JP2014029817A - Recycle system for coated wire - Google Patents

Recycle system for coated wire Download PDF

Info

Publication number
JP2014029817A
JP2014029817A JP2012170653A JP2012170653A JP2014029817A JP 2014029817 A JP2014029817 A JP 2014029817A JP 2012170653 A JP2012170653 A JP 2012170653A JP 2012170653 A JP2012170653 A JP 2012170653A JP 2014029817 A JP2014029817 A JP 2014029817A
Authority
JP
Japan
Prior art keywords
electric wire
covered
wire
covered electric
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012170653A
Other languages
Japanese (ja)
Inventor
Yasuo Ajisaka
泰雄 鯵坂
Yoshihisa Kumai
慶尚 熊井
Hidenobu Oki
秀信 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemical Auto KK
Original Assignee
Chemical Auto KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemical Auto KK filed Critical Chemical Auto KK
Priority to JP2012170653A priority Critical patent/JP2014029817A/en
Priority to PCT/JP2013/062033 priority patent/WO2014020958A1/en
Publication of JP2014029817A publication Critical patent/JP2014029817A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • F23G5/26Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber having rotating bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/444Waste feed arrangements for solid waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/448Waste feed arrangements in which the waste is fed in containers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/003Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for used articles
    • F23G7/006Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for used articles wires, cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3462Cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/303Burning pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/101Combustion in two or more stages with controlled oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/102Combustion in two or more stages with supplementary heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/203Microwave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/16Waste feed arrangements using chute
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B15/00Apparatus or processes for salvaging material from cables
    • H01B15/003Apparatus or processes for salvaging material from cables by heating up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system capable of separating and recovering copper wires and coating materials obtained by carbonizing a coat of a coated wire in a short time.SOLUTION: A recycle system 1 for a coated wire comprises: a continuous carbonization apparatus 2 which separates and recovers coating materials and copper wires by pyrolysis of a coated wire 14 under an oxygen-free or low oxygen atmosphere using electric heaters 36 and microwave irradiation and further using heating means using superheated steam; a catalytic gas purification device 3 which purifies decomposition gas generated in the continuous carbonization apparatus 2; and a hydrogen chloride absorption column 4 which removes hydrogen chloride generated by the pyrolysis of the coated wire 14. The continuous carbonization apparatus 2 includes a one stage or two or more stages pyrolysis chamber 30. The pyrolysis chamber 30 is provided with rotatable eccentric plates having a fire grate directly receiving the coated wire 14, and a coat is carbonized and peeled at a plate part.

Description

本発明は、廃棄された自動車や家電品等に含まれる被覆電線から、処理コストが少なく、環境負荷の少ない熱分解法により資源として価値のある銅を回収する被覆電線のリサイクルシステムに関する。   The present invention relates to a coated electric wire recycling system that recovers valuable copper as a resource from a coated electric wire contained in discarded automobiles, home appliances, and the like by a thermal decomposition method with low processing cost and low environmental load.

廃棄された被覆電線には銅が含まれており、その銅のその被覆材が取り除かれて、中身の銅だけが回収されて再利用されている。
その銅の再生利用により天然資源の使用量を削減できると共に、省エネルギー、温室効果ガスの削減抑制など様々な効果が期待できる。
また、被覆電線の被覆物の多くはポリ塩化ビニル製であり、適切な温度での熱分解法によりポリ塩化ビニルの再生利用も可能である。また、ポリ塩化ビニルは重量比にして塩素が約半分を占めており、他の石油系プラスチックに比べて二酸化炭素排出量が少ないため環境への影響が小さく、塩素含有による塩化水素の発生も、それを適切に処理することで有効利用も可能である。
The discarded covered electric wire contains copper, the covering material of the copper is removed, and only the copper content is recovered and reused.
The recycling of copper can reduce the amount of natural resources used, and can also be expected to have various effects such as energy saving and reduction of greenhouse gas emissions.
Further, most of the coverings of the covered electric wires are made of polyvinyl chloride, and the polyvinyl chloride can be recycled by a thermal decomposition method at an appropriate temperature. In addition, polyvinyl chloride accounts for about half of the weight by weight of chlorine, and it has less impact on the environment because it emits less carbon dioxide than other petroleum-based plastics. Effective use is also possible by processing it appropriately.

一般的な被覆電線からの銅の回収方法は、ナゲット処理して細断し、比重選別した後、樹脂被覆物と銅に分別し回収されている(例えば、特許文献1参照。)。
また、廃棄された被覆電線を乾留処理して再生利用する方法として、ポリ塩化ビニルの熱分解で発生する塩化水素ガスを含む排ガスを排出させ、その排ガスから塩酸を回収し有効に再利用する方法や(例えば、特許文献2参照。)、ロータリーキルンによる乾留処理で樹脂被覆を炭化する方法(例えば、特許文献3参照。)がある。
A general method for recovering copper from a covered electric wire is a nugget treatment, chopping and sorting by specific gravity, and then separating and recovering the resin coating and copper (see, for example, Patent Document 1).
In addition, as a method of recycle and reuse discarded coated wires, a method of exhausting exhaust gas containing hydrogen chloride gas generated by the thermal decomposition of polyvinyl chloride, and recovering hydrochloric acid from the exhaust gas and effectively reusing it There is a method (for example, refer to Patent Document 3) in which the resin coating is carbonized by dry distillation using a rotary kiln.

特開2002‐75094号公報Japanese Patent Laid-Open No. 2002-75094 特開平11‐188335号公報Japanese Patent Laid-Open No. 11-188335 特開2009‐249665号公報JP 2009-249665 A

特許文献1のナゲット処理方法は、自動車から回収される被覆電線の被覆表面に油が付着しているものや、細線が多く絡まり易く、比重選別では銅の分離精度が高められないなどの課題がある。それは、特許文献に記載されているように、「ナゲット処理で導体と樹脂(絶縁体)とに分離し、これを振動分離機にかけて導体成分と樹脂成分に分離・分別し、分離不完全なものは再度液体中に投入し比重で分離し、導体及び樹脂成分混入物と純粋な樹脂成分に再分別」しているので銅を完全回収するのにリサイクルコストが嵩むためである。   The nugget processing method of Patent Document 1 has problems such as oil adhering to the coated surface of the covered electric wire recovered from the automobile, and many thin wires tend to get tangled, and copper separation accuracy cannot be increased by specific gravity sorting. is there. As described in the patent document, “Nugget treatment separates the conductor and the resin (insulator) and separates and separates it into a conductor component and a resin component through a vibration separator. Is put into the liquid again and separated by specific gravity and re-separated into conductors and resin component contaminants and pure resin components, so that the recycling cost increases to completely recover copper.

特許文献2の乾留処理は、ポリ塩化ビニルの熱分解で発生する塩化水素ガスを含む排ガスを排出させ、その排ガスから塩酸を回収し有用に再利用し、その後、排ガスを燃焼等により処理するが、通常、塩化水素から塩酸を回収する場合は水に吸収させて行うが、乾留処理時に発生する熱分解ガスには塩化水素以外に炭化水素ガスも同時に発生し、水に吸収させる過程で炭化水素ガスが冷却するとタール成分等が塩酸に混入するため、純粋な塩酸を回収し有効利用するにはその除去処理設備に多大な費用が嵩む等の課題がある。   In the dry distillation process of Patent Document 2, exhaust gas containing hydrogen chloride gas generated by the thermal decomposition of polyvinyl chloride is discharged, hydrochloric acid is recovered from the exhaust gas, and is reused, and then the exhaust gas is processed by combustion or the like. In general, when recovering hydrochloric acid from hydrogen chloride, it is absorbed in water, but the pyrolysis gas generated during the dry distillation process generates hydrocarbon gas in addition to hydrogen chloride at the same time. When the gas is cooled, tar components and the like are mixed with hydrochloric acid. Therefore, there is a problem that a large amount of cost is required for the removal treatment facility to recover and effectively use pure hydrochloric acid.

特許文献3のロータリーキルン方式は、投入時に被覆電線を細断する作業と前処理装置が必要なことから、その手間と設備費が増大する。また、ロータリーキルンは円筒状の回転炉であるため、回転端のガス漏れ防止策や空気流入防止策のためシール対策等構造が複雑となるなどの課題がある。   The rotary kiln method of Patent Document 3 requires a work and a pretreatment device for chopping the covered electric wire at the time of charging, and thus the labor and facility costs increase. Further, since the rotary kiln is a cylindrical rotary furnace, there are problems such as a complicated structure such as a sealing measure for preventing gas leakage at the rotating end and preventing air inflow.

本発明は上記課題を解決するために、鋭意開発に努力をした結果、下記構成の被覆電線のリサイクルシステムに想到した。
請求項1は、被覆電線を無乃至低酸素雰囲気下で、電気ヒーターとマイクロ波照射による加熱手段を用いて熱分解し、被覆材と銅線とを分離・回収する連続乾留装置と、この連続乾留装置で発生した分解ガスを浄化する触媒ガス浄化装置と、被覆電線の熱分解で発生した塩化水素を除去する塩化水素吸収塔とから構成されることを特徴とする被覆電線のリサイクルシステムである。
In order to solve the above-mentioned problems, the present invention has made extensive efforts for development, and as a result, has come up with a coated wire recycling system having the following configuration.
According to a first aspect of the present invention, there is provided a continuous carbonization apparatus for thermally decomposing a coated electric wire using an electric heater and a heating means by microwave irradiation in a non-low oxygen atmosphere to separate and recover the coating material and the copper wire, A covered wire recycling system comprising a catalytic gas purification device for purifying cracked gas generated in a carbonization device and a hydrogen chloride absorption tower for removing hydrogen chloride generated by thermal decomposition of the covered wire. .

請求項2の連続乾留装置は、被覆電線を収納する被覆電線供給室と、この被覆電線供給室から供給された被覆電線を加熱により熱分解し、炭化する熱分解室と、熱分解後の被覆電線を冷却する冷却室から構成されることを特徴とする請求項1に記載された被覆電線のリサイクルシステムである。   The continuous carbonization apparatus according to claim 2 includes a covered electric wire supply chamber for storing a covered electric wire, a pyrolysis chamber for thermally decomposing and carbonizing the covered electric wire supplied from the covered electric wire supply chamber, and a coating after the pyrolysis. It is comprised from the cooling chamber which cools an electric wire, The recycling system of the covered electric wire described in Claim 1 characterized by the above-mentioned.

請求項3の連続乾留装置は、1段又は上下2段以上の熱分解室を有しており、上記熱分解室は、被覆電線を直接受けて熱分解する火格子を備えていることを特徴とする請求項1〜2のいずれか1項に記載された被覆電線のリサイクルシステムである。   The continuous carbonization apparatus according to claim 3 has a thermal decomposition chamber of one stage or two or more upper and lower stages, and the thermal decomposition chamber includes a grate that directly receives a covered electric wire and thermally decomposes. It is a recycling system of the covered electric wire described in any 1 paragraph of Claims 1-2.

請求項4の連続乾留装置の熱分解室は、火格子の側面に複数の電気ヒーターが被覆電線の外側を囲むように配列して設けられ、火格子の側面全体から被覆電線に熱を与えるように構成されていることを特徴とする請求項1〜3のいずれか1項に記載された被覆電線のリサイクルシステムである。   The pyrolysis chamber of the continuous carbonization apparatus according to claim 4 is provided such that a plurality of electric heaters are arranged on the side surface of the grate so as to surround the outside of the covered wire, and heat is applied to the covered wire from the entire side surface of the grate. It is comprised by these, The recycling system of the covered electric wire described in any one of Claims 1-3 characterized by the above-mentioned.

請求項5の連続乾留装置の熱分解室は、マイクロ波の照射を加熱手段とするマイクロ波照射口が設けられていることを特徴とする請求項1〜4のいずれか1項に記載された被覆電線のリサイクルシステムである。   The pyrolysis chamber of the continuous carbonization apparatus according to claim 5 is provided with a microwave irradiation port using microwave irradiation as a heating means. This is a coated wire recycling system.

請求項6の連続乾留装置の熱分解室は、電気ヒーター及びマイクロ波の照射による加熱に加え、過熱蒸気噴霧口が設けられ、過熱蒸気により被覆電線が加熱されることを特徴とする請求項1〜5のいずれか1項に記載された被覆電線のリサイクルシステムである。   The thermal decomposition chamber of the continuous carbonization apparatus according to claim 6 is provided with a superheated steam spraying port in addition to heating by an electric heater and microwave irradiation, and the covered electric wire is heated by the superheated steam. The recycling system of the covered electric wire described in any one of -5.

請求項7の連続乾留装置の熱分解室は、被覆電線を直接受けて熱分解する火格子を構成する1対の偏心プレートであって、2軸の回転に伴って同時に回転できるように構成されていることを特徴とする請求項1〜6のいずれか1項に記載された被覆電線のリサイクルシステムである。   The pyrolysis chamber of the continuous carbonization apparatus according to claim 7 is a pair of eccentric plates constituting a grate that directly receives a covered electric wire and pyrolyzes, and is configured to be able to rotate simultaneously with the rotation of two axes. The covered electric wire recycling system according to any one of claims 1 to 6.

請求項8の熱分解室の偏心プレートは、左右対称であり、その停止時の熱分解中は左右の間隔が最も狭い状態にあり、その偏心プレート上で熱分解する被覆電線が落下しない隙間に形成され、被覆電線の熱分解が終了した時点で、偏心プレートをそれぞれ内側方向に1回転させるとその間に被覆電線が直接接触している部分の偏心プレートは、その回転につれて間隔が徐々に広くなり、180度回転した時点で最も広くなり、被覆電線が下方に落下するように構成されていることを特徴とする請求項7に記載された被覆電線のリサイクルシステムである。   The eccentric plate of the pyrolysis chamber according to claim 8 is symmetrical, and the thermal separation at the time of stopping is in a state where the distance between the left and right is the narrowest, so that the covered electric wire thermally decomposing on the eccentric plate does not fall. At the point of time when the thermal decomposition of the covered electric wire is completed, the eccentric plate of the portion where the covered electric wire is in direct contact with each of the eccentric plates is gradually widened with the rotation. The covered wire recycling system according to claim 7, wherein the covered wire is configured to be widest when rotated 180 degrees and the covered wire falls downward.

請求項9は、上下2段又は2段以上の熱分解室において、下部熱分解室の偏心プレートが回転し、定位置に戻り停止すると、上部熱分解室の偏心プレートが回転し、被覆電線を下方に押出し、下部の熱分解室の偏心プレート上に落下し、上部熱分解室の偏心プレートが回転し、定位置に戻り停止すると、被覆電線供給室から分解前の被覆電線が上部熱分解室の偏心プレート上に落下し供給されることを特徴とする請求項1〜8のいずれか1項に記載された被覆電線のリサイクルシステムである。   According to claim 9, in the upper or lower two-stage or more pyrolysis chamber, when the eccentric plate of the lower pyrolysis chamber rotates and returns to a fixed position and stops, the eccentric plate of the upper pyrolysis chamber rotates, When pushed down, dropped onto the eccentric plate of the lower pyrolysis chamber, the eccentric plate of the upper pyrolysis chamber rotates and returns to a fixed position and stops. It falls on the eccentric plate of this, and is supplied, It is the recycling system of the covered electric wire described in any one of Claims 1-8 characterized by the above-mentioned.

請求項10の被覆電線を受け入れる被覆電線供給室は、被覆電線を収納するバケットを備えた被覆電線供給装置を用いて供給されることを特徴とする請求項2〜9のいずれか1項に記載された被覆電線のリサイクルシステムである。   The covered electric wire supply chamber for receiving the covered electric wire according to claim 10 is supplied by using a covered electric wire supply device including a bucket for storing the covered electric wire. This is a recycled system for covered electric wires.

請求項11の被覆電線を受け入れる被覆電線供給室は、熱分解室の最上部に設けられ、被覆電線供給装置から供給された被覆電線を一時保留し、被覆電線供給装置からの被覆電線を受け入れる被覆電線受入口と、被覆電線を熱分解室内に受け渡す被覆電線受渡口を備え、それぞれの口は扉により密閉できるように構成されていることを特徴とする請求項2〜10のいずらか1項に記載された被覆電線のリサイクルシステムである。   The covered electric wire supply chamber for receiving the covered electric wire according to claim 11 is provided at the uppermost part of the thermal decomposition chamber, temporarily holds the covered electric wire supplied from the covered electric wire supply device, and receives the covered electric wire from the covered electric wire supply device The wire receiving port and a covered wire transfer port for transferring the covered wire to the pyrolysis chamber, wherein each port is configured to be sealed by a door. It is the recycling system of the covered electric wire described in the item.

請求項12の被覆電線を受け入れる被覆電線供給室は、被覆電線供給装置のバケットの上昇中に被覆電線供給室の外気扉を開放し、上昇したバケットからの被覆電線を受け入れ、被覆電線の投入完了後は、被覆電線供給室の外気扉を密封することを特徴とする請求項2〜11のいずれか1項に記載された被覆電線のリサイクルシステムである。   The covered electric wire supply chamber for receiving the covered electric wire according to claim 12 opens the outside air door of the covered electric wire supply chamber while the bucket of the covered electric wire supply device is rising, receives the covered electric wire from the raised bucket, and completes the insertion of the covered electric wire. After that, the covered electric wire recycling system according to any one of claims 2 to 11, wherein the outside air door of the covered electric wire supply chamber is sealed.

請求項13の被覆電線を受け入れる被覆電線供給室は、被覆電線の収納中熱分解室側と被覆電線受け入れ側の両扉が、外気側と熱分解室側に対して密閉された状態に構成され、被覆電線受入れ時の扉の開放時には、熱分解室内側の扉を閉じた状態に構成し、熱分解室への外気の流入と内部からのガス漏れが起きないように構成したことを特徴とする請求項2〜12のいずれか1項に記載された被覆電線のリサイクルシステムである。   The covered electric wire supply chamber for receiving the covered electric wire according to claim 13 is configured such that both the doors on the pyrolysis chamber side and the covered electric wire receiving side during storage of the covered electric wire are sealed with respect to the outside air side and the pyrolysis chamber side. When opening the door when receiving the covered electric wire, the door inside the pyrolysis chamber is closed, so that outside air does not flow into the pyrolysis chamber and gas leakage from the inside does not occur. The covered electric wire recycling system according to any one of claims 2 to 12.

請求項14の被覆電線を受け入れる被覆電線供給室は、被覆電線を載せる受台を有し、被覆電線を熱分解室内に受け渡す際、扉を開放していくと扉の開放に従って水平状態から垂直状態まで回転し、被覆電線を受台から熱分解室内の火格子まで落下し、被覆電線の落下後、扉を閉めると受台も元の状態に戻り、次の被覆電線供給装置からの被覆電線の受入れ準備が完了するように構成されたことを特徴とする請求項2〜13にいずれか1項に記載された被覆電線のリサイクルシステムである。   The covered electric wire supply chamber for receiving the covered electric wire according to claim 14 has a cradle on which the covered electric wire is placed, and when the covered electric wire is transferred into the pyrolysis chamber, the door is opened and the vertical state is changed according to the opening of the door. Rotate to the state, drop the covered wire from the cradle to the grate in the pyrolysis chamber, close the door after the fall of the covered wire, the cradle returns to its original state, and the covered wire from the next covered wire feeder The covered electric wire recycling system according to any one of claims 2 to 13, wherein preparation for receiving the electric wire is completed.

請求項15の熱分解後の被覆電線を冷却する冷却室は、熱分解室からの被覆電線受入口と被覆電線を外部に取出す取出口を有し、それぞれの口は扉により密閉されており、開閉可能に構成されていることを特徴とする請求項2に記載された被覆電線のリサイクルシステムである。   The cooling chamber that cools the coated electric wire after pyrolysis according to claim 15 has a coated electric wire receiving port from the thermal decomposition chamber and an outlet for taking out the coated electric wire to the outside, and each opening is sealed by a door, It is comprised so that opening and closing is possible, The recycling system of the covered wire | conductor described in Claim 2 characterized by the above-mentioned.

請求項16の熱分解後の被覆電線を冷却する冷却室は、熱分解後の被覆電線を載せる受台を有し、冷却室受入れ口の扉の開放により被覆電線を受台に直接載せ、被覆電線の冷却中は両扉の蓋を閉じて室内を外気側及び熱分解室側に対して密閉しており、取出し時の扉の開放時には、熱分解室内側の扉は閉じた状態にされており、熱分解室への外気流入と内部からのガス漏れが起きないように構成されており、被覆電線を冷却室内へ受渡す際には外気側の扉は密閉されており、外気流入と内部からのガス漏れが起きないように構成されていることを特徴とする請求項2〜15項のいずれか1項に記載された被覆電線のリサイクルシステムである。   The cooling chamber for cooling the pyrolyzed coated electric wire according to claim 16 has a cradle for placing the pyrolyzed coated electric wire, and the covered electric wire is directly placed on the cradle by opening the door of the cooling chamber receiving port. While the wires are being cooled, the lids of both doors are closed and the room is sealed against the outside air side and the pyrolysis chamber side.When the door is opened at the time of removal, the door inside the pyrolysis chamber is kept closed. In order to prevent the inflow of outside air into the pyrolysis chamber and gas leakage from the inside, the door on the outside air side is sealed when the covered electric wire is transferred to the cooling chamber. The covered electric wire recycling system according to any one of claims 2 to 15, wherein gas is not leaked from the air.

請求項17の連続乾留装置で発生した分解ガスを浄化する触媒ガス浄化装置は、連続乾留装置で発生した分解ガスのうち塩化水素を除くガスを酸化反応させる酸化触媒層と、触媒層で未反応の一酸化炭素と炭化水素類を火炎燃焼させるガス燃焼室とから構成されていることを特徴とする請求項1〜16項のいずれか1項に記載された被覆電線のリサイクルシステムである。   A catalytic gas purification device for purifying cracked gas generated in a continuous carbonization device according to claim 17, wherein an oxidation catalyst layer that oxidizes a gas other than hydrogen chloride among cracked gas generated in the continuous carbonization device and an unreacted catalyst layer The covered electric wire recycling system according to any one of claims 1 to 16, characterized by comprising a gas combustion chamber in which carbon monoxide and hydrocarbons are flame-combusted.

請求項18の被覆電線の熱分解で発生した塩化水素を除去する塩化水素吸収塔は、触媒ガス浄化装置から吸引したガスのうち塩化水素を中和し無害化する水酸化ナトリウム溶液の中和剤タンクと、この中和剤タンクの中和剤溶液を循環させるポンプと、このポンプで循環された中和剤溶液を噴霧するシャワーと、このシャワーから噴霧された中和剤溶液と下方から送り込まれた塩化水素を混合するデミスター部とからなることを特徴とする請求項1〜17項のいずれか1項に記載された被覆電線のリサイクルシステムである。   19. A hydrogen chloride absorption tower for removing hydrogen chloride generated by thermal decomposition of a coated electric wire according to claim 18, wherein the neutralizing agent for sodium hydroxide solution neutralizes and detoxifies hydrogen chloride out of the gas sucked from the catalyst gas purification device. A tank, a pump for circulating the neutralizing agent solution in the neutralizing agent tank, a shower for spraying the neutralizing agent solution circulated by the pump, and the neutralizing agent solution sprayed from the shower are fed from below. The recycle system for covered electric wires according to claim 1, further comprising a demister part for mixing hydrogen chloride.

1)本発明は、ナゲット処理で行うような細断工程が不要であり、前処理工程が簡素化され、短時間処理が可能なため、大量処理ができ、被覆電線から銅をほぼ100%回収できるのでリサイクルコストが低減できる。
2)本発明は、既にナゲット機等で裁断処理して、銅及び被覆物のリサイクルシステムが出来上がっているのに対して、経済的な要因でリサイクルが困難で未解決となっている細線や雑線等の多量に廃棄処分される自動車ハーネス等にターゲットを当てたことで、さらなる資源の有効利用と環境保全に役立つ。
3)本発明は、被覆電線を適切な熱処理と温度で制御する熱分解方法を採用しており、また、被覆物はポリ塩化ビニルが主体のため、他の樹脂類に比較して熱分解ガスの浄化に当たっては、COの排出量が少なく有効な処理方法である。
4)本発明は、熱分解処理において、被覆電線の処理工程間移動を上下の移動としたことで、搬送手段が不要で、熱の上昇気流を利用できる等、動力や熱源の節約ができ、省エネ効果がある。また、上下に被覆電線を移動することで、装置の省スペース化が図れる。
5)本発明は、被覆電線を熱分解して被覆物を炭化状態とし、火格子の偏心プレートを回転して圧砕することで炭化した被覆物と銅線とに容易に分離、回収することができる。
6)ポリ塩化ビニルの脱塩素の過程で発生した炭化水素ガス類は、触媒燃焼や火炎燃焼により完全燃焼させた後、塩化水素を塩化水素吸収塔により水酸化ナトリウム溶液で中和処理して生成した塩化ナトリウムの再利用や、水に吸収させ塩酸にして再利用できるようにした。
7)本発明の熱分解室は、被覆電線が所定の容積でまとめて絡まった状態で挿入されても熱分解に支障がなく、次工程への送り出しにも支障が無い構造とした。
8)本発明の熱分解室の火格子部は、分解後の被覆物除去機能も備えており、外気に取出した後の被覆物除去作業が軽減され、被覆電線の銅と樹脂部分の分離が低コストで確実に行える。
9)取り出された被覆電線からの被覆物の除去は、ほとんどが熱分解室の火格子部で除去されているので簡易な振動篩機やピンチローラー等を通過させ加圧するだけで分離できる。
1) The present invention does not require a shredding process as in the case of nugget processing, simplifies the pre-processing process, and enables short-time processing, enabling mass processing and recovering almost 100% of copper from the covered wire. This can reduce the recycling cost.
2) In the present invention, a copper and coating recycling system has already been cut by a nugget machine or the like, whereas a thin line or a rough line that is difficult to recycle due to economic factors is unresolved. Targeting automobile harnesses that are disposed of in large quantities, such as wires, helps to further use resources and preserve the environment.
3) The present invention employs a thermal decomposition method in which the coated electric wire is controlled by appropriate heat treatment and temperature, and the coating is mainly made of polyvinyl chloride, so that the pyrolysis gas is used in comparison with other resins. This is an effective treatment method with a small amount of CO 2 emission.
4) In the present invention, in the pyrolysis process, the movement between the covered wires in the process steps is moved up and down, so that no conveying means is required and heat rising air current can be used, and power and heat sources can be saved. There is energy saving effect. Further, the space of the apparatus can be saved by moving the covered electric wire up and down.
5) The present invention can easily separate and recover the carbonized coating and the copper wire by pyrolyzing the coated electric wire to carbonize the coating and rotating and crushing the eccentric plate of the grate. it can.
6) Hydrocarbon gases generated during the dechlorination process of polyvinyl chloride are produced by complete combustion by catalytic combustion or flame combustion, and then neutralizing hydrogen chloride with sodium hydroxide solution using a hydrogen chloride absorption tower. The sodium chloride was reused or absorbed in water to make hydrochloric acid for reuse.
7) The pyrolysis chamber of the present invention has a structure in which there is no hindrance to pyrolysis even if the covered electric wires are inserted in a state of being entangled together at a predetermined volume, and there is no hindrance to sending out to the next process.
8) The grate part of the thermal decomposition chamber of the present invention also has a function of removing the covering after decomposition, reducing the covering removal work after taking out to the outside air, and separating the copper and the resin part of the covered electric wire. It can be done reliably at low cost.
9) Since most of the covering material is removed from the taken-out covered electric wire by the grate part of the pyrolysis chamber, it can be separated by simply passing the pressure through a vibrating screen or a pinch roller.

以下、本発明の一実施形態における被覆電線のリサイクルシステムを図面に基づき説明する。
(リサイクルシステム)
Hereinafter, the recycling system of the covered electric wire in one embodiment of the present invention is explained based on a drawing.
(Recycling system)

図1は本発明の一実施形態を示す被覆電線のリサイクルシステムの概略図である。なお、矢印実線は被覆電線の移動を示し、矢印点線はガスの流れを示す。
図1において、本発明の被覆電線のリサイクルシステム1は、被覆電線供給装置5から供給された被覆電線14を外気と遮断され無(低)酸素雰囲気で加熱により熱分解し、被覆材の炭化物と中身の銅線とを分離・回収する連続乾留装置2と、この連続乾留装置2で加熱され熱分解された際に被覆電線から発生する分解ガスを浄化する触媒ガス浄化装置3と、被覆電線の熱分解から発生する塩化水素を除去する塩化水素吸収塔4とから構成される。
(被覆電線供給装置)
FIG. 1 is a schematic view of a coated wire recycling system showing an embodiment of the present invention. The solid arrow line indicates the movement of the covered electric wire, and the dotted arrow line indicates the gas flow.
In FIG. 1, a coated wire recycling system 1 according to the present invention includes a coated wire 14 supplied from a coated wire supply device 5 that is insulated from outside air and thermally decomposed by heating in a non- (low) oxygen atmosphere. A continuous carbonization device 2 that separates and collects the copper wire inside, a catalyst gas purification device 3 that purifies the cracked gas generated from the coated wire when it is heated and thermally decomposed by the continuous carbonization device 2, It is comprised from the hydrogen chloride absorption tower 4 which removes the hydrogen chloride which generate | occur | produces from thermal decomposition.
(Coated wire feeder)

本発明の被覆電線供給装置は、処理する被覆電線を連続乾留装置に自動供給するための装置で、被覆電線を収納するバケットと、昇降機構とから構成される。
図2Aは被覆電線供給装置の構造の一部を示す概略図でバケット本体をチェンに取り付けた昇降機構を示す平面概略図、図2Bはその側面概略図、図2Cは被覆電線を入れたバケットが上限手前に上昇した状態の昇降機構を示す側面概略図、図2Dは被覆電線がバケットから連続乾留装置に投入される状態を示す昇降機構の側面概略図である。
The coated electric wire supply apparatus of this invention is an apparatus for automatically supplying the coated electric wire to process to a continuous carbonization apparatus, and is comprised from the bucket which accommodates a covered electric wire, and a raising / lowering mechanism.
FIG. 2A is a schematic diagram showing a part of the structure of the covered electric wire supply device, and is a schematic plan view showing an elevating mechanism in which the bucket body is attached to the chain. FIG. 2B is a schematic side view thereof. FIG. 2D is a schematic side view of the lifting mechanism showing a state in which the covered electric wire is put into the continuous carbonization apparatus from the bucket.

図2A〜図2Dにおいて、被覆電線供給装置5は垂直に立設する2列の支柱6を有し、この支柱6の内側左右の両側面には軸受7がボルト71で固定されており、その軸受7にそれぞれ回転軸8が回転可能に取り付けられている。その回転軸8にはチェン9を駆動するスプロケット10が2列に固定されており、そのスプロケット10にはチェン9がエンドレスに嵌め込まれている。   In FIG. 2A to FIG. 2D, the covered electric wire supply device 5 has two columns of columns 6 that stand vertically, and bearings 7 are fixed to the both left and right side surfaces of the columns 6 with bolts 71. A rotating shaft 8 is rotatably attached to each bearing 7. A sprocket 10 for driving the chain 9 is fixed to the rotary shaft 8 in two rows, and the chain 9 is fitted into the sprocket 10 in an endless manner.

バケット本体11にはその両側面に支柱側の回転中心まで水平に突き出たブラケット12があり、その両ブラケット12はチェン9の一齣にそれぞれボルト71で接続されており、電動モーターにより上部回転軸8を駆動してバケット本体11を昇降できるように構成されている。   The bucket body 11 has brackets 12 projecting horizontally to the center of rotation on the column side on both sides thereof, and both brackets 12 are connected to one end of the chain 9 by bolts 71 respectively. The bucket body 11 can be moved up and down by driving 8.

バケット本体11を取付けた2列のチェン9は、バケット11の振れ止のガイドプレート13で挟み込まれている。また、バケット11の下部両端には2枚のガイドローラー19が取り付けられており、そのガイドローラー19はチェン9を挟み込んでいる一方のガイド面に沿ってバケット11自体の姿勢を保ちながら上昇できるように構成されている。   The two rows of chains 9 to which the bucket body 11 is attached are sandwiched between the guide plates 13 that prevent the bucket 11 from swinging. Further, two guide rollers 19 are attached to both ends of the lower portion of the bucket 11 so that the guide rollers 19 can be raised while maintaining the posture of the bucket 11 along one guide surface sandwiching the chain 9. It is configured.

被覆電線14の連続乾留装置2の熱分解室内への供給、熱分解室内の移動及び熱分解後の取出しの各工程間の被覆電線14の移動は、被覆電線を落下させて行うように構成されている。連続乾留装置2は縦長の構造体から構成されており、被覆電線14の供給は被覆電線供給装置5により行われる。
連続乾留装置2への被覆電線の投入は、人手で入れられる位置(床面から800mm程度)に設けられた被覆電線供給装置5のバケット11を用い、被覆電線14を予めバケット11に一定量入れて行われる。
The movement of the covered electric wire 14 between the steps of supplying the covered electric wire 14 to the pyrolysis chamber of the continuous carbonization apparatus 2, moving in the pyrolysis chamber and taking out after the pyrolysis is performed by dropping the covered electric wire. ing. The continuous carbonization device 2 is composed of a vertically long structure, and the supply of the covered electric wire 14 is performed by the covered electric wire supply device 5.
The covered wire is put into the continuous carbonization apparatus 2 by using the bucket 11 of the covered wire supply device 5 provided at a position where it can be manually inserted (about 800 mm from the floor surface), and a predetermined amount of the covered wire 14 is put in the bucket 11 in advance. Done.

連続乾留装置2からの電気指令により被覆電線供給装置5の電動モーター15を駆動し、その駆動でチェン9に接続されたバケット11を上昇させ、その上昇中に連続乾留装置2の上部外気扉16を駆動して開放し(図2D参照)、上昇したバケット11の上限手前から上限までの間に被覆電線14が重力で滑り込む状態までバケット11を傾斜させて、被覆電線供給室20へ被覆電線を投入完了した後、バケット11を下降させて連続乾留装置の上部外気扉16を密封する。   The electric motor 15 of the covered electric wire supply device 5 is driven by an electric command from the continuous carbonization device 2, and the bucket 11 connected to the chain 9 is raised by the drive, and the upper outside air door 16 of the continuous carbonization device 2 is raised during the raising. To open the cover 11 (see FIG. 2D), tilt the bucket 11 until the covered wire 14 slips due to gravity between the upper limit and the upper limit of the raised bucket 11, and the covered wire is supplied to the covered wire supply chamber 20. After completion of charging, the bucket 11 is lowered to seal the upper outside air door 16 of the continuous carbonization apparatus.

バケット11への被覆電線の投入は、細断する必要はなく、絡めた状態で人手により入れ込む。好ましくは、バケットと同寸の治具17を利用し、その治具17内に被覆電線を入れ、樹脂製のPPバンド等で結束する。治具17内から被覆電線を取出しても崩れず形状が安定しているため、バケット11に入れ易くなり作業性が良い。樹脂製のPPバンドは、連続乾留装置2内で熱分解し炭化できる。   It is not necessary to chop the covered electric wire into the bucket 11, and it is manually inserted in a tangled state. Preferably, a jig 17 having the same size as the bucket is used, and a covered electric wire is put into the jig 17 and bound with a PP band made of resin or the like. Even if the covered electric wire is taken out from the jig 17, it does not collapse and the shape is stable. The PP band made of resin can be pyrolyzed and carbonized in the continuous carbonization apparatus 2.

バケット本体11の両側面に支柱6側の回転中心まで水平に突き出たブラケット本体12の先端形状は、回転軸8に嵌りこむように回転軸8と同寸法のU溝18を有している(図2B参照)。被覆電線14を入れたバケット11が上昇し、バケット11本体の両側面に支柱6側の回転軸中心まで水平に突き出たブラケット12が上部回転軸8に達し、バケット11のブラケット12のU溝18が回転軸8に嵌り込んだ後、そのまま駆動するとバケット11のブラケット12は上部駆動回転軸8を中心に水平位置から垂直まで移動する(図2C、図2D参照)。この間にバケット11内の被覆電線14は連続乾留装置2の被覆電線供給室へ投入完了する。上部駆動回転軸8を中心にバケット11が移動する際は、バケット11のガイドローラー19をガイドプレート13で動きを制限する。
(連続乾留装置)
The front end shape of the bracket body 12 protruding horizontally to the center of rotation on the column 6 side on both side surfaces of the bucket body 11 has U grooves 18 having the same dimensions as the rotation shaft 8 so as to fit into the rotation shaft 8 (see FIG. 2B). The bucket 11 in which the covered electric wire 14 is put rises, the bracket 12 projecting horizontally to the center of the rotating shaft on the column 6 side reaches the upper rotating shaft 8 on both sides of the main body of the bucket 11, and reaches the upper rotating shaft 8. After being fitted to the rotating shaft 8, when driven as it is, the bracket 12 of the bucket 11 moves from the horizontal position to the vertical centering on the upper driving rotating shaft 8 (see FIGS. 2C and 2D). During this time, the covered wire 14 in the bucket 11 is completely charged into the covered wire supply chamber of the continuous carbonization apparatus 2. When the bucket 11 moves around the upper drive rotating shaft 8, the movement of the guide roller 19 of the bucket 11 is restricted by the guide plate 13.
(Continuous dry distillation equipment)

本発明の連続乾留装置は、結束された被覆電線を一時的に収納する被覆電線供給室と、この被覆電線供給室から供給された被覆電線を加熱により熱分解し炭化する熱分解室と、熱分解後の温度の高い状態で被覆電線が外気に晒されると空気中の酸素に触れ発火する恐れがあるために一定時間冷却する冷却室とから構成される。
(被覆電線供給室)
The continuous carbonization apparatus of the present invention includes a covered electric wire supply chamber that temporarily stores a bundled covered electric wire, a thermal decomposition chamber that thermally decomposes and carbonizes the covered electric wire supplied from the covered electric wire supply chamber, When the covered electric wire is exposed to the outside air in a high temperature state after decomposition, it is likely to come into contact with oxygen in the air and ignite.
(Coated wire supply room)

図3Aは、本発明の連続乾留装置の被覆電線供給室を示す概略図で被覆電線を被覆電線供給室に収納した状態を示す側面概略図、図3Bは被覆電線を被覆電線供給室に収納した状態を示す平面概略図、図3Cは被覆電線が被覆電線供給室から熱分解室内に落下する状態を示す被覆電線供給室の側面概略図である。   FIG. 3A is a schematic view showing a covered electric wire supply chamber of the continuous carbonization apparatus of the present invention, and is a schematic side view showing a state where the covered electric wire is stored in the covered electric wire supply chamber. FIG. 3B is a case where the covered electric wire is stored in the covered electric wire supply chamber. FIG. 3C is a schematic side view of the covered wire supply chamber showing a state where the covered wire falls from the covered wire supply chamber into the pyrolysis chamber.

図3A〜図3Cにおいて、被覆電線供給室20は熱分解室の上部に設けられ、被覆電線供給装置5から供給された被覆電線を一時保留する部屋である。
この被覆電線供給室20には、被覆電線供給装置5からの被覆電線を受け入れるための被覆電線受入口21と、被覆電線を熱分解室内に受渡すための被覆電線受渡口22とが設けられており、それぞれの口は扉23、24により密閉されている。その扉には片側に駆動軸25aを固定し、駆動軸25aを軸受26に挿入して回転可能にされており、電動モーター等に直結して揺動させて開閉するように構成されている。
3A to 3C, the covered wire supply chamber 20 is a room that is provided in the upper part of the thermal decomposition chamber and temporarily holds the covered wire supplied from the covered wire supply device 5.
The covered wire supply chamber 20 is provided with a covered wire receiving port 21 for receiving the covered wire from the covered wire supplying device 5 and a covered wire receiving port 22 for transferring the covered wire into the pyrolysis chamber. Each mouth is sealed by doors 23 and 24. A drive shaft 25a is fixed to one side of the door, and the drive shaft 25a is inserted into a bearing 26 so as to be rotatable. The door is directly connected to an electric motor or the like to swing and open and close.

被覆電線の収納中は両扉23、24が閉じられおり、パッキン27等を介して室内は外気側及び熱分解室30側に対して密閉されている。また、被覆電線受入れ時の扉23の開放時には、熱分解室30内側の扉24は閉じられた状態にあり、熱分解室30への外気の流入と内部からのガス漏れが起きないように形成されている。さらに、被覆電線を熱分解室30内へ受渡す際には外気側の扉23は密閉されおり、外気の流入と内部からのガス漏れが起きないように構成されている。   The doors 23 and 24 are closed during the storage of the covered electric wire, and the room is hermetically sealed with respect to the outside air side and the pyrolysis chamber 30 side through the packing 27 and the like. In addition, when the door 23 is opened at the time of receiving the covered electric wire, the door 24 inside the pyrolysis chamber 30 is in a closed state so that the outside air does not flow into the pyrolysis chamber 30 and gas leakage from the inside does not occur. Has been. Furthermore, when the covered electric wire is transferred into the thermal decomposition chamber 30, the door 23 on the outside air side is sealed so that the inflow of outside air and gas leakage from the inside do not occur.

被覆電線供給室内には被覆電線を載せる受台28が設けられており、その受台28は側面から見て被覆電線を安定して載せ易いように半円形状に形成された板材で、その半円形状の板材の両側板はほぼ円形状に形成されており、被覆電線が外側にはみ出ないように囲ってある。受台28を構成する半円形状の板材の分解室側下部両サイドには軸受穴29があり、その軸受穴29に支点軸25bが通されている。支点軸25bの両端は被覆電線供給室20の両外枠に固定されている。また、受台28の円形状両側板中心付近にはピン32が取り付けられており、リンク33を介して扉24と受台28が接続されている。   A receiving base 28 on which the covered electric wire is placed is provided in the covered electric wire supply chamber, and the receiving base 28 is a plate material that is formed in a semicircular shape so that the covered electric wire can be stably placed when viewed from the side. Both side plates of the circular plate material are formed in a substantially circular shape, and are surrounded so that the covered electric wires do not protrude outside. Bearing holes 29 are provided on both lower sides of the decomposition chamber side of the semicircular plate material constituting the cradle 28, and a fulcrum shaft 25 b is passed through the bearing holes 29. Both ends of the fulcrum shaft 25 b are fixed to both outer frames of the covered wire supply chamber 20. Further, a pin 32 is attached near the center of the circular side plate of the cradle 28, and the door 24 and the cradle 28 are connected via a link 33.

被覆電線14を熱分解室30内に受け渡す際、扉24を電動モーター等で開放していくと扉24と接続された被覆電線14を乗せた受台28は、扉の開放に従って支点軸25bを中心に水平状態から垂直状態の90度まで回転し、確実に被覆電線14は受台28から熱分解室30内の火格子まで落下する。
被覆電線の落下後、扉24を閉めると受台28も元の状態に戻り、次の被覆電線供給装置からの被覆電線の受入れ準備が完了する。
(熱分解室)
When the covered electric wire 14 is transferred into the thermal decomposition chamber 30, when the door 24 is opened by an electric motor or the like, the cradle 28 on which the covered electric wire 14 connected to the door 24 is placed becomes a fulcrum shaft 25b as the door is opened. , And the covered wire 14 is reliably dropped from the cradle 28 to the grate in the pyrolysis chamber 30.
When the door 24 is closed after the covered wire is dropped, the cradle 28 also returns to its original state, and preparation for receiving the covered wire from the next covered wire supply device is completed.
(Pyrolysis chamber)

図4Aは、本発明の連続乾留装置の熱分解室を示す概略図で、被覆電線が熱分解室の火床部を構成する火格子上に載置した状態を示す側面概略図、図4Bは被覆電線が火格子上に載置した状態を示す側面概略図、図4Cは同平面概略図、図4Dは被覆電線が火格子35の回転により押し潰され(圧砕され)落下する状態を示す概略図である。   FIG. 4A is a schematic view showing a pyrolysis chamber of the continuous carbonization apparatus of the present invention, a schematic side view showing a state where a covered electric wire is placed on a grate constituting a fire bed portion of the pyrolysis chamber, and FIG. FIG. 4C is a schematic plan view showing the state where the covered electric wire is placed on the grate, FIG. 4C is a schematic plan view thereof, and FIG. 4D is a schematic view showing the state where the covered electric wire is crushed (crushed) and dropped by the rotation of the grate 35. FIG.

図4A〜図4Dにおいて、火床部34を構成する火格子35の側面には加熱手段として複数の棒状電気ヒーター36が縦方向四面に、被覆電線14を外側から囲むように配列されており、側面全体から被覆電線14に熱を与えるように構成されている。
また、棒状電気ヒーター36を縦方向に側面の四面に配列することで火格子35の外側に被覆電線14がはみ出すことがないので熱分解終了後の被覆電線14の落下を円滑に行うことができる。
さらに、熱分解室30の枠板43の内側面から中心側に向かって棒状電気ヒーター36の内側まで、棒状電気ヒーター36と交互のピッチでガイドプレート37が配列されており、被覆電線14が中心部からずれた時のストッパーの働きをして、棒状電気ヒーター36を保護している。
4A to 4D, a plurality of rod-shaped electric heaters 36 are arranged on the side surfaces of the grate 35 constituting the firebed portion 34 as heating means in four vertical directions so as to surround the covered electric wire 14 from the outside, Heat is applied to the covered electric wire 14 from the entire side surface.
Moreover, since the covered electric wire 14 does not protrude outside the grate 35 by arranging the rod-shaped electric heaters 36 in the vertical direction on the four sides, the covered electric wire 14 can be smoothly dropped after the thermal decomposition. .
Further, guide plates 37 are arranged at alternate pitches with the rod-shaped electric heater 36 from the inner surface of the frame plate 43 of the pyrolysis chamber 30 to the inside of the rod-shaped electric heater 36 toward the center side, and the covered electric wire 14 is centered. The rod-shaped electric heater 36 is protected by acting as a stopper when it is displaced from the portion.

熱分解室30には、棒状電気ヒーター36の熱源に加え、加熱手段としてマイクロ波の照射を熱源として用い、被覆電線14の熱分解時間の短縮化を図るために、マイクロ波照射口40が設けられており、マグネトロン41、導波管42に接続されている。さらに、熱分解室30には、酸素濃度を低下させ不活性雰囲気にするため、窒素ガス等の不活性ガスを供給する窒素ガス注入口(図示せず)が設けられている。   In the pyrolysis chamber 30, in addition to the heat source of the rod-shaped electric heater 36, microwave irradiation is used as a heating means, and a microwave irradiation port 40 is provided in order to shorten the thermal decomposition time of the covered electric wire 14. And is connected to the magnetron 41 and the waveguide 42. Further, the pyrolysis chamber 30 is provided with a nitrogen gas inlet (not shown) for supplying an inert gas such as nitrogen gas in order to reduce the oxygen concentration to make an inert atmosphere.

さらに、熱分解室内には、加熱手段として過熱蒸気発生器に連結する過熱蒸気供給パイプ68が設けられおり、この過熱蒸気供給パイプに接続された過熱蒸気噴霧口70から過熱蒸気が被覆電線に噴霧されるように構成されている。
被覆電線の被覆材の多くはポリ塩化ビニルで構成されており、そのポリ塩化ビニルは主要プラスチックのなかで誘電力率が大きく、誘電加熱によるエネルギー吸収性が高いことが知られている。これはポリ塩化ビニルが比較的誘電加熱により加熱しやすい。すなわち、電気ヒーターの加熱は熱の移動が表面から内部に進むのに対して、マイクロ波による照射はポリ塩化ビニルを内部から全体を発熱するので電気ヒーターの加熱のみに比較して昇温スピードが大きく増加する。被覆電線の被覆材として用いられているポリ塩化ビニルを加熱すると、350℃付近までに脱塩素化が起き塩化水素ガスが発生する。それ以上の加熱では脱塩素化は起きず炭化水素ガスが発生し、600℃程度になると発生ガスは終息し完全に炭化する。
Further, a superheated steam supply pipe 68 connected to a superheated steam generator is provided as a heating means in the pyrolysis chamber, and superheated steam is sprayed onto the coated electric wire from a superheated steam spraying port 70 connected to the superheated steam supply pipe. It is configured to be.
Most of the covering material of the covered electric wire is made of polyvinyl chloride, and it is known that the polyvinyl chloride has a large dielectric power factor among main plastics and has high energy absorption by dielectric heating. This is because polyvinyl chloride is relatively easy to heat by dielectric heating. In other words, the heating of the electric heater moves from the surface to the inside, whereas the irradiation with microwaves generates heat from the inside of the polyvinyl chloride, so the heating rate is higher than that of the electric heater alone. Increase greatly. When polyvinyl chloride used as a covering material for a covered electric wire is heated, dechlorination occurs up to around 350 ° C. and hydrogen chloride gas is generated. At higher heating, dechlorination does not occur and a hydrocarbon gas is generated. When the temperature reaches about 600 ° C., the generated gas is terminated and completely carbonized.

以上から本発明の熱分解室30内に温度センサーを取り付けて分解室内が350℃程度以下の温度を常時維持するよう電気ヒーター36の制御を行うことが好ましい。また、分解時間はタイマー制御で熱分解が適切に行える時間に設定し、設定時間後に火床部34を構成する火格子35の偏心プレート38を電動モーターで駆動させて回転させ被覆電線を次工程へ進める。さらに、マイクロ波の照射時間もタイマー制御で行い、被覆電線の脱塩素化が行える時間に設定する。   From the above, it is preferable to control the electric heater 36 so that a temperature sensor is attached in the thermal decomposition chamber 30 of the present invention and the decomposition chamber is constantly maintained at a temperature of about 350 ° C. or lower. In addition, the decomposition time is set to a time during which thermal decomposition can be appropriately performed by timer control, and after the set time, the eccentric plate 38 of the grate 35 constituting the firebed portion 34 is driven by an electric motor to rotate, and the covered electric wire is processed in the next step. Proceed to Furthermore, the microwave irradiation time is also controlled by a timer, and set to a time during which the coated wire can be dechlorinated.

マイクロ波の設定時間は、マイクロ波を必要以上に照射しても脱塩素化は起きずエネルギーコストが上昇するため、熱分解時間より短くなるように設定する。
熱分解室は1つ(1段)又は2つ(2段)以上設けてもよいが、上下2段に設けるのが好ましい。この場合、上段の熱分解室の温度設定は200℃以下の熱分解が起きない前の予熱工程とすることが好ましい。また上段に設けた熱分解室の予熱では下段の熱分解室からの熱上昇気流による熱伝播があるため、上段に設けた電気ヒーターの温度設定はより低めに設定できエネルギーの節約ができる。マイクロ波の照射口40は上段及び下段の双方の熱分解室30に設けても良いが、どちらか一方の熱分解室30に設けても良い。
The microwave setting time is set to be shorter than the thermal decomposition time because dechlorination does not occur even if the microwave is irradiated more than necessary and the energy cost increases.
One (one stage) or two (two stages) or more pyrolysis chambers may be provided, but it is preferable to provide two or more pyrolysis chambers. In this case, it is preferable that the temperature setting of the upper pyrolysis chamber is a preheating step before thermal decomposition at 200 ° C. or lower does not occur. In addition, in the preheating of the pyrolysis chamber provided in the upper stage, there is heat propagation due to the heat rising air flow from the lower pyrolysis chamber, so that the temperature setting of the electric heater provided in the upper stage can be set lower and energy can be saved. The microwave irradiation port 40 may be provided in both the upper and lower pyrolysis chambers 30, but may be provided in either one of the pyrolysis chambers 30.

熱分解室30の雰囲気は、熱分解する被覆電線には銅線が含まれていることから、マイクロ波の照射によって銅線がスパークし、温度が急上昇して発火する恐れもあるため、酸素濃度をできるだけ低減、好ましくは無酸素状態にしておくことが望ましい。   The atmosphere in the pyrolysis chamber 30 includes a copper wire in the covered electric wire to be pyrolyzed, so that the copper wire may be sparked by the microwave irradiation, causing the temperature to rise rapidly and ignite. It is desirable to reduce as much as possible, preferably in an oxygen-free state.

従って、熱分解室30への被覆電線の出入口21、22は2重扉23、24に構成し、熱分解室30内に外気が流入しにくいようにする。また熱分解室30自体のボルト接合部や点検蓋等の外気流入が懸念される部分は、パッキン等を介してガス漏れと空気流入のない密閉構造にする。好ましくは、熱分解中には窒素ガス等の不活性ガスを熱分解室に供給し、酸素濃度を低下させ不活性雰囲気にすることが望ましい。
(火格子)
Accordingly, the entrances 21 and 22 of the covered wires to the thermal decomposition chamber 30 are configured as double doors 23 and 24 so that outside air does not easily flow into the thermal decomposition chamber 30. Further, a portion where there is a concern about the inflow of outside air, such as a bolt joint portion of the pyrolysis chamber 30 itself or an inspection lid, has a sealed structure without gas leakage and air inflow through packing or the like. Preferably, during pyrolysis, it is desirable to supply an inert gas such as nitrogen gas to the pyrolysis chamber to reduce the oxygen concentration and to create an inert atmosphere.
(Grate)

本発明の連続乾留装置2は、上記したように被覆樹脂の熱分解時間短縮のため好ましくは上下2段に設けられているが、1段あるいは3段以上の熱分解室を設けても良い。上下2段の熱分解室には、それぞれ被覆電線を直接受けて熱分解する火格子35が設けられている。この火格子35によって火床部34が構成される。
その火格子35は、熱分解室の枠板43に軸受44をボルトで固定し、その軸受44に水平で左右並列に2軸の回転軸45が挿入されている。
The continuous carbonization apparatus 2 of the present invention is preferably provided in two upper and lower stages for shortening the thermal decomposition time of the coating resin as described above, but may be provided with one or three or more stages of pyrolysis chambers. In each of the upper and lower two-stage pyrolysis chambers, there are provided grate 35 that directly receives the covered electric wires and thermally decomposes them. A fire floor portion 34 is constituted by the grate 35.
In the grate 35, a bearing 44 is fixed to a frame plate 43 of the pyrolysis chamber with bolts, and two rotary shafts 45 are inserted horizontally and parallel to the bearing 44.

熱分解室枠板43を貫通している部分の回転軸45は軸受44で案内され回転できるように構成されており、外部でそれぞれの軸45はギア46を介して逆回転でき、一方の回転軸45は電動モーター47にカップリング48を介して接続されており、他方の回転軸端も外側に突き出ており、検知器49等を取り付けて電動モーター47による回転後の停止位置を制御するようにされている。   The rotary shaft 45 in the portion that penetrates the pyrolysis chamber frame plate 43 is configured to be guided and rotated by a bearing 44, and each of the shafts 45 can be rotated reversely via a gear 46 on the outside. The shaft 45 is connected to the electric motor 47 via the coupling 48, and the other rotating shaft end protrudes outward, and a detector 49 or the like is attached to control the stop position after rotation by the electric motor 47. Has been.

熱分解室内部の回転軸双方には被覆電線を直接受けて熱分解する火格子35を構成する円形状の偏心プレート38(直径10mm程度)が、各回転軸方向に一定間隔の隙間(50mm程度)をもって複数個(実施例では13枚)配列されており、2軸の回転に伴って同時に回転できるように構成されている。一方の軸を電動モーター47等で回転すると、他方の軸はギアを介して逆方向に同時に回転できるように構成されている。なお、本発明では偏心プレート38は円形状に形成されているが、この偏心プレートの外周面の一部に切欠き部分を形成して、偏心プレートが回転の際に炭化処理された被覆電線の圧砕を容易にすることができる。このような切欠き部分を形状した偏心プレートも本発明の範囲内である。   A circular eccentric plate 38 (diameter of about 10 mm) that constitutes a grate 35 that directly receives a covered electric wire and thermally decomposes is provided on both of the rotary shafts in the pyrolysis chamber, and a gap (about 50 mm) at a constant interval in each rotary shaft direction. ) Are arranged in a plurality (13 in the embodiment) and can be rotated simultaneously with the rotation of two axes. When one shaft is rotated by the electric motor 47 or the like, the other shaft can be simultaneously rotated in the reverse direction via a gear. In the present invention, the eccentric plate 38 is formed in a circular shape, but a notch portion is formed in a part of the outer peripheral surface of the eccentric plate so that the eccentric plate is carbonized when rotating. Crushing can be facilitated. An eccentric plate having such a notched portion is also within the scope of the present invention.

火格子を構成する偏心プレート38は、左右対称で停止時の熱分解中には左右の間隔が最も狭い状態であり、その偏心プレート(火格子)38上で熱分解しても被覆電線は落下しない隙間に構成されている。被覆電線の熱分解が終了した時点では、電動モーター47等で対向する偏心プレート(火格子)38をそれぞれ内側方向に1回転するとその間に被覆電線を直接接触している部分が偏心プレート(火格子)38の回転につれて間隔が徐々に広くなり、180度回転した時点で最も広くなる(図4D参照)。この時被覆電線14は下方に落下する。   The eccentric plate 38 constituting the grate is symmetrical in the left-right direction, and the distance between the left and right is the narrowest during thermal decomposition at the time of stoppage. Even if pyrolysis is performed on the eccentric plate (grate) 38, the covered electric wire falls. It is configured with no gap. When the thermal decomposition of the covered electric wire is finished, when the eccentric plate (grate) 38 facing each other by the electric motor 47 or the like is rotated once inward, the portion directly in contact with the covered electric wire between them is the eccentric plate (grate). ) As the rotation of 38, the interval gradually increases and becomes the widest at the point of rotation of 180 degrees (see FIG. 4D). At this time, the covered wire 14 falls downward.

具体例として、結束した被覆電線14の外径を400mm程度になるよう形成し、それに対して双方の偏心プレート(火格子)の直径400mm、軸間距離540mm、偏心プレート(火格子)の偏心量はそれぞれ50mmに形成する。従って、偏心プレート(火格子)38としての隙間である偏心プレート(火格子)外側面間距離の中心部隙間の最低寸法は、40mmであり、中心部隙間の最大寸法は240mmである。   As a specific example, the outer diameter of the bundled covered electric wire 14 is formed to be about 400 mm, and the diameter of both eccentric plates (grate) is 400 mm, the distance between the axes is 540 mm, and the eccentric amount of the eccentric plate (grate). Are each 50 mm. Therefore, the minimum dimension of the center gap of the distance between the outer surfaces of the eccentric plates (grate), which is a gap as the eccentric plate (grate) 38, is 40 mm, and the maximum dimension of the center gap is 240 mm.

偏心プレート(火格子)外側面間の距離の最低寸法である熱分解中の中心部の隙間が40mmでは、被覆電線14は絡まり合っており自然落下の心配はなく、偏心プレートは火格子として火床部34を形成する。
また、偏心プレート(火格子)外側面間の距離の中心部の隙間が最大寸法240mmでは、結束済み被覆電線14の外径が400mmであるため寸法的に160mm大きいが、被覆電線14は樹脂部分の体積が4割程度占めていることで熱分解により軟化状態か炭化状態になってガス化して揮発しているため、被覆電線の体積は少なくなっており、また、被覆樹脂自体が偏心プレートの回転動作で容易に圧砕され剥がれ落ちる。
When the gap between the center portions during thermal decomposition, which is the minimum dimension between the outer surfaces of the eccentric plates (grate), is 40 mm, the covered electric wires 14 are intertwined and there is no fear of natural fall, and the eccentric plate is fired as a grate. A floor 34 is formed.
In addition, when the gap at the central portion of the distance between the outer surfaces of the eccentric plates (grate) is 240 mm, the outer diameter of the bundled covered electric wire 14 is 400 mm and the size is 160 mm larger. The volume of the wire is softened or carbonized by pyrolysis and is vaporized by gasification, so the volume of the covered wire is reduced, and the coating resin itself is the eccentric plate. It is easily crushed and peeled off by rotating motion.

さらに、偏心プレートで押し出すように回転動作するので重力も加わり被覆樹脂は容易に下方に落下できる。最適には偏心プレートを2回以上回転させると確実に被覆電線14は被覆樹脂と電線とに分離した状態で落下でき一部の被覆電線14が偏心プレート上に残留することもない。   Furthermore, since it rotates so that it may push with an eccentric plate, gravity is also added and coating resin can fall easily below. Optimally, when the eccentric plate is rotated twice or more, the covered electric wire 14 can be surely dropped in a state of being separated into the coated resin and the electric wire, and a part of the covered electric wire 14 does not remain on the eccentric plate.

このような、偏心プレートの回転を利用した被覆電線14からの被覆材と中身の金属線の剥離方法と落下方法は、本発明の被覆電線14から樹脂類を剥離する目的をも併せ持ち、偏心プレートの回転によっても予め熱分解室内で剥がれ落ちるため都合が良い。
また、偏心プレートを熱分解終了後の落下前に定位置から90度程度まで回転し、その後定位置に戻す動作を数回繰り返せば被覆電線14が少しずつズレ落ちて落下するため炭化物除去がより促進されることになり、被覆電線14を取出した後の炭化物除去作業が一層軽減される。
Such a peeling method and a dropping method of the covering material from the covered electric wire 14 using the rotation of the eccentric plate and the dropping method also have the purpose of peeling the resins from the covered electric wire 14 of the present invention. This is also convenient because it peels off in advance in the pyrolysis chamber.
In addition, if the operation of rotating the eccentric plate from the fixed position to about 90 degrees before dropping after the end of the thermal decomposition and then returning to the fixed position is repeated several times, the covered electric wire 14 is dropped and dropped little by little to remove the carbide. As a result, the carbide removal work after the covered electric wire 14 is taken out is further reduced.

以上のように偏心プレート構造の採用は火格子としての役割と次工程への被覆材と中身の金属線の落下機能と、被覆電線14の熱分解後の炭化物除去の機能を併せ持っている。
(被覆電線の熱分解)
As described above, the adoption of the eccentric plate structure has both a role as a grate, a function of dropping the covering material and the content metal wire to the next process, and a function of removing carbide after the thermal decomposition of the covered electric wire 14.
(Thermal decomposition of coated wire)

タイマーで適正に設定した熱分解終了時間に達すると、まず、下部熱分解室の偏心プレート38が回転し炭化した被覆電線14は下方に押し出され、熱分解室底の冷却室入口扉を兼用した受台部に落下し、次の熱分解が終了する時間の範囲内の所定時間そこで残ガスがなくなるまで待機する。それは、被覆電線14に所定の熱を与えた後に冷却しても一定時間はガスの発生が伴うからである。   When the pyrolysis end time set appropriately by the timer is reached, first, the eccentric plate 38 of the lower pyrolysis chamber rotates and the carbonized coated wire 14 is pushed downward, and also serves as a cooling chamber inlet door at the bottom of the pyrolysis chamber. It falls to the cradle part and waits until there is no remaining gas at a predetermined time within the range of the time when the next thermal decomposition ends. This is because even if the coated electric wire 14 is cooled after given heat, gas is generated for a certain period of time.

また、底部の冷却室入口扉を兼用した受台部付近の雰囲気温度は、電気ヒーターから離れた下部に位置することから熱伝導の影響は少なく、被覆電線14が再熱分解する温度よりかなり低いため問題はない。さらに、マイクロ波も照射されるが脱塩素化しているため、マイクロ波は吸収できず温度上昇には至らない。   In addition, the ambient temperature in the vicinity of the cradle part that also serves as the cooling chamber inlet door at the bottom is less affected by heat conduction because it is located in the lower part away from the electric heater, and is considerably lower than the temperature at which the covered wire 14 is re-pyrolyzed So there is no problem. Furthermore, although microwaves are also irradiated, dechlorination prevents the microwaves from being absorbed and does not increase the temperature.

下部熱分解室の偏心プレートが回転し定位置に戻り停止すると、次いで上部の熱分解室の偏心プレート38が回転し被覆電線14は下方に押し出され、下部の熱分解室の偏心プレート上に落下する。上部の熱分解室の偏心プレートが回転し定位置に戻り停止すると、被覆電線供給室から分解前の被覆電線14が上部の偏心プレート上に落下し供給され、新たに熱分解がスタートする。   When the eccentric plate of the lower pyrolysis chamber rotates and returns to a fixed position and stops, the eccentric plate 38 of the upper pyrolysis chamber rotates and the covered wire 14 is pushed downward and falls onto the eccentric plate of the lower pyrolysis chamber. To do. When the eccentric plate of the upper thermal decomposition chamber rotates and returns to a fixed position and stops, the covered electric wire 14 before decomposition falls on the upper eccentric plate and is supplied from the covered electric wire supply chamber, and thermal decomposition starts anew.

熱分解のスタートはマイクロ波の照射開始から始まり、マイクロ波の照射時間は適正な時間設定をタイマーで設定してタイムアップで終了する。また、同時に熱分解時間は分解温度等を基に適正に設定された時間設定をタイマーで設定して既定の設定時間で終了する。例えば、熱分解時間の設定を20分とした場合、マイクロ波の照射時間は5〜10分とする。実際には、被覆電線14の熱分解状況を見て適正な時間に設定することになる。
(冷却室)
The start of pyrolysis starts from the start of microwave irradiation, and the microwave irradiation time is set by a timer with an appropriate time setting and ended when the time is up. At the same time, the thermal decomposition time is set by a timer with a time setting appropriately set based on the decomposition temperature or the like, and ends with a predetermined set time. For example, when the setting of the thermal decomposition time is 20 minutes, the microwave irradiation time is 5 to 10 minutes. Actually, an appropriate time is set by looking at the thermal decomposition state of the covered wire 14.
(Cooling room)

図5Aは、熱分解後の被覆電線が冷却室内に落下する状態を示す側面概略図、図5Bは、冷却された熱分解後の電線及び被覆材が冷却室から排出される状態を示す側面概略図である。   FIG. 5A is a schematic side view showing a state where the pyrolyzed covered electric wire falls into the cooling chamber, and FIG. 5B is a schematic side view showing a state where the cooled pyrolyzed electric wire and the covering material are discharged from the cooling chamber. FIG.

冷却室50には、熱分解室からの被覆電線受入口51と被覆電線14を外部に取出す取出口52があり、それぞれの口は扉54、56により密閉されている。その扉は片側に駆動軸58aが固定されており、駆動軸58aは軸受に挿入して回転可能にされ、電動モーター等に直結して揺動させて開閉されるように構成されている。   The cooling chamber 50 has a covered wire receiving port 51 from the thermal decomposition chamber and an outlet 52 for taking out the covered wire 14 to the outside, and the respective ports are sealed by doors 54 and 56. A drive shaft 58a is fixed to one side of the door. The drive shaft 58a is inserted into a bearing so as to be rotatable, and is configured to be directly connected to an electric motor or the like to be swinged and opened.

冷却室50内には熱分解後の被覆電線を載せる受台60があり、冷却室受入れ口の扉54の開放により被覆電線はその受台60に直接載せられる。受台60の形状は側面から見て被覆電線を安定して載せ易いように半円形状の板材で、その半円形状の板材の両側板は、ほぼ円形状に形成され被覆電線や炭化物が外側にはみ出ないように囲ってある。受台60である半円形状の板材の外部扉側下部両サイドには軸受穴62を有し、その軸受62には支点軸58を通し、支点軸両端は冷却室両外枠に固定されている。
また、受台60の円形状両側板中心付近にはピン64を取り付け、リンク66を介して外部扉56と受台60が接続されている。
In the cooling chamber 50, there is a cradle 60 on which the pyrolyzed coated electric wire is placed. The covered electric wire is directly placed on the pedestal 60 by opening the door 54 of the cooling chamber receiving port. The shape of the cradle 60 is a semi-circular plate so that the covered electric wire can be stably placed when viewed from the side. Both side plates of the semi-circular plate are formed in a substantially circular shape, and the covered electric wire and carbide are outside. It is enclosed so that it does not protrude. The semi-circular plate material that is the pedestal 60 has bearing holes 62 on both sides on the lower side on the outer door side, the bearing 62 passes through a fulcrum shaft 58, and both ends of the fulcrum shaft are fixed to both outer frames of the cooling chamber. Yes.
Further, a pin 64 is attached near the center of the circular side plate of the cradle 60, and the external door 56 and the cradle 60 are connected via a link 66.

冷却室50は、被覆電線14の冷却中両扉54、56の蓋を閉じてパッキン材57等を介して室内を外気側及び熱分解室側に対して密閉されている。また、取出し時の扉の開放時には、熱分解室内側の扉54は閉じた状態にされているため、熱分解室への外気流入と内部からのガス漏れは起きない。さらに、被覆電線14を冷却室50内へ受渡す際には外気側の扉56は密閉されているため、外気流入と内部からのガス漏れは起きないように構成とされている。また、この時分解室内で発生した熱分解ガスは連続乾留装置の外側から吸引ファンで常時吸引されているため冷却室へはガスの進入は起きないように構成されている。   During cooling of the covered electric wire 14, the cooling chamber 50 closes the lids of the doors 54 and 56 and seals the inside of the room from the outside air side and the pyrolysis chamber side via a packing material 57 and the like. Further, when the door at the time of taking out is opened, the door 54 on the pyrolysis chamber side is closed, so that no outside air flows into the pyrolysis chamber and no gas leaks from the inside. Furthermore, when the covered electric wire 14 is transferred into the cooling chamber 50, the outside air side door 56 is sealed, so that the outside air inflow and the gas leakage from the inside do not occur. Further, the pyrolysis gas generated in the decomposition chamber at this time is always sucked by a suction fan from the outside of the continuous carbonization apparatus, so that the gas does not enter the cooling chamber.

ガスが沈静化された被覆電線の冷却室へのタイミングは、熱分解終了時に行なってもよいが、その前の適正に設定されたマイクロ波照射終了時に行なっても良い。いずれにしてもガスの排出が完全に終息した時点を見極めて決めることになる。   The timing to the cooling chamber of the covered electric wire in which the gas is calmed may be performed at the end of the thermal decomposition, or may be performed at the end of the appropriately set microwave irradiation before that. In any case, it is necessary to determine when the gas emission has completely ended.

冷却室50の役目は、熱分解後の温度の高い状態で被覆電線が外気に晒されると空気中の酸素に触れ発火する恐れがあるため、一定時間冷却する。熱分解後の被覆材が概ね200℃以下に冷却すると発火等の問題は起きない。また、熱分解室でも一定時間分解ガスの発生が終息する間に冷却されることになるため外に取り出した直後の被覆材と電線の温度は100℃以下である。被覆材と電線の外に取出すタイミングは、熱分解室から冷却室に供給された後、タイマーで時間設定しても良い。   The role of the cooling chamber 50 is to cool for a certain time because there is a risk of igniting by touching oxygen in the air when the covered electric wire is exposed to the outside air in a high temperature state after pyrolysis. When the coating material after pyrolysis is cooled to approximately 200 ° C. or less, problems such as ignition do not occur. In the pyrolysis chamber, the temperature of the covering material and the electric wire immediately after being taken out is 100 ° C. or less because the gas is cooled while the generation of the decomposition gas ends for a certain period of time. The timing of taking out the covering material and the electric wire may be set by a timer after being supplied from the thermal decomposition chamber to the cooling chamber.

被覆電線を外に取出す際、外部扉56を電動モーター等で開放していくと外部扉56と接続され被覆電線を乗せた受台60は、扉の開放に従って支点軸58を中心に水平状態から垂直状態の90度まで回転し、確実に被覆電線は受台60から外側に取り出せる。被覆電線取出し後、外部扉56を閉めると受台80も元の状態に戻り、次の熱分解室からの被覆電線の受入れ準備が完了することになる。
(ガス吸収方法)
When the outer cover 56 is opened with an electric motor or the like when the covered electric wire is taken out, the cradle 60 on which the covered electric wire is placed is connected to the outer door 56 from the horizontal state around the fulcrum shaft 58 as the door is opened. It rotates to 90 degrees in the vertical state, and the covered electric wire can be reliably taken out from the cradle 60. When the outer door 56 is closed after the covered electric wire is taken out, the cradle 80 also returns to its original state, and preparation for receiving the covered electric wire from the next thermal decomposition chamber is completed.
(Gas absorption method)

ポリ塩化ビニルが主体の被覆電線を、無乃至低酸素雰囲気で温度を350℃程度にして熱分解すると、COガス、塩化水素ガス、炭化水素類のガスが発生する。
これらのガス処理にあたっては、触媒による酸化除去や800℃以上の燃焼室で燃焼させる。また、塩化水素ガスは、塩化水素吸収塔で水酸化ナトリウム溶液を噴霧しそれに吸収させて中和処理する。
(触媒ガス浄化装置)
When a coated electric wire mainly composed of polyvinyl chloride is thermally decomposed at a temperature of about 350 ° C. in a no-oxygen atmosphere, CO gas, hydrogen chloride gas, and hydrocarbon gases are generated.
In these gas treatments, the catalyst is oxidized and burned in a combustion chamber at 800 ° C. or higher. The hydrogen chloride gas is neutralized by spraying and absorbing a sodium hydroxide solution in a hydrogen chloride absorption tower.
(Catalyst gas purification device)

図6は、本発明の一実施例を示す触媒ガス浄化装置3と塩化水素吸収塔4を示す概略図である。触媒ガス浄化装置3は、連続乾留装置で発生した分解ガスのうち塩化水素を除くガスを酸化反応させる酸化触媒層76と、酸化触媒層76で未反応の一酸化炭素と炭化水素類を火炎燃焼させるガス燃焼室82とから構成される。   FIG. 6 is a schematic view showing the catalyst gas purification device 3 and the hydrogen chloride absorption tower 4 showing an embodiment of the present invention. The catalytic gas purification device 3 is an oxidation catalyst layer 76 that oxidizes a gas excluding hydrogen chloride among cracked gas generated in a continuous carbonization device, and flame oxidation of unreacted carbon monoxide and hydrocarbons in the oxidation catalyst layer 76. And a gas combustion chamber 82 to be made.

触媒ガス浄化装置3は、その出口側にガスを吸引するファン72を有し、連続乾留装置で発生した炭化水素類ガスや一酸化炭素及び塩化水素を通過させ、そのうち塩化水素を除くガス類を浄化する。
連続乾留装置から吸引したガス類は200℃以下の低温度で流入し、そのガスに空気取入口74から吸引した空気を混入させ酸素を含んだガスにし、装置底部に位置する酸化触媒層76を通過させる。酸化触媒層入口には電気ヒーター80が設けられており、酸化触媒78を酸化反応する温度350℃程度に予め電気ヒーター80aで昇温しておくと以下の反応が起きる。
CxHy+O →CO +HO+(反応熱)
CO+O →CO +(反応熱)
The catalytic gas purification device 3 has a fan 72 for sucking gas at the outlet side thereof, and allows hydrocarbon gases, carbon monoxide and hydrogen chloride generated in the continuous carbonization device to pass through, and removes gases other than hydrogen chloride. Purify.
Gases sucked from the continuous carbonization apparatus flow in at a low temperature of 200 ° C. or lower, and the gas sucked from the air intake 74 is mixed into the gas to form a gas containing oxygen, and an oxidation catalyst layer 76 located at the bottom of the apparatus is formed. Let it pass. An electric heater 80 is provided at the entrance of the oxidation catalyst layer, and the following reaction occurs when the temperature is raised beforehand by the electric heater 80a to about 350 ° C. at which the oxidation catalyst 78 undergoes an oxidation reaction.
CxHy + O 2 → CO 2 + H 2 O + (heat of reaction)
CO + O 2 → CO 2 + (heat of reaction)

炭化水素類や一酸化炭素は、酸素と反応し二酸化炭素や水蒸気になって反応熱を発して浄化できる。また、酸化触媒層76で未反応のガスと塩化水素ガスは、ガス燃焼室入口に設けた電気ヒーター80bを予め800℃以上に昇温しておくと、ガス燃焼室82内で炭化水素類と一酸化炭素は火炎燃焼によって完全燃焼する。塩化水素ガスは燃焼しないためそのまま通過する。   Hydrocarbons and carbon monoxide can be purified by reacting with oxygen to form carbon dioxide or water vapor and generating reaction heat. In addition, the unreacted gas and hydrogen chloride gas in the oxidation catalyst layer 76 are separated from hydrocarbons in the gas combustion chamber 82 when the electric heater 80 b provided at the gas combustion chamber inlet is heated to 800 ° C. or higher in advance. Carbon monoxide is completely burned by flame combustion. Since hydrogen chloride gas does not burn, it passes as it is.

ガス燃焼室82の上部構造は、連続乾留装置から流入する低温度のガスと燃焼で生じた高温ガスと熱交換できるガスの流れに構成されている。また、燃焼後のガスはセラミック担体から構成されるガス冷却担体84中を滞留させながら通過させて熱を奪い、そこに外気を取り入れ、燃焼後のガスを冷却し、ファン72及び塩化水素吸収塔4に流入するガス温度を予め低下するようにしている。   The upper structure of the gas combustion chamber 82 is constituted by a gas flow that can exchange heat with a low-temperature gas flowing from the continuous carbonization apparatus and a high-temperature gas generated by combustion. Further, the burned gas passes through the gas cooling carrier 84 composed of the ceramic carrier while being retained, takes heat, takes outside air there, cools the burned gas, and the fan 72 and the hydrogen chloride absorption tower. The temperature of the gas flowing into 4 is lowered in advance.

触媒ガス浄化装置3にガス燃焼室と併合して酸化触媒を使用する理由は、熱分解ガスを、アフターバーナー等を設置して火炎燃焼だけで浄化させても良いが、被覆電線の熱分解温度の350度程度では、塩化水素が多く発生し、比較的炭化水素類の可燃性ガス量は少ないことや、ガス発生量にムラがあり不安定なことから、アフターバーナー等では発生ガス量に関係なく、常時燃料を燃やし続けることになるため燃料の無駄遣いとなることがある。   The reason why the oxidation catalyst is used in combination with the gas combustion chamber in the catalytic gas purification device 3 is that the pyrolysis gas may be purified only by flame combustion by installing an afterburner or the like. At about 350 ° C, a large amount of hydrogen chloride is generated, and the amount of combustible gas of hydrocarbons is relatively small, and the amount of gas generated is uneven and unstable. Since fuel is constantly burned, fuel may be wasted.

従って、白金等を担持した触媒による触媒酸化法を採用することで、多くの熱分解ガスを低温度で酸化除去できる上、ガス発生量が触媒浄化能力を上回った場合に800度に電気ヒーター80bで昇温したガス燃焼室82で完全燃焼でき、また、電気ヒーター80bの昇温は、酸化触媒層76の出口では500〜700℃以上になることもあり、その反応熱も加わるため、容易に800℃への昇温とその温度維持ができる。
(塩化水素吸収塔)
Therefore, by adopting a catalytic oxidation method using a catalyst supporting platinum or the like, many pyrolysis gases can be oxidized and removed at a low temperature, and when the amount of gas generated exceeds the catalyst purification capacity, the electric heater 80b is heated to 800 degrees. Can be completely burned in the gas combustion chamber 82 heated in step, and the temperature rise of the electric heater 80b can be 500 to 700 ° C. or more at the outlet of the oxidation catalyst layer 76, and the reaction heat is also easily added. The temperature can be raised to 800 ° C. and the temperature can be maintained.
(Hydrogen chloride absorption tower)

塩化水素吸収塔4は最終段に設置し、触媒ガス浄化装置3から吸引したガスのうち塩化水素のみを中和し無害化する装置である。中和剤として例えば水酸化ナトリウム溶液タンク86を設け、その液をポンプ88で循環させ上方からシャワー90で噴霧して下方からは塩化水素を送り込みデミスター部92で混合し、塩化水素を液に吸着処理して中和した後、残った浄化ガスは大気へ排出する。   The hydrogen chloride absorption tower 4 is installed in the last stage and is a device that neutralizes only hydrogen chloride in the gas sucked from the catalyst gas purification device 3 and renders it harmless. For example, a sodium hydroxide solution tank 86 is provided as a neutralizing agent, the liquid is circulated by a pump 88, sprayed by a shower 90 from above, hydrogen chloride is sent from below and mixed by a demister unit 92, and hydrogen chloride is adsorbed to the liquid. After treatment and neutralization, the remaining purified gas is discharged to the atmosphere.

化学反応式は以下のようになる。
HCl+NaOH→NaCl+H
処理後の中和した液は塩化ナトリウムになるため、工業塩としての再利用も可能である。また、塩化水素を中和処理せず水に吸着させると塩酸水となるため、その有効利用もできる。
The chemical reaction formula is as follows.
HCl + NaOH → NaCl + H 2 O
Since the neutralized liquid after the treatment becomes sodium chloride, it can be reused as an industrial salt. Further, when hydrogen chloride is adsorbed on water without being neutralized, it becomes hydrochloric acid water, which can be effectively used.

本発明の一実施例を示す被覆電線リサイクルシステム概略図である。It is a covered wire recycling system schematic diagram showing one example of the present invention. 本発明の被覆電線供給装置の構造を示す概略図で、バケット本体をチェンに取り付けた昇降機構を示す平面概略図である。It is the schematic which shows the structure of the covered electric wire supply apparatus of this invention, and is a plane schematic diagram which shows the raising / lowering mechanism which attached the bucket main body to the chain. 本発明の被覆電線供給装置の構造の一部を示す概略図で、バケット本体をチェンに取り付けた昇降機構を示す側面概略図である。It is the schematic which shows a part of structure of the covered electric wire supply apparatus of this invention, and is a schematic side view which shows the raising / lowering mechanism which attached the bucket main body to the chain. 被覆電線を入れたバケットが上限手前に上昇した状態の昇降機構を示す側面概略図である。It is the side schematic diagram which shows the raising / lowering mechanism of the state which the bucket which put the covered electric wire rose before the upper limit. 被覆電線がバケットから連続乾留装置に投入される状態を示す昇降機構の側面概略図である。It is the side schematic diagram of the raising / lowering mechanism which shows the state by which a covered electric wire is thrown into a continuous carbonization apparatus from a bucket. 本発明の連続乾留装置の被覆電線供給室を示す概略図で、被覆電線を被覆電線供給室に収納した状態を示す側面概略図である。It is the schematic which shows the covered electric wire supply chamber of the continuous carbonization apparatus of this invention, and is the schematic side view which shows the state which accommodated the covered electric wire in the covered electric wire supply chamber. 被覆電線を被覆電線供給室に収納した状態を示すその平面概略図である。It is the plane schematic which shows the state which accommodated the covered electric wire in the covered electric wire supply chamber. 被覆電線が被覆電線供給室から熱分解室内に落下する状態を示す被覆電線供給室の側面概略図である。It is a side schematic diagram of a covered wire supply chamber showing a state where a covered wire falls from a covered wire supply chamber into a thermal decomposition chamber. 本発明の連続乾留装置の熱分解室を示す概略図で被覆電線が熱分解室の火床部を構成する火格子上に載置した状態を示す側面概略図である。It is the schematic which shows the thermal decomposition chamber of the continuous carbonization apparatus of this invention, and is a side schematic diagram which shows the state which the covered electric wire was mounted on the grate which comprises the fire bed part of a thermal decomposition chamber. 被覆電線が火格子上に載置した状態を示す側面概略図である。It is the side surface schematic diagram which shows the state which the covered electric wire was mounted on the grate. 被覆電線が火格子上に載置した状態を示す平面概略図である。It is the plane schematic which shows the state which the covered electric wire was mounted on the grate. 被覆電線が火格子の回転により押し潰され落下する状態を示す概略図である。It is the schematic which shows the state which a covered electric wire is crushed by rotation of a grate, and falls. 本発明の冷却室の側面概略図で、熱分解後の被覆電線が冷却室内に落下する状態を示す側面概略図である。It is the side surface schematic of the cooling chamber of this invention, and is the side schematic diagram which shows the state which the covered electric wire after thermal decomposition falls in a cooling chamber. 冷却された熱分解後の電線及び被覆材が冷却室から排出される状態を示す側面概略図である。It is the side schematic diagram which shows the state from which the cooled electric wire and the coating | covering material after a thermal decomposition are discharged | emitted from a cooling chamber. 本発明の被覆電線リサイクルシステムのガス浄化部を示す概略図である。It is the schematic which shows the gas purification part of the covered electric wire recycling system of this invention.

1 被覆電線リサイクルシステム
2 連続乾留装置
3 触媒ガス浄化装置
4 塩化水素吸収塔
5 被覆電線供給装置
11 バケット
14 被覆電線
17 治具
20 被覆電線供給室
30 熱分解室
35 火格子
36 電気ヒーター
38 偏心プレート
40 マイクロ波照射口
50 冷却室
72 ファン
76 酸化触媒層
78 酸化触媒
82 ガス燃焼室
86 水酸化ナトリウム溶液タンク
92 デミスター部

DESCRIPTION OF SYMBOLS 1 Coated wire recycling system 2 Continuous carbonization device 3 Catalytic gas purification device 4 Hydrogen chloride absorption tower 5 Coated wire supply device 11 Bucket 14 Coated wire 17 Jig 20 Coated wire supply chamber 30 Pyrolysis chamber 35 Grate 36 Electric heater 38 Eccentric plate 40 Microwave irradiation port 50 Cooling chamber 72 Fan 76 Oxidation catalyst layer 78 Oxidation catalyst 82 Gas combustion chamber 86 Sodium hydroxide solution tank 92 Demister section

Claims (18)

被覆電線を無乃至低酸素雰囲気下で、電気ヒーターとマイクロ波照射による加熱手段を用いて熱分解し、被覆材と銅線とを分離・回収する連続乾留装置と、この連続乾留装置で発生した分解ガスを浄化する触媒ガス浄化装置と、被覆電線の熱分解で発生した塩化水素を除去する塩化水素吸収塔とから構成されることを特徴とする被覆電線のリサイクルシステム。 A continuous carbonization device that separates and recovers the coating material and the copper wire by pyrolyzing the coated wire in an atmosphere of no or low oxygen using an electric heater and heating means by microwave irradiation, and generated in this continuous carbonization device 1. A coated wire recycling system comprising a catalytic gas purification device for purifying cracked gas and a hydrogen chloride absorption tower for removing hydrogen chloride generated by thermal decomposition of the coated wire. 連続乾留装置は、被覆電線を収納する被覆電線供給室と、この被覆電線供給室から供給された被覆電線を加熱により熱分解し、炭化する熱分解室と、熱分解後の被覆電線を冷却する冷却室から構成されることを特徴とする請求項1に記載された被覆電線のリサイクルシステム。 The continuous carbonization apparatus cools the coated electric wire supply chamber for storing the coated electric wire, the coated electric wire supplied from the coated electric wire supply chamber by pyrolyzing by heating, and carbonizing the coated electric wire after the pyrolysis. The system for recycling a covered electric wire according to claim 1, comprising a cooling chamber. 連続乾留装置は、1段又は上下2段以上の熱分解室を有しており、上記熱分解室は、被覆電線を直接受けて熱分解する火格子を備えていることを特徴とする請求項1〜2のいずれか1項に記載された被覆電線のリサイクルシステム。 The continuous carbonization apparatus has a pyrolysis chamber of one stage or two or more stages of upper and lower sides, and the pyrolysis chamber includes a grate that directly receives a covered electric wire and thermally decomposes. The recycling system of the covered electric wire described in any one of 1-2. 連続乾留装置の熱分解室は、火格子の側面に複数の電気ヒーターが被覆電線の外側を囲むように配列して設けられ、火格子の側面全体から被覆電線に熱を与えるように構成されていることを特徴とする請求項1〜3のいずれか1項に記載された被覆電線のリサイクルシステム。 The pyrolysis chamber of the continuous carbonization apparatus is arranged such that a plurality of electric heaters are arranged on the side of the grate so as to surround the outside of the covered wire, and heat is applied to the covered wire from the entire side of the grate. The system for recycling a covered electric wire according to any one of claims 1 to 3, wherein: 連続乾留装置の熱分解室は、マイクロ波の照射を加熱手段とするマイクロ波照射口が設けられていることを特徴とする請求項1〜4のいずれか1項に記載された被覆電線のリサイクルシステム。 The recycling of the covered electric wire according to any one of claims 1 to 4, wherein the pyrolysis chamber of the continuous carbonization apparatus is provided with a microwave irradiation port using microwave irradiation as a heating means. system. 連続乾留装置の熱分解室は、電気ヒーター及びマイクロ波の照射による加熱に加え、過熱蒸気噴霧口が設けられ、過熱蒸気により被覆電線が加熱されることを特徴とする請求項1〜5のいずれか1項に記載された被覆電線のリサイクルシステム。 The pyrolysis chamber of the continuous carbonization apparatus is provided with a superheated steam spray port in addition to heating by electric heater and microwave irradiation, and the covered electric wire is heated by the superheated steam. The recycling system of the covered electric wire described in 1. 連続乾留装置の熱分解室は、被覆電線を直接受けて熱分解する火格子を構成する1対の偏心プレートであって、2軸の回転に伴って同時に回転できるように構成されていることを特徴とする請求項1〜6のいずれか1項に記載された被覆電線のリサイクルシステム。 The pyrolysis chamber of the continuous carbonization apparatus is a pair of eccentric plates that constitute a grate that directly receives a covered electric wire and thermally decomposes, and is configured so that it can be rotated simultaneously with the rotation of two axes. The system for recycling a covered electric wire according to claim 1, wherein the system is a recycling system for covered electric wires. 熱分解室の偏心プレートは、左右対称であり、その停止時の熱分解中は左右の間隔が最も狭い状態にあり、その偏心プレート上で熱分解する被覆電線が落下しない隙間に形成され、被覆電線の熱分解が終了した時点で、偏心プレートをそれぞれ内側方向に1回転させるとその間に被覆電線が直接接触している部分の偏心プレートは、その回転につれて間隔が徐々に広くなり、180度回転した時点で最も広くなり、被覆電線が下方に落下するように構成されていることを特徴とする請求項1〜7のいずれか1項に記載された被覆電線のリサイクルシステム。 The eccentric plate of the pyrolysis chamber is symmetric, and the thermal separation at the time of stopping is in the state where the distance between the left and right is the narrowest. When the thermal decomposition of the electric wire is completed, each eccentric plate is rotated once inward, and the portion of the eccentric plate in direct contact with the covered electric wire is gradually widened and rotated 180 degrees. The coated electric wire recycling system according to any one of claims 1 to 7, wherein the coated electric wire is configured to be widest at the time when the coated electric wire is dropped and fall downward. 上下2段又は2段以上の熱分解室において、下部熱分解室の偏心プレートが回転し、定位置に戻り停止すると、上部熱分解室の偏心プレートが回転し、被覆電線を下方に押出し、下部の熱分解室の偏心プレート上に落下し、上部熱分解室の偏心プレートが回転し、定位置に戻り停止すると、被覆電線供給室から分解前の被覆電線が上部熱分解室の偏心プレート上に落下し供給されることを特徴とする請求項1〜8のいずれか1項に記載された被覆電線のリサイクルシステム。 In the upper and lower two-stage or more pyrolysis chambers, when the eccentric plate of the lower pyrolysis chamber rotates and returns to a fixed position and stops, the eccentric plate of the upper pyrolysis chamber rotates and pushes the covered wire downward, Fall on the eccentric plate of the thermal decomposition chamber of the upper pyrolysis chamber, rotate the eccentric plate of the upper pyrolysis chamber, return to a fixed position and stop, the covered electric wire before decomposition from the coated electric wire supply chamber onto the eccentric plate of the upper pyrolysis chamber It falls and is supplied, The recycling system of the covered electric wire described in any one of Claims 1-8 characterized by the above-mentioned. 被覆電線を受け入れる被覆電線供給室は、被覆電線を収納するバケットを備えた被覆電線供給装置を用いて供給されることを特徴とする請求項2〜9のいずれか1項に記載された被覆電線のリサイクルシステム。 The covered electric wire supply chamber which receives a covered electric wire is supplied using the covered electric wire supply apparatus provided with the bucket which accommodates a covered electric wire, The covered electric wire described in any one of Claims 2-9 characterized by the above-mentioned. Recycling system. 被覆電線を受け入れる被覆電線供給室は、熱分解室の最上部に設けられ、被覆電線供給装置から供給された被覆電線を一時保留し、被覆電線供給装置からの被覆電線を受け入れる被覆電線受入口と、被覆電線を熱分解室内に受け渡す被覆電線受渡口を備え、それぞれの口は扉により密閉できるように構成されていることを特徴とする請求項2〜10のいずれか1項に記載された被覆電線のリサイクルシステム。 The covered wire supply chamber for receiving the covered wire is provided at the uppermost part of the pyrolysis chamber, temporarily holds the covered wire supplied from the covered wire supply device, and receives the covered wire from the covered wire supply device. The covering electric wire delivery port which delivers a covered electric wire in a thermal decomposition chamber is provided, Each opening is comprised so that it can seal with a door, It described in any one of Claims 2-10 characterized by the above-mentioned. Coated wire recycling system. 被覆電線を受け入れる被覆電線供給室は、被覆電線供給装置のバケットの上昇中に被覆電線供給室の外気扉を開放し、上昇したバケットからの被覆電線を受け入れ、被覆電線の投入完了後は、被覆電線供給室の外気扉を密封することを特徴とする請求項2〜11のいずれか1項に記載された被覆電線のリサイクルシステム。 The covered wire supply chamber that receives the covered wire opens the outside air door of the covered wire supply chamber while the bucket of the covered wire supply device is rising, accepts the covered wire from the raised bucket, The system for recycling a covered electric wire according to any one of claims 2 to 11, wherein an outside air door of the electric wire supply chamber is sealed. 被覆電線を受け入れる被覆電線供給室は、被覆電線の収納中熱分解室側と被覆電線受け入れ側の両扉が、外気側と熱分解室側に対して密閉された状態に構成され、被覆電線受入れ時の扉の開放時には、熱分解室内側の扉を閉じた状態に構成し、熱分解室への外気の流入と内部からのガス漏れが起きないように構成したことを特徴とする請求項2〜12のいずれか1項に記載された被覆電線のリサイクルシステム。 The covered electric wire supply chamber for receiving the covered electric wire is configured so that both the pyrolysis chamber side and the covered electric wire receiving side door are sealed with respect to the outside air side and the pyrolysis chamber side while the covered electric wire is being stored. 3. When the door is opened, the door inside the pyrolysis chamber is closed, so that the inflow of outside air into the pyrolysis chamber and the gas leakage from the inside do not occur. The recycling system of the covered electric wire described in any one of -12. 被覆電線を受け入れる被覆電線供給室は、被覆電線を載せる受台を有し、被覆電線を熱分解室内に受け渡す際、扉を開放していくと扉の開放に従って水平状態から垂直状態まで回転し、被覆電線を受台から熱分解室内の火格子まで落下し、被覆電線の落下後、扉を閉めると受台も元の状態に戻り、次の被覆電線供給装置からの被覆電線の受入れ準備が完了するように構成されたことを特徴とする請求項2〜13にいずれか1項に記載された被覆電線のリサイクルシステム。 The covered electric wire supply chamber that receives the covered electric wire has a cradle for placing the covered electric wire, and when passing the covered electric wire into the pyrolysis chamber, when the door is opened, it rotates from the horizontal state to the vertical state as the door is opened. When the covered wire drops from the cradle to the grate in the pyrolysis chamber, and the covered wire is dropped, when the door is closed, the cradle also returns to its original state, and preparation for receiving the covered wire from the next covered wire feeder is completed. It is comprised so that it may complete, The recycling system of the covered electric wire described in any one of Claims 2-13 characterized by the above-mentioned. 熱分解後の被覆電線を冷却する冷却室は、熱分解室からの被覆電線受入口と被覆電線を外部に取出す取出口を有し、それぞれの口は扉により密閉されており、開閉可能に構成されていることを特徴とする請求項2に記載された被覆電線のリサイクルシステム。 The cooling chamber that cools the coated wire after pyrolysis has a coated wire receiving port from the pyrolysis chamber and an outlet for taking the coated wire to the outside, and each port is sealed by a door and can be opened and closed. The system for recycling a covered electric wire according to claim 2, wherein: 熱分解後の被覆電線を冷却する冷却室は、熱分解後の被覆電線を載せる受台を有し、冷却室受入れ口の扉の開放により被覆電線を受台に直接載せ、被覆電線の冷却中は両扉の蓋を閉じて室内を外気側及び熱分解室側に対して密閉しており、取出し時の扉の開放時には、熱分解室内側の扉は閉じた状態にされており、熱分解室への外気流入と内部からのガス漏れが起きないように構成されており、被覆電線を冷却室内へ受渡す際には外気側の扉は密閉されており、外気流入と内部からのガス漏れが起きないように構成されていることを特徴とする請求項2〜15項のいずれか1項に記載された被覆電線のリサイクルシステム。 The cooling chamber that cools the coated wire after pyrolysis has a cradle on which the coated wire after pyrolysis is placed, and the coated wire is placed directly on the cradle by opening the door of the cooling chamber receiving port, and the coated wire is being cooled. Closed the doors of both doors and sealed the room against the outside air side and the pyrolysis chamber side.When the door was opened at the time of removal, the door inside the pyrolysis chamber was closed, and the pyrolysis chamber was closed. It is configured so that the outside air does not flow into the chamber and the gas leaks from the inside, and the door on the outside air side is sealed when the covered electric wire is transferred to the cooling chamber. The system for recycling a covered electric wire according to any one of claims 2 to 15, wherein the recycle system is configured so as not to occur. 連続乾留装置で発生した分解ガスを浄化する触媒ガス浄化装置は、連続乾留装置で発生した分解ガスのうち塩化水素を除くガスを酸化反応させる酸化触媒層と、触媒層で未反応の一酸化炭素と炭化水素類を火炎燃焼させるガス燃焼室とから構成されていることを特徴とする請求項1〜16項のいずれか1項に記載された被覆電線のリサイクルシステム。 The catalytic gas purification device that purifies the cracked gas generated in the continuous carbonization device includes an oxidation catalyst layer that oxidizes a gas other than hydrogen chloride among the cracked gas generated in the continuous carbonization device, and an unreacted carbon monoxide in the catalyst layer. The covered wire recycling system according to any one of claims 1 to 16, wherein the system is composed of a gas combustion chamber for flame-combusting hydrocarbons and hydrocarbons. 被覆電線の熱分解で発生した塩化水素を除去する塩化水素吸収塔は、触媒ガス浄化装置から吸引したガスのうち塩化水素を中和し無害化する水酸化ナトリウム溶液の中和剤タンクと、この中和剤タンクの中和剤溶液を循環させるポンプと、このポンプで循環された中和剤溶液を噴霧するシャワーと、このシャワーから噴霧された中和剤溶液と下方から送り込まれた塩化水素を混合するデミスター部とからなることを特徴とする請求項1〜17項のいずれか1項に記載された被覆電線のリサイクルシステム。

The hydrogen chloride absorption tower that removes hydrogen chloride generated by thermal decomposition of the covered wire consists of a neutralizer tank of sodium hydroxide solution that neutralizes and detoxifies hydrogen chloride out of the gas sucked from the catalyst gas purification device. A pump for circulating the neutralizing agent solution in the neutralizing agent tank, a shower for spraying the neutralizing agent solution circulated by the pump, a neutralizing agent solution sprayed from the shower, and hydrogen chloride fed from below. The system for recycling a covered electric wire according to any one of claims 1 to 17, comprising a demister section to be mixed.

JP2012170653A 2012-07-31 2012-07-31 Recycle system for coated wire Pending JP2014029817A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012170653A JP2014029817A (en) 2012-07-31 2012-07-31 Recycle system for coated wire
PCT/JP2013/062033 WO2014020958A1 (en) 2012-07-31 2013-04-24 System for recycling coated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012170653A JP2014029817A (en) 2012-07-31 2012-07-31 Recycle system for coated wire

Publications (1)

Publication Number Publication Date
JP2014029817A true JP2014029817A (en) 2014-02-13

Family

ID=50027652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012170653A Pending JP2014029817A (en) 2012-07-31 2012-07-31 Recycle system for coated wire

Country Status (2)

Country Link
JP (1) JP2014029817A (en)
WO (1) WO2014020958A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531024B1 (en) * 2014-09-16 2015-06-24 주식회사 에코엔 Recycling equipment of waste electric wire and waste tire
KR101542080B1 (en) 2015-06-29 2015-08-06 김병문 A melting and pyrolysis device of disposal old electrical wires and the method thereof
CN106024215A (en) * 2016-05-09 2016-10-12 安徽工程大学 Recovery processing system of waste and old wire rods, and processing method
JP2017154057A (en) * 2016-02-29 2017-09-07 三菱マテリアル株式会社 Method for recovering copper from resin-coated copper wire
CN108413400A (en) * 2018-02-11 2018-08-17 中南大学 A kind of method of alkaline residue and discarded circuit board copyrolysis

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090992B (en) * 2014-05-08 2017-07-21 南京三乐微波技术发展有限公司 A kind of automatic feeding mechanism
CN104096842B (en) * 2014-07-16 2017-03-01 阙龙翔 High-purity copper powder production technology using discarded copper enamel-covered wire
CN107158936B (en) * 2017-06-01 2019-12-24 眉山金豆智能科技有限公司 Microwave plasma photo-oxygen catalytic purification equipment
CN108302949A (en) * 2018-02-11 2018-07-20 高碑店市会青新型建筑材料有限公司 A kind of brick furnace residual heat recycling heating system
CN108758637B (en) * 2018-06-15 2019-07-16 湖南点行环保装备科技有限公司 A kind of rubbish solid-liquid separation pyrolyzing device of easy to clean
CN109028077A (en) * 2018-06-15 2018-12-18 宁波暄妍日化科技有限公司 A kind of dual rotation type refuse pyrolysis plant
CN109028076A (en) * 2018-06-15 2018-12-18 宁波暄妍日化科技有限公司 A kind of rapid cooling dedusting refuse pyrolysis plant
JP7417852B2 (en) * 2018-10-19 2024-01-19 三菱マテリアル株式会社 How to treat covered wires
CN111036655B (en) * 2019-12-31 2021-07-06 寰球智金(南京)信息服务有限公司 Metal solid waste recycling pretreatment device
CN111816389A (en) * 2020-07-06 2020-10-23 安徽绿能技术研究院有限公司 Anaerobic pyrolysis method for enameled wire
CN111826177B (en) * 2020-07-10 2021-08-13 北京工业大学 Method for pyrolysis treatment of waste light-emitting diode packaging material and recovery of rare earth phosphor powder
CN115651694A (en) * 2022-11-09 2023-01-31 南昌大学 Method for preparing bio-oil by fast catalytic pyrolysis of plastic through light wave-microwave

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325956B2 (en) * 1971-10-25 1978-07-29
JPS5314388A (en) * 1976-07-26 1978-02-08 Meisei Engineering Process and apparatus for recovery of copper wire from insulated copper wire
JPH0737457A (en) * 1992-12-14 1995-02-07 Iwakuni Seisakusho:Kk Method and device for recovery of conductor of covered wire
JPH06319946A (en) * 1993-05-18 1994-11-22 Mitsui Toatsu Chem Inc Method for removing toxic gas in toxicity-removing tower
JP2000306444A (en) * 1999-04-23 2000-11-02 Nkk Corp Continuous processing equipment for resin-coated wire
JP2006036806A (en) * 2004-07-22 2006-02-09 Mugen System Kk Method of thermal decomposition and apparatus for thermal decomposition
JP2006036886A (en) * 2004-07-26 2006-02-09 Hitachi Display Devices Ltd Thermal decomposition treatment system
JP2006207866A (en) * 2005-01-25 2006-08-10 Global:Kk Exhaust gas combustion device and baking furnace comprising the same
JP2006224041A (en) * 2005-02-21 2006-08-31 Kusatsu Electric Co Ltd Removal method of hydrogen chloride

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531024B1 (en) * 2014-09-16 2015-06-24 주식회사 에코엔 Recycling equipment of waste electric wire and waste tire
KR101542080B1 (en) 2015-06-29 2015-08-06 김병문 A melting and pyrolysis device of disposal old electrical wires and the method thereof
JP2017154057A (en) * 2016-02-29 2017-09-07 三菱マテリアル株式会社 Method for recovering copper from resin-coated copper wire
CN106024215A (en) * 2016-05-09 2016-10-12 安徽工程大学 Recovery processing system of waste and old wire rods, and processing method
CN108413400A (en) * 2018-02-11 2018-08-17 中南大学 A kind of method of alkaline residue and discarded circuit board copyrolysis

Also Published As

Publication number Publication date
WO2014020958A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2014020958A1 (en) System for recycling coated electric wire
RU2380615C1 (en) Method of recycling domestic waste by using pyrolysis reactor, system for implementation thereof and pyrolysis reactor
CN101837365B (en) Integrated method and system of active carbon regeneration and hazardous waste incineration
CN107143856B (en) A kind of electron wastes pyrolysis oven
TW200800327A (en) Method and apparatus of treating waste
JP5176016B2 (en) Superheated steam continuous recycling equipment
KR101232866B1 (en) Equipment for clinker removing of combustion chamber and combustion chamber equipment having the same
TWI648318B (en) Far infrared radiation heat carbonization equipment
US20040168621A1 (en) Industrial and/or household waste treatment method and an industrial and/or household waste treatment installation
KR20130104794A (en) Apparatus for dismantling waste solar module thermally
JP2002282817A (en) Waste disposal equipment and disposal method for rendering harmful substance or subject including it harmless
JP2008200544A (en) Melt treatment method of waste
TW201530568A (en) System for recycling coated electric wires
JP2008297434A (en) Internal circulation type continuous carbonization apparatus
JPS636840B2 (en)
KR101293272B1 (en) Apparatus for continuous pyrolysis and method thereof
WO2011040644A1 (en) Carbonizing device
KR20070105406A (en) A carbonization processor with continuity low temperature thermal cracking
KR102081956B1 (en) Apparatus for pyrolyzing waste
CN209093043U (en) A kind of high-temp waste gas RTO burning and purifying device
JP3788012B2 (en) Waste disposal method and waste disposal facility
CN111735060A (en) Organic waste treatment equipment
JPH09126427A (en) Continuous thermal decomposition processing method of combustible waste material and apparatus therefor
JP3961441B2 (en) Soil treatment method and apparatus
JPH08108164A (en) Treatment method by thermal decomposition of synthetic resin waste containing chlorine without generating dioxin

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131226