JP2014027053A - Method for producing metal-liquid crystal polymer composite and electronic component - Google Patents

Method for producing metal-liquid crystal polymer composite and electronic component Download PDF

Info

Publication number
JP2014027053A
JP2014027053A JP2012164849A JP2012164849A JP2014027053A JP 2014027053 A JP2014027053 A JP 2014027053A JP 2012164849 A JP2012164849 A JP 2012164849A JP 2012164849 A JP2012164849 A JP 2012164849A JP 2014027053 A JP2014027053 A JP 2014027053A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal polymer
metal
coupling agent
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012164849A
Other languages
Japanese (ja)
Other versions
JP5869976B2 (en
JP2014027053A5 (en
Inventor
Hideki Furusawa
秀樹 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012164849A priority Critical patent/JP5869976B2/en
Priority to TW102124351A priority patent/TWI552865B/en
Priority to PCT/JP2013/068891 priority patent/WO2014017300A1/en
Publication of JP2014027053A publication Critical patent/JP2014027053A/en
Publication of JP2014027053A5 publication Critical patent/JP2014027053A5/ja
Application granted granted Critical
Publication of JP5869976B2 publication Critical patent/JP5869976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Led Device Packages (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a method for producing a metal-liquid crystal polymer composite in which a metal material and a liquid crystal polymer are joined with a good adhesion force; and an electronic component including the metal-liquid crystal polymer composite.SOLUTION: In a method for producing a metal-liquid crystal polymer composite, a metal material that has not been subjected to surface roughening treatment is subjected to surface treatment using a coupling agent having a nitrogen-containing functional group, and a liquid crystal polymer is joined to the treated surface by press bonding or injection molding.

Description

本発明は、金属材料と液晶ポリマーとが良好な密着力で接合している金属−液晶ポリマー複合体の製造方法及び当該金属−液晶ポリマー複合体を備えた電子部品に関する。   The present invention relates to a method for producing a metal-liquid crystal polymer composite in which a metal material and a liquid crystal polymer are bonded with good adhesion, and an electronic component including the metal-liquid crystal polymer composite.

近年、省エネ、低コスト化の観点からLEDの普及が進行している。LEDの発光素子から放たれる光を最大限利用するために、素子を搭載する電極にはAgを主成分とした白色めっきが施されている。耐硫化性や低コスト化の観点から純AgめっきではなくInやSnをはじめとした合金めっきが開発されている。
また、LED素子を封止材で封止するために形成されるボディケースは高耐熱性のナイロンを射出成形して形成される。このボディケース用の樹脂としては例えば芳香族ポリアミドのアモデル(登録商標)がある。
また、電子機器で取り扱う信号は高周波数帯であることが多く、例えば、タンタルコンデンサは電源平滑用やノイズ除去のバイパスコンデンサとして用いられる。このタンタルコンデンサは陰極端子、陽極端子、及び、Agペーストで覆われたコンデンサ本体をエポキシ樹脂で覆うことで構成されている。タンタルコンデンサでは誘電率が高い酸化タンタルが誘電体として用いられている。さらに、最近では酸化タンタルよりも誘電率が高い酸化ニオブを誘電体としたニオブコンデンサが注目を集めている。
In recent years, LEDs have been widely used from the viewpoint of energy saving and cost reduction. In order to make maximum use of light emitted from the light emitting element of the LED, white plating mainly containing Ag is applied to the electrode on which the element is mounted. From the viewpoint of resistance to sulfidation and cost reduction, alloy plating including In and Sn has been developed instead of pure Ag plating.
In addition, a body case formed for sealing the LED element with a sealing material is formed by injection molding high heat-resistant nylon. Examples of the resin for the body case include aromatic polyamide Amodel (registered trademark).
Signals handled by electronic devices are often in a high frequency band. For example, a tantalum capacitor is used as a power supply smoothing or noise removing bypass capacitor. This tantalum capacitor is configured by covering a capacitor terminal covered with a cathode terminal, an anode terminal, and an Ag paste with an epoxy resin. In the tantalum capacitor, tantalum oxide having a high dielectric constant is used as a dielectric. Furthermore, recently, niobium capacitors using niobium oxide having a dielectric constant higher than that of tantalum oxide as a dielectric have attracted attention.

このような技術として、例えば、特許文献1には、高反射率に加え、製造性に優れたLED用リードフレームの表面処理技術が開示されている。また、特許文献2にはエポキシ樹脂を封止剤としたタンタルコンデンサが、特許文献3にはニオブコンデンサが示されている。   As such a technique, for example, Patent Document 1 discloses a surface treatment technique for an LED lead frame that is excellent in manufacturability in addition to high reflectivity. Patent Document 2 shows a tantalum capacitor using an epoxy resin as a sealant, and Patent Document 3 shows a niobium capacitor.

特開2012−89638号公報JP 2012-89638 A 特許3700771号公報Japanese Patent No. 3700771 特許4817468号公報Japanese Patent No. 4817468

LEDのケースボディで使用されるアモデルに代表される芳香族ポリアミドは、流動性に劣り、ケースボディの射出成形に問題があった。これに対し、本発明者は、芳香族ポリアミドを液晶ポリマーに代えると流動性が増すため、ケースボディの射出成形が容易になることを見出した。また、液晶ポリマー自体が白いので、白色の電極とあわせてよりLED素子の白色光をより効率よく放つことが可能となる。
また、タンタルコンデンサのカバーに使用されているエポキシ樹脂は硬化剤を混ぜ合わせなければならないので、樹脂の調合工程が必要であるが、このエポキシ樹脂を液晶ポリマーとすれば、調合工程を省くことが可能となる。
一方、Agめっきをはじめとした白色めっきをした電極に液晶ポリマーを射出成形すると、電極表面と液晶ポリマーの密着性が低いためか、隙間ができてしまい、このようなケースボディに封止樹脂を充填しても隙間から封止樹脂が漏れてしまう問題を発見した。
本発明は上記の課題を解決するためになされたものであり、金属材料と液晶ポリマーとが良好な密着力で接合している金属−液晶ポリマー複合体の製造方法及び当該金属−液晶ポリマー複合体を備えた電子部品を提供することを課題とする。
Aromatic polyamides represented by Amodel used in LED case bodies are inferior in fluidity and have a problem in case body injection molding. On the other hand, the present inventor has found that when the aromatic polyamide is replaced with a liquid crystal polymer, the fluidity is increased, so that the injection molding of the case body is facilitated. Moreover, since the liquid crystal polymer itself is white, it becomes possible to emit the white light of the LED element more efficiently together with the white electrode.
In addition, the epoxy resin used for the cover of the tantalum capacitor must be mixed with a curing agent, so a resin preparation step is necessary. However, if this epoxy resin is a liquid crystal polymer, the preparation step can be omitted. It becomes possible.
On the other hand, when liquid crystal polymer is injection-molded on white-plated electrodes such as Ag plating, a gap is formed due to low adhesion between the electrode surface and the liquid crystal polymer. I discovered a problem that the sealing resin leaked from the gap even after filling.
The present invention has been made to solve the above problems, and a method for producing a metal-liquid crystal polymer composite in which a metal material and a liquid crystal polymer are bonded with good adhesion, and the metal-liquid crystal polymer composite It is an object to provide an electronic component including

電極、端子の表面処理は、反射率、耐硫化性等、様々な特性に合わせて最適化されていることが多い。そこで、本発明者は、鋭意検討の結果、これらの表面処理を生かしつつ、液晶ポリマーとの密着力を向上させる手段として、金属側をカップリング剤処理することに着目した。
カップリング剤の主成分元素としてはSi、Ti、Zr、Al、Sn、Ceがあるが、安定性の観点から、Si、Tiが望ましい。また、分子内に窒素を含む官能基を有していると、金属材料の、液晶ポリマーとの密着力が向上することを見出した。
The surface treatment of electrodes and terminals is often optimized in accordance with various characteristics such as reflectivity and sulfidation resistance. Therefore, as a result of intensive studies, the inventor has focused on treating the metal side with a coupling agent as a means for improving the adhesion with the liquid crystal polymer while taking advantage of these surface treatments.
The main components of the coupling agent include Si, Ti, Zr, Al, Sn, and Ce, but Si and Ti are desirable from the viewpoint of stability. In addition, it has been found that when a functional group containing nitrogen is included in the molecule, the adhesion of the metal material to the liquid crystal polymer is improved.

以上の知見を基礎として完成した本発明は一側面において、粗面化処理されていない金属材料に窒素を含む官能基を有するカップリング剤を用いた表面処理を行い、この処理面に液晶ポリマーを圧着又は射出成形で接合させる、金属−液晶ポリマー複合体の製造方法である。   The present invention completed on the basis of the above knowledge, in one aspect, performs a surface treatment using a coupling agent having a functional group containing nitrogen on a metal material that has not been roughened, and a liquid crystal polymer is applied to the treated surface. This is a method for producing a metal-liquid crystal polymer composite to be joined by pressure bonding or injection molding.

本発明に係る金属−液晶ポリマー複合体の製造方法は一実施形態において、前記カップリング剤の主成分元素がSi、Ti及びAlのいずれかである。   In one embodiment of the method for producing a metal-liquid crystal polymer composite according to the present invention, the main component of the coupling agent is any one of Si, Ti, and Al.

本発明に係る金属−液晶ポリマー複合体の製造方法は別の一実施形態において、前記窒素を含む官能基がアミノ基、イソシアネート基及びウレイド基のいずれかである。   In another embodiment of the method for producing a metal-liquid crystal polymer composite according to the present invention, the nitrogen-containing functional group is any one of an amino group, an isocyanate group, and a ureido group.

本発明に係る金属−液晶ポリマー複合体の製造方法は更に別の一実施形態において、前記カップリング剤を用いた表面処理を行った金属材料が、前記金属材料表面のSi、Ti、Alの下方に、Cu、Al、Cr、Ag、Ni、In、Snのいずれか1種以上の金属又はその酸化物の層を有する。   In another embodiment of the method for producing a metal-liquid crystal polymer composite according to the present invention, the metal material subjected to the surface treatment using the coupling agent is below Si, Ti, Al on the surface of the metal material. In addition, a layer of at least one metal of Cu, Al, Cr, Ag, Ni, In, and Sn or an oxide thereof is included.

本発明に係る金属−液晶ポリマー複合体の製造方法は更に別の一実施形態において、前記カップリング剤を用いた表面処理を、カップリング剤が均一に溶解した溶液で行う。   In still another embodiment of the method for producing a metal-liquid crystal polymer composite according to the present invention, the surface treatment using the coupling agent is performed with a solution in which the coupling agent is uniformly dissolved.

本発明に係る金属−液晶ポリマー複合体の製造方法は更に別の一実施形態において、前記カップリング剤を用いた表面処理を、カップリング剤が溶解したpH7〜14の溶液で行う。   In another embodiment of the method for producing a metal-liquid crystal polymer composite according to the present invention, the surface treatment using the coupling agent is performed with a solution having a pH of 7 to 14 in which the coupling agent is dissolved.

本発明に係る金属−液晶ポリマー複合体の製造方法は更に別の一実施形態において、プレス加工または曲げ加工した後に金属材料に前記表面処理を施し、この処理面に液晶ポリマーを圧着又は射出成形で接合させる。   In still another embodiment of the method for producing a metal-liquid crystal polymer composite according to the present invention, the metal material is subjected to the surface treatment after press working or bending, and the liquid crystal polymer is applied to the treated surface by pressure bonding or injection molding. Join.

本発明に係る金属−液晶ポリマー複合体の製造方法は更に別の一実施形態において、金属材料に前記表面処理を施した後にプレス加工または曲げ加工し、前記表面処理面に液晶ポリマーを圧着又は射出成形で接合させる。   In still another embodiment of the method for producing a metal-liquid crystal polymer composite according to the present invention, the metal material is subjected to the surface treatment and then subjected to press working or bending, and the liquid crystal polymer is pressure-bonded or injected onto the surface-treated surface. Join by molding.

本発明は別の一側面において、本発明の金属−液晶ポリマー複合体の製造方法で得られた金属−液晶ポリマー複合体を備えた電子部品である。   In another aspect, the present invention is an electronic component including the metal-liquid crystal polymer composite obtained by the method for producing a metal-liquid crystal polymer composite of the present invention.

本発明の電子部品は一実施形態において、前記金属材料が白色めっきをしたリードフレームであり、液晶ポリマーと接合させるための前記金属材料の表面が、前記リードフレームの白色めっき表面に窒素を分子内に有するカップリング剤処理で形成されており、前記リードフレームをケース電極とし、前記ケース電極上にLEDチップが実装され、前記チップが周辺を前記液晶ポリマーからなるケースボディで覆われ、前記ケースボディ内に蛍光体を含有する封止樹脂が充填されることで構成されたLEDパッケージである。   In one embodiment, the electronic component of the present invention is a lead frame in which the metal material is white-plated, and the surface of the metal material to be bonded to the liquid crystal polymer contains nitrogen in the white-plated surface of the lead frame. The lead frame is used as a case electrode, an LED chip is mounted on the case electrode, and the chip is covered with a case body made of the liquid crystal polymer. It is an LED package configured by being filled with a sealing resin containing a phosphor.

本発明の電子部品は別の一実施形態において、前記金属材料が陰極端子、陽極端子、及び、最表層が金属ペーストで覆われたコンデンサ本体の一部または全部であり、前記陰極端子、前記陽極端子、及び、前記コンデンサ本体が液晶ポリマーで覆われて構成されたアルミ、タンタル及びニオブのいずれかのコンデンサである。   In another embodiment of the electronic component of the present invention, the metal material is a cathode terminal, an anode terminal, and a part or all of a capacitor body whose outermost layer is covered with a metal paste, the cathode terminal, the anode It is a capacitor of any one of aluminum, tantalum, and niobium, wherein the terminal and the capacitor body are covered with a liquid crystal polymer.

本発明の電子部品は更に別の一実施形態において、前記液晶ポリマーの前記金属材料との熱膨張係数の差が±10ppm/℃である。   In still another embodiment of the electronic component of the present invention, a difference in thermal expansion coefficient of the liquid crystal polymer from the metal material is ± 10 ppm / ° C.

本発明によれば、金属材料と液晶ポリマーとが良好な密着力で接合している金属−液晶ポリマー複合体の製造方法及び当該金属−液晶ポリマー複合体を備えた電子部品を提供することができる。また、本発明によれば、金属材料と絶縁基板との密着力向上に利用される粗面化処理を行うことなく、液晶ポリマーと金属材料の密着力を確保できるので、製造工程の観点からもメリットがある。   According to the present invention, it is possible to provide a method for producing a metal-liquid crystal polymer composite in which a metal material and a liquid crystal polymer are bonded with good adhesion, and an electronic component including the metal-liquid crystal polymer composite. . In addition, according to the present invention, the adhesion between the liquid crystal polymer and the metal material can be ensured without performing the roughening treatment used to improve the adhesion between the metal material and the insulating substrate. There are benefits.

本発明のLEDパッケージの断面模式図を示す。The cross-sectional schematic diagram of the LED package of this invention is shown. 本発明のタンタルコンデンサの断面模式図を示す。The cross-sectional schematic diagram of the tantalum capacitor of this invention is shown.

(金属材料)
本発明に係る金属材料は、粗面化処理されていない、液晶ポリマーと接合させるための表面を有する金属材料である。本発明に係る金属材料は、例えば、以下の(1)〜(5)で示す構成のいずれかであってもよい。
(1)金属基材+金属基材の酸化物層+シラン層
(2)金属基材+めっき層+シラン層
(3)金属基材+めっき層+めっき層の酸化物層+シラン層
(4)金属基材+金属基材の酸化物層+めっき層+シラン層
(5)金属基材+金属基材の酸化物層+めっき層+めっき層の酸化物層+シラン層
(Metal material)
The metal material which concerns on this invention is a metal material which has the surface for joining with a liquid crystal polymer which is not roughened. For example, the metal material according to the present invention may have any of the configurations shown in the following (1) to (5).
(1) Metal substrate + Metal substrate oxide layer + Silane layer (2) Metal substrate + Plating layer + Silane layer (3) Metal substrate + Plating layer + Plating layer oxide layer + Silane layer (4) ) Metal substrate + Metal substrate oxide layer + Plating layer + Silane layer (5) Metal substrate + Metal substrate oxide layer + Plating layer + Plating layer oxide layer + Silane layer

すなわち、本発明に係る金属材料は、(1)〜(5)で示す構成のように、金属基材上には、直接、めっき層及び/又はシラン層が形成されていてもよく、金属基材の酸化により酸化物層が形成された後に、めっき層及び/又はシラン層が形成されていてもよい。また、めっき層上には、直接シラン層が形成されていてもよく、めっき層の酸化により酸化物層が形成された後に、シラン層が形成されていてもよい。   That is, in the metal material according to the present invention, a plating layer and / or a silane layer may be directly formed on the metal substrate as in the configurations shown in (1) to (5). After the oxide layer is formed by oxidation of the material, a plating layer and / or a silane layer may be formed. Moreover, the silane layer may be formed directly on the plating layer, or after the oxide layer is formed by oxidation of the plating layer, the silane layer may be formed.

金属基材としては、特に限定されないが、例えば、銅、チタン、銅合金又はチタン合金等が挙げられる。このうち、銅又は銅合金は、導電性が高い、展延性に富む、及び、ばね特性が良好という利点を有する。   Although it does not specifically limit as a metal base material, For example, copper, titanium, a copper alloy, or a titanium alloy etc. are mentioned. Among these, copper or a copper alloy has the advantages of high conductivity, excellent spreadability, and good spring characteristics.

めっき層としては、特に限定されないが、例えば銀層、銀と同じく白色のNiやSnやInなどとの銀合金層、Ag層と別の金属層または合金層との複層構造等が挙げられる。   Although it does not specifically limit as a plating layer, For example, a silver layer, the silver alloy layer with white Ni, Sn, In, etc. like silver, the multilayer structure of Ag layer, another metal layer, or an alloy layer etc. are mentioned. .

シラン層は、分子内に窒素を含む官能基を有するシランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤、ジルコニアカップリング剤、マグネシウムカップリング剤、スズカップリング剤、セリウムカップリング剤等で金属材料に表面処理することで形成される。
このように種々のカップリング剤を用いることができるが、カップリング剤の主成分元素がSi、Ti及びAlのいずれかであると、生産性、保存性が安定しているので、好ましい。これら以外のカップリング剤であると、水溶液にすると安定性がないので、ゲル化し、金属表面を覆うことが困難となるおそれがある。また、安定性がないので、製造することも困難となるおそれがある。
分子内に窒素を含む官能基を有するシランカップリング剤については、窒素を含む官能基がアミノ基、イソシアネート基及びウレイド基のいずれかであると、金属材料との密着力が向上するので好ましい。
カップリング剤を用いた表面処理は、カップリング剤が均一に溶解した溶液で行うと、カップリング剤1分子が均一に分散するので、金属材料を効率よく被覆することが可能となる。一方、均一に溶解しない場合は溶剤分子と反発したカップリング剤同士が凝集しゲル化してしまうおそれがある。また、当該表面処理を、カップリング剤が溶解したpH7〜14の溶液で行うと、アルカリ性なのでカップリング剤水溶液自体が脱脂の効果を持つため、フレッシュな金属材料にカップリング剤が吸着することが可能になるので、好ましい。
Silane layer is a silane coupling agent having a functional group containing nitrogen in the molecule, titanate coupling agent, aluminate coupling agent, zirconia coupling agent, magnesium coupling agent, tin coupling agent, cerium coupling agent, etc. It is formed by surface-treating a metal material.
As described above, various coupling agents can be used, but it is preferable that the main component of the coupling agent is any of Si, Ti, and Al since productivity and storage stability are stable. If it is a coupling agent other than these, since it is not stable when it is made into an aqueous solution, it may be gelled and it may be difficult to cover the metal surface. Moreover, since there is no stability, it may be difficult to manufacture.
About the silane coupling agent which has a functional group containing nitrogen in a molecule | numerator, since the adhesive force with a metal material improves that the functional group containing nitrogen is any of an amino group, an isocyanate group, and a ureido group, it is preferable.
When the surface treatment using the coupling agent is performed with a solution in which the coupling agent is uniformly dissolved, one molecule of the coupling agent is uniformly dispersed, so that the metal material can be efficiently coated. On the other hand, in the case where it does not dissolve uniformly, the solvent molecules and the repelling coupling agent may aggregate and gel. In addition, when the surface treatment is performed with a solution having a pH of 7 to 14 in which the coupling agent is dissolved, the coupling agent aqueous solution itself has a degreasing effect because it is alkaline, so that the coupling agent may be adsorbed on a fresh metal material. This is preferable because it becomes possible.

本発明の金属材料は、液晶ポリマーと接合させるための表面を有し、XPS(X線光電子分光装置)のSurvey測定で前記表面の元素分析を行ったとき、Si、Ti、Al、Zr、Sn、Mg、Ceのいずれか1種以上が0.5at%以上、Nが1.5at%以上で検出される。
このような構成によれば、金属材料とLCPとの密着力が十分に確保される。Si、Ti、Al、Zr、Sn、Mg、Ceはカップリング剤の中心元素であるのが好ましい。Nはカップリング剤の前記カップリング材の官能基であるのが好ましい。カップリング剤であれば金属材料表面には高々数層しか存在しないので、すでにめっきで金属材料に付与された高反射率、耐硫化性等の特性を損なうことはない。また、本発明によれば、銅箔と絶縁基板との密着力向上に利用される粗面化処理を行うことなく、LCPと金属材料の密着力を確保できるので、製造工程の観点からもメリットがある。
例えば、LEDのリードフレーム材用の金属材料の場合、より多くの光が反射して明るくなるように、すなわち反射率を高くするために、背景の部材は白いことが望ましい。リードフレーム材ではこの反射率を上げるために銀系のめっきが施される。このリードフレーム材は反射率に加えて耐硫化性も求められるため、めっき層を合金化する、或いは複層化する等、種々の観点から金属材料表面が最適化されている。このように既に最適化された表面にシラン処理を行うことで、本発明の金属材料を作製することができ、金属材料に付与された特性を維持したまま、液晶ポリマーとの密着力を向上させることができる。
The metal material of the present invention has a surface to be bonded to a liquid crystal polymer, and Si, Ti, Al, Zr, Sn, when elemental analysis of the surface is performed by Survey measurement of XPS (X-ray photoelectron spectrometer). , Mg, or Ce is detected at 0.5 at% or more and N is detected at 1.5 at% or more.
According to such a configuration, sufficient adhesion between the metal material and the LCP is ensured. Si, Ti, Al, Zr, Sn, Mg, and Ce are preferably central elements of the coupling agent. N is preferably a functional group of the coupling agent of the coupling agent. Since the coupling agent has only a few layers on the surface of the metal material, it does not impair the properties such as high reflectivity and sulfidation resistance already imparted to the metal material by plating. Further, according to the present invention, since the adhesion between the LCP and the metal material can be secured without performing the roughening treatment used for improving the adhesion between the copper foil and the insulating substrate, it is also advantageous from the viewpoint of the manufacturing process. There is.
For example, in the case of a metal material for an LED lead frame material, the background member is desirably white so that more light is reflected and brightened, that is, in order to increase the reflectance. The lead frame material is plated with silver to increase the reflectivity. Since the lead frame material is required to have sulfidation resistance in addition to the reflectance, the surface of the metal material is optimized from various viewpoints such as alloying the plating layer or multilayering. By performing silane treatment on the already optimized surface in this way, the metal material of the present invention can be produced, and the adhesion to the liquid crystal polymer is improved while maintaining the properties imparted to the metal material. be able to.

本発明の金属材料は、前記表面のSi、Ti、Al、Zr、Sn、Mg、Ceの下方に、Cu、Al、Cr、Ag、Ni、In、Snのいずれか1種以上の金属又はその酸化物の層を有するのが好ましい。
このような構成によれば、Cu、Alをはじめとした金属素地、さらにこれらに低接触抵抗、高反射率、耐硫化性の観点からクロメート、Ag、Ni、In、Snなどの金属めっきまたはこれらの合金めっきの上にカップリング剤由来のSi、Ti、Al、Zr、Sn、Mg、Ceが存在していると粗面化処理を行わなくてもLCPと金属材料の密着力を確保できる。Si、Ti、Al、Zr、Sn、Mg、Ceはカップリング剤由来であるのが好ましい。カップリング剤であれば、高々数層でしか材料表面に存在しないので、下地の機能めっきにより付与された特性を失うことはない。
The metal material according to the present invention includes one or more metals selected from Cu, Al, Cr, Ag, Ni, In, and Sn below Si, Ti, Al, Zr, Sn, Mg, and Ce on the surface. It preferably has an oxide layer.
According to such a configuration, metal substrates such as Cu and Al, and further metal plating such as chromate, Ag, Ni, In, Sn or the like from these viewpoints from the viewpoint of low contact resistance, high reflectance, and resistance to sulfidation. When Si, Ti, Al, Zr, Sn, Mg, and Ce derived from the coupling agent are present on the alloy plating, the adhesion between the LCP and the metal material can be ensured without performing the surface roughening treatment. Si, Ti, Al, Zr, Sn, Mg, and Ce are preferably derived from a coupling agent. In the case of a coupling agent, since it exists on the material surface only in several layers at most, the characteristics imparted by the underlying functional plating are not lost.

(金属−液晶ポリマー複合体の製造方法)
本発明の金属−液晶ポリマー複合体は、本発明の金属材料の前記表面に液晶ポリマーを接合して作製される。金属−液晶ポリマー複合体は、プレス加工または曲げ加工した後に金属材料に表面処理を施し、この処理面に液晶ポリマーを圧着又は射出成形で接合させて作製してもよい。また、金属−液晶ポリマー複合体は、金属材料に表面処理を施した後にプレス加工または曲げ加工し、表面処理面に液晶ポリマーを圧着又は射出成形で接合させてもよい。液晶ポリマーは、パラヒドロキシ安息香酸などを基本とし、各種の成分と直鎖状にエステル結合させた芳香族ポリエステル系樹脂である。溶融状態で分子の直鎖が規則正しく並んだ液晶様性質を示す。諸特性、例えば熱膨張係数を制御するために、無機フィラーを分散させることがある。
液晶ポリマーは、通常、金属材料との密着性が良くないが、本発明の特徴的な表面を有する金属材料と接合させることで、破壊試験を行った場合等、驚くべきことに、液晶ポリマー/金属界面の破壊ではなく、液晶ポリマーの内部で破壊が起きるほど、液晶ポリマー/金属界面の密着力が向上する。
(Method for producing metal-liquid crystal polymer composite)
The metal-liquid crystal polymer composite of the present invention is produced by bonding a liquid crystal polymer to the surface of the metal material of the present invention. The metal-liquid crystal polymer composite may be produced by pressing or bending and then applying a surface treatment to the metal material and bonding the liquid crystal polymer to the treated surface by pressure bonding or injection molding. Further, the metal-liquid crystal polymer composite may be subjected to surface treatment on the metal material, followed by press working or bending, and the liquid crystal polymer may be bonded to the surface treated surface by pressure bonding or injection molding. The liquid crystal polymer is an aromatic polyester-based resin based on parahydroxybenzoic acid or the like and linearly ester-bonded with various components. It exhibits liquid crystal-like properties in which molecular straight chains are regularly arranged in the molten state. In order to control various characteristics, for example, thermal expansion coefficient, an inorganic filler may be dispersed.
The liquid crystal polymer usually does not have good adhesion to a metal material, but surprisingly, when a destructive test is performed by joining with a metal material having a characteristic surface of the present invention, the liquid crystal polymer / The more the fracture occurs inside the liquid crystal polymer, not at the metal interface, the better the adhesion of the liquid crystal polymer / metal interface.

金属−液晶ポリマー複合体は、分子内に窒素を含む官能基を有するシランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤、ジルコニアカップリング剤、マグネシウムカップリング剤、スズカップリング剤、セリウムカップリング剤のいずれかで本発明の金属材料に表面処理を施し、金属材料の前記処理面に液晶ポリマーを圧着又は射出成形で接合させることで作製することができる。   The metal-liquid crystal polymer composite is composed of a silane coupling agent having a functional group containing nitrogen in the molecule, titanate coupling agent, aluminate coupling agent, zirconia coupling agent, magnesium coupling agent, tin coupling agent, cerium. It can be produced by applying a surface treatment to the metal material of the present invention with any of the coupling agents and bonding a liquid crystal polymer to the treated surface of the metal material by pressure bonding or injection molding.

(電子部品)
本発明の電子部品は、本発明の金属−液晶ポリマー複合体を備えていればよく、特に限定されないが、LEDパッケージやコンデンサ等が挙げられる。
本発明の電子部品がLEDパッケージである場合について説明する。図1に、本発明のLEDパッケージの断面模式図を示す。当該LEDパッケージは、本発明の金属材料が白色めっきをしたリードフレームであり、液晶ポリマーと接合させるための金属材料の表面が、リードフレームの白色めっき表面に分子内に窒素を含む官能基を有するカップリング剤処理で形成されており、リードフレームをケース電極とし、ケース電極上にLEDチップが実装され、チップが周辺を液晶ポリマーからなるケースボディで覆われ、ケースボディ内に蛍光体を含有する封止樹脂が充填されることで構成されている。このような構成により、本発明のLEDパッケージは、リードフレームが液晶ポリマーと良好な密着力で接合されている。
(Electronic parts)
The electronic component of the present invention is not particularly limited as long as it includes the metal-liquid crystal polymer composite of the present invention, and examples thereof include an LED package and a capacitor.
The case where the electronic component of the present invention is an LED package will be described. In FIG. 1, the cross-sectional schematic diagram of the LED package of this invention is shown. The LED package is a lead frame in which the metal material of the present invention is white-plated, and the surface of the metal material to be bonded to the liquid crystal polymer has a functional group containing nitrogen in the molecule on the white-plated surface of the lead frame. It is formed by a coupling agent treatment, the lead frame is used as a case electrode, an LED chip is mounted on the case electrode, the chip is covered with a case body made of a liquid crystal polymer, and the case body contains a phosphor. It is comprised by being filled with sealing resin. With such a configuration, in the LED package of the present invention, the lead frame is bonded to the liquid crystal polymer with good adhesion.

本発明の電子部品は、アルミ、タンタル、ニオブ等のコンデンサであってもよい。ここで、本発明の電子部品がタンタルコンデンサである場合について説明する。図2に、本発明のタンタルコンデンサの断面模式図を示す。当該タンタルコンデンサは、本発明の金属材料が陰極端子、陽極端子、及び、最表層が金属ペーストで覆われたコンデンサ本体の一部または全部であり、陰極端子、陽極端子、及び、コンデンサ本体が液晶ポリマーで覆われて構成されている。このような構成により、本発明のタンタルコンデンサは、陰極端子、陽極端子、及び、コンデンサ本体が液晶ポリマーと良好な密着力で接合されている。   The electronic component of the present invention may be a capacitor such as aluminum, tantalum, or niobium. Here, the case where the electronic component of the present invention is a tantalum capacitor will be described. FIG. 2 shows a schematic cross-sectional view of the tantalum capacitor of the present invention. The tantalum capacitor is a part or all of a capacitor body in which the metal material of the present invention is covered with a cathode terminal, an anode terminal, and an outermost layer with a metal paste, and the cathode terminal, the anode terminal, and the capacitor body are liquid crystals. Consists of covered with polymer. With such a configuration, in the tantalum capacitor of the present invention, the cathode terminal, the anode terminal, and the capacitor body are bonded to the liquid crystal polymer with good adhesion.

本発明の電子部品において、液晶ポリマーは、金属材料との熱膨張係数の差が±10ppm/℃であるのが好ましい。このような構成によれば、金属材料と液晶ポリマーとが接合した金属−液晶ポリマー複合体に熱が加わった際、両者の熱膨張係数の差が小さいため、膨張による複合体の損傷が良好に抑制される。液晶ポリマーと金属材料との熱膨張係数の差は、より好ましくは±5ppm/℃である。   In the electronic component of the present invention, the liquid crystal polymer preferably has a difference in thermal expansion coefficient of ± 10 ppm / ° C. from the metal material. According to such a configuration, when heat is applied to the metal-liquid crystal polymer composite in which the metal material and the liquid crystal polymer are joined, the difference in thermal expansion coefficient between the two is small. It is suppressed. The difference in thermal expansion coefficient between the liquid crystal polymer and the metal material is more preferably ± 5 ppm / ° C.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

〔例1:実施例4〜6、9、10、12〕
(シラン溶液調整)
N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−ウレイドプロピルトリエトキシシラン(モメンティブ社製)をそれぞれ10mL採取し、純水を加えてそれぞれ1Lの水溶液を調整した。3−イソシアネートプロピルトリエトキシシラン、3−ウレイドプロピルトリエトキシシランではシランと溶媒の水が分離している様子であった。
[Example 1: Examples 4 to 6, 9, 10, 12]
(Silane solution adjustment)
10 mL each of N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3-ureidopropyltriethoxysilane (Momentive) were collected. Pure water was added to prepare 1 L aqueous solution. In 3-isocyanatopropyltriethoxysilane and 3-ureidopropyltriethoxysilane, the silane and water of the solvent were separated.

(めっき板材へのシラン処理)
厚み0.1mmの銅板に1μmの厚みのAg、Ni、クロメートめっきをした。これらめっき銅板それぞれをアルカリ脱脂(NaOH:100g/L、30秒)、酸洗(H2SO4:10wt%、30秒)した後、上記シラン溶液に30秒浸漬させ、水洗し、乾燥させた。
(Silane treatment for plating plate materials)
A copper plate having a thickness of 0.1 mm was plated with 1 μm of Ag, Ni, and chromate. Each of these plated copper plates was subjected to alkaline degreasing (NaOH: 100 g / L, 30 seconds) and pickling (H 2 SO 4 : 10 wt%, 30 seconds), then immersed in the silane solution for 30 seconds, washed with water, and dried. .

(液晶ポリマーとの密着力)
表面処理面に液晶ポリマーフィルム(クラレ社製 べクスターCT−Z)をラミネートで貼り合せ(295℃まで7℃/minで昇温、295℃で1時間保持)、金属−樹脂積層体を作製した。この積層体の樹脂側を引き剥がし、ピール強度を180°剥離法(JIS C 6471 8.1)に準拠して測定した。剥離後の金属側をSEMで観察し、樹脂(LCP)が金属面に残っていれば「剥離はLCP内部」、金属面に残っていなければ「剥離はLCP表面」と判断した。
(Adhesion with liquid crystal polymer)
A liquid crystal polymer film (Kexar CT-Z, manufactured by Kuraray Co., Ltd.) was laminated on the surface-treated surface (laminated to 295 ° C. at a rate of 7 ° C./min and held at 295 ° C. for 1 hour) to prepare a metal-resin laminate. . The resin side of this laminate was peeled off, and the peel strength was measured according to the 180 ° peeling method (JIS C 6471 8.1). The metal side after peeling was observed with an SEM, and if the resin (LCP) remained on the metal surface, it was judged that “peeling was inside the LCP”, and if it was not left on the metal surface, “peeling was the LCP surface”.

(めっき板材の表面分析〔XPS survey〕)
めっき板材の表面分析(SiとNの定量)を下記の条件にてXPS surveyで分析した。
装置:アルバックファイ社製5600MC
到達真空度:8.8×10-10Torr
励起源:単色化 AlKα
出力:210W
検出面積:800μmφ
入射角:75°、取出角:15°
(Surface analysis of plate material [XPS survey])
The surface analysis (quantification of Si and N) of the plated plate material was analyzed by XPS survey under the following conditions.
Device: ULVAC-PHI 5600MC
Ultimate vacuum: 8.8 × 10 −10 Torr
Excitation source: Monochromatic AlKα
Output: 210W
Detection area: 800μmφ
Incident angle: 75 °, extraction angle: 15 °

(レッドインクテスト〔金属材料上に隙間なく液晶ポリマーの型が形成できているかの確認〕)
竪型射出成形機VH40(山城社製)を用いて表面処理をした板材上に液晶ポリマー(JX日鉱日石エネルギー社製 ザイダー)を、最高温度340℃、金型温度100℃、射出速度200mm/sで箱型に射出成形した。液晶ポリマーで形成された型内部に赤インク(ライオン事務器社製 スタンプインキ 赤)を垂らして、1日後、6日後にインクが型の外に漏れているかどうかを確認した。全くインクが漏れていない場合は「なし」、型の縁がにじんだ程度であれば「軽度のにじみ」、漏れていた場合は「あり」と判定した。
(Red ink test [Check if liquid crystal polymer mold can be formed on metal material without gaps)]
A liquid crystal polymer (Zyder made by JX Nippon Oil & Energy Co., Ltd.) is applied to a plate material that has been surface-treated using a vertical injection molding machine VH40 (manufactured by Yamashiro Co., Ltd.). s was injection molded into a box shape. Red ink (stamp ink red, manufactured by Lion Corporation) was dropped inside the mold formed of the liquid crystal polymer, and it was confirmed whether the ink leaked out of the mold after 1 day and 6 days. When no ink was leaked, it was judged as “None”, when the edge of the mold was blurred, “Mild blot”, and when it was leaked, “Yes” was judged.

〔例2:実施例1、2〕
N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン(モメンティブ社製)を10mL採取し、純水を加えて、酢酸でpHを調整し、2種類のpHの1Lの水溶液を調整した。このシラン溶液を用いて厚み1μmのAgめっきをした銅板に例1の手順で表面処理を施し、各種評価を行った。
[Example 2: Examples 1 and 2]
10 mL of N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (made by Momentive Co., Ltd.) was collected, pure water was added, pH was adjusted with acetic acid, and 1 L aqueous solution having two types of pH was prepared. . Using this silane solution, a 1 μm thick Ag-plated copper plate was subjected to surface treatment according to the procedure of Example 1, and various evaluations were performed.

〔例3:実施例7、8〕
N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン(モメンティブ社製)を10mL採取し、純水を加えて1Lの水溶液を調整した。これを用いて、例1の手順で銅板、アルミ板に表面処理を施し、各種評価を行った。
[Example 3: Examples 7 and 8]
10 mL of N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (manufactured by Momentive) was collected, and 1 L of an aqueous solution was prepared by adding pure water. Using this, surface treatment was performed on the copper plate and the aluminum plate in the procedure of Example 1, and various evaluations were performed.

〔例4:実施例3〕
アミノ基を有するチタネートカップリング剤 プレンアクトKR44(味の素ファインテクノ社製)を10mL採取し、純水を加えて1Lの水溶液を調整した。例1の手順で1μm厚のAgめっきをした銅板に表面処理を施し、各種評価を行った。
[Example 4: Example 3]
Titanate coupling agent having an amino group 10 mL of Preneact KR44 (manufactured by Ajinomoto Fine Techno Co., Ltd.) was collected, and 1 L of an aqueous solution was prepared by adding pure water. Surface treatment was performed on a 1 μm thick Ag-plated copper plate in the procedure of Example 1, and various evaluations were performed.

〔例5:実施例11〕
3−イソシアネートプロピルトリエトキシシランを10mL、純水を4mL、残部をイソプロピルアルコールとした1Lのシラン溶液を調整した。純水の量はエトキシ基が加水分解してシラノール基が生成するのに十分な量とした。例1の水溶液とは異なり、シランと溶媒は均一に混ざっているように見えた。このシラン溶液を用いて厚み1μmのAgめっきをした銅板に例1の手順で表面処理を施し、各種評価を行った。
[Example 5: Example 11]
A 1 L silane solution was prepared using 10 mL of 3-isocyanatopropyltriethoxysilane, 4 mL of pure water, and the remainder as isopropyl alcohol. The amount of pure water was set to an amount sufficient for hydrolyzing ethoxy groups to produce silanol groups. Unlike the aqueous solution of Example 1, it appeared that the silane and solvent were uniformly mixed. Using this silane solution, a 1 μm thick Ag-plated copper plate was subjected to surface treatment according to the procedure of Example 1, and various evaluations were performed.

〔例6:比較例1〕
3−グリシドキシプロピルトリエトキシシラン(モメンティブ社製)を10mL採取し、純水を加えて、酢酸でpHを3に調整し、1Lの水溶液を調整した。これを用いて、例1の手順で1μm厚のAgめっきをした銅板に表面処理を施し、各種評価を行った。
[Example 6: Comparative Example 1]
10 mL of 3-glycidoxypropyltriethoxysilane (Momentive) was collected, pure water was added, the pH was adjusted to 3 with acetic acid, and a 1 L aqueous solution was prepared. Using this, surface treatment was performed on a 1 μm thick Ag-plated copper plate in the procedure of Example 1, and various evaluations were performed.

〔例7:比較例2〕
ビニルトリエトキシシラン(モメンティブ社製)を10mL採取し、純水を加えて、1Lの水溶液を調整した。これを用いて、例1の手順で1μm厚のAgめっきをした銅板に表面処理を施し、各種評価を行った。
[Example 7: Comparative Example 2]
10 mL of vinyltriethoxysilane (manufactured by Momentive) was sampled and pure water was added to prepare a 1 L aqueous solution. Using this, surface treatment was performed on a 1 μm thick Ag-plated copper plate in the procedure of Example 1, and various evaluations were performed.

〔例8:比較例3〕
1,2,3−ベンゾトリアゾール(ナカライテスク社製)を10g採取し、純水を加えて、1Lの水溶液を調整した。これを用いて、例1の手順で1μm厚のAgめっきをした銅板に表面処理を施し、各種評価を行った。
[Example 8: Comparative Example 3]
10 g of 1,2,3-benzotriazole (manufactured by Nacalai Tesque) was collected, and pure water was added to prepare a 1 L aqueous solution. Using this, surface treatment was performed on a 1 μm thick Ag-plated copper plate in the procedure of Example 1, and various evaluations were performed.

〔例9:比較例4〕
1μm厚のAgめっきをした銅板を用いて例1の手順で各種評価を行った。
実施例及び比較例の試験条件及び評価結果を表1に示す。
[Example 9: Comparative Example 4]
Various evaluations were performed according to the procedure of Example 1 using a 1 μm-thick Ag-plated copper plate.
Table 1 shows test conditions and evaluation results of Examples and Comparative Examples.

実施例1〜12は、いずれも金属材料と液晶ポリマーとの密着力が良好であり、金属材料上に隙間なく液晶ポリマーの型が形成できていた。
アミノシランであれば、シラン水溶液のpHがアルカリ側だと、金属材料の最表面元素によらず密着力が増した。また、イソシアネートシランカップリング剤の場合は水溶液よりもアルコール溶液で処理した方が液晶ポリマーと金属の密着力が増した。これはアルコール溶液ではイソシアネートシランが溶媒に溶けたために、金属材料がシランで隙間なく被覆されたためであると推定される。
比較例1〜4は、液晶ポリマーとの密着力が不良であり、金属材料と液晶ポリマーとの間に隙間が生じ、インク漏れが生じた。
実施例1〜12で用いたカップリング剤とその評価結果から、アミノ基、イソシアネート基、ウレイド基を含むカップリング剤であれば、実施例で用いたものと同一のカップリング剤でなくても金属材料表面に同様の効果を与えるのに十分な量で付着すると推定される。
In each of Examples 1 to 12, the adhesion between the metal material and the liquid crystal polymer was good, and a liquid crystal polymer mold could be formed on the metal material without any gaps.
In the case of aminosilane, when the pH of the aqueous silane solution was on the alkali side, the adhesion increased regardless of the outermost surface element of the metal material. In the case of an isocyanate silane coupling agent, the adhesion between the liquid crystal polymer and the metal was increased by treatment with an alcohol solution rather than an aqueous solution. This is presumed to be because the metal silane was covered with silane without any gap because the isocyanate silane was dissolved in the solvent in the alcohol solution.
In Comparative Examples 1 to 4, the adhesion with the liquid crystal polymer was poor, a gap was generated between the metal material and the liquid crystal polymer, and ink leakage occurred.
From the coupling agent used in Examples 1 to 12 and its evaluation results, the coupling agent containing an amino group, an isocyanate group, and a ureido group may be the same coupling agent as used in the examples. It is presumed to adhere in an amount sufficient to give a similar effect to the metal material surface.

(金属材料)
本発明に係る金属材料は、粗面化処理されていない、液晶ポリマーと接合させるための表面を有する金属材料である。本発明に係る金属材料は、例えば、以下の(1)〜(5)で示す構成のいずれかであってもよい。
(1)金属基材+金属基材の酸化物層+カップリング剤
(2)金属基材+めっき層+カップリング剤
(3)金属基材+めっき層+めっき層の酸化物層+カップリング剤
(4)金属基材+金属基材の酸化物層+めっき層+カップリング剤
(5)金属基材+金属基材の酸化物層+めっき層+めっき層の酸化物層+カップリング剤
(Metal material)
The metal material which concerns on this invention is a metal material which has the surface for joining with a liquid crystal polymer which is not roughened. For example, the metal material according to the present invention may have any of the configurations shown in the following (1) to (5).
(1) Metal substrate + Metal substrate oxide layer + Coupling agent layer (2) Metal substrate + Plating layer + Coupling agent layer (3) Metal substrate + Plating layer + Plating layer oxide layer + Coupling agent layer (4) Metal substrate + Metal substrate oxide layer + Plating layer + Coupling agent layer (5) Metal substrate + Metal substrate oxide layer + Plating layer + Plating layer oxide layer + Coupling agent layer

すなわち、本発明に係る金属材料は、(1)〜(5)で示す構成のように、金属基材上には、直接、めっき層及び/又はカップリング剤層が形成されていてもよく、金属基材の酸化により酸化物層が形成された後に、めっき層及び/又はカップリング剤層が形成されていてもよい。また、めっき層上には、直接カップリング剤層が形成されていてもよく、めっき層の酸化により酸化物層が形成された後に、カップリング剤層が形成されていてもよい。 That is, the metal material according to the present invention may have a plating layer and / or a coupling agent layer formed directly on the metal substrate as in the configurations shown in (1) to (5), After the oxide layer is formed by oxidation of the metal substrate, a plating layer and / or a coupling agent layer may be formed. In addition, a coupling agent layer may be formed directly on the plating layer, or after the oxide layer is formed by oxidation of the plating layer, the coupling agent layer may be formed.

カップリング剤層は、分子内に窒素を含む官能基を有するシランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤、ジルコニアカップリング剤、マグネシウムカップリング剤、スズカップリング剤、セリウムカップリング剤等で金属材料に表面処理することで形成される。
このように種々のカップリング剤を用いることができるが、カップリング剤の主成分元素がSi、Ti及びAlのいずれかであると、生産性、保存性が安定しているので、好ましい。これら以外のカップリング剤であると、水溶液にすると安定性がないので、ゲル化し、金属表面を覆うことが困難となるおそれがある。また、安定性がないので、製造することも困難となるおそれがある。
分子内に窒素を含む官能基を有するシランカップリング剤については、窒素を含む官能基がアミノ基、イソシアネート基及びウレイド基のいずれかであると、金属材料との密着力が向上するので好ましい。
カップリング剤を用いた表面処理は、カップリング剤が均一に溶解した溶液で行うと、カップリング剤1分子が均一に分散するので、金属材料を効率よく被覆することが可能となる。一方、均一に溶解しない場合は溶剤分子と反発したカップリング剤同士が凝集しゲル化してしまうおそれがある。また、当該表面処理を、カップリング剤が溶解したpH7〜14の溶液で行うと、アルカリ性なのでカップリング剤水溶液自体が脱脂の効果を持つため、フレッシュな金属材料にカップリング剤が吸着することが可能になるので、好ましい。
The coupling agent layer is a silane coupling agent having a functional group containing nitrogen in the molecule, titanate coupling agent, aluminate coupling agent, zirconia coupling agent, magnesium coupling agent, tin coupling agent, cerium coupling. It is formed by surface-treating a metal material with an agent or the like.
As described above, various coupling agents can be used, but it is preferable that the main component of the coupling agent is any of Si, Ti, and Al since productivity and storage stability are stable. If it is a coupling agent other than these, since it is not stable when it is made into an aqueous solution, it may be gelled and it may be difficult to cover the metal surface. Moreover, since there is no stability, it may be difficult to manufacture.
About the silane coupling agent which has a functional group containing nitrogen in a molecule | numerator, since the adhesive force with a metal material improves that the functional group containing nitrogen is any of an amino group, an isocyanate group, and a ureido group, it is preferable.
When the surface treatment using the coupling agent is performed with a solution in which the coupling agent is uniformly dissolved, one molecule of the coupling agent is uniformly dispersed, so that the metal material can be efficiently coated. On the other hand, in the case where it does not dissolve uniformly, the solvent molecules and the repelling coupling agent may aggregate and gel. In addition, when the surface treatment is performed with a solution having a pH of 7 to 14 in which the coupling agent is dissolved, the coupling agent aqueous solution itself has a degreasing effect because it is alkaline, so that the coupling agent may be adsorbed on a fresh metal material. This is preferable because it becomes possible.

Claims (12)

粗面化処理されていない金属材料に窒素を含む官能基を有するカップリング剤を用いた表面処理を行い、この処理面に液晶ポリマーを圧着又は射出成形で接合させる、金属−液晶ポリマー複合体の製造方法。   A metal-liquid crystal polymer composite in which a metal material that has not been roughened is subjected to a surface treatment using a coupling agent having a functional group containing nitrogen, and a liquid crystal polymer is bonded to the treated surface by pressure bonding or injection molding. Production method. 前記カップリング剤の主成分元素がSi、Ti及びAlのいずれかである請求項1に記載の金属−液晶ポリマー複合体の製造方法。   The method for producing a metal-liquid crystal polymer composite according to claim 1, wherein a main component element of the coupling agent is any one of Si, Ti, and Al. 前記窒素を含む官能基がアミノ基、イソシアネート基及びウレイド基のいずれかである請求項1又は2に記載の金属−液晶ポリマー複合体の製造方法。   The method for producing a metal-liquid crystal polymer composite according to claim 1 or 2, wherein the functional group containing nitrogen is any one of an amino group, an isocyanate group, and a ureido group. 前記カップリング剤を用いた表面処理を行った金属材料が、前記金属材料表面のSi、Ti、Alの下方に、Cu、Al、Cr、Ag、Ni、In、Snのいずれか1種以上の金属又はその酸化物の層を有する請求項1〜3のいずれかに記載の金属−液晶ポリマー複合体の製造方法。   The metal material subjected to the surface treatment using the coupling agent is one or more of Cu, Al, Cr, Ag, Ni, In, and Sn below Si, Ti, and Al on the surface of the metal material. The method for producing a metal-liquid crystal polymer composite according to any one of claims 1 to 3, further comprising a metal layer or an oxide layer thereof. 前記カップリング剤を用いた表面処理を、カップリング剤が均一に溶解した溶液で行う請求項1〜4のいずれかに記載の金属−液晶ポリマー複合体の製造方法。   The method for producing a metal-liquid crystal polymer composite according to any one of claims 1 to 4, wherein the surface treatment using the coupling agent is performed with a solution in which the coupling agent is uniformly dissolved. 前記カップリング剤を用いた表面処理を、カップリング剤が溶解したpH7〜14の溶液で行う請求項1〜5のいずれかに記載の金属−液晶ポリマー複合体の製造方法。   The method for producing a metal-liquid crystal polymer composite according to any one of claims 1 to 5, wherein the surface treatment using the coupling agent is performed with a solution having a pH of 7 to 14 in which the coupling agent is dissolved. プレス加工または曲げ加工した後に金属材料に前記表面処理を施し、この処理面に液晶ポリマーを圧着又は射出成形で接合させる請求項1〜6のいずれかに記載の金属−液晶ポリマー複合体の製造方法。   The method for producing a metal-liquid crystal polymer composite according to any one of claims 1 to 6, wherein the metal material is subjected to the surface treatment after being pressed or bent, and the liquid crystal polymer is bonded to the treated surface by pressure bonding or injection molding. . 金属材料に前記表面処理を施した後にプレス加工または曲げ加工し、前記表面処理面に液晶ポリマーを圧着又は射出成形で接合させる請求項1〜7のいずれかに記載の金属−液晶ポリマー複合体の製造方法。   The metal-liquid crystal polymer composite according to any one of claims 1 to 7, wherein after the surface treatment is applied to the metal material, press working or bending is performed, and a liquid crystal polymer is bonded to the surface treated surface by pressure bonding or injection molding. Production method. 請求項7又は8に記載の金属−液晶ポリマー複合体の製造方法で得られた金属−液晶ポリマー複合体を備えた電子部品。   The electronic component provided with the metal-liquid crystal polymer composite obtained by the manufacturing method of the metal-liquid crystal polymer composite of Claim 7 or 8. 前記金属材料が白色めっきをしたリードフレームであり、
液晶ポリマーと接合させるための前記金属材料の表面が、前記リードフレームの白色めっき表面に窒素を分子内に有するカップリング剤処理で形成されており、
前記リードフレームをケース電極とし、前記ケース電極上にLEDチップが実装され、前記チップが周辺を前記液晶ポリマーからなるケースボディで覆われ、前記ケースボディ内に蛍光体を含有する封止樹脂が充填されることで構成されたLEDパッケージである請求項9に記載の電子部品。
The metal material is a lead frame plated with white,
The surface of the metal material for bonding with the liquid crystal polymer is formed by a coupling agent treatment having nitrogen in the molecule on the white plating surface of the lead frame,
The lead frame is a case electrode, an LED chip is mounted on the case electrode, the chip is covered with a case body made of the liquid crystal polymer, and the case body is filled with a sealing resin containing a phosphor The electronic component according to claim 9, wherein the electronic component is an LED package configured as described above.
前記金属材料が陰極端子、陽極端子、及び、最表層が金属ペーストで覆われたコンデンサ本体の一部または全部であり、
前記陰極端子、前記陽極端子、及び、前記コンデンサ本体が液晶ポリマーで覆われて構成されたアルミ、タンタル及びニオブのいずれかのコンデンサである請求項9に記載の電子部品。
The metal material is a cathode terminal, an anode terminal, and a part or all of the capacitor body in which the outermost layer is covered with a metal paste,
10. The electronic component according to claim 9, wherein the cathode terminal, the anode terminal, and the capacitor body are any one of an aluminum, tantalum, and niobium capacitor configured by being covered with a liquid crystal polymer.
前記液晶ポリマーは、前記金属材料との熱膨張係数の差が±10ppm/℃である請求項9〜11のいずれかに記載の電子部品。   The electronic component according to claim 9, wherein the liquid crystal polymer has a difference in thermal expansion coefficient of ± 10 ppm / ° C. from the metal material.
JP2012164849A 2012-07-25 2012-07-25 Method for producing metal-liquid crystal polymer composite Active JP5869976B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012164849A JP5869976B2 (en) 2012-07-25 2012-07-25 Method for producing metal-liquid crystal polymer composite
TW102124351A TWI552865B (en) 2012-07-25 2013-07-08 Metal-liquid crystal polymer composite manufacturing method and electronic parts
PCT/JP2013/068891 WO2014017300A1 (en) 2012-07-25 2013-07-10 Method for producing metal-liquid crystal polymer complex and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012164849A JP5869976B2 (en) 2012-07-25 2012-07-25 Method for producing metal-liquid crystal polymer composite

Publications (3)

Publication Number Publication Date
JP2014027053A true JP2014027053A (en) 2014-02-06
JP2014027053A5 JP2014027053A5 (en) 2015-02-19
JP5869976B2 JP5869976B2 (en) 2016-02-24

Family

ID=49997116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012164849A Active JP5869976B2 (en) 2012-07-25 2012-07-25 Method for producing metal-liquid crystal polymer composite

Country Status (3)

Country Link
JP (1) JP5869976B2 (en)
TW (1) TWI552865B (en)
WO (1) WO2014017300A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017000516T5 (en) 2016-01-27 2018-10-11 Advanced Technologies, Inc. A copper or copper alloy article comprising polyester-modified surface-modified resin and a production method
WO2019026382A1 (en) 2017-08-02 2019-02-07 株式会社新技術研究所 Composite of metal and resin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767246B (en) * 2014-12-30 2022-06-11 荷蘭商露明控股公司 Led package with integrated features for gas or liquid cooling
JP6454858B2 (en) * 2016-06-15 2019-01-23 株式会社新技術研究所 Copper alloy article containing polyester resin and method for producing the same
CN113193348A (en) * 2021-04-25 2021-07-30 江门市德众泰工程塑胶科技有限公司 Preparation method of antenna containing LCP (liquid Crystal Polymer) base material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270108A (en) * 1987-04-29 1988-11-08 Toyoda Gosei Co Ltd Reaction injection molded product of insert
JP2006245303A (en) * 2005-03-03 2006-09-14 Nikko Kinzoku Kk Surface treatment method of copper foil
JP2010199166A (en) * 2009-02-24 2010-09-09 Panasonic Corp Lead frame for optical semiconductor apparatus, and method of manufacturing the same
JP2010287588A (en) * 2009-06-09 2010-12-24 Nec Tokin Corp Solid electrolytic capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117699B2 (en) * 1990-07-07 2000-12-18 日本ケミコン株式会社 Exterior method of solid capacitor
JP2001237591A (en) * 2000-02-25 2001-08-31 Sony Corp Electromagnetic wave shield material and manufacturing method thereof
TW200535259A (en) * 2004-02-06 2005-11-01 Furukawa Circuit Foil Treated copper foil and circuit board
JP2011088296A (en) * 2009-10-20 2011-05-06 Bridgestone Corp Composite member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270108A (en) * 1987-04-29 1988-11-08 Toyoda Gosei Co Ltd Reaction injection molded product of insert
JP2006245303A (en) * 2005-03-03 2006-09-14 Nikko Kinzoku Kk Surface treatment method of copper foil
JP2010199166A (en) * 2009-02-24 2010-09-09 Panasonic Corp Lead frame for optical semiconductor apparatus, and method of manufacturing the same
JP2010287588A (en) * 2009-06-09 2010-12-24 Nec Tokin Corp Solid electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017000516T5 (en) 2016-01-27 2018-10-11 Advanced Technologies, Inc. A copper or copper alloy article comprising polyester-modified surface-modified resin and a production method
US11053593B2 (en) 2016-01-27 2021-07-06 Advanced Technologies, Inc. Copper or copper alloy article comprising surface-modified polyester-based resin and manufacturing method
WO2019026382A1 (en) 2017-08-02 2019-02-07 株式会社新技術研究所 Composite of metal and resin
KR20200037803A (en) 2017-08-02 2020-04-09 카부시기가이샤 신키쥬쯔 겐규죠 Composite of metal and resin
US10941323B2 (en) 2017-08-02 2021-03-09 Advanced Technologies, Inc. Composite of metal and resin

Also Published As

Publication number Publication date
TWI552865B (en) 2016-10-11
WO2014017300A1 (en) 2014-01-30
JP5869976B2 (en) 2016-02-24
TW201406534A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
JP5869976B2 (en) Method for producing metal-liquid crystal polymer composite
WO2007052652A1 (en) Solid electrolytic capacitor and method for manufacturing same
TWI271833B (en) Packaging structure of display device and method thereof
CN1496304A (en) Electrolyte copper foil having carrier foil, making method thereof, and layered plate using the same
KR20170048351A (en) Lead frame and production method therefor
US9653385B1 (en) Lead frame
WO2012020640A1 (en) Metal foil laminate, substrate for mounting led, and light source device
JP2006245530A (en) Electronic component with conductive film attached, conductive film, and manufacturing method of conductive film
JP6134485B2 (en) Metal material having surface for bonding with liquid crystal polymer, metal-liquid crystal polymer composite, method for producing the same, and electronic component
JP5145092B2 (en) Aluminum material for printed wiring board and method for producing the same
JP2014025099A (en) Metallic material having surface for connection with liquid crystal polymer, metal-liquid crystal polymer complex and method of producing the same, and electronic component
JP2000252375A (en) Chip-type electronic component
JP2014027042A (en) Metal material having surface to be joined to liquid crystal polymer, metal-liquid crystal polymer composite and method for producing the same, and electronic component
KR100947921B1 (en) High ductility Au surface treatment plating method of flexible printed circuit board
JP2014027053A5 (en)
JP2011210946A (en) Optical semiconductor device, lead frame, and method of manufacturing the same
JPWO2007052652A1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010016161A (en) Metalized film capacitor
JP2014025095A5 (en)
KR101663695B1 (en) Leadframe and semiconductor package thereof and manufacture method thereof
JPH11163210A (en) Surface-treatment metal material and manufacture thereof
JP4046642B2 (en) Metal materials for electronic parts that prevent whisker generation
KR101714146B1 (en) Socket for aluminum wire and producing method thereof
WO2023120383A1 (en) Electrolytic capacitor and production method thereof
JP2010016160A (en) Metalized film capacitor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141219

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160108

R150 Certificate of patent or registration of utility model

Ref document number: 5869976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 5869976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250