイドシル54の後端にそれぞれ接続される。
トンネルメンバ58は、車両中央においてフロントクロスメンバ53からリアクロスメンバ56の間に延在する筒状の部材である。トンネルメンバ58は、略四角形の断面形状を有するように形成される。
そして、上述したSRSユニット1は、車体フレーム50のうち、エクステンション部59よりも車両後方側、かつ、ミドルクロスメンバ55よりも車両前方側の部材に固定される。つまり、左右のフロントサイドフレーム52、フロントクロスメンバ53又はトンネルメンバ58の前方部58Aのいずれかの部材に固定される。
なお、SRSユニット1は、溶接又は硬化接着剤を用いて、左右のフロントサイドフレーム52、フロントクロスメンバ53又はトンネルメンバ58の前方部58Aに対して固定される。
SRSユニット1は、車両100が正面衝突したとき、エアバッグ20の乗員保護装置が動作するまでは損傷を受けないことが必要である。このため、SRSユニット1をフロントバンパー51及びエクステンション部59に設置することは避けなければならない。
エクステンション部59は、車両100が衝突した際に逸早く変形して衝突のエネルギを吸収する部位であるから、衝突で発生した振動を伝達しづらい点でもSRSユニット1の設置場所としてはふさわしくない。
また、車両100が正面衝突したとき、SRSユニット1には衝突で発生した振動ができるだけ減衰することなく伝達される必要である。
衝突で発生した振動は、左右のフロントサイドフレーム52、フロントクロスメンバ53及びトンネルメンバ58の前方部58Aには、殆ど減衰することなく伝達される。一方、トンネルメンバ58の後方部58B(ミドルクロスメンバ55よりも後方側)では、衝突で発生した振動がミドルクロスメンバ55に伝達するため、振動が減衰されてしまう。
そこで、上述したように、SRSユニット1は、車体フレーム50のうち、エクステンション部59よりも車両後方側、かつ、ミドルクロスメンバ55よりも車両前方側の部材に固定される。具体的には、左右のフロントサイドフレーム52、フロントクロスメンバ53又はトンネルメンバ58の前方部58Aのいずれかの部材に固定(固着)される。
これにより、車両100が正面衝突したときに、SRSユニット1が損傷を受けることがなく、かつ、衝突で発生した振動が大きく減衰することなくSRSユニット1(音響センサ11)に伝達される。したがって、音響センサ11を用いた衝突判断を高精度に行うことが可能となる。
図3(a)は、第一演算部の算出処理を示すである。
第一演算部13aは、音響センサ11から入力される音響データSa(t)をバンドパスフィルタリング処理(周波数帯域5kHz〜20kHz)し、処理後のデータの絶対値を算出し、さらにこの絶対値のエンベロープ(包絡線)を算出する。
以下では、音響データSa(t)の絶対値のエンベロープを音響エンベロープSe(t)と称する。第一演算部13aは、上記のように算出した音響エンベロープSe(t)をマップ判定部13cに出力する。
第二演算部13bは、加速度センサ12から入力される加速度データG(t)を一次積分(区間積分)することで速度Vを算出し、その算出結果をマップ判定部13cに出力する。
速度Vの代わりに、加速度データG(t)を二次積分することで移動量を算出しても良い。
図3(b)は、衝突判定に用いられる二次元マップを示す図である。
マップ判定部13cは、第一演算部13a及び第二演算部13bによってそれぞれ算出された音響エンベロープSe(t)及び速度Vに基づいて、エアバッグ20の展開を必要とする衝突が発生したか否かを判定する。
具体的には、図3(b)に示すように、音響エンベロープSe(t)を縦軸、速度Vを横軸とする2次元マップ上において、第一演算部13a及び第二演算部13bによって算出された音響エンベロープSe(t)及び速度Vが二次元的に設定された二次元衝突判定閾値THを越えた場合に、エアバッグ20の展開を必要とする衝突が発生したと判定し、そのマップ判定結果をAND部15に出力する。
二次元マップ上における二次元衝突判定閾値THの設定手法は以下の通りである。
既に述べたように、音響センサ11から得られる音響データSa(t)は、車体が変形(損壊)する特徴を捉えやすい傾向があり、迅速且つ正確な衝突判定の実現に有効である。
従来(SRSユニット内の加速度センサのみで衝突判定を行う場合)では、衝突発生時点から40ms後(詳細には40ms〜50msの間)に衝突判定(閾値判定)が実施されるよう閾値設定を行う必要があった。
一方、音響センサ11から得られる音響エンベロープSe(t)を衝突判定に利用すると、衝突発生時点から20ms後(詳細には20ms〜30msの間)に衝突判定が実施されるよう閾値設定を行うことが可能となる。
図3(b)に示す二次元マップ上において、横軸方向に延びる二次元衝突判定閾値TH(TH1)は、衝突発生時点から20ms〜30msの間に、エアバッグ20の展開を必要とする衝突(車体変形(損壊)を伴う激しい衝突)と、エアバッグ20の展開が不要な衝突(車体変形が軽微な穏やかな衝突)とを判別できるような値に設定されている。
速度Vが大きくなるほど、車両100に発生する構造音響が大きくなるので、仮に横軸方向に延びる二次元衝突判定閾値TH(TH1)を一定値とすると、本来ならばエアバッグ20の展開が不要な衝突が発生しているにも拘らず、エアバッグ20の展開を必要とする衝突が発生したと誤判定する可能性がある。
そこで、このような誤判定を防止するために、図3(b)に示すように、横軸方向に延びる二次元衝突判定閾値TH(TH1)は、速度Vが大きくなるほど高くなるように設定することが望ましい。
一方、音響センサ11から得られる音響エンベロープSe(t)には、車体変形を伴わない飛石等による局所打撃音を多く含んでいる。このため、エアバッグ20の展開が必要な衝突による衝撃音と、エアバッグ20の展開が不要な局所打撃音とを正確に判別する必要がある。
このような衝突による衝撃音と飛石等による局所打撃音との判別には、加速度センサ12から得られる加速度データG(t)を利用することができる。衝突による衝撃音が発生した場合には大きな減速度が生じるが、飛石等による局所打撃音が発生した場合には小さな減速度が生じるのみである。
つまり、図3(b)に示す二次元マップ上において、縦軸方向に延びる二次元衝突判定閾値TH(TH2)は、エアバッグ20の展開を必要とする衝突(車体変形を伴う激しい衝突)と、エアバッグ20の展開が不要な衝突(飛石等による局所打撃)とを判別できるような値に設定されている。
飛石等による局所打撃音が大きくなっても、それによる減速度に大きな変化はないため、縦軸方向に延びる二次元衝突判定閾値TH(TH2)は、音響エンベロープSe(t)に対して一定値に設定すれば良い。
以上のような手法により、二次元マップ上に二次元衝突判定閾値THを設定する。これにより、二次元マップ上には、エアバッグ20の展開を行うエアバッグ展開領域と、エアバッグ20の展開を行わないエアバッグ非展開領域とが形成される。
つまり、マップ判定部13cは、第一演算部13aにて算出された音響エンベロープSe(t)が二次元衝突判定閾値TH(TH1)を越え、且つ、第二演算部13bにて算出された速度Vが二次元衝突判定閾値TH(TH2)を越えた場合(言い換えれば、音響エンベロープSe(t)と速度Vとの交点がエアバッグ展開領域に含まれている場合)に、エアバッグ20の展開を必要とする衝突が発生したと判定する。
図1(b)に戻り、セーフィング判定部の算出処理を示すである。
セーフィング判定部14は、加速度センサ12から入力される加速度データG(t)を基にセーフィング判定を行い、そのセーフィング判定結果をAND部15に出力する。
具体的には、このセーフィング判定部14は、加速度データG(t)の一次積分値(或いは二次積分値でも良い)とセーフィング判定閾値とを比較し、一次積分値がセーフィング判定閾値より大きい場合に、エアバッグ20の展開を必要とする衝突が発生したと判定する。
なお、セーフィング判定閾値は、ある程度大きな衝突(大きな減速度)が発生すれば確実にエアバッグ20が展開されるよう、安全方向に振った値(比較的低い値)に設定されている
AND部15は、メイン衝突判定部13の衝突判定結果(マップ判定結果)、及びセーフィング判定部14のセーフィング判定結果に基づいて、最終的にエアバッグ20の展開を必要とする衝突が発生したか否かを判定し、その衝突判定結果を出力する。
具体的には、このAND部15は、メイン衝突判定部13及びセーフィング判定部14の両方でエアバッグ20の展開を必要とする衝突が発生したと判定された場合に、最終的にエアバッグ20の起動を必要とする衝突が発生したと判定する。
このように構成されたSRSユニット1は、車体フレーム50のうち、エクステンション部59よりも車両後方側、かつ、ミドルクロスメンバ55よりも車両前方側の部材に固定されるので、音響センサ11を用いた衝突判断を高精度に行うことができる。
すなわち、SRSユニット1は、左右のフロントサイドフレーム52、フロントクロスメンバ53又はトンネルメンバ58の前方部58Aのいずれかの部材に固定される。これにより、車両100が正面衝突したときに、SRSユニット1が損傷を受けることがなく、かつ、衝突で発生した振動が大きく減衰することなくSRSユニット1(音響センサ11)に伝達される。したがって、衝突判定精度の向上(乗員保護性能の向上)を図ることができる。
また、SRSユニット1は、エアバッグ20の展開を必要とする衝突(車体変形を伴う激しい衝突)と、エアバッグ20の展開が不要な衝突(車体変形が軽微な穏やかな衝突及び飛石等による局所打撃)とを迅速且つ正確に判別できる。つまり、乗員保護性能の向上とシステム全体のコスト削減を両立可能なSRSユニット1を提供することが可能となる。
また、図3(b)に示した二次元マップを衝突判定に用いることにより、二次元的な閾値設定が可能となり、衝突判定精度の向上(乗員保護性能の向上)を図ることができる。
〔第二実施形態〕
第二実施形態の説明においては、第一実施形態と異なる点に着目して説明し、第一実施形態と同様の構成要素には同一符号を付して説明を省略する。
図4は、第二実施形態のSRSユニット2の要部ブロック構成図である。
第二実施形態のSRSユニット2(車両衝突判定装置)は、第一実施形態のメイン衝突判定部13とは異なる構成であるメイン衝突判定部16(衝突判定手段)を備えている。
メイン衝突判定部16は、音響センサ11から入力される音響データSa(t)及び加速度センサ12から入力される加速度データG(t)に基づいて、エアバッグ20の展開を必要とする衝突が発生したか否かを判定するものであり、第一演算部16a、第二演算部16b、第一比較部16c、第二比較部16d及びAND部16eを備えている。
第一演算部16aは、音響センサ11から入力される音響データSa(t)から音響エンベロープSe(t)を算出し、その算出結果を第一比較部16cに出力する。
第二演算部16bは、加速度センサ12から入力される加速度データG(t)を一次積分することで速度Vを算出し、その算出結果を第二比較部16dに出力する。
第一比較部16cは、第一演算部16aから入力される音響エンベロープSe(t)が第一衝突判定閾値Sathを越えたか否かを判定し、その比較判定結果をAND部16eに出力する。
第二比較部16dは、第二演算部16bから入力される速度Vが第二衝突判定閾値Vthを越えたか否かを判定し、その比較判定結果をAND部16eに出力する。
AND部16eは、第一比較部16c及び第二比較部16dによって、音響エンベロープSe(t)が第一衝突判定閾値Sathを越え、且つ、速度Vが第二衝突判定閾値Vthを越えたと判定された場合に、エアバッグ20の展開を必要とする衝突が発生したか否かを判定し、その衝突判定結果をAND部15に出力する。
第一衝突判定閾値Sathは、衝突発生時点から20ms〜30msの間に、エアバッグ20の展開を必要とする衝突(車体変形(損壊)を伴う激しい衝突)と、エアバッグ20の展開が不要な衝突(車体変形が軽微な穏やかな衝突)とを判別できるような値に設定されている。
第二衝突判定閾値Vthは、エアバッグ20の展開を必要とする衝突(車体変形を伴う激しい衝突)と、エアバッグ20の展開が不要な衝突(飛石等による局所打撃)とを判別できるような値に設定されている。
このように構成された第二実施形態のSRSユニット2も、第一実施形態のSRSユニット1と同様に、車体フレーム50のうち、エクステンション部59よりも車両後方側、かつ、ミドルクロスメンバ55よりも車両前方側の部材に固定されるので、音響センサ11を用いた衝突判断を高精度に行うことができる。SRSユニット2は、左右のフロントサイドフレーム52、フロントクロスメンバ53又はトンネルメンバ58の前方部58Aのいずれかの部材に固定される。これにより、車両100が正面衝突したときに、SRSユニット2が損傷を受けることがなく、かつ、衝突で発生した振動が大きく減衰することなくSRSユニット2(音響センサ11)に伝達される。したがって、衝突判定精度の向上(乗員保護性能の向上)を図ることができる。
また、SRSユニット2は、エアバッグ20の展開を必要とする衝突(車体変形を伴う激しい衝突)と、エアバッグ20の展開が不要な衝突(車体変形が軽微な穏やかな衝突及び飛石等による局所打撃)とを迅速且つ正確に判別できる。つまり、乗員保護性能の向上とシステム全体のコスト削減を両立可能なSRSユニット2を提供することが可能となる。
本発明は上記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において変更可能であることは勿論である。
上記実施形態では、音響帯域の高周波振動として周波数帯域5kHz〜20kHzの振動(構造音響)を検出すると共に、音響帯域より低い帯域の低周波振動として周波数帯域0Hz〜500Hzの振動を検出する場合を例示したが、検出対象振動の周波数帯域はこれに限定されない。例えば、車両100の構造や要求される乗員保護性能に応じて適宜設定すれば良い。つまり、高周波振動の周波数帯域は、衝突によって車両100が変形(損壊)する特徴(構造音響)を捕捉可能であれば良く、低周波振動の周波数帯域は、衝突によって車両100に生じる減速度を捕捉可能であれば良い。
1,2…SRSユニット(車両衝突判定装置)、 11…音響センサ(振動検出手段)、 13…メイン衝突判定部(衝突判定手段)、 14…セーフィング判定部(衝突判定手段)、 15…AND部(衝突判定手段)、 16…メイン衝突判定部(衝突判定手段)、 50…車体フレーム、 52…フロントサイドフレーム、 53…フロントクロスメンバ、 55…ミドルクロスメンバ、 58…トンネルメンバ、 59…エクステンション部(衝撃吸収部)、 100…車両

Claims (4)

  1. 衝突時に車両に生じる音響帯域の高周波振動を検出する振動検出手段と、
    前記振動検出手段の検出結果に基づいて、乗員保護装置の起動を必要とする正面衝突が発生したか否かを判定する正面衝突判定手段と、
    を備え、
    前記振動検出手段が車体フレームに固定される車両衝突判定装置において、
    前記振動検出手段は、前記車体フレームのうち、衝突時の衝撃を吸収する衝撃吸収部よりも後方側、かつ、ミドルクロスメンバよりも前方側の領域に固定されることを特徴とする車両衝突判定装置。
  2. 前記振動検出手段は、左右のフロントサイドフレーム、フロントクロスメンバ又はトンネルメンバのいずれかの部材に固定されることを特徴とする請求項1に記載の車両衝突判定装置。
  3. 前記振動検出手段は、溶接又は硬化接着剤を用いて、前記車体フレームに対して固定されることを特徴とする請求項1又は2に記載の車両衝突判定装置。
  4. 前記振動検出手段は、前記高周波振動として周波数帯域5kHz〜20kHzの振動を検出することを特徴とする請求項1から3のうちいずれか一項に記載の車両衝突判定装置。
JP2012176977A 2012-08-09 2012-08-09 車両衝突判定装置 Abandoned JP2014034307A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176977A JP2014034307A (ja) 2012-08-09 2012-08-09 車両衝突判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176977A JP2014034307A (ja) 2012-08-09 2012-08-09 車両衝突判定装置

Publications (1)

Publication Number Publication Date
JP2014034307A true JP2014034307A (ja) 2014-02-24

Family

ID=50283557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176977A Abandoned JP2014034307A (ja) 2012-08-09 2012-08-09 車両衝突判定装置

Country Status (1)

Country Link
JP (1) JP2014034307A (ja)

Similar Documents

Publication Publication Date Title
JP5518655B2 (ja) 車両衝突判定装置
CN101962003B (zh) 乘员保护控制装置、乘员保护系统及乘员保护控制方法
US20100042296A1 (en) Method and device for triggering a personal protection means for a vehicle
KR102021023B1 (ko) 차량용 탑승자 보호 장치 및 차량용 탑승자 보호 방법
JP2013103683A (ja) 車両衝突判定装置
US8412404B2 (en) Crash sensor system and method for a vehicle
JP4941773B2 (ja) 車両用衝突検知装置
KR20200055095A (ko) 자동차의 하나 이상의 안전 기능을 트리거링하기 위한 트리거 신호의 생성 방법
JP6042308B2 (ja) 車両衝突判定装置
US8527150B2 (en) Method and control device for triggering passenger protection means for a vehicle
JP3204181B2 (ja) 車両の衝突判定方法及び衝突判定装置
JP2014046862A (ja) 衝突検知装置及び乗員保護システム
JP2007126089A (ja) 車両用衝突検知装置
JP2007062656A (ja) 車両用衝突物体判別装置
US20110260433A1 (en) Side collision detection system and occupant restraint system
JP2005529785A (ja) 拘束システム
JP2014124991A (ja) 車両衝突判定装置
JP2014034307A (ja) 車両衝突判定装置
JP5041868B2 (ja) 乗員拘束装置の起動システム
JP5856833B2 (ja) 車両衝突判定装置
JP2013124020A (ja) 車両衝突判定装置
JP5856834B2 (ja) 車両衝突判定装置
JP2014125019A (ja) 車両衝突判定装置
CN109204198B (zh) 用于安全气囊在车辆内展开的系统
JP5856835B2 (ja) 車両衝突判定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20160407