WO2023120383A1 - Electrolytic capacitor and production method thereof - Google Patents

Electrolytic capacitor and production method thereof Download PDF

Info

Publication number
WO2023120383A1
WO2023120383A1 PCT/JP2022/046246 JP2022046246W WO2023120383A1 WO 2023120383 A1 WO2023120383 A1 WO 2023120383A1 JP 2022046246 W JP2022046246 W JP 2022046246W WO 2023120383 A1 WO2023120383 A1 WO 2023120383A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
layer
electroless
exposed
external electrode
Prior art date
Application number
PCT/JP2022/046246
Other languages
French (fr)
Japanese (ja)
Inventor
健汰 佐藤
宗史 門川
淳一 栗田
明子 松居
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023120383A1 publication Critical patent/WO2023120383A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure

Definitions

  • the present disclosure relates to electrolytic capacitors and manufacturing methods thereof.
  • An electrolytic capacitor includes a capacitor element, an exterior body that seals the capacitor element, and a plurality of external electrodes that are electrically connected to the anode side and the cathode side of the capacitor element, respectively.
  • the capacitor element includes an anode body having a first portion (also referred to as an anode lead-out portion) including a first end and a second portion (also referred to as a cathode formation portion) including a second end; and a cathode portion covering at least a portion of the dielectric layer in the second portion.
  • the anode body constitutes the anode portion.
  • the anode part or the cathode part and the external electrode are formed by connecting one end of a wire, tab, or frame-shaped lead to the anode part or the cathode part, and pulling out the other end of the lead from the exterior body. It is often connected to an external electrode. In some cases, the end face of the anode part or the cathode part is exposed to the outer surface of the package, and the exposed end face and the external electrode are electrically connected.
  • a rectangular parallelepiped resin molded body including a laminate including a capacitor element and a sealing resin for sealing the periphery of the laminate, and formed on a first end surface of the resin molded body, a first external electrode electrically connected to the anode exposed from the first end surface; and a first external electrode formed on the second end surface of the resin molding and electrically connected to the cathode exposed from the second end surface.
  • first external electrode, the second external electrode, the third external electrode, and the fourth external electrode each comprise a base electrode layer formed on the resin molding, and the a plating layer formed on the base electrode layer, the base electrode layer of the first external electrode and the base electrode layer of the third external electrode are separated from each other, and the base electrode layer of the second external electrode is separated from the base electrode layer of the third external electrode;
  • An electrolytic capacitor is proposed in which the base electrode layer and the base electrode layer of the fourth external electrode are separated from each other.
  • Patent Document 1 a plated layer is formed on the end faces of the anode and the cathode exposed at the end face of the exterior body (the above resin molded body), and the external electrodes are formed via this plated layer. Since the plating layer is formed on the very small exposed end face of the anode or cathode, there is a limit to increasing the adhesion strength between the end face of the anode or cathode and the external electrode.
  • a first aspect of the present disclosure provides at least one capacitor element including an anode portion and a cathode portion; an exterior body that seals the capacitor element; a plurality of external electrodes electrically connected to each of the anode portion and the cathode portion; at least one end surface of the anode portion and the cathode portion of the capacitor element is exposed from at least one outer surface of the exterior body; The exposed end surface and the outer surface are covered with the external electrode, An electroless Ag plating layer covering at least the outer surface is interposed between the external electrode and the outer surface, The electroless Ag plating layer covers the outer surface with or without an underlying layer, and the underlying layer is a non-plating layer.
  • a second aspect of the present disclosure includes at least one capacitor element including an anode section and a cathode section, and sealing the capacitor element with at least one end face of the anode section and the cathode section exposed from at least one outer surface.
  • a step of preparing a precursor comprising an outer body that forming an electroless Ag plating layer by performing electroless Ag plating so as to cover the at least one outer surface of the exterior body; forming an external electrode covering the electroless Ag plating layer to obtain an electrolytic capacitor.
  • FIG. 1 is a cross-sectional view schematically showing an electrolytic capacitor according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view schematically showing the structure of a capacitor element that constitutes the electrolytic capacitor of FIG. 1
  • FIG. FIG. 4 is a cross-sectional view schematically showing an electrolytic capacitor according to another embodiment of the present disclosure
  • Patent Document 1 a small end surface of the anode part or the cathode part is exposed from the outer surface of the exterior body, the exposed end face is covered with an inner layer plating layer, and the inner layer plating layer and the outer surface of the exterior body are mixed with Ag filler and resin.
  • an external electrode covering the outer surface is formed.
  • the inner layer plating layer is formed of a Ni plating layer covering the exposed end surface and an Ag plating layer covering the Ni plating layer.
  • the inner plated layer is formed on a very small end surface of the anode portion or the cathode portion, it is difficult to ensure high adhesion strength.
  • cracks may occur between the inner plating layer and the resin electrode layer or within the resin electrode layer, causing peeling within the resin electrode layer, or cracking between the resin electrode layers. Separation may occur between the contacting members (for example, the inner plated layer, the exterior body, the substrate) or between the inner plated layer and the end surface of the anode part or the cathode part.
  • the electrical conductivity is lowered, and the barrier properties of the electrolytic capacitor are lowered, making it easier for air to enter the inside of the electrolytic capacitor.
  • the electrolytic capacitor according to the first aspect of the present disclosure includes at least one capacitor element including an anode portion and a cathode portion, an exterior body that seals the capacitor element, the anode portion and the cathode and a plurality of external electrodes electrically connected to each of the portions. At least one end surface of the anode portion and the cathode portion of the capacitor element is exposed from at least one outer surface of the exterior body. The exposed end surface and the outer surface are covered with the external electrode.
  • An electroless Ag plating layer covering at least the outer surface is interposed between the outer electrode and the outer surface.
  • the electroless Ag-plated layer covers the outer surface with or without an underlying layer, which is a non-plated layer.
  • an electroless silver-plated layer (sometimes referred to as an electroless Ag-plated layer) covering at least the outer surface is interposed between the external electrode and the outer surface.
  • electroless Ag plating a relatively dense plating layer is formed.
  • the electroless Ag plating layer has a high anchoring effect on the outer surface of the exterior body.
  • the electroless Ag plating layer has a high affinity with external electrodes. Therefore, the electroless Ag-plated layer can enhance the adhesion between the exposed end face of the anode part or the cathode part, the outer surface of the outer package, and the external electrode. As a result, excellent electrical connection between the exposed end face of the anode portion or the cathode portion and the external electrode can be ensured, thereby suppressing an increase in initial equivalent series resistance (ESR).
  • ESR initial equivalent series resistance
  • the outer surface of the exterior body is the surface that forms the outer shape of the exterior body.
  • the six surfaces of the rectangular parallelepiped or cube correspond to the outer surfaces of the package.
  • the outer surface of the armor includes surfaces referred to as main surfaces, side surfaces, end surfaces, and the like of the armor.
  • one surface for example, the bottom surface
  • the remaining five surfaces may correspond to the outer surface of the armor.
  • the end face of the anode part exposed from the outer surface of the package may be the end face of the anode part (more specifically, the first part (in other words, the anode lead-out part)). It may be the end face of the lead connected to the .
  • the end face of the cathode portion exposed from the outer surface of the outer package may be the end face of the cathode portion (more specifically, the end face of the member (for example, metal foil) constituting the cathode portion). It may be the end face of a lead that is physically connected.
  • the lead whose end face is exposed may be wire-shaped, but preferably tab-shaped or frame-shaped, or may be sheet-shaped.
  • the electroless Ag plating layer may include a silver mirror plating layer.
  • the external electrode may include a conductive paste layer covering the electroless Ag plating layer and a Ni/Sn plating layer covering the conductive paste layer.
  • the electroless Ag plating layer may cover the exposed end face without the underlayer.
  • a first plating layer may be interposed between the exposed end surface and the electroless Ag plating layer.
  • the first plating layer may contain at least one selected from the group consisting of Ag, Ni, Cu and Zn.
  • the first plating layer may include a plurality of plating layers.
  • the electrolytic capacitor may include a plurality of stacked capacitor elements.
  • an end surface of the anode part of a part of the capacitor elements may be exposed from the first outer surface of the exterior body and covered with a first external electrode together with the first outer surface.
  • An end surface of the anode portion of the remaining capacitor element may be exposed from a second outer surface opposite to the first outer surface and covered with a third outer electrode together with the second outer surface.
  • the electroless Ag plating layer may be interposed between the first outer surface and the first external electrode covering the first outer surface.
  • the electroless Ag plating layer may be interposed between the second outer surface and the third outer electrode covering the second outer surface.
  • the electroless Ag plating layer may have a thickness of 0.01 ⁇ m or more and 10 ⁇ m or less.
  • the present disclosure includes a step of forming an electroless Ag-plated layer by performing electroless Ag plating so as to cover the outer surface of the exterior body where at least one end face of the anode part and the cathode part of the capacitor element is exposed; Forming an external electrode covering the Ag plating layer to obtain an electrolytic capacitor is also included.
  • the method for manufacturing an electrolytic capacitor of the present disclosure comprises: A precursor comprising: at least one capacitor element including an anode portion and a cathode portion; and an exterior body sealing the capacitor element with at least one end surface of the anode portion and the cathode portion exposed from at least one outer surface. a step of preparing forming an electroless Ag plating layer by performing electroless Ag plating so as to cover the at least one outer surface of the exterior body; and forming an external electrode covering the electroless Ag plating layer to obtain an electrolytic capacitor.
  • the method for manufacturing an electrolytic capacitor may include a step of forming a first plating layer so as to cover the end faces.
  • the electroless Ag plating may be performed so as to cover the first plating layer and the at least one outer surface of the exterior body.
  • silver mirror plating is performed so as to cover the at least one outer surface of the exterior body, and the electroless Ag plating is performed.
  • a silver mirror plating layer may be formed as a layer.
  • the base layer may be formed on the outer surface so that the base layer, which is a non-plating layer, is interposed.
  • the base layer may be formed on the outer surface so that the base layer, which is a non-plating layer, is interposed in the outer surface.
  • the electrolytic capacitor of the present disclosure and its manufacturing method will be described in more detail, including the above (1) to (17). At least one of the above (1) to (17) may be combined with at least one of the elements described below within a technically consistent range.
  • Electrolytic capacitor (Electroless Ag plating layer)
  • the electrolytic capacitor of the present disclosure at least one end surface of the anode portion and the cathode portion of the capacitor element is exposed from at least one outer surface of the outer package, and the exposed end surface and outer surface are covered with the external electrode.
  • the electroless Ag plating layer is formed between the external electrode and the external surface of the external body where the end surface of the anode portion or the cathode portion is exposed so as to cover at least the external surface.
  • the electroless Ag plating layer may be formed so as to cover the entire outer surface of one of the exterior bodies where the end face of the anode part or the cathode part is exposed, and covers the exposed end face and one of the outer surfaces of the exterior body. It may be formed so as to cover the part. For example, when the end surface of the anode portion is exposed from the first outer surface among the plurality of outer surfaces of the outer package, the electroless electrolyte is applied so as to cover the exposed end surface and at least the peripheral region of the exposed end surface of the first outer surface.
  • An Ag plating layer may be formed. Alternatively, an electroless Ag plating layer may be formed so as to cover the entire first outer surface.
  • an electroless Ag plating layer is formed so as to cover the exposed end face and at least the peripheral region of the exposed end face of the second outer surface.
  • an electroless Ag plating layer may be formed to cover the entire second outer surface.
  • the electroless Ag plating layer may cover the outer surface of the exterior body via the underlying layer, or may cover the outer surface of the exterior body without the underlying layer (in other words, it is in direct contact with the outer surface. can also be used).
  • the underlying layer is a non-plating layer.
  • a base layer may be a coating layer (or an undercoat layer) used as a base for the electroless Ag plating layer.
  • the underlayer may be, for example, a coating layer formed of a coating agent containing a resin. If necessary, the surface of the underlayer may be subjected to, for example, a cleaning treatment for removing stains such as oils and fats, or a hydrophilic treatment.
  • the outer surface of the exterior body (including the end surface of the separation layer, which will be described later, exposed from the exterior surface of the exterior body, and the end surface of the insulating spacer, which will be described later, exposed from the exterior surface of the exterior body), If necessary, the above washing treatment, hydrophilization treatment, and the like may be performed.
  • the resins contained in the base layer include thermoplastic resins and curable resins.
  • the resin include at least one selected from the group consisting of alkyd resins, phenolic resins, epoxy resins, acrylic resins, benzoguanamine resins, polyurethane resins, silicone resins, polyester resins, cellulose ethers, cellulose esters, and vinyl chloride resins. is mentioned. Polyester resins also include phenoxy resins.
  • the coating agent may contain a coupling agent (alkoxysilane compound, alkoxytitanium compound (ester, etc.), etc.), metal oxide, etc., in addition to the resin.
  • a paint containing a curable resin material is preferable.
  • the curable material may be either of the one-component curing type and the two-component curing type.
  • the underlayer may be insulating.
  • the electroless Ag plating layer should be formed so as to cover the outer surface of the exterior body.
  • the electroless Ag plating layer preferably includes a plating film formed by, for example, a reduction type electroless Ag plating method.
  • the electroless Ag plating layer preferably contains a silver mirror plating layer. Since silver mirror plating utilizes a silver mirror reaction, the plating film is formed by entering into minute recesses on the surface of the exterior body, and a relatively uniform plating film is formed. Therefore, it is considered that a higher anchor effect can be obtained for the insulating outer surface.
  • the electroless Ag-plated layer may be composed of only a silver mirror-plated layer, or may be composed of a silver mirror-plated layer and at least one other electroless Ag-plated layer.
  • At least the silver mirror-plated layer is formed on the outer surface side of the exterior body (more specifically, in contact with the underlying layer or the outer surface) in the entire electroless Ag-plated layer.
  • the other electroless Ag plating layer formed so as to cover the silver mirror plating layer may be formed by electroless Ag plating methods such as reduction type, substitution type, and autocatalytic type.
  • the silver mirror-plated layer contains, for example, metallic silver such as pure silver (in other words, simple silver).
  • the silver mirror-plated layer may contain a small amount of impurities (for example, metallic elements other than silver and non-metallic elements such as carbon).
  • Silver mirror plating for electronic materials for example, can be used to form the silver mirror plating layer.
  • the thickness of the electroless Ag plating layer is, for example, 0.01 ⁇ m or more and 10 ⁇ m or less, and may be 0.05 ⁇ m or more and 5 ⁇ m or less.
  • the electroless Ag plating layer has such a thickness, it is easier to form a uniform plating film over the entire region of the outer surface covered with the electroless Ag plating layer, resulting in higher adhesion between the exterior body and the external electrodes. easy to obtain.
  • the amount of silver used can be kept relatively low, it is advantageous in terms of cost.
  • the thickness of each layer constituting the plating layer and the external electrode is arbitrarily selected from 10 or more points of each layer based on a cross-sectional image including at least a portion from the outer surface of the exterior body to the external electrode. It is obtained by measuring the thickness by averaging.
  • each layer that constitutes the plating layer and the external electrode can be specified by analyzing the components (for example, metal components and non-metal components) contained in each layer.
  • the composition ratio of the elements in each plating layer is determined by, for example, an electron probe microanalyzer (EPMA).
  • EPMA electron probe microanalyzer
  • the electroless Ag plating layer is interposed between the outer surface of the exterior body and the external electrode, it covers not only the outer surface of the exterior body but also the end face of the anode part or the cathode part exposed from the outer surface. From the viewpoint of ensuring high conductivity, it is preferable that an electroless Ag plating layer is formed (in other words, in contact) on the end face exposed from the outer surface of the anode part or the cathode part without an underlying layer intervening. preferable.
  • Another plated layer (referred to as a first plated layer) may be interposed between the exposed end surface and the electroless Ag plated layer.
  • the exposed end face is covered with a first plating layer, and the first plating layer and the outer surface of the exterior body are covered with an electroless Ag plating layer (second plating layer).
  • an insulating separation layer may be provided to separate the anode portion and the cathode portion, and the end face of the separation layer may be exposed from the outer surface of the exterior body.
  • the end face of the separation layer may be covered with an electroless Ag plating layer with or without an underlying layer.
  • conductive or insulating spacers may be arranged between the ends of adjacent anode portions or between the ends of adjacent cathode portions. be.
  • the end surface of the spacer may be exposed from the outer surface of the package.
  • the end face of the spacer may be covered with an electroless Ag plating layer with or without an underlying layer.
  • the plating layer can be formed on the outer surface of the exterior body without forming a base layer, and a high anchor effect can be ensured.
  • the silver mirror plating layer is formed with high adhesion even on these end faces without the interposition of the underlying layer. be able to.
  • the end face exposed from the outer surface of the exterior body of the anode part or the cathode part may be pretreated as necessary prior to the formation of the electroless Ag plating layer or the first plating layer.
  • pretreatment include known pretreatments for plating (degreasing, etching, acid treatment, desmutting, zincate treatment, etc.).
  • the pretreatment may be performed before or after forming the base layer on the outer surface of the exterior body.
  • the first plating layer is formed, for example, so as to cover the end surface of the anode portion or the cathode portion exposed from the outer surface of the exterior body.
  • the first plating layer may cover the outer surface of the exterior body around the exposed end surface of the anode part or the cathode part, but the area that covers the outer surface is preferably small, and the first plating layer is selected so as to cover only the exposed end surface. It is preferable to form the When the end face of the separation layer is exposed from the outer surface, it may be covered with the first plating layer, but it is preferably covered with the electroless Ag plating layer without being covered with the first plating layer. .
  • the first plating layer may contain, for example, at least one selected from the group consisting of Ag (silver), Ni (nickel), Cu (copper) and Zn (zinc). Such a first plating layer facilitates maintaining high adhesion between the exposed end face of the anode portion or the cathode portion and the electroless Ag plating layer, and is advantageous in keeping the interfacial resistance low.
  • the first plating layer may contain a simple substance of the above metal, or may contain an alloy containing the above metal.
  • the first plating layer may be formed by either electroplating or electroless plating.
  • the first plating layer may include a single plating layer, or may include a plurality of plating layers.
  • the first plating layer may include at least an electroless Ni plating layer.
  • zincate treatment may be performed before forming the electroless Ni plating layer.
  • the first plated layer can be selectively formed on the exposed end face.
  • the first plating layer may include an electroless Ni plating layer and an Ag plating layer covering the electroless Ni plating layer. A known method may be employed to form the first plating layer.
  • the electroless Ni plating layer may contain at least one element selected from phosphorus (P) and boron (B) elements. These elements originate, for example, from reducing agents (sodium diphosphite, dimethylamine-borane, etc.) added to the plating bath. When the electroless Ni plating layer contains phosphorus (P), the corrosion resistance and oxidation resistance of the electroless Ni plating layer are improved.
  • P phosphorus
  • B boron
  • the electroless Ni plating layer may consist essentially of Ni only.
  • the electroless Ni plating layer consists essentially of Ni means that the proportion of elements other than Ni in the electroless Ni plating layer is less than 0.1% by mass. In this case, although the plating takes time, a dense and highly corrosion-resistant plating layer can be obtained, which is advantageous for further reducing the ESR.
  • the thickness of the electroless Ni plating layer may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the Ag-plated layer covering the electroless Ni-plated layer may be an electrolytic Ag-plated layer, or may be an electroless Ag-plated layer having a composition different from that of the electroless Ag-plated layer covering the outer surface of the exterior body.
  • the electroless Ag plating layer covering the outer surface of the exterior body may include a silver mirror plating layer, and the Ag plating layer constituting the first plating layer may be formed by electroless Ag plating different from silver mirror plating.
  • the electroless Ag plating layer that constitutes the first plating layer may be formed by, for example, substitution type, reduction type, autocatalytic type, or other electroless Ag plating methods.
  • the thickness of the Ag plating layer that constitutes the first plating layer may be, for example, 0.1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the electroless Ag plating layer forming the first plating layer may be, for example, 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the electrolytic Ag plating layer forming the first plating layer may be, for example, 0.1 ⁇ m or more and 50 ⁇ m or less, or may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • an electroless Ag-plated layer (silver mirror-plated layer, etc.) is formed so as to cover the end face of the anode portion or the cathode portion exposed from the outer surface of the exterior body and the outer surface of the exterior body.
  • the electroless Ag-plated layer such as the silver mirror-plated layer can suppress an increase in resistance between the end face of the anode portion or the cathode portion and the external electrode, and can suppress the initial ESR to a low level.
  • the effect of reducing the initial ESR can be obtained without providing the first plating layer such as the electroless Ni plating layer or the electroless Ni plating layer and the Ag plating layer on the exposed end faces. Moreover, when the first plating layer is not provided, the effect of reducing the initial ESR variation is enhanced.
  • the external electrode includes, for example, a metal layer (plated layer, etc.).
  • the metal layer contains, for example, at least one selected from the group consisting of nickel (Ni), copper (Cu), zinc (Zn), tin (Sn), silver (Ag), and gold (Au).
  • the external electrode may include, for example, a laminated structure of Ni layers and Sn layers.
  • the external electrodes may include Ni/Sn plating layers.
  • the Ni/Sn plating layer is a plating layer containing Ni and Sn, and includes, for example, two layers of a Ni plating layer and a Sn plating layer formed on the Ni plating layer.
  • Ni in the Ni plating layer may diffuse to the Sn plating side
  • Sn in the Sn plating layer may diffuse to the Ni plating layer side
  • an alloy layer of Ni and Sn may be formed.
  • At least the outer surface of the external electrode may be a metal with excellent wettability with solder.
  • Such metals include, for example, at least one selected from the group consisting of Sn, Au, Ag, and Pd. Therefore, the outer surface of the Ni/Sn plating layer is preferably the outer surface of the external electrode.
  • the total thickness of the metal layers (plated layers, etc.) forming the external electrodes may be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, or may be 1 ⁇ m or more and 50 ⁇ m or less, or 1 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of each of the Ni plating layer and the Sn plating layer may be 0.1 ⁇ m or more and 50 ⁇ m or less, or may be 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the external electrode may include a conductive paste layer covering the electroless Ag plating layer and the metal layer covering the conductive paste layer.
  • a conductive paste layer When the external electrode includes a conductive paste layer, cracks or peeling are likely to occur in and around the conductive paste layer when an external stress is applied to the electrolytic capacitor.
  • the conductive paste layer is in contact with an electroless Ag plating layer such as silver mirror plating, so that the interface resistance can be kept low and the electroless Ag plating Since the adhesion between the layer and the external electrode is enhanced and the occurrence of cracks or peeling can be suppressed, the initial ESR can be reduced.
  • the Ni/Sn plating layer is preferable as the metal layer covering the conductive paste layer.
  • the external electrodes include a conductive paste layer and a Ni/Sn plating layer, it is possible to ensure higher adhesion between the electroless Ag plating layer and the external electrodes, and to ensure high wettability with solder. .
  • the conductive paste layer contains, for example, conductive particles and a resin material. Therefore, the conductive paste layer may be referred to as a conductive resin layer.
  • the resin material acts as a binder. Examples of resin materials include curable resins such as epoxy resins and compositions thereof.
  • Conductive particles include, for example, particles of a conductive inorganic material. Examples of conductive inorganic materials include metals and conductive carbon materials. Examples of metals include silver, silver alloys, copper, copper alloys, and the like. Examples of conductive carbon materials include carbon black, graphite, carbon nanofibers, and carbon nanotubes.
  • a silver paste layer containing at least one selected from the group consisting of silver particles and silver alloy particles is used as the conductive paste layer, it has a high affinity with the electroless Ag plating layer and is conductive with the electroless Ag plating layer. It is possible to obtain a higher adhesion with the paste layer and to keep the interfacial resistance low.
  • the electrolytic capacitor has a plurality of external electrodes electrically connected to each of the anode portion and the cathode portion. For example, when the end face of the anode portion is exposed from the first outer surface of the exterior body, the exposed end face is covered with the first external electrode together with the first outer surface. When the end surface of the cathode portion is exposed from the second outer surface of the exterior body, the exposed end surface is covered with the second external electrode together with the second outer surface.
  • the electroless Ag plating layer may be interposed between at least one of the first outer surface and the first external electrode covering the first outer surface and between the second outer surface and the second outer electrode covering the second outer surface. good. From the viewpoint of ensuring higher reliability of the electrolytic capacitor, it is preferable to interpose both between the first outer surface and the first outer electrode and between the second outer surface and the second outer electrode.
  • the external electrode may be formed so as to cover the entire electroless Ag plating layer on one outer surface of the exterior body, or may be formed so as to cover the entire outer surface of the exterior body on which the electroless Ag plating layer is formed. good.
  • the outer surface (e.g., side surface) of the exterior body on which the electroless Ag plating layer is formed it is continuously formed so as to cover a part of the outer surface (e.g., top surface or bottom surface) that intersects with this outer surface.
  • the electrolytic capacitor has at least one capacitor element, and may have a plurality of capacitor elements.
  • a plurality of capacitor elements may be stacked.
  • the orientations of the first portions of the plurality of capacitor elements may be the same or different.
  • the cathode portions of a plurality of capacitor elements may be alternately overlapped via a conductive adhesive so that the first portions of adjacent capacitor elements face opposite sides.
  • the capacitor elements may be stacked such that the first portions face the opposite direction in any order.
  • the electrolytic capacitor only the end face of the anode portion may be exposed from the outer surface of the exterior body and electrically connected to the external electrode. Only the end face of the cathode portion may be exposed from the outer surface of the outer package and electrically connected to the external electrode. An end surface of the anode portion and an end surface of the cathode portion may be exposed from the outer surface of the exterior body and electrically connected to separate external electrodes (eg, the first external electrode and the second external electrode, respectively).
  • the electroless Ag plating layer is formed between at least one of the plurality of external electrodes and the outer surface of the exterior body covered by this external electrode, and between all the external electrodes and the external surface covered by each external electrode. may be formed.
  • the electrolytic capacitor includes a plurality of laminated capacitor elements
  • the exposed end surfaces of the anode portions are The first outer surface may be covered with the first outer electrode.
  • the exposed end faces of the respective cathode portions may be covered with the second outer electrode together with the second outer surface.
  • the electroless Ag plating layer is interposed between at least one of the first outer surface and the first outer electrode and between the second outer surface and the second outer electrode.
  • the electroless Ag plating layer should be interposed both between the first outer surface and the first external electrode and between the second outer surface and the second external electrode. is preferred.
  • the composition of each electroless Ag plating layer may be the same or different. In such a configuration, a plurality of capacitor elements are stacked such that the first portions and the second portions of each capacitor element overlap each other.
  • the second outer surface may be located opposite the first outer surface.
  • the end surfaces of the anode portions of some of the capacitor elements are exposed from the first outer surface of the package, and the end surfaces of the anode portions of the remaining capacitor elements are exposed from the first outer surface.
  • the plurality of capacitor elements may be stacked such that the first portions and the second portions are alternately stacked, for example.
  • the end face of the anode portion exposed from the first outer surface is covered with the first outer electrode together with the first outer surface, and the end face of the anode portion exposed from the second outer surface is covered with the third outer electrode together with the second outer surface. good.
  • the first external electrode and the third external electrode are both external electrodes on the anode side, and are provided apart from each other.
  • the electroless Ag plating layer may be interposed between at least one of the first outer surface and the first outer electrode and between the second outer surface and the third outer electrode. From the viewpoint of ensuring higher reliability, the electroless Ag plating layer should be interposed both between the first outer surface and the first external electrode and between the second outer surface and the third external electrode. is preferred.
  • the external electrode on the cathode portion side is formed so as to cover an external surface other than the first external surface and the second external surface (for example, one external surface (third external surface) between the first external surface and the second external surface) of the external body.
  • the end face of the cathode portion of each capacitor element exposed from the third outer surface is covered with the second outer electrode together with the third outer surface.
  • An electroless Ag plating layer may be interposed between the third outer surface and the second external electrode.
  • the composition of the at least two electroless Ag plating layers may be the same, and all the electroless Ag plating The composition of the layers can be different.
  • the end face exposed from the outer surface of at least one of the anode part and the cathode part may be flush with the outer surface.
  • the exposed end surface does not necessarily have to be on the same plane as the outer surface of the exterior body, and the exposed end surface may protrude from the outer surface or may be recessed.
  • the anode body has a first portion including one end (sometimes referred to as a first end) and the other end opposite to the one end (sometimes referred to as a second end). and a second portion comprising.
  • a cathode portion is formed in the second portion of the anode body.
  • the anode body may contain, for example, a valve metal, an alloy containing a valve metal, and a compound containing a valve metal (such as an intermetallic compound). These materials may be used singly or in combination of two or more.
  • valve metals include aluminum, tantalum, niobium, and titanium.
  • the anode body may be a foil of a valve action metal, an alloy containing a valve action metal, or a compound containing a valve action metal, and particles of a valve action metal, an alloy containing a valve action metal, or a compound containing a valve action metal. or a sintered body thereof (porous sintered body).
  • a porous portion is usually formed on the surface of at least the second portion of the anode foil in order to increase the surface area.
  • Such anode foil has a core portion and a porous portion formed on the surface of the core portion.
  • the porous portion is formed, for example, by forming unevenness on the surface of the anode body.
  • the anode body having the porous portion may be formed, for example, by roughening the surface of at least the second portion of the anode foil by etching (electrolytic etching or the like). After arranging a predetermined masking member on the surface of the first portion, it is also possible to perform surface roughening treatment such as etching treatment.
  • anode foil having no porous portion on the surface of the first portion and a porous portion on the surface of the second portion is obtained.
  • a porous portion is formed on the surface of the first portion in addition to the surface of the second portion.
  • etching treatment a known method may be used, for example, electrolytic etching.
  • the masking member is not particularly limited, and may be a conductor containing a conductive material, but is preferably an insulator such as resin. The masking member is removed prior to formation of the solid electrolyte layer.
  • the surface of the first portion When the entire surface of the anode foil is roughened, the surface of the first portion has a porous portion. For this reason, the adhesion between the porous portion and the exterior body is not sufficient, and air (specifically, oxygen and moisture) may enter the inside of the electrolytic capacitor through the contact portion between the porous portion and the exterior body. In order to suppress this, at least part of the porous portion formed in the first portion may be previously removed or compressed to crush the pores of the porous portion. As a result, it is possible to reduce the intrusion of air into the electrolytic capacitor through the porous portion from the end portion side of the first portion exposed from the exterior body. In addition, it is possible to suppress deterioration in the reliability of the electrolytic capacitor due to the intrusion of the air.
  • the first ends of the anode bodies of the capacitor elements may be bundled, connected to leads, and electrically connected to external electrodes.
  • the end faces of the plurality of first end portions are exposed from the outer surface of the exterior body without being bundled and electrically connected to the external electrodes, it is not necessary to secure the length for bundling them into the first portion. Therefore, when electrical connection is made by exposing the end face, compared to the case of bundling a plurality of first portions, the proportion of the first portion in the anode body can be made smaller and the capacity can be increased. can reduce the contribution to ESR due to
  • the dielectric layer is formed, for example, by anodizing the valve metal on the surface of at least the second portion of the anode body by chemical conversion treatment or the like.
  • the dielectric layer contains an oxide of a valve metal.
  • the dielectric layer contains aluminum oxide when aluminum is used as the valve metal.
  • the dielectric layer is formed along at least the surface of the second portion where the porous portion is formed (including the inner wall surfaces of the pores of the porous portion). Note that the method for forming the dielectric layer is not limited to this, as long as an insulating layer that functions as a dielectric can be formed on the surface of the second portion.
  • the dielectric layer may also be formed on the surface of the first portion (for example, the porous portion on the surface of the first portion).
  • the surface of the anode body is impregnated with the chemical conversion liquid by immersing the anode body in the chemical conversion liquid, and a voltage is applied between the anode body used as the anode and the cathode immersed in the chemical conversion liquid. It can be done by When the surface of the anode body has a porous portion, the dielectric layer is formed along the irregularities on the surface of the porous portion.
  • a cathode portion is formed on a second portion of the anode body having a dielectric layer. In some cases, the cathode portion covers the surface of the separation layer on the second portion side.
  • the cathode section includes, for example, a solid electrolyte layer that covers at least part of the dielectric layer, and a cathode extraction layer that covers at least part of the solid electrolyte layer.
  • the cathode section is formed by forming a solid electrolyte so as to cover at least a portion of the dielectric layer, and forming a cathode extraction layer so as to cover at least a portion of the solid electrolyte layer.
  • a capacitor element is obtained by forming a cathode part on a part of an anode body having a dielectric layer.
  • the solid electrolyte layer contains, for example, a conductive polymer (conjugated polymer, dopant, etc.).
  • a conjugated polymer for example, a ⁇ -conjugated polymer (polypyrrole, polythiophene, polyaniline, derivatives thereof, etc.) may be used.
  • polythiophene derivatives include poly(3,4-ethylenedioxythiophene) (PEDOT) and the like.
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • dopant polystyrene sulfonic acid (PSS) or the like may be used, or naphthalene sulfonic acid, toluene sulfonic acid, or the like may be used.
  • the solid electrolyte layer is formed by, for example, using at least one of chemical polymerization and electrolytic polymerization of a conjugated polymer precursor (monomer, oligomer, etc.) and a dopant (naphthalenesulfonic acid, toluenesulfonic acid, etc.) on the dielectric layer. It can be formed by polymerization. Alternatively, a solid electrolyte layer may be formed by applying a solution in which a conjugated polymer and a dopant are dissolved or a dispersion in which a conjugated polymer and a dopant are dispersed, to the dielectric layer and drying it. Dispersion media (solvents) include, for example, water, organic solvents, and mixtures thereof.
  • the solid electrolyte layer may contain a manganese compound.
  • the cathode extraction layer includes, for example, a conductive layer that contacts the solid electrolyte layer and covers at least a portion of the solid electrolyte layer.
  • the cathode extraction layer includes at least a first layer covering at least a portion of the solid electrolyte layer.
  • the cathode extraction layer may include a first layer covering at least part of the solid electrolyte layer and a second layer covering at least part of the first layer.
  • the cathode extraction layer may be composed of a metal foil as the first layer.
  • the metal foil may be, for example, Al foil, Cu foil, valve metal (aluminum, tantalum, niobium, etc.), or metal foil made of an alloy containing valve metal. If necessary, the surface of the metal foil may be roughened.
  • the surface of the metal foil may be provided with a chemical conversion coating, or may be provided with a coating of a metal (dissimilar metal) different from the metal constituting the metal foil (dissimilar metal) or a non-metal coating. Examples of dissimilar metals and non-metals include metals such as titanium and nickel, and non-metals such as carbon (such as conductive carbon).
  • the metal foil may be a sintered foil, a vapor-deposited foil, or a coated foil obtained by coating the surface of a metal foil (eg, Al foil, Cu foil) with a conductive film by vapor deposition or coating.
  • the vapor-deposited foil may be an Al foil having Ni vapor-deposited on its surface.
  • Examples of conductive films include Ti, TiC, TiO, and C (carbon) films.
  • the conductive film may be a carbon coating film.
  • the film of the different metal or non-metal eg, conductive carbon
  • the metal foil may be used as the second layer.
  • the cathode extraction layer may include, for example, a layer containing conductive carbon as a first layer (also referred to as a carbon layer) and a metal-containing layer (for example, a layer containing metal powder or metal foil) as a second layer. good.
  • Examples of the conductive carbon contained in the carbon layer as the first layer include graphite (artificial graphite, natural graphite, etc.).
  • the layer containing metal powder as the second layer can be formed, for example, by laminating a composition containing metal powder on the surface of the first layer.
  • a second layer include a metal paste layer formed using a composition containing metal powder and resin (binder resin).
  • the metal paste layer includes a silver paste layer containing silver particles and resin.
  • a thermoplastic resin can be used, but it is preferable to use a thermosetting resin such as an imide resin or an epoxy resin.
  • Examples of the metal foil as the second layer include the metal foils exemplified for the first layer.
  • the metal foil may be attached to the solid electrolyte layer or the first layer (carbon layer, etc.) via a conductive adhesive.
  • conductive adhesives include adhesives containing conductive carbon, adhesives containing metal particles such as silver particles, and the like.
  • the cathode portion contains a metal foil
  • the end face of the metal foil can be exposed from the outer surface of the exterior body, and electrical connection can be easily made with the external electrode via the electroless Ag plating layer, which is advantageous.
  • the metal foil may be provided on at least one of the plurality of capacitor elements, or may be provided so that the metal foil is interposed between adjacent capacitor elements. good.
  • one metal foil may be shared between adjacent capacitor elements.
  • a metal foil may be sandwiched between adjacent capacitor elements.
  • a separator When a metal foil is used for the cathode extraction layer, a separator may be arranged between the metal foil and the anode foil.
  • the separator is not particularly limited, and for example, a nonwoven fabric containing fibers of cellulose, polyethylene terephthalate, vinylon, polyamide (eg, aromatic polyamide such as aliphatic polyamide and aramid) may be used.
  • An insulating separation layer may be provided to electrically separate the first portion and the cathode portion.
  • the separation layer is formed before forming the cathode section.
  • the separation layer may be provided adjacent to the cathode section so as to cover at least part of the surface of the first section.
  • the separation layer is in close contact with the first portion and the exterior body. As a result, air can be prevented from entering the inside of the electrolytic capacitor.
  • An isolation layer may be disposed over the first portion with a dielectric layer interposed therebetween. Such an isolation layer is provided after formation of the dielectric layer. Not limited to this case, if necessary, it may be provided before the formation of the dielectric layer.
  • the separation layer contains, for example, a resin, and those exemplified for the exterior body described later can be used. Insulation may be imparted by compressing and densifying the dielectric layer formed on the porous portion of the first portion.
  • the separation layer may be provided by, for example, attaching a sheet-like insulating member (resin tape, etc.) to the first portion.
  • a sheet-like insulating member resin tape, etc.
  • the porous portion of at least a portion of the first portion may be removed or compressed to be flattened, and then the insulating member may be adhered to the first portion.
  • the sheet-like insulating member has an adhesive layer on the surface thereof to be attached to the first portion.
  • the insulating member may be formed by coating or impregnating at least a portion of the first portion with a liquid resin to form an insulating member that is in close contact with the first portion.
  • the insulating member may be formed so as to fill the unevenness of at least the surface layer of the porous portion of the first portion.
  • the liquid resin can easily enter the concave portions of the surface layer of the porous portion, and the insulating member can be easily formed in the concave portions as well.
  • the end portion of the anode body is partially removed together with the exterior body to form the outer surface of the exterior body, and the end face of the anode body is removed. Collapse of the porous portion of the anode body is suppressed when the anode body is exposed from the outer surface. Since the surface layer of the porous portion of the anode body and the insulating member are firmly adhered to each other, when the end portion of the anode body is partially removed together with the outer package, the insulating member may be removed from the surface of the porous portion of the anode body. Peeling is suppressed.
  • liquid resin for example, a curable resin composition exemplified for the exterior body described later may be used, or a solution obtained by dissolving the resin in a solvent may be used. Also, a sheet-shaped insulating member may be used while applying or impregnating a liquid resin.
  • the spacers are arranged, for example, at least one of between the ends of adjacent anode portions and between the ends of adjacent cathode portions of a plurality of laminated capacitor elements.
  • the spacer may be conductive (such as made of metal) or insulating.
  • the spacers may be exposed from the outer surface of the outer package together with the end faces of the anode portion or the cathode portion. In this case, a high anchor effect can be ensured by forming an electroless Ag plating layer such as a silver mirror plating layer not only on the outer surface but also on the exposed end surfaces of the insulating spacers.
  • the insulating spacers are made of thermoplastic resin or curable resin, for example.
  • a resin or the like exemplified for the material for the exterior body may be used.
  • a capacitor element (or a plurality of stacked capacitor elements) may be mounted on the substrate via a conductive adhesive.
  • the cathode forming portion of the capacitor element closest to the substrate may have a metal foil on the substrate side. This metal foil may be in contact with the substrate via a conductive adhesive as required.
  • the substrate may be an insulating substrate or a metal substrate, or may be a laminated substrate (printed substrate, etc.) with wiring patterns formed on the front and back surfaces.
  • an external electrode such as a second external electrode electrically connected to the cathode portion
  • the external electrode such as the second external electrode
  • the cathode section usually the cathode section
  • the second external electrode is electrically connected to the cathode of each capacitor element through the substrate.
  • the second external electrode can be arbitrarily arranged in the central region of the bottom surface of the electrolytic capacitor.
  • the second external electrode may be arranged close to the first external electrode.
  • a metal substrate may have, for example, a lead frame structure in which a metal plate processed into a predetermined shape is bent. A part of the metal plate may be exposed from the outer package and electrically connected to the external electrode.
  • a capacitor element (or a plurality of laminated capacitor elements) is sealed by being covered with an exterior body.
  • the capacitor element may be sealed so that at least one end surface of the anode part and the cathode part is exposed from the outer surface of the outer package, and after sealing, the outer package is partially removed to form the outer surface. , at least one end face of the anode portion and the cathode portion may be exposed from the outer surface.
  • the other end of the lead electrically connected to one of the anode part and the cathode part is sealed with the outer body so as to be pulled out from the outer body, and the other end of the lead and the external electrode are connected. good too.
  • a plate-shaped external lead terminal bent into a predetermined shape is applied to the surface of the cathode portion exposed on the capacitor element (or the bottom layer or top layer of a plurality of laminated capacitor elements) via a conductive paste or the like.
  • the electrical connection between the capacitor element and the lead terminal may be established by attaching the capacitor element to the lead terminal.
  • the exterior body preferably contains, for example, a cured product of a curable resin composition, and may contain a thermoplastic resin or a composition containing it.
  • the exterior body may be formed using a molding technique such as injection molding, for example.
  • the exterior body may be formed, for example, by filling a curable resin composition or a thermoplastic resin (composition) using a predetermined mold into predetermined locations so as to cover the capacitor element.
  • the curable resin composition may contain, in addition to the curable resin, at least one selected from fillers, curing agents, polymerization initiators, catalysts, and the like.
  • a thermosetting resin is exemplified as the curable resin. Curing agents, polymerization initiators, catalysts and the like are appropriately selected according to the type of curable resin.
  • Curable resins include epoxy resins, phenolic resins, urea resins, polyimides, polyamideimides, polyurethanes, diallyl phthalate, unsaturated polyesters, and the like.
  • thermoplastic resins include polyphenylene sulfide (PPS) and polybutylene terephthalate (PBT).
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • a thermoplastic resin composition containing a thermoplastic resin and a filler may be used.
  • the filler for example, insulating particles and insulating fibers are preferable.
  • the insulating material that constitutes the filler include insulating compounds (oxides, etc.) such as silica and alumina, glass, mineral materials (talc, mica, clay, etc.), and the like.
  • the exterior body may contain one type of these fillers or may contain two or more types in combination.
  • the insulating member and the exterior body each contain a resin.
  • the exterior body adheres more easily to the insulating member containing the resin than the first portion containing the valve metal or the dielectric layer containing the oxide of the valve metal.
  • the exterior body preferably contains a filler.
  • the separation layer preferably contains a filler with a smaller particle size than the outer casing, and more preferably does not contain a filler.
  • the liquid resin preferably contains a filler having a smaller particle size than the outer casing, and more preferably does not contain a filler.
  • the liquid resin is easily impregnated into the deep recesses on the surface of the porous portion of the first portion, and the separation layer is easily formed.
  • Electrolytic capacitors for example, Preparing a precursor comprising at least one capacitor element including an anode portion and a cathode portion, and an exterior body sealing the capacitor element with at least one end face of the anode portion and the cathode portion exposed from at least one outer surface process and forming an electroless Ag plating layer by performing electroless Ag plating to cover at least one outer surface; forming an external electrode covering the electroless Ag plating layer to obtain an electrolytic capacitor.
  • the electroless Ag-plated layer may be formed after forming a base layer, which is a non-plated layer, so as to cover at least one outer surface of the exterior body.
  • the precursor may be prepared by sealing the capacitor element so that at least one end face of the anode part and the cathode part of the capacitor element is exposed from the outer surface of the package. After the capacitor element is sealed with the exterior body, at least one end of the anode portion and the cathode portion is partially removed together with the exterior body to form the outer surface of the exterior body, and the anode portion and the cathode portion are formed. You may prepare by exposing at least one end surface of a part from an outer surface.
  • the end surface of the first portion of the anode body of the capacitor element is formed and exposed from the outer casing. More specifically, on the end side of the first portion of the anode body of the capacitor element, at least the anode body is partially removed together with the outer casing, so that at least the end face of the first end of the anode body is exposed from the outer casing.
  • a method of polishing the surface or cutting off a part of the exterior body can be used. Also, a portion of the first portion that does not include the porous portion may be cut off together with a portion of the exterior body. In this case, the end face that does not include the porous portion and is not formed with the natural oxide film can be easily exposed from the outer surface of the exterior body, and the resistance between the first portion and the external electrode is small and reliable. A connection state with high reliability can be obtained. Dicing is preferable as a method for cutting the outer package. When the outer package is cut by dicing, the surface roughness of the cut surface is increased compared to polishing, etc., and the anchor effect of the electroless Ag plating layer can be further enhanced, resulting in higher adhesion.
  • the exposed end surface of the first end of the first portion appears on the cut surface. At least one of the cut surfaces becomes the first outer surface.
  • the two cut surfaces is the first outer surface, and the other is the second outer surface opposite to the first outer surface.
  • the metal foil may be partially removed together with the outer package to expose the end face of the metal foil from the outer package.
  • the same method as in the case of exposing the end face of the anode part on the first end side from the outer package can be used.
  • the outer surface where the end surface of the metal foil is exposed is preferably different from the outer surface where the end surface on the first end side of the anode portion is exposed.
  • the anode part and the insulating member are partially removed together with the outer package, and the end surface of the first end side and the end surface of the insulating member are removed from the outer package. It may be exposed from the outside.
  • the anode part and the insulating member are each formed with flush end faces exposed from the exterior body. Thereby, the end face of the anode portion and the end face of the insulating member which are flush with the surface of the exterior can be easily exposed from the exterior.
  • anode portion or the cathode portion and the spacer may be partially removed together with the exterior body to expose the end face of the anode portion or the cathode portion and the end face of the spacer from the outer surface of the exterior body.
  • the anode A connection state with low resistance and high reliability is easily obtained between the portion (more specifically, the first portion) and the external electrode, and between the metal foil included in the cathode portion and the external electrode.
  • the outer surface When an electroless Ag plating layer is formed on the outer surface of the exterior body without forming a base layer, the outer surface may be washed to remove dirt such as grease. Moreover, the outer surface may be subjected to a hydrophilic treatment. Hydrophilization treatment may be performed after washing treatment. For the cleaning treatment and hydrophilization treatment, a known method that is performed as a pretreatment for an electroless Ag plating layer can be employed. When the end face of the separation layer or the end face of the insulating spacer is exposed from the outer surface of the outer package, these end faces may also be subjected to the above-described cleaning treatment and hydrophilization treatment.
  • the method for manufacturing an electrolytic capacitor may include forming a first plating layer so as to cover the exposed end face of the anode portion or the cathode portion.
  • the step of forming the first plating layer is performed prior to the step of forming the base layer and the step of forming the electroless Ag plating layer.
  • the first plating layer or each plating layer constituting the first plating layer may be formed by a known method.
  • the underlayer is formed, for example, by applying a coating agent containing resin.
  • the resin contained in the coating agent is selected from the resins exemplified for the underlayer.
  • a coating film formed by coating may be solidified or cured (or semi-cured) by drying or heating, if necessary.
  • the surface of the base layer may be washed to remove dirt such as grease.
  • the surface of the underlayer may be subjected to hydrophilic treatment. Hydrophilization treatment may be performed after washing treatment.
  • cleaning treatment and hydrophilization treatment a known method that is performed as a pretreatment for an electroless Ag plating layer can be employed.
  • the base layer includes the end face exposed from the outer surface of the anode part or the cathode part and the area other than the surface of the first plating layer (for example, the exterior It is preferably formed in an insulating region such as the outer surface of the body). More specifically, the base layer does not cover the end surface of the anode part or the cathode part exposed from the outer surface of the exterior body and the surface of the first plating layer, and does not cover the outer surface of the exterior body (insulating separator or spacer is If exposed, it is preferably formed so as to cover these exposed portions and the entire outer surface of the exterior body (that is, the surface of the insulating portion).
  • the underlying layer is formed, for example, in a state in which the exposed end face of the anode part or the cathode part or the surface of the first plating layer is masked.
  • the electroless Ag plating layer is formed so as to cover the outer surface of the exterior body.
  • the end face of the anode portion or the cathode portion exposed from the outer surface may be directly covered with the electroless Ag plating layer (for example, it may be covered with the electroless plating layer without an underlying layer).
  • an electroless Ag plating layer is formed so as to cover the first plating layer and the outer surface of the exterior body.
  • the electroless plated layer preferably covers the surface of the first plated layer without the underlayer.
  • the electroless Ag plating layer is formed, for example, by a reduction type electroless Ag plating method.
  • the electroless Ag plating layer may be formed by a known method, for example.
  • a silver mirror-plated layer as an electroless Ag-plated layer by performing silver mirror plating so as to cover the outer surface of the exterior body. Since the silver mirror-plated layer is dense, a higher anchor effect can be obtained. Therefore, the adhesion between the exterior body and the external electrodes is further improved, and the reliability of the electrolytic capacitor can be further improved.
  • a silver mirror-plated layer is formed, for example, by a known procedure.
  • the silver mirror-plated layer may be formed, for example, by applying a silver mirror-plating solution containing a silver ammonia solution and a reducing agent to at least the outer surface of the exterior body or a base layer formed on the outer surface.
  • the silver mirror plating solution is also applied to the end face of the anode part or the cathode part exposed from the outer surface of the package, or the surface of the first plating layer.
  • the silver mirror plating solution is also applied to the end faces of these.
  • the silver mirror-plated layer may be formed, for example, by using two liquids, an ammoniacal silver nitrate solution and a solution containing a reducing agent and an alkaline component. By mixing the two liquids, an oxidation-reduction reaction proceeds and metallic silver is deposited to form a silver mirror-plated layer.
  • the two liquids may be mixed and applied to the outer surface or the underlying layer, or the two liquids may be applied separately so that the two liquids are mixed on the outer surface or the underlying layer.
  • the application of each of the silver mirror plating solution and the two solutions can be performed using, for example, spray coating.
  • reducing agents include glucose, aldehyde compounds (glyoxal, etc.), hydrazine compounds, and the like.
  • the silver mirror plating solution and each solution of the two solutions may contain known additives.
  • the silver mirror-plated layer may be washed with deionized water or the like, if necessary.
  • Step of forming external electrodes In this step, an external electrode is formed so as to cover the electroless Ag plating layer. This electrically connects at least one of the anode portion and the cathode portion to the external electrode. Thus, an electrolytic capacitor with external electrodes is obtained.
  • the metal layer is formed by, for example, electroplating, electroless plating, sputtering, vacuum deposition, chemical vapor deposition (CVD), cold spraying, thermal spraying, and the like. may be formed using the film forming technique of
  • the metal layer may be formed so as to be in contact with the electroless Ag plating layer.
  • the external electrode may include a conductive paste layer (or a conductive resin layer) covering the electroless Ag plating layer and a metal layer covering the conductive paste layer. In this case, a conductive paste layer is formed prior to forming the metal layer.
  • the conductive paste layer may be formed, for example, by applying a conductive paste containing conductive particles, a resin material, and optionally a dispersion medium to the surface of the electroless Ag plating layer.
  • a conductive paste containing conductive particles, a resin material, and optionally a dispersion medium As for the conductive particles and the resin material, the description of the conductive paste layer can be referred to.
  • Dispersion media include, for example, water, organic solvents, and mixed solvents thereof.
  • the conductive paste may contain additives such as surfactants and dispersants, if necessary.
  • the application of the conductive paste is not particularly limited, and can be performed by a dipping method, a transfer method, a printing method, a dispensing method, or the like.
  • a coating film formed by coating is usually solidified by drying or heating.
  • the conductive paste contains a curable resin or a composition thereof, the resin material is cured by heating or the like.
  • a conductive paste layer (in other words, a conductive resin layer) covering the electroless Ag plating layer is formed.
  • the external electrode is formed on the outer surface of the exterior body where at least one end face of the anode part and the cathode part is exposed.
  • the first outer electrode may be formed so as to cover the first outer surface.
  • the second outer electrode may be formed so as to cover the second outer surface.
  • the first A first external electrode may be formed to cover the outer surface, and a third external electrode may be formed to cover the second outer surface.
  • the end faces of the cathode portions of the plurality of laminated capacitor elements may be exposed from an outer surface other than the first outer surface and the second outer surface (for example, the third outer surface).
  • the second external electrode is formed to cover the third external surface.
  • An electroless Ag plating layer is formed in at least one portion between each outer surface and the external electrode. From the viewpoint of ensuring higher reliability, it is preferable to form an electroless Ag plating layer entirely between each outer surface and the external electrodes.
  • the method for manufacturing an electrolytic capacitor may include the steps of forming a capacitor element and sealing the capacitor element with an outer package. Moreover, the manufacturing method may include a step of stacking a plurality of capacitor elements. In this case, in the sealing step, the laminated plural capacitor elements are sealed with the outer package. In the sealing step, sealing may be performed so that at least one end surface of the anode portion and the cathode portion is exposed from the outer surface of the exterior body. Alternatively, after the sealing step, a step of exposing at least one end surface of the anode portion and the cathode portion from the outer surface of the exterior body may be performed. For each step, the description of each configuration of the electrolytic capacitor can be referred to.
  • the structure of the electrolytic capacitor of the present disclosure will be described more specifically by taking several embodiments as examples with reference to the drawings.
  • the electrolytic capacitor of the present disclosure is not limited to only the following embodiments.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an electrolytic capacitor according to one embodiment of the present disclosure.
  • 2 is a cross-sectional view showing the structure of a capacitor element that constitutes the electrolytic capacitor of FIG. 1.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an electrolytic capacitor according to one embodiment of the present disclosure.
  • 2 is a cross-sectional view showing the structure of a capacitor element that constitutes the electrolytic capacitor of FIG. 1.
  • an electrolytic capacitor 100 includes a plurality of laminated capacitor elements 10, an outer package 14 that seals the capacitor elements 10, a first external electrode 21, and a second external electrode 22. .
  • a plurality of laminated capacitor elements 10 are supported by a substrate 17 .
  • Each capacitor element 10 includes an anode body 3 as an anode portion and a cathode portion 6 .
  • Anode body 3 is, for example, an anode foil.
  • Anode body 3 has porous portion 5 on its surface, and a dielectric layer (not shown) is formed on at least a part of porous portion 5 .
  • Cathode part 6 covers at least part of the dielectric layer.
  • Cathode section 6 includes solid electrolyte layer 7 and cathode extraction layer 19 .
  • first end 1A of the capacitor element 10 is not covered with the cathode portion 6, and the anode body 3 is exposed.
  • the other end (second end) 2A of capacitor element 10 is covered with cathode portion 6 .
  • a portion of anode body 3 covered with cathode portion 6 (in particular, solid electrolyte layer 7 ) is referred to as second portion 2 , and the remaining portion is referred to as first portion 1 .
  • the first part 1 is not covered with the cathode part 6 of the anode body 3 .
  • the end of the first portion 1 is the first end 1A, and the end of the second portion 2 is the second end 2A.
  • the second portion 2 has a core portion 4 and a porous portion 5 formed on the surface of the core portion 4 .
  • the first portion 1 may or may not have the porous portion 5 on its surface.
  • the dielectric layer is formed along at least the surface of the porous portion 5 formed in the second portion 2 . At least part of the dielectric layer covers the inner wall surfaces of the pores of the porous portion 5 and is formed along the inner wall surfaces.
  • the cathode section 6 includes a solid electrolyte layer 7 that covers at least part of the dielectric layer, and a cathode extraction layer 19 that covers at least part of the solid electrolyte layer 7 .
  • the surface of the dielectric layer has an uneven shape corresponding to the shape of the surface of anode body 3 .
  • the solid electrolyte layer 7 is formed, for example, so as to fill such unevenness of the dielectric layer.
  • the cathode extraction layer 19 includes, for example, a first layer 8 such as a carbon layer covering at least a portion of the solid electrolyte layer 7, and a metal foil 20 as a second layer covering at least a portion of the first layer 8.
  • the metal foil 20 is interposed between the second portions 2 of the capacitor elements 10 adjacent in the stacking direction.
  • Metal foil 20 constitutes a part of cathode portion 6 of capacitor element 10 and is shared between capacitor elements 10 adjacent in the stacking direction.
  • a conductive adhesive layer 9 may be interposed between the metal foil 20 and the capacitor element 10 .
  • a conductive adhesive for example, is used for the adhesive layer 9 .
  • the adhesion layer 9 contains silver, for example.
  • An insulating separation layer (or insulating member) 12 may be formed so as to cover the surface of the anode body 3 at least in a portion adjacent to the cathode part 6 among the regions of the anode body 3 not facing the cathode part 6 . good. This restricts contact between cathode portion 6 and the exposed portion (first portion 1 ) of anode body 3 .
  • the separation layer 12 is, for example, an insulating resin layer.
  • the exterior body 14 has a substantially rectangular parallelepiped outer shape, and the electrolytic capacitor 100 also has a substantially rectangular parallelepiped outer shape.
  • the exterior body 14 has a first outer surface 14a and a second outer surface 14b opposite to the first outer surface 14a.
  • the end surface of first end portion 1A of anode body 3, which is the anode portion of each capacitor element 10, is exposed at first outer surface 14a.
  • An end surface 20a of the metal foil 20 forming the cathode portion 6 is exposed from the exterior body at the second outer surface 14b.
  • Each of the end surfaces of the metal foil 20 exposed from the exterior body 14 and the second outer surface 14b are covered with the second external electrodes 22.
  • a first plating layer 15 is formed on the end surface 20a of the metal foil 20 so as to cover the end surface 20a.
  • An electroless Ag plating layer 18 is formed between the second outer surface 14 b and the second external electrode 22 .
  • the electroless Ag plating layer 18 is a dense coating and covers the entire second outer surface 14b with or without an underlying layer. Therefore, a high anchor effect can be obtained with respect to the second outer surface 14b.
  • the second external electrode 22 is electrically connected through the electroless Ag plating layer 18 and the first plating layer 15 to the end surface 20a of the metal foil 20 forming the cathode section 6 .
  • each of the end surfaces 1 a of the first ends 1 A of the plurality of anode bodies 3 exposed from the exterior body 14 and the first outer surface 14 a are covered with the first external electrode 21 .
  • a first plated layer 15 is formed on the end surface 1a of the anode body 3 so as to cover the end surface 1a.
  • An electroless Ag plating layer 18 is formed between the first outer surface 14 a and the first external electrode 21 .
  • the electroless Ag plating layer 18 covers the entire first outer surface 14a with or without an underlying layer. Therefore, similarly to the above, the electroless Ag plating layer 18 provides a high anchoring effect to the first outer surface 14a.
  • the end face of the separation layer 12 is also exposed from the first outer surface 14 a of the outer package 14 , and the exposed end face is also covered with the electroless Ag plating layer 18 .
  • First external electrode 21 is electrically connected to end surface 1 a of anode body 3 via electroless Ag plating layer 18 and first plating layer 15 .
  • the first plating layer 15 includes at least an electroless Ni plating layer, for example.
  • the first plating layer may include, for example, an electroless Ni plating layer and an electroless Ag plating layer covering the electroless Ni plating layer.
  • the electroless Ag plating layer forming the first plating layer has a composition different from that of the electroless Ag plating layer 18 .
  • the illustrated example shows the case where the first plating layer 15 is formed, the present invention is not limited to this case, and the first plating layer 15 may not be formed.
  • the end surface 1a of the anode body 3 or the end surface 20a of the metal foil 20 is preferably covered with the electroless Ag plating layer 18 without an underlying layer.
  • the first external electrode 21 includes, for example, a conductive paste layer 21A such as a silver paste layer, and a Ni/Sn plating layer 21B covering the conductive paste layer 21A.
  • the second external electrode 22 includes, for example, a conductive paste layer 22A such as a silver paste layer, and a Ni/Sn plating layer 22B covering the conductive paste layer 22A.
  • Each of the conductive paste layers 21A and 22A covers the electroless Ag plating layer 18 entirely.
  • the conductive paste that forms the conductive paste layers 21A and 22A has a high affinity with the electroless Ag plating layer 18, and can easily ensure high adhesion.
  • the electroless Ag plating layer 18 provides a high anchoring effect to the first outer surface 14a or the second outer surface 14b of the package 14 . Therefore, high adhesion between the exterior body 14 and the first external electrode 21 and the second external electrode 22 can be obtained, and the adhesion within the conductive paste layer 21A or 22A or between the conductive paste layer 21A or 22A and the member in contact therewith can be achieved. The occurrence of cracks or peeling in is suppressed, and an increase in ESR can be suppressed. Therefore, high reliability of the electrolytic capacitor can be obtained.
  • the illustrated example shows the case where the electroless Ag plating layer 18 is interposed between both the first external electrode 21 and the second external electrode 22 and the exterior body 14, the present invention is not limited to this case. An electroless Ag plating layer 18 may intervene on one side.
  • the first external electrode 21 covers the entire first outer surface 14a of the exterior body 14, and also covers a third outer surface perpendicular to the first outer surface 14a and part of the substrate 17 on the first outer surface 14a side.
  • the second external electrode 22 covers the entire second outer surface 14b, and also covers a third outer surface 14c perpendicular to the second outer surface 14b and part of the substrate 17 on the second outer surface 14b side.
  • Such a configuration can further enhance the adhesion between the first external electrode 21 and the first outer surface 14a and between the second external electrode 22 and the second outer surface 14b.
  • a first external electrode 21 and a second external electrode 22 covering part of the substrate 17 are exposed at the bottom surface of the electrolytic capacitor 100 . These exposed portions constitute the anode and cathode terminals of electrolytic capacitor 100, respectively.
  • the separation layer 12 does not necessarily have to be exposed from the exterior body 14 as in the illustrated example, and only the end surface 1a of the anode body 3 may be exposed.
  • the exposed end surface 1 a may be composed of only the core portion 4 or may include the porous portion 5 . It is advantageous for end face 1 a not to include porous portion 5 in terms of preventing air from entering capacitor element 10 .
  • FIG. 3 is a cross-sectional view schematically showing the structure of an electrolytic capacitor according to another embodiment of the present disclosure.
  • the electrolytic capacitor 101 shown in FIG. 3 includes a plurality of stacked capacitor elements 10, an exterior body 14 that seals the capacitor elements 10, a first external electrode 21, a second external electrode 22, and a third external electrode 23. , provided.
  • the first external electrode 21 and the third external electrode 23 are electrically connected to the anode body 3 which is the anode portion
  • the second external electrode 22 is electrically connected to the metal foil 20 constituting the cathode portion 6. connected to.
  • FIG. 3 differs from FIGS. 1 and 2 only in the lamination direction of capacitor element 10, the arrangement of metal foil 20, and the arrangement of external electrodes.
  • the plurality of capacitor elements 10 are arranged such that the first portion 1 of the anode body 3 faces the second portion 2 in one direction (the direction toward the first outer surface 14a of the package 14). and a second capacitor element 10b in which the first portion 1 of the anode body 3 faces the second portion 2 in the direction opposite to that of the first capacitor element 10a (the direction toward the second outer surface 14b of the package 14). have.
  • the end surface 1a of the first end portion 1A of the first capacitor element 10a is exposed from the exterior body at the first outer surface 14a.
  • the end surface 1a of the first end portion 1A of the second capacitor element 10b is exposed from the exterior body at the second outer surface 14b opposite to the first outer surface 14a.
  • a first plated layer 15 is formed on each end face 1a.
  • a first external electrode 21 is formed to cover the first outer surface 14a, and a third external electrode 23 is formed to cover the second outer surface 14b.
  • Electroless Ag plating layers 18 are interposed between the first outer electrode 21 and the first outer surface 14a and between the third outer electrode 23 and the second outer surface 14b.
  • the first external electrode is electrically connected to end surface 1a of anode body 3 of first capacitor element 10a via first plating layer 15 and electroless Ag plating layer 18 .
  • the third external electrode is electrically connected to end face 1a of anode body 3 of second capacitor element 10b via first plating layer 15 and electroless Ag plating layer .
  • the first external electrode 21 covers the entire first external surface 14a, and also partially covers the third external surface 14c intersecting the first external surface 14a and the surface of the substrate 17 on the first external surface 14a side.
  • the third external electrode 23 covers the entire second external surface 14b, and also partially covers the surfaces of the substrate 17 and the third external surface 14c intersecting the second external surface 14b on the side of the first external surface 14a.
  • An end surface of the metal foil 20 forming the portion 6 is exposed from the exterior body 14 and electrically connected to the second external electrode 22 .
  • the exposed end face of the metal foil 20 may be covered with the first plating layer 15 .
  • An electroless Ag plating layer 18 may be interposed between the second external electrode 22 and at least one of the fourth outer surface and the fifth outer surface.
  • the second external electrode 22 covers at least one of the fourth outer surface and the fifth outer surface, and also continuously covers part of the first outer surface of the surface of the substrate 17 .
  • the first external electrode 21 and the third external electrode exposed on the bottom surface of the electrolytic capacitor 101 constitute an anode terminal
  • the second external electrode constitutes a cathode terminal
  • the first capacitor elements 10a and the second capacitor elements 10b are alternately laminated.
  • the electrolytic capacitor may include at least one of the adjacently stacked first capacitor element 10a and the adjacently stacked second capacitor element 10b.
  • Electrolytic capacitors (electrolytic capacitors E1 to E3 and C1) including seven stacked capacitor elements 10 as shown in FIG. 1 were produced in the following manner, and their characteristics were evaluated.
  • a silver mirror-plated layer was formed as the electroless Ag-plated layer 18 .
  • the first plating layer 15 was not formed.
  • E2 only an electroless Ni plating layer was formed as the first plating layer.
  • E3 as first plating layers, an electroless Ni-plating layer covering the end surface 1a of the anode body 3 and the end surface 20a of the metal foil 20 and an electroless Ag-plating layer covering the electroless Ni-plating layer were formed.
  • This electroless Ag plating layer is different from the silver mirror plating layer.
  • C1 the same first plating layer as in E3 was formed, and the electroless Ag plating layer 18 was not formed.
  • the configuration of capacitor element 10 is the same as the configuration of capacitor element 10 in FIG.
  • Anode body 3 was produced by roughening both surfaces of an aluminum foil (thickness: 100 ⁇ m) as a base material by etching.
  • cathode portion 6 includes solid electrolyte layer 7 and cathode extraction layer 19 .
  • first external electrode 21 and second external electrode 22 Formation of first external electrode 21 and second external electrode 22
  • the first external electrode 21 and the second external electrode 21 are formed so as to cover the electroless Ag plating layer 18 obtained in (6)(b) above.
  • External electrodes 22 were formed respectively.
  • the first external electrode 21 and the second external electrode 22 are respectively formed so as to cover the first plating layer 15 formed in (6)(a) above and the first outer surface 14a and the second outer surface 14b. bottom.
  • a conductive paste containing silver particles and a resin is applied to the electroless Ag plating layer or the outer surface of the exterior body and dried by heating to form conductive paste layers 21A and 22A having a thickness of 50 ⁇ m. formed respectively.
  • the exterior body on which the conductive paste layers 21A and 22A are formed is immersed in an electrolytic solution for electrolytic Ni plating to perform electrolytic Ni plating.
  • An electrolytic Ni plating layer of 5 ⁇ m was formed.
  • the exterior body on which the electrolytic Ni plating layer was formed was immersed in an electrolytic solution for electrolytic Sn plating to perform electrolytic Sn plating, thereby forming an electrolytic Sn plating layer having a thickness of 5 ⁇ m.
  • Ni/Sn plating layers 21B and 22B were formed.
  • an electrolytic capacitor having the first external electrode 21 and the second external electrode 22 was obtained.
  • a total of 20 electrolytic capacitors were produced for each example in the same manner.
  • Adhesion JIS standard JIS C5101-25: JIS C5101-25: Percent change in capacitance when bending the substrate to which the electrolytic capacitor is fixed in accordance with the 2009 "4.9 Printed board bending resistance” test. (Specifically, the capacity reduction rate) was determined. The test was performed under the following conditions.
  • Substrate TAN-01 (size: 100 x 40 x t1.6 mm)
  • Solder M705-PLG-32-11 (manufactured by Senju Metal)
  • Capacity change rate at deflection amount of 1 mm: ⁇ ⁇ 10% (calculation formula: ⁇ C / C) JIS C5101-22:2014 (High Dielectric Constant Capacitor) is applied to the rate of change. The measurement was performed three times for each amount of deflection, and the average value was obtained. The deflection amount was changed from 0 mm to 10 mm.
  • the capacity reduction rate (%) was obtained when the capacity when the amount of deflection was 0 mm was defined as 100%, and was used as an index for evaluating adhesion.
  • the electrolytic capacitor was subjected to reflow treatment according to IPC/JEDEC J-STD-020D. Specifically, the electrolytic capacitor was preheated at a holding temperature of 150 to 200° C. and a holding time of 180 seconds or less. The preheated electrolytic capacitor was heated at a temperature of 255° C. or higher (maximum temperature of 260° C.) for 30 seconds. The heating at the maximum temperature of 260° C. at this time was within 10 seconds. It was then cooled to 25° C. over 10 minutes and this heating and cooling was repeated two more times (ie a total of 3 times). Next, the capacitance (C 0 ) of the electrolytic capacitor was measured at 25° C.
  • Table 1 shows the adhesion evaluation results.
  • Table 2 shows initial ESR and barrier property evaluation results.
  • E1 to E3 are examples and C1 is a comparative example.
  • the initial ESR can be kept low, and excellent electrical connection between the anode part or the cathode part and the external electrode can be achieved. can be ensured (compare C1 with E1-E3). Since high adhesion can be ensured between the ends of the anode part or the cathode part and the external electrode, the variation (standard deviation) of ESR between individuals can be reduced.
  • a first plating layer may be provided on the exposed end of the anode part or the cathode part. Inter-individual ESR variability can be suppressed (compare E1 with E2 and E3). Also, E1 provided a higher barrier property than C1.
  • the electrolytic capacitor according to the present disclosure has high adhesion between the end face exposed from the outer surface of the exterior body of the anode part or the cathode part and the external electrode, so that the ESR can be kept low and the variation in ESR between individuals can be reduced. . Therefore, the electrolytic capacitor according to the present disclosure can be used in various applications that require high reliability.
  • First part 1A first end 1a end face of first end 2 second portion (cathode forming portion) 2A second end portion 2a end face of second end portion 3 anode body 4 core portion 5 porous portion 6 cathode portion 7 solid electrolyte layer 8 first layer 9 adhesive layer 10 capacitor element 10a first capacitor element 10b second capacitor element 12 Separation layer (insulating material) 14 exterior body 14a first outer surface of exterior body 14b second exterior surface of exterior body 14c third exterior surface of exterior body 15 first plating layer 17 substrate 18 electroless Ag plating layer 19 cathode extraction layer 20 metal foil 20a end surface of metal foil 21 , 23 first external electrode 21A, 23A conductive paste layer 21B, 23B Ni/Sn plating layer 22 second external electrode 22A conductive paste layer 22B Ni/Sn plating layer 100, 101 electrolytic capacitor

Abstract

This electrolytic capacitor is provided with: at least one capacitor element including a positive electrode section and a negative electrode section; an exterior body that seals the capacitor element; and a plurality of external electrodes that are electrically connected to the positive electrode section and the negative electrode section, respectively. An end surface of at least one among the positive electrode section and the negative electrode section of the capacitor element is exposed from at least one outer surface of the exterior body. The exposed end surface and the outer surface are covered with the external electrode. An electroless Ag plating layer covering at least the outer surface is interposed between the outer electrode and the outer surface. The electroless Ag plating layer covers the outer surface through or without a base layer which is a non-plating layer.

Description

電解コンデンサおよびその製造方法Electrolytic capacitor and manufacturing method thereof
 本開示は、電解コンデンサおよびその製造方法に関する。 The present disclosure relates to electrolytic capacitors and manufacturing methods thereof.
 電解コンデンサは、コンデンサ素子と、コンデンサ素子を封止する外装体と、コンデンサ素子の陽極側および陰極側のそれぞれと電気的に接続される複数の外部電極とを備える。コンデンサ素子は、第1端部を含む第1部分(陽極引出部とも言う)および第2端部を含む第2部分(陰極形成部とも言う)を有する陽極体と、陽極体の表面に形成された誘電体層と、第2部分において誘電体層の少なくとも一部を覆う陰極部とを備える。コンデンサ素子において、陽極体は陽極部を構成する。 An electrolytic capacitor includes a capacitor element, an exterior body that seals the capacitor element, and a plurality of external electrodes that are electrically connected to the anode side and the cathode side of the capacitor element, respectively. The capacitor element includes an anode body having a first portion (also referred to as an anode lead-out portion) including a first end and a second portion (also referred to as a cathode formation portion) including a second end; and a cathode portion covering at least a portion of the dielectric layer in the second portion. In the capacitor element, the anode body constitutes the anode portion.
 一般に、陽極部または陰極部と外部電極とは、ワイヤ、タブ、またはフレーム状のリードの一端を陽極部または陰極部に接続し、リードの他端側の部分を外装体から外に引き出して、外部電極と接続することが多い。場合によっては、陽極部または陰極部などの端面を外装体の外面に露出させて、露出した端面と外部電極とを電気的に接続することもある。 In general, the anode part or the cathode part and the external electrode are formed by connecting one end of a wire, tab, or frame-shaped lead to the anode part or the cathode part, and pulling out the other end of the lead from the exterior body. It is often connected to an external electrode. In some cases, the end face of the anode part or the cathode part is exposed to the outer surface of the package, and the exposed end face and the external electrode are electrically connected.
 例えば、特許文献1では、コンデンサ素子を含む積層体と、前記積層体の周囲を封止する封止樹脂とを備える直方体状の樹脂成形体と、前記樹脂成形体の第1端面に形成され、前記第1端面から露出する前記陽極と電気的に接続される第1外部電極と、前記樹脂成形体の第2端面に形成され、前記第2端面から露出する前記陰極と電気的に接続される第2外部電極と、前記樹脂成形体の底面の前記第1端面側に形成された第3外部電極と、前記樹脂成形体の底面の前記第2端面側に形成された第4外部電極と、を備える電解コンデンサであって、前記第1外部電極、前記第2外部電極、前記第3外部電極及び前記第4外部電極は、いずれも前記樹脂成形体上に形成された下地電極層と、前記下地電極層上に形成されためっき層とを有しており、前記第1外部電極の下地電極層と前記第3外部電極の下地電極層は離間しており、かつ、前記第2外部電極の下地電極層と前記第4外部電極の下地電極層は離間している電解コンデンサを提案している。 For example, in Patent Document 1, a rectangular parallelepiped resin molded body including a laminate including a capacitor element and a sealing resin for sealing the periphery of the laminate, and formed on a first end surface of the resin molded body, a first external electrode electrically connected to the anode exposed from the first end surface; and a first external electrode formed on the second end surface of the resin molding and electrically connected to the cathode exposed from the second end surface. a second external electrode, a third external electrode formed on the first end surface side of the bottom surface of the resin molded body, and a fourth external electrode formed on the second end surface side of the bottom surface of the resin molded body; wherein the first external electrode, the second external electrode, the third external electrode, and the fourth external electrode each comprise a base electrode layer formed on the resin molding, and the a plating layer formed on the base electrode layer, the base electrode layer of the first external electrode and the base electrode layer of the third external electrode are separated from each other, and the base electrode layer of the second external electrode is separated from the base electrode layer of the third external electrode; An electrolytic capacitor is proposed in which the base electrode layer and the base electrode layer of the fourth external electrode are separated from each other.
特開2020-141059号公報JP 2020-141059 A
 特許文献1では、外装体(上記樹脂成形体)の端面において露出する陽極および陰極の端面に、めっき層を形成し、このめっき層を介して外部電極を形成している。めっき層は、陽極または陰極の露出したごく小さな端面に形成されているため、陽極または陰極の端面と外部電極との密着強度を高めるには限界がある。 In Patent Document 1, a plated layer is formed on the end faces of the anode and the cathode exposed at the end face of the exterior body (the above resin molded body), and the external electrodes are formed via this plated layer. Since the plating layer is formed on the very small exposed end face of the anode or cathode, there is a limit to increasing the adhesion strength between the end face of the anode or cathode and the external electrode.
 本開示の第1側面は、陽極部および陰極部を含む少なくとも1つのコンデンサ素子と、
 前記コンデンサ素子を封止する外装体と、
 前記陽極部および前記陰極部のそれぞれと電気的に接続する複数の外部電極と、を備え、
 前記コンデンサ素子の前記陽極部および前記陰極部の少なくとも一方の端面が前記外装体の少なくとも1つの外面から露出しており、
 前記露出した端面および前記外面が前記外部電極で覆われており、
 前記外部電極と前記外面との間に、少なくとも前記外面を覆う無電解Agめっき層が介在しており、
 前記無電解Agめっき層は、下地層を介するか、または介さずに前記外面を覆っており、前記下地層は非めっき層である、電解コンデンサに関する。
A first aspect of the present disclosure provides at least one capacitor element including an anode portion and a cathode portion;
an exterior body that seals the capacitor element;
a plurality of external electrodes electrically connected to each of the anode portion and the cathode portion;
at least one end surface of the anode portion and the cathode portion of the capacitor element is exposed from at least one outer surface of the exterior body;
The exposed end surface and the outer surface are covered with the external electrode,
An electroless Ag plating layer covering at least the outer surface is interposed between the external electrode and the outer surface,
The electroless Ag plating layer covers the outer surface with or without an underlying layer, and the underlying layer is a non-plating layer.
 本開示の第2側面は、陽極部および陰極部を含む少なくとも1つのコンデンサ素子と、前記陽極部および前記陰極部の少なくとも一方の端面が少なくとも1つの外面から露出した状態で前記コンデンサ素子を封止する外装体とを備える前駆体を準備する工程と、
 前記外装体の前記少なくとも1つの外面を覆うように無電解Agめっきを行って、無電解Agめっき層を形成する工程と、
 前記無電解Agめっき層を覆う外部電極を形成して、電解コンデンサを得る工程と、を含む電解コンデンサの製造方法に関する。
A second aspect of the present disclosure includes at least one capacitor element including an anode section and a cathode section, and sealing the capacitor element with at least one end face of the anode section and the cathode section exposed from at least one outer surface. a step of preparing a precursor comprising an outer body that
forming an electroless Ag plating layer by performing electroless Ag plating so as to cover the at least one outer surface of the exterior body;
forming an external electrode covering the electroless Ag plating layer to obtain an electrolytic capacitor.
 陽極部または陰極部の外装体の外面から露出する端面と外部電極との密着性を高めることができる。 It is possible to increase the adhesion between the end face exposed from the outer surface of the exterior body of the anode part or the cathode part and the external electrode.
本開示の一実施形態に係る電解コンデンサを模式的に示す断面図である。1 is a cross-sectional view schematically showing an electrolytic capacitor according to an embodiment of the present disclosure; FIG. 図1の電解コンデンサを構成するコンデンサ素子の構造を模式的に示す断面図である。2 is a cross-sectional view schematically showing the structure of a capacitor element that constitutes the electrolytic capacitor of FIG. 1; FIG. 本開示の他の実施形態に係る電解コンデンサを模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an electrolytic capacitor according to another embodiment of the present disclosure;
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the present invention are set forth in the appended claims, the present invention, both as to construction and content, together with other objects and features of the present invention, will be further developed by the following detailed description in conjunction with the drawings. will be well understood.
 特許文献1では、外装体の外面から陽極部または陰極部の小さな端面が露出しており、この露出した端面を、内層めっき層で覆い、内層めっき層および外装体の外面をAgフィラーと樹脂とを含むペーストの印刷により形成される樹脂電極層で覆い、樹脂電極層を外層めっき層で覆うことによって、外面を覆う外部電極を形成している。内層めっき層は、露出した端面を覆うNiめっき層とNiめっき層を覆うAgめっき層で形成されている。しかし、内層めっき層は、陽極部または陰極部のごく小さな端面に形成されるため、高い密着強度を確保することが難しい。そのため、電解コンデンサに外部応力が加わると、内層めっき層と樹脂電極層との間または樹脂電極層内にクラックが発生し、樹脂電極層内で剥離が生じたり、樹脂電極層と樹脂電極層に接する部材(例えば、内層めっき層、外装体、基板)との間または内層めっき層と陽極部または陰極部の端面との間などで剥離が生じたりすることがある。このようなクラックまたは剥離が生じると、導電性が低下したり、電解コンデンサのバリア性が低下して空気が電解コンデンサ内部に侵入したりし易くなる。 In Patent Document 1, a small end surface of the anode part or the cathode part is exposed from the outer surface of the exterior body, the exposed end face is covered with an inner layer plating layer, and the inner layer plating layer and the outer surface of the exterior body are mixed with Ag filler and resin. By covering with a resin electrode layer formed by printing a paste containing and covering the resin electrode layer with an outer layer plating layer, an external electrode covering the outer surface is formed. The inner layer plating layer is formed of a Ni plating layer covering the exposed end surface and an Ag plating layer covering the Ni plating layer. However, since the inner plated layer is formed on a very small end surface of the anode portion or the cathode portion, it is difficult to ensure high adhesion strength. Therefore, when an external stress is applied to an electrolytic capacitor, cracks may occur between the inner plating layer and the resin electrode layer or within the resin electrode layer, causing peeling within the resin electrode layer, or cracking between the resin electrode layers. Separation may occur between the contacting members (for example, the inner plated layer, the exterior body, the substrate) or between the inner plated layer and the end surface of the anode part or the cathode part. When such cracks or peeling occurs, the electrical conductivity is lowered, and the barrier properties of the electrolytic capacitor are lowered, making it easier for air to enter the inside of the electrolytic capacitor.
 上記に鑑み、(1)本開示の第1側面にかかる電解コンデンサは、陽極部および陰極部を含む少なくとも1つのコンデンサ素子と、前記コンデンサ素子を封止する外装体と、前記陽極部および前記陰極部のそれぞれと電気的に接続する複数の外部電極と、を備える。前記コンデンサ素子の前記陽極部および前記陰極部の少なくとも一方の端面が前記外装体の少なくとも1つの外面から露出している。前記露出した端面および前記外面が前記外部電極で覆われている。前記外部電極と前記外面との間に、少なくとも前記外面を覆う無電解Agめっき層が介在している。前記無電解Agめっき層は、非めっき層である下地層を介するか、または介さずに前記外面を覆っている。 In view of the above, (1) the electrolytic capacitor according to the first aspect of the present disclosure includes at least one capacitor element including an anode portion and a cathode portion, an exterior body that seals the capacitor element, the anode portion and the cathode and a plurality of external electrodes electrically connected to each of the portions. At least one end surface of the anode portion and the cathode portion of the capacitor element is exposed from at least one outer surface of the exterior body. The exposed end surface and the outer surface are covered with the external electrode. An electroless Ag plating layer covering at least the outer surface is interposed between the outer electrode and the outer surface. The electroless Ag-plated layer covers the outer surface with or without an underlying layer, which is a non-plated layer.
 上記のように、本開示の第1側面に係る電解コンデンサでは、陽極部および陰極部の少なくとも一方の、外装体の外面から露出した端面とともに、外装体の外面が外部電極で覆われた構造において、外部電極と外面との間に、少なくとも外面を覆う無電解銀めっき層(無電解Agめっき層と称することがある)を介在させる。外装体の外面を覆うように無電解Agめっき層を形成することで、陽極部または陰極部の外面から露出した端面だけでなく、外装体の外面の大きな領域が無電解Agめっき層で覆われる。また、無電解Agめっきでは、比較的緻密なめっき層が形成される。これらによって、無電解Agめっき層による外装体の外面に対する高いアンカー効果が得られる。無電解Agめっき層は、外部電極との親和性が高い。そのため、無電解Agめっき層によって、陽極部または陰極部の露出した端面および外装体の外面と、外部電極との間の密着性を高めることができる。その結果、陽極部または陰極部の露出した端面と外部電極との間の優れた電気的接続を確保することができるため、初期の等価直列抵抗(ESR)の増加を抑制できる。一般に、陽極部または陰極部の露出した端面と外部電極との間の密着性が低いと、製造過程または流通過程でもクラックまたは剥離が生じ易く、電解コンデンサの個体間で差が大きくなり、ESRのばらつきが大きくなる傾向がある。それに対し、本開示では、無電解Agめっき層を設けることで、陽極部または陰極部の露出した端面および外装体の外面と、外部電極との間の高い密着性を確保できるため、電解コンデンサの個体間において、初期のESRのばらつきを低減できる。よって、電解コンデンサの高い信頼性が得られる。また、電解コンデンサに外部応力が加わっても、陽極部または陰極部の露出した端面と外部電極との間において、剥離またはクラックの発生を抑制できるため、空気に対する高いバリア性(特に、高い酸素バリア性)が得られ、電解コンデンサ内への空気の侵入を抑制できる。侵入した酸素または水分などによってコンデンサ素子が劣化することが抑制されるため、電解コンデンサを長期使用しても、ESRの増加を抑制できる。よって、この点からも、電解コンデンサの高い信頼性が得られる。 As described above, in the electrolytic capacitor according to the first aspect of the present disclosure, in the structure in which the outer surface of the exterior body is covered with the external electrode, together with the end face exposed from the exterior surface of the exterior body, at least one of the anode portion and the cathode portion , an electroless silver-plated layer (sometimes referred to as an electroless Ag-plated layer) covering at least the outer surface is interposed between the external electrode and the outer surface. By forming the electroless Ag plating layer so as to cover the outer surface of the package, not only the end face exposed from the outer surface of the anode part or the cathode part, but also a large area of the outer surface of the package is covered with the electroless Ag plating layer. . Also, in electroless Ag plating, a relatively dense plating layer is formed. As a result, the electroless Ag plating layer has a high anchoring effect on the outer surface of the exterior body. The electroless Ag plating layer has a high affinity with external electrodes. Therefore, the electroless Ag-plated layer can enhance the adhesion between the exposed end face of the anode part or the cathode part, the outer surface of the outer package, and the external electrode. As a result, excellent electrical connection between the exposed end face of the anode portion or the cathode portion and the external electrode can be ensured, thereby suppressing an increase in initial equivalent series resistance (ESR). In general, if the adhesion between the exposed end face of the anode part or the cathode part and the external electrode is low, cracks or peeling may easily occur during the manufacturing process or the distribution process, resulting in a large difference in ESR between individual electrolytic capacitors. variability tends to increase. On the other hand, in the present disclosure, by providing an electroless Ag plating layer, it is possible to ensure high adhesion between the exposed end surface of the anode part or the cathode part, the outer surface of the exterior body, and the external electrode. Initial ESR variability can be reduced between individuals. Therefore, high reliability of the electrolytic capacitor can be obtained. In addition, even if external stress is applied to the electrolytic capacitor, peeling or cracking can be suppressed between the exposed end face of the anode or cathode and the external electrode, resulting in high barrier properties against air (in particular, high oxygen barrier properties). performance) can be obtained, and intrusion of air into the electrolytic capacitor can be suppressed. Since deterioration of the capacitor element due to intruding oxygen or moisture is suppressed, an increase in ESR can be suppressed even if the electrolytic capacitor is used for a long period of time. Therefore, also from this point, high reliability of the electrolytic capacitor can be obtained.
 外装体の外面とは、外装体の外形を形作る表面である。例えば、コンデンサ素子が外装体で封止された封止物が直方体または立方体などの形状を有する場合、直方体または立方体の6つの表面が外装体の外面に相当する。外装体の外面には、外装体の主面、側面、および端面などと称されるような表面が包含される。例えば、コンデンサ素子が基板上に載置された状態で外装体で封止され、封止物が直方体または立方体などの形状を有する場合、1つの表面(例えば、底面)が基板の表面に相当し、残りの5つの表面が外装体の外面に相当することがある。 The outer surface of the exterior body is the surface that forms the outer shape of the exterior body. For example, in the case where the capacitor element is sealed with the package and the package has a shape such as a rectangular parallelepiped or a cube, the six surfaces of the rectangular parallelepiped or cube correspond to the outer surfaces of the package. The outer surface of the armor includes surfaces referred to as main surfaces, side surfaces, end surfaces, and the like of the armor. For example, when a capacitor element is mounted on a substrate and sealed with an outer package, and the sealed object has a shape such as a rectangular parallelepiped or a cube, one surface (for example, the bottom surface) corresponds to the surface of the substrate. , the remaining five surfaces may correspond to the outer surface of the armor.
 外装体の外面から露出する陽極部の端面とは、陽極部(より具体的には第1部分(換言すると陽極引出部))の端面であってもよく、陽極部の第1部分に電気的に接続されたリードの端面であってもよい。外装体の外面から露出する陰極部の端面とは、陰極部の端面(より具体的には、陰極部を構成する部材(例えば、金属箔)の端面)であってもよく、陰極部に電気的に接続されたリードの端面であってもよい。端面が露出するリードは、ワイヤ状であってもよいが、タブ状またはフレーム状などが好ましく、シート状であってもよい。 The end face of the anode part exposed from the outer surface of the package may be the end face of the anode part (more specifically, the first part (in other words, the anode lead-out part)). It may be the end face of the lead connected to the . The end face of the cathode portion exposed from the outer surface of the outer package may be the end face of the cathode portion (more specifically, the end face of the member (for example, metal foil) constituting the cathode portion). It may be the end face of a lead that is physically connected. The lead whose end face is exposed may be wire-shaped, but preferably tab-shaped or frame-shaped, or may be sheet-shaped.
 (2)上記(1)において、前記無電解Agめっき層は、銀鏡めっき層を含んでもよい。 (2) In (1) above, the electroless Ag plating layer may include a silver mirror plating layer.
 (3)上記(1)または(2)において、前記外部電極は、前記無電解Agめっき層を覆う導電性ペースト層と、前記導電性ペースト層を覆うNi/Snめっき層とを含んでもよい。 (3) In (1) or (2) above, the external electrode may include a conductive paste layer covering the electroless Ag plating layer and a Ni/Sn plating layer covering the conductive paste layer.
 (4)上記(1)~(3)のいずれか1つにおいて、前記無電解Agめっき層は、前記下地層を介さずに前記露出した端面を覆っていてもよい。 (4) In any one of the above (1) to (3), the electroless Ag plating layer may cover the exposed end face without the underlayer.
 (5)上記(1)~(3)のいずれか1つにおいて、前記露出した端面と、前記無電解Agめっき層との間に、第1めっき層が介在していてもよい。 (5) In any one of (1) to (3) above, a first plating layer may be interposed between the exposed end surface and the electroless Ag plating layer.
 (6)上記(5)において、前記第1めっき層は、Ag、Ni、CuおよびZnからなる群より選択される少なくとも一種を含んでもよい。 (6) In (5) above, the first plating layer may contain at least one selected from the group consisting of Ag, Ni, Cu and Zn.
 (7)上記(5)または(6)において、前記第1めっき層は、複数層のめっき層を含んでもよい。 (7) In (5) or (6) above, the first plating layer may include a plurality of plating layers.
 (8)上記(1)~(7)のいずれか1つにおいて、前記陽極部の端面が前記外装体の第1外面から露出し、前記第1外面とともに第1外部電極で覆われていてもよい。前記陰極部の端面が前記外装体の第2外面から露出し、前記第2外面とともに第2外部電極で覆われていてもよい。前記第1外面と前記第1外面を覆う前記第1外部電極との間に、前記無電解Agめっき層が介在していてもよい。前記第2外面と前記第2外面を覆う前記第2外部電極との間に、前記無電解Agめっき層が介在していてもよい。 (8) In any one of (1) to (7) above, even if the end face of the anode portion is exposed from the first outer surface of the outer package and is covered with the first external electrode together with the first outer surface. good. An end surface of the cathode portion may be exposed from the second outer surface of the exterior body and covered with a second external electrode together with the second outer surface. The electroless Ag plating layer may be interposed between the first outer surface and the first external electrode covering the first outer surface. The electroless Ag plating layer may be interposed between the second outer surface and the second external electrode covering the second outer surface.
 (9)上記(1)~(7)のいずれか1つにおいて、電解コンデンサは、積層された複数の前記コンデンサ素子を備えてもよい。 (9) In any one of (1) to (7) above, the electrolytic capacitor may include a plurality of stacked capacitor elements.
 (10)上記(9)において、前記複数の前記コンデンサ素子のそれぞれの前記陽極部の端面が前記外装体の第1外面から露出し、前記第1外面とともに第1外部電極で覆われていてもよい。前記複数の前記コンデンサ素子のそれぞれの前記陰極部の端面が前記外装体の第2外面から露出し、前記第2外面とともに第2外部電極で覆われていてもよい。前記第1外面と前記第1外面を覆う前記第1外部電極との間に、前記無電解Agめっき層が介在していてもよい。前記第2外面と前記第2外面を覆う前記第2外部電極との間に、前記無電解Agめっき層が介在していてもよい。 (10) In (9) above, even if the end face of the anode portion of each of the plurality of capacitor elements is exposed from the first outer surface of the exterior body and is covered with a first external electrode together with the first outer surface. good. An end surface of the cathode portion of each of the plurality of capacitor elements may be exposed from the second outer surface of the exterior body and covered with a second external electrode together with the second outer surface. The electroless Ag plating layer may be interposed between the first outer surface and the first external electrode covering the first outer surface. The electroless Ag plating layer may be interposed between the second outer surface and the second external electrode covering the second outer surface.
 (11)上記(9)において、一部の前記コンデンサ素子の前記陽極部の端面は、前記外装体の第1外面から露出し、前記第1外面とともに第1外部電極で覆われていてもよい。残部の前記コンデンサ素子の前記陽極部の端面は、前記第1外面とは反対側の第2外面から露出し、前記第2外面とともに第3外部電極で覆われていてもよい。前記第1外面と前記第1外面を覆う前記第1外部電極との間に、前記無電解Agめっき層が介在していてもよい。前記第2外面と前記第2外面を覆う前記第3外部電極との間に、前記無電解Agめっき層が介在していてもよい。 (11) In (9) above, an end surface of the anode part of a part of the capacitor elements may be exposed from the first outer surface of the exterior body and covered with a first external electrode together with the first outer surface. . An end surface of the anode portion of the remaining capacitor element may be exposed from a second outer surface opposite to the first outer surface and covered with a third outer electrode together with the second outer surface. The electroless Ag plating layer may be interposed between the first outer surface and the first external electrode covering the first outer surface. The electroless Ag plating layer may be interposed between the second outer surface and the third outer electrode covering the second outer surface.
 (12)上記(1)~(11)のいずれか1つにおいて、前記無電解Agめっき層の厚さは、0.01μm以上10μm以下であってもよい。 (12) In any one of (1) to (11) above, the electroless Ag plating layer may have a thickness of 0.01 μm or more and 10 μm or less.
 本開示には、コンデンサ素子の陽極部および陰極部の少なくとも一方の端面が露出した外装体の外面を覆うように無電解Agめっきを行って、無電解Agめっき層を形成する工程と、無電解Agめっき層を覆う外部電極を形成して、電解コンデンサを得る工程と、を含む電解コンデンサの製造方法も包含される。 The present disclosure includes a step of forming an electroless Ag-plated layer by performing electroless Ag plating so as to cover the outer surface of the exterior body where at least one end face of the anode part and the cathode part of the capacitor element is exposed; Forming an external electrode covering the Ag plating layer to obtain an electrolytic capacitor is also included.
 より具体的には、(13)本開示の電解コンデンサの製造方法は、
 陽極部および陰極部を含む少なくとも1つのコンデンサ素子と、前記陽極部および前記陰極部の少なくとも一方の端面が少なくとも1つの外面から露出した状態で前記コンデンサ素子を封止する外装体とを備える前駆体を準備する工程と、
 前記外装体の前記少なくとも1つの外面を覆うように無電解Agめっきを行って、無電解Agめっき層を形成する工程と、
 前記無電解Agめっき層を覆う外部電極を形成して、電解コンデンサを得る工程と、を含む。
More specifically, (13) the method for manufacturing an electrolytic capacitor of the present disclosure comprises:
A precursor comprising: at least one capacitor element including an anode portion and a cathode portion; and an exterior body sealing the capacitor element with at least one end surface of the anode portion and the cathode portion exposed from at least one outer surface. a step of preparing
forming an electroless Ag plating layer by performing electroless Ag plating so as to cover the at least one outer surface of the exterior body;
and forming an external electrode covering the electroless Ag plating layer to obtain an electrolytic capacitor.
 (14)上記(13)において、電解コンデンサの製造方法は、前記端面を覆うように第1めっき層を形成する工程を含んでもよい。前記無電解Agめっき層を形成する工程において、前記第1めっき層および前記外装体の前記少なくとも1つの外面を覆うように前記無電解Agめっきを行ってもよい。 (14) In (13) above, the method for manufacturing an electrolytic capacitor may include a step of forming a first plating layer so as to cover the end faces. In the step of forming the electroless Ag plating layer, the electroless Ag plating may be performed so as to cover the first plating layer and the at least one outer surface of the exterior body.
 (15)上記(13)または(14)について、前記無電解Agめっき層を形成する工程において、前記外装体の前記少なくとも1つの外面を覆うように、銀鏡めっきを行って、前記無電解Agめっき層としての銀鏡めっき層を形成してもよい。 (15) Regarding (13) or (14) above, in the step of forming the electroless Ag plating layer, silver mirror plating is performed so as to cover the at least one outer surface of the exterior body, and the electroless Ag plating is performed. A silver mirror plating layer may be formed as a layer.
 (16)上記(13)~(15)のいずれか1つについて、前記外装体の前記少なくとも1つの外面の前記露出した端面以外の領域において、前記外面と前記無電解Agめっき層との間に非めっき層である下地層が介在するように、前記外面に前記下地層を形成してもよい。 (16) Regarding any one of the above (13) to (15), in a region other than the exposed end surface of the at least one outer surface of the exterior body, between the outer surface and the electroless Ag plating layer The base layer may be formed on the outer surface so that the base layer, which is a non-plating layer, is interposed.
 (17)上記(13)について、前記露出した端面をマスキングした状態で、前記外装体の前記少なくとも1つの外面の前記露出した端面以外の領域において、前記外面と前記無電解Agめっき層との間に非めっき層である下地層が介在するように、前記外面に前記下地層を形成してもよい。 (17) Regarding (13) above, in a state where the exposed end face is masked, in a region other than the exposed end face of the at least one outer face of the exterior body, between the outer face and the electroless Ag plating layer The base layer may be formed on the outer surface so that the base layer, which is a non-plating layer, is interposed in the outer surface.
 以下に、上記(1)~(17)を含めて、本開示の電解コンデンサおよびその製造方法についてより具体的に説明する。技術的に矛盾のない範囲で、上記(1)~(17)の少なくとも1つと、以下に記載する要素の少なくとも1つとを組み合わせてもよい。 In the following, the electrolytic capacitor of the present disclosure and its manufacturing method will be described in more detail, including the above (1) to (17). At least one of the above (1) to (17) may be combined with at least one of the elements described below within a technically consistent range.
[電解コンデンサ]
(無電解Agめっき層)
 本開示の電解コンデンサでは、コンデンサ素子の陽極部および陰極部の少なくとも一方の端面が外装体の少なくとも1つの外面から露出しており、この露出した端面および外面が外部電極で覆われている。このような状態において、無電解Agめっき層は、陽極部または陰極部の端面が露出している外装体の外面と外部電極との間に、少なくとも外面を覆うように形成される。
[Electrolytic capacitor]
(Electroless Ag plating layer)
In the electrolytic capacitor of the present disclosure, at least one end surface of the anode portion and the cathode portion of the capacitor element is exposed from at least one outer surface of the outer package, and the exposed end surface and outer surface are covered with the external electrode. In such a state, the electroless Ag plating layer is formed between the external electrode and the external surface of the external body where the end surface of the anode portion or the cathode portion is exposed so as to cover at least the external surface.
 無電解Agめっき層は、陽極部または陰極部の端面が露出した外装体の1つの外面全体を覆うように形成されていてもよく、露出した端面を覆い、かつ外装体の1つの外面の一部を覆うように形成されていてもよい。例えば、外装体の複数の外面のうち第1外面から陽極部の端面が露出している場合、露出した端面と、第1外面の、露出した端面の少なくとも周辺の領域とを覆うように無電解Agめっき層を形成してもよい。また、第1外面全体を覆うように無電解Agめっき層を形成してもよい。同様に、例えば、第2外面から陰極部の端面が露出している場合、露出した端面と、第2外面の、露出した端面の少なくとも周辺の領域とを覆うように無電解Agめっき層を形成してもよく、第2外面全体を覆うように無電解Agめっき層を形成してもよい。複数の外面に無電解Agめっき層が形成される場合、少なくとも2つの外面における無電解Agめっき層の組成は、同じであってもよく、全ての外面における無電解Agめっき層の組成が異なってもいてもよい。 The electroless Ag plating layer may be formed so as to cover the entire outer surface of one of the exterior bodies where the end face of the anode part or the cathode part is exposed, and covers the exposed end face and one of the outer surfaces of the exterior body. It may be formed so as to cover the part. For example, when the end surface of the anode portion is exposed from the first outer surface among the plurality of outer surfaces of the outer package, the electroless electrolyte is applied so as to cover the exposed end surface and at least the peripheral region of the exposed end surface of the first outer surface. An Ag plating layer may be formed. Alternatively, an electroless Ag plating layer may be formed so as to cover the entire first outer surface. Similarly, for example, when the end face of the cathode portion is exposed from the second outer surface, an electroless Ag plating layer is formed so as to cover the exposed end face and at least the peripheral region of the exposed end face of the second outer surface. Alternatively, an electroless Ag plating layer may be formed to cover the entire second outer surface. When electroless Ag plating layers are formed on a plurality of outer surfaces, the composition of the electroless Ag plating layers on at least two outer surfaces may be the same, and the composition of the electroless Ag plating layers on all outer surfaces is different. It's okay to be there.
 無電解Agめっき層は、下地層を介して外装体の外面を覆っていてもよく、下地層を介さずに外装体の外面を覆っていてもよい(換言すると、外面に直接接触していてもよい)。 The electroless Ag plating layer may cover the outer surface of the exterior body via the underlying layer, or may cover the outer surface of the exterior body without the underlying layer (in other words, it is in direct contact with the outer surface. can also be used).
 下地層は、非めっき層である。このような下地層は、無電解Agめっき層の下地として利用される塗布層(またはアンダーコート層)であってもよい。下地層は、例えば、樹脂を含むコーティング剤で形成される塗布層であってもよい。下地層の表面は、必要に応じて、例えば、油脂等の汚れを落とすための洗浄処理、親水化処理が施されていてもよい。下地層を設けない場合には、外装体の外面(後述の分離層の外装体の外面から露出した端面、後述の絶縁性のスペーサの外装体の外面から露出した端面なども含む)には、必要に応じて、上記の洗浄処理、親水化処理などが施されていてもよい。 The underlying layer is a non-plating layer. Such a base layer may be a coating layer (or an undercoat layer) used as a base for the electroless Ag plating layer. The underlayer may be, for example, a coating layer formed of a coating agent containing a resin. If necessary, the surface of the underlayer may be subjected to, for example, a cleaning treatment for removing stains such as oils and fats, or a hydrophilic treatment. When the base layer is not provided, the outer surface of the exterior body (including the end surface of the separation layer, which will be described later, exposed from the exterior surface of the exterior body, and the end surface of the insulating spacer, which will be described later, exposed from the exterior surface of the exterior body), If necessary, the above washing treatment, hydrophilization treatment, and the like may be performed.
 下地層に含まれる樹脂としては、熱可塑性樹脂、硬化性樹脂などが挙げられる。樹脂としては、例えば、アルキッド樹脂、フェノール樹脂、エポキシ樹脂、アクリル樹脂、ベンゾグアナミン樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、セルロースエーテル、セルロースエステル、および塩化ビニル系樹脂からなる群より選択される少なくとも一種が挙げられる。ポリエステル樹脂には、フェノキシ樹脂も包含される。しかし、下地層に含まれる樹脂は、これらの具体例のみに限定されない。コーティング剤は、樹脂に加えて、カップリング剤(アルコキシシラン化合物、アルコキシチタニウム化合物(エステルなど)など)、金属酸化物などを含んでもよい。コーティング剤としては、硬化性の樹脂材料を含む塗料が好ましい。硬化性材料は、一液硬化型および二液硬化型のいずれであってもよい。下地層は、絶縁性であってもよい。  The resins contained in the base layer include thermoplastic resins and curable resins. Examples of the resin include at least one selected from the group consisting of alkyd resins, phenolic resins, epoxy resins, acrylic resins, benzoguanamine resins, polyurethane resins, silicone resins, polyester resins, cellulose ethers, cellulose esters, and vinyl chloride resins. is mentioned. Polyester resins also include phenoxy resins. However, the resin contained in the underlayer is not limited to these specific examples. The coating agent may contain a coupling agent (alkoxysilane compound, alkoxytitanium compound (ester, etc.), etc.), metal oxide, etc., in addition to the resin. As the coating agent, a paint containing a curable resin material is preferable. The curable material may be either of the one-component curing type and the two-component curing type. The underlayer may be insulating.
 無電解Agめっき層は、外装体の外面を覆うように形成できればよい。無電解Agめっき層は、例えば、還元型の無電解Agめっき法によって形成されるめっき被膜を含むことが好ましい。 The electroless Ag plating layer should be formed so as to cover the outer surface of the exterior body. The electroless Ag plating layer preferably includes a plating film formed by, for example, a reduction type electroless Ag plating method.
 絶縁性の外面に対して、より高いアンカー効果を確保し易い観点からは、無電解Agめっき層は、銀鏡めっき層を含むことが好ましい。銀鏡めっきは、銀鏡反応を利用するため、外装体の表面の微細な凹部内にめっき被膜が入り込んで形成されるとともに、比較的均一なめっき被膜が形成される。よって、絶縁性の外面に対してより高いアンカー効果が得られると考えられる。無電解Agめっき層は、銀鏡めっき層のみで構成してもよく、銀鏡めっき層と少なくとも1層の他の無電解Agめっき層とで構成してもよい。より高いアンカー効果が得られる観点からは、無電解Agめっき層全体では、少なくとも銀鏡めっき層が、外装体の外面側に(より具体的には、下地層または外面と接触するように)形成されていることが好ましい。銀鏡めっき層を覆うように形成される他の無電解Agめっき層は、還元型、置換型、自己触媒型などの無電解Agめっき法によって形成してもよい。また、無電解Agめっき層を銀鏡めっき層のみで構成する場合も好ましい。この場合、銀鏡めっき層と外部電極との間の高い親和性が得られるため、銀鏡めっき層を介して、陽極部または陰極部の露出した端面および外装体と外部電極とのさらに高い密着性を確保することができる。 From the viewpoint of easily ensuring a higher anchoring effect on the insulating outer surface, the electroless Ag plating layer preferably contains a silver mirror plating layer. Since silver mirror plating utilizes a silver mirror reaction, the plating film is formed by entering into minute recesses on the surface of the exterior body, and a relatively uniform plating film is formed. Therefore, it is considered that a higher anchor effect can be obtained for the insulating outer surface. The electroless Ag-plated layer may be composed of only a silver mirror-plated layer, or may be composed of a silver mirror-plated layer and at least one other electroless Ag-plated layer. From the viewpoint of obtaining a higher anchor effect, at least the silver mirror-plated layer is formed on the outer surface side of the exterior body (more specifically, in contact with the underlying layer or the outer surface) in the entire electroless Ag-plated layer. preferably. The other electroless Ag plating layer formed so as to cover the silver mirror plating layer may be formed by electroless Ag plating methods such as reduction type, substitution type, and autocatalytic type. Moreover, it is also preferable to configure the electroless Ag plating layer only with a silver mirror plating layer. In this case, a high affinity between the silver mirror-plated layer and the external electrodes is obtained, so that even higher adhesion between the exposed end faces of the anode part or the cathode part and the exterior body and the external electrodes is achieved through the silver mirror-plated layer. can be secured.
 銀鏡めっき層は、例えば、純銀などの金属銀(換言すると銀単体)を含んでいる。銀鏡めっき層は、少量の不純物(例えば、銀以外の金属元素、炭素などの非金属元素)を含んでもよい。銀鏡めっき層の形成には、例えば、電子材料向けの銀鏡めっきが利用できる。 The silver mirror-plated layer contains, for example, metallic silver such as pure silver (in other words, simple silver). The silver mirror-plated layer may contain a small amount of impurities (for example, metallic elements other than silver and non-metallic elements such as carbon). Silver mirror plating for electronic materials, for example, can be used to form the silver mirror plating layer.
 無電解Agめっき層の厚さは、例えば、0.01μm以上10μm以下であり、0.05μm以上5μm以下であってもよい。無電解Agめっき層がこのような厚さである場合、無電解Agめっき層で覆う外面の領域全体により均一なめっき被膜が形成され易く、外装体と外部電極との間のより高い密着性が得られ易い。また、銀の使用量を比較的低く抑えることができるため、コスト的に有利である。 The thickness of the electroless Ag plating layer is, for example, 0.01 μm or more and 10 μm or less, and may be 0.05 μm or more and 5 μm or less. When the electroless Ag plating layer has such a thickness, it is easier to form a uniform plating film over the entire region of the outer surface covered with the electroless Ag plating layer, resulting in higher adhesion between the exterior body and the external electrodes. easy to obtain. Moreover, since the amount of silver used can be kept relatively low, it is advantageous in terms of cost.
 なお、本明細書中、めっき層および外部電極を構成する各層の厚さは、それぞれ、外装体の外面から外部電極までの部分を少なくとも含む断面画像に基づき、各層の10箇所以上を任意に選択して厚みを計測し、平均化することによって求められる。 In this specification, the thickness of each layer constituting the plating layer and the external electrode is arbitrarily selected from 10 or more points of each layer based on a cross-sectional image including at least a portion from the outer surface of the exterior body to the external electrode. It is obtained by measuring the thickness by averaging.
 また、めっき層および外部電極を構成する各層の種類または組成は、各層に含まれる成分(例えば、金属成分、金属以外の成分)を分析することにより、特定が可能である。各めっき層における元素の構成割合は、例えば電子線マイクロアナライザ(EPMA)により求められる。 In addition, the type or composition of each layer that constitutes the plating layer and the external electrode can be specified by analyzing the components (for example, metal components and non-metal components) contained in each layer. The composition ratio of the elements in each plating layer is determined by, for example, an electron probe microanalyzer (EPMA).
 無電解Agめっき層は、外装体の外面と外部電極との間に介在するため、外装体の外面に加えて、外面から露出した陽極部または陰極部の端面を覆っている。高い導電性を確保する観点から、陽極部または陰極部の外面から露出した端面には、下地層を介さずに無電解Agめっき層が形成されている(換言すると、接触している)ことが好ましい。また、露出した端面と無電解Agめっき層との間に他のめっき層(第1めっき層と称する)が介在していてもよい。この場合、露出した端面は、第1めっき層で覆われ、第1めっき層および外装体の外面が無電解Agめっき層(第2めっき層)で覆われる。後述するように、陽極部と陰極部とを分離する絶縁性の分離層が設けられ、分離層の端面が外装体の外面から露出している場合がある。この場合には、分離層の端面は、下地層を介してまたは介さずに無電解Agめっき層で覆われていてもよい。また、電解コンデンサが、積層された複数のコンデンサ素子を含む場合、隣接する陽極部の端部間または隣接する陰極部の端部間には、導電性または絶縁性のスペーサが配置される場合がある。電解コンデンサが絶縁性のスペーサを含む場合、スペーサの端面は外装体の外面から露出していてもよい。この場合には、スペーサの端面は、下地層を介してまたは介さずに無電解Agめっき層で覆われていてもよい。無電解Agめっき層の形成に銀鏡めっきを採用すると、下地層を形成しなくても、外装体の外面にめっき層を形成でき、高いアンカー効果を確保することができる。外装体の外面から分離層の端面または絶縁性のスペーサの端面などが露出している場合、これらの端面に対しても、特に下地層を介さずに、高い密着性で銀鏡めっき層を形成することができる。 Since the electroless Ag plating layer is interposed between the outer surface of the exterior body and the external electrode, it covers not only the outer surface of the exterior body but also the end face of the anode part or the cathode part exposed from the outer surface. From the viewpoint of ensuring high conductivity, it is preferable that an electroless Ag plating layer is formed (in other words, in contact) on the end face exposed from the outer surface of the anode part or the cathode part without an underlying layer intervening. preferable. Another plated layer (referred to as a first plated layer) may be interposed between the exposed end surface and the electroless Ag plated layer. In this case, the exposed end face is covered with a first plating layer, and the first plating layer and the outer surface of the exterior body are covered with an electroless Ag plating layer (second plating layer). As will be described later, an insulating separation layer may be provided to separate the anode portion and the cathode portion, and the end face of the separation layer may be exposed from the outer surface of the exterior body. In this case, the end face of the separation layer may be covered with an electroless Ag plating layer with or without an underlying layer. Further, when the electrolytic capacitor includes a plurality of stacked capacitor elements, conductive or insulating spacers may be arranged between the ends of adjacent anode portions or between the ends of adjacent cathode portions. be. When the electrolytic capacitor includes an insulating spacer, the end surface of the spacer may be exposed from the outer surface of the package. In this case, the end face of the spacer may be covered with an electroless Ag plating layer with or without an underlying layer. When silver mirror plating is used to form the electroless Ag plating layer, the plating layer can be formed on the outer surface of the exterior body without forming a base layer, and a high anchor effect can be ensured. When the end face of the separation layer or the end face of the insulating spacer is exposed from the outer surface of the exterior body, the silver mirror plating layer is formed with high adhesion even on these end faces without the interposition of the underlying layer. be able to.
 陽極部または陰極部の外装体の外面から露出する端面には、必要に応じて、無電解Agめっき層または第1めっき層の形成に先立って、前処理を行ってもよい。このような前処理としては、例えば、めっき処理の公知の前処理(脱脂処理、エッチング処理、酸処理、デスマット処理、ジンケート処理など)が挙げられる。前処理は、外装体の外面に下地層を形成する前および後のいずれに行ってもよい。 The end face exposed from the outer surface of the exterior body of the anode part or the cathode part may be pretreated as necessary prior to the formation of the electroless Ag plating layer or the first plating layer. Examples of such pretreatment include known pretreatments for plating (degreasing, etching, acid treatment, desmutting, zincate treatment, etc.). The pretreatment may be performed before or after forming the base layer on the outer surface of the exterior body.
(第1めっき層)
 第1めっき層は、例えば、外装体の外面から露出した陽極部または陰極部の端面を覆うように形成される。第1めっき層は、陽極部または陰極部の露出した端面の周囲の外装体の外面を覆っていてもよいが、外面を覆う面積は小さい方が好ましく、露出した端面のみを覆うように選択的に形成することが好ましい。分離層の端面が外面から露出している場合には、第1めっき層で覆われていてもよいが、第1めっき層では覆われずに無電解Agめっき層で覆われていることが好ましい。
(First plating layer)
The first plating layer is formed, for example, so as to cover the end surface of the anode portion or the cathode portion exposed from the outer surface of the exterior body. The first plating layer may cover the outer surface of the exterior body around the exposed end surface of the anode part or the cathode part, but the area that covers the outer surface is preferably small, and the first plating layer is selected so as to cover only the exposed end surface. It is preferable to form the When the end face of the separation layer is exposed from the outer surface, it may be covered with the first plating layer, but it is preferably covered with the electroless Ag plating layer without being covered with the first plating layer. .
 第1めっき層は、例えば、Ag(銀)、Ni(ニッケル)、Cu(銅)およびZn(亜鉛)からなる群より選択される少なくとも一種を含んでもよい。このような第1めっき層は、陽極部または陰極部の露出した端面と無電解Agめっき層との高い密着性を維持し易く、界面抵抗を低く抑える上で有利である。第1めっき層は、上記の金属の単体を含んでもよく、上記の金属を含む合金を含んでもよい。第1めっき層は、電解めっきおよび無電解めっきのいずれによって形成してもよい。 The first plating layer may contain, for example, at least one selected from the group consisting of Ag (silver), Ni (nickel), Cu (copper) and Zn (zinc). Such a first plating layer facilitates maintaining high adhesion between the exposed end face of the anode portion or the cathode portion and the electroless Ag plating layer, and is advantageous in keeping the interfacial resistance low. The first plating layer may contain a simple substance of the above metal, or may contain an alloy containing the above metal. The first plating layer may be formed by either electroplating or electroless plating.
 第1めっき層は、1層のめっき層を含んでもよく、複数層のめっき層を含んでもよい。例えば、第1めっき層は、無電解Niめっき層を少なくとも含んでもよい。陽極部または陰極部の端面に対する無電解Niめっき層の密着性を高める観点から、無電解Niめっき層を形成する前に、ジンケート処理を行ってもよい。陽極部または陰極部の露出する端面にジンケート処理を行って、無電解Niめっきを行うと、露出する端面に選択的に第1めっき層を形成できる。第1めっき層は、無電解Niめっき層と、無電解Niめっき層を覆うAgめっき層とを含んでもよい。第1めっき層の形成には、公知の方法を採用してもよい。 The first plating layer may include a single plating layer, or may include a plurality of plating layers. For example, the first plating layer may include at least an electroless Ni plating layer. From the viewpoint of enhancing the adhesion of the electroless Ni plating layer to the end face of the anode portion or the cathode portion, zincate treatment may be performed before forming the electroless Ni plating layer. When the exposed end face of the anode part or the cathode part is subjected to zincate treatment and electroless Ni plating is performed, the first plated layer can be selectively formed on the exposed end face. The first plating layer may include an electroless Ni plating layer and an Ag plating layer covering the electroless Ni plating layer. A known method may be employed to form the first plating layer.
 無電解Niめっき層は、リン(P)およびホウ素(B)元素などから選択される少なくとも一種を含んでもよい。これらの元素は、例えば、めっき浴に加えられる還元剤(ジ亜リン酸ナトリウム、ジメチルアミン-ボランなど)に起因する。無電解Niめっき層がリン(P)を含む場合、無電解Niめっき層の耐食性および耐酸化性が向上する。 The electroless Ni plating layer may contain at least one element selected from phosphorus (P) and boron (B) elements. These elements originate, for example, from reducing agents (sodium diphosphite, dimethylamine-borane, etc.) added to the plating bath. When the electroless Ni plating layer contains phosphorus (P), the corrosion resistance and oxidation resistance of the electroless Ni plating layer are improved.
 無電解Niめっき層は、実質的にNiのみからなっていてもよい。ここで、「無電解Niめっき層が実質的にNiのみからなる」とは、無電解Niめっき層に占めるNi以外の元素の割合が0.1質量%未満であることをいう。この場合、めっきに時間を要するものの、緻密で耐食性に優れためっき層が得られ、ESRをさらに低減する上で有利である。 The electroless Ni plating layer may consist essentially of Ni only. Here, "the electroless Ni plating layer consists essentially of Ni" means that the proportion of elements other than Ni in the electroless Ni plating layer is less than 0.1% by mass. In this case, although the plating takes time, a dense and highly corrosion-resistant plating layer can be obtained, which is advantageous for further reducing the ESR.
 無電解Niめっき層の厚さは、0.1μm以上10μm以下であってもよい。 The thickness of the electroless Ni plating layer may be 0.1 μm or more and 10 μm or less.
 無電解Niめっき層を覆うAgめっき層は、電解Agめっき層でもよく、外装体の外面を覆う上述の無電解Agめっき層とは組成の異なる無電解Agめっき層でもよい。例えば、外装体の外面を覆う無電解Agめっき層が銀鏡めっき層を含み、第1めっき層を構成するAgめっき層を、銀鏡めっきとは異なる無電解Agめっきによって形成してもよい。第1めっき層を構成する無電解Agめっき層は、例えば、置換型、還元型、自己触媒型などの無電解Agめっき法によって形成してもよい。 The Ag-plated layer covering the electroless Ni-plated layer may be an electrolytic Ag-plated layer, or may be an electroless Ag-plated layer having a composition different from that of the electroless Ag-plated layer covering the outer surface of the exterior body. For example, the electroless Ag plating layer covering the outer surface of the exterior body may include a silver mirror plating layer, and the Ag plating layer constituting the first plating layer may be formed by electroless Ag plating different from silver mirror plating. The electroless Ag plating layer that constitutes the first plating layer may be formed by, for example, substitution type, reduction type, autocatalytic type, or other electroless Ag plating methods.
 第1めっき層を構成するAgめっき層の厚さは、例えば、0.1μm以上50μm以下であってもよい。第1めっき層を構成する無電解Agめっき層の厚さは、例えば、0.1μm以上1μm以下であってもよい。第1めっき層を構成する電解Agめっき層の厚さは、例えば、0.1μm以上50μm以下であってもよく、0.1μm以上10μm以下であってもよい。 The thickness of the Ag plating layer that constitutes the first plating layer may be, for example, 0.1 μm or more and 50 μm or less. The thickness of the electroless Ag plating layer forming the first plating layer may be, for example, 0.1 μm or more and 1 μm or less. The thickness of the electrolytic Ag plating layer forming the first plating layer may be, for example, 0.1 μm or more and 50 μm or less, or may be 0.1 μm or more and 10 μm or less.
 本開示では、外装体の外面から露出する陽極部または陰極部の端面および外装体の外面を覆うように無電解Agめっき層(銀鏡めっき層など)を形成する。銀鏡めっき層などの無電解Agめっき層によって、陽極部または陰極部の端面と外部電極との間の抵抗の増加を抑制でき、初期のESRを低く抑えることができる。また、電解コンデンサの個体(例えば、同一ロットの個体)間の初期のESRのばらつきを低減できる。そのため、露出する端面に、無電解Niめっき層、または無電解Niめっき層およびAgめっき層などの第1めっき層を設けなくても、初期のESRの低減効果が得られる。また、第1めっき層を設けない場合には、初期のESRのばらつきを低減する効果が高まる。 In the present disclosure, an electroless Ag-plated layer (silver mirror-plated layer, etc.) is formed so as to cover the end face of the anode portion or the cathode portion exposed from the outer surface of the exterior body and the outer surface of the exterior body. The electroless Ag-plated layer such as the silver mirror-plated layer can suppress an increase in resistance between the end face of the anode portion or the cathode portion and the external electrode, and can suppress the initial ESR to a low level. In addition, it is possible to reduce variations in initial ESR among individual electrolytic capacitors (for example, individual pieces from the same lot). Therefore, the effect of reducing the initial ESR can be obtained without providing the first plating layer such as the electroless Ni plating layer or the electroless Ni plating layer and the Ag plating layer on the exposed end faces. Moreover, when the first plating layer is not provided, the effect of reducing the initial ESR variation is enhanced.
(外部電極)
 外部電極は、例えば、金属層(めっき層など)を含む。金属層は、例えば、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、錫(Sn)、銀(Ag)、および金(Au)よりなる群から選択される少なくとも1種を含む。
(external electrode)
The external electrode includes, for example, a metal layer (plated layer, etc.). The metal layer contains, for example, at least one selected from the group consisting of nickel (Ni), copper (Cu), zinc (Zn), tin (Sn), silver (Ag), and gold (Au).
 外部電極は、例えば、Ni層とSn層との積層構造を含んでもよい。外部電極は、Ni/Snめっき層を含んでもよい。Ni/Snめっき層とは、NiとSnとを含むめっき層であり、例えば、Niめっき層とNiめっき層の上に形成されたSnめっき層の2層を含む。Ni/Snめっき層において、Niめっき層のNiがSnめっき側に拡散し、Snめっき層のSnがNiめっき層側に拡散して、NiとSnの合金層が形成されていてもよい。 The external electrode may include, for example, a laminated structure of Ni layers and Sn layers. The external electrodes may include Ni/Sn plating layers. The Ni/Sn plating layer is a plating layer containing Ni and Sn, and includes, for example, two layers of a Ni plating layer and a Sn plating layer formed on the Ni plating layer. In the Ni/Sn plating layer, Ni in the Ni plating layer may diffuse to the Sn plating side, Sn in the Sn plating layer may diffuse to the Ni plating layer side, and an alloy layer of Ni and Sn may be formed.
 外部電極は、少なくともその外表面が、はんだとの濡れ性に優れた金属であってもよい。このような金属としては、例えば、Sn、Au、Ag、およびPdからなる群より選択される少なくとも一種が挙げられる。そのため、Ni/Snめっき層は、Snめっき層の外表面が、外部電極の外表面であることが好ましい。 At least the outer surface of the external electrode may be a metal with excellent wettability with solder. Such metals include, for example, at least one selected from the group consisting of Sn, Au, Ag, and Pd. Therefore, the outer surface of the Ni/Sn plating layer is preferably the outer surface of the external electrode.
 外部電極を構成する金属層(めっき層など)の総厚さは、例えば、0.1μm以上100μm以下であってもよく、1μm以上50μm以下または1μm以上20μm以下であってもよい。例えば、Niめっき層およびSnめっき層のそれぞれの厚さは、0.1μm以上50μm以下であってもよく、0.5μm以上10μm以下であってもよい。 The total thickness of the metal layers (plated layers, etc.) forming the external electrodes may be, for example, 0.1 μm or more and 100 μm or less, or may be 1 μm or more and 50 μm or less, or 1 μm or more and 20 μm or less. For example, the thickness of each of the Ni plating layer and the Sn plating layer may be 0.1 μm or more and 50 μm or less, or may be 0.5 μm or more and 10 μm or less.
 外部電極は、無電解Agめっき層を覆う導電性ペースト層と、この導電性ペースト層を覆う上記の金属層とを含んでもよい。外部電極が導電性ペースト層を含む場合、一般には、電解コンデンサに外部応力が加わった場合、導電性ペースト層内および導電性ペースト層の周辺でクラックまたは剥離が生じ易い。本開示では、導電性ペースト層を外部電極が含む場合でも、導電性ペースト層が銀鏡めっきなどの無電解Agめっき層と接触することで、界面抵抗を低く抑えることができるとともに、無電解Agめっき層と外部電極との密着性が高まり、クラックまたは剥離の発生を抑制できるため、初期のESRを低減できる。導電性ペースト層を覆う金属層としては、上記の中でも、Ni/Snめっき層が好ましい。外部電極が、導電性ペースト層とNi/Snめっき層とを含む場合、無電解Agめっき層と外部電極とのより高い密着性を確保できるとともに、はんだとの高い濡れ性を確保することができる。 The external electrode may include a conductive paste layer covering the electroless Ag plating layer and the metal layer covering the conductive paste layer. When the external electrode includes a conductive paste layer, cracks or peeling are likely to occur in and around the conductive paste layer when an external stress is applied to the electrolytic capacitor. In the present disclosure, even when the external electrode includes a conductive paste layer, the conductive paste layer is in contact with an electroless Ag plating layer such as silver mirror plating, so that the interface resistance can be kept low and the electroless Ag plating Since the adhesion between the layer and the external electrode is enhanced and the occurrence of cracks or peeling can be suppressed, the initial ESR can be reduced. Among the above, the Ni/Sn plating layer is preferable as the metal layer covering the conductive paste layer. When the external electrodes include a conductive paste layer and a Ni/Sn plating layer, it is possible to ensure higher adhesion between the electroless Ag plating layer and the external electrodes, and to ensure high wettability with solder. .
 導電性ペースト層は、例えば、導電性粒子と樹脂材料とを含む。そのため、導電性ペースト層を、導電性樹脂層と称する場合がある。樹脂材料は、バインダとしての作用を有する。樹脂材料としては、エポキシ樹脂などの硬化性樹脂またはその組成物などが挙げられる。導電性粒子としては、例えば、導電性無機材料の粒子が挙げられる。導電性無機材料としては、金属、導電性炭素材料などが挙げられる。金属としては、銀、銀合金、銅、銅合金などが挙げられる。導電性炭素材料としては、カーボンブラック、黒鉛、カーボンナノファイバ、カーボンナノチューブなどが挙げられる。導電性ペースト層として、銀粒子および銀合金粒子からなる群より選択される少なくとも一種を含む銀ペースト層を用いると、無電解Agめっき層との親和性が高く、無電解Agめっき層と導電性ペースト層とのより高い密着性が得られるとともに、界面抵抗を低く抑えることができる。 The conductive paste layer contains, for example, conductive particles and a resin material. Therefore, the conductive paste layer may be referred to as a conductive resin layer. The resin material acts as a binder. Examples of resin materials include curable resins such as epoxy resins and compositions thereof. Conductive particles include, for example, particles of a conductive inorganic material. Examples of conductive inorganic materials include metals and conductive carbon materials. Examples of metals include silver, silver alloys, copper, copper alloys, and the like. Examples of conductive carbon materials include carbon black, graphite, carbon nanofibers, and carbon nanotubes. When a silver paste layer containing at least one selected from the group consisting of silver particles and silver alloy particles is used as the conductive paste layer, it has a high affinity with the electroless Ag plating layer and is conductive with the electroless Ag plating layer. It is possible to obtain a higher adhesion with the paste layer and to keep the interfacial resistance low.
 電解コンデンサは、陽極部および陰極部のそれぞれと電気的に接続する複数の外部電極を備える。例えば、陽極部の端面が外装体の第1外面から露出しているとき、露出した端面は第1外面とともに第1外部電極で覆われている。陰極部の端面が外装体の第2外面から露出しているとき、露出した端面は第2外面とともに第2外部電極で覆われている。無電解Agめっき層は、第1外面と第1外面を覆う第1外部電極との間、および第2外面と第2外面を覆う第2外部電極との間の少なくとも一方に介在していてもよい。電解コンデンサのより高い信頼性を確保する観点からは、第1外面と第1外部電極との間、および第2外面と第2外部電極との間の双方に介在していることが好ましい。 The electrolytic capacitor has a plurality of external electrodes electrically connected to each of the anode portion and the cathode portion. For example, when the end face of the anode portion is exposed from the first outer surface of the exterior body, the exposed end face is covered with the first external electrode together with the first outer surface. When the end surface of the cathode portion is exposed from the second outer surface of the exterior body, the exposed end surface is covered with the second external electrode together with the second outer surface. The electroless Ag plating layer may be interposed between at least one of the first outer surface and the first external electrode covering the first outer surface and between the second outer surface and the second outer electrode covering the second outer surface. good. From the viewpoint of ensuring higher reliability of the electrolytic capacitor, it is preferable to interpose both between the first outer surface and the first outer electrode and between the second outer surface and the second outer electrode.
 外部電極は、外装体の1つの外面において、無電解Agめっき層全体を覆うように形成してもよく、無電解Agめっき層が形成された外装体の外面全体を覆うように形成してもよい。また、無電解Agめっき層が形成された外装体の外面(例えば、側面)に加えて、この外面と交差する外面(例えば、上面または底面)の一部を覆うように、連続して形成してもよい。 The external electrode may be formed so as to cover the entire electroless Ag plating layer on one outer surface of the exterior body, or may be formed so as to cover the entire outer surface of the exterior body on which the electroless Ag plating layer is formed. good. In addition, in addition to the outer surface (e.g., side surface) of the exterior body on which the electroless Ag plating layer is formed, it is continuously formed so as to cover a part of the outer surface (e.g., top surface or bottom surface) that intersects with this outer surface. may
 電解コンデンサは、少なくとも1つのコンデンサ素子を備えており、複数のコンデンサ素子を備えていてもよい。複数のコンデンサ素子は、積層されていてもよい。この場合、複数のコンデンサ素子の第1部分の向きは同じであってもよく、異なっていてもよい。例えば、隣接するコンデンサ素子間で第1部分が反対側を向くように、交互に複数のコンデンサ素子の陰極部同士を、導電性接着剤を介して重ね合わせてもよい。また、第1部分が任意の順序で逆方向を向くようにコンデンサ素子を積層してもよい。 The electrolytic capacitor has at least one capacitor element, and may have a plurality of capacitor elements. A plurality of capacitor elements may be stacked. In this case, the orientations of the first portions of the plurality of capacitor elements may be the same or different. For example, the cathode portions of a plurality of capacitor elements may be alternately overlapped via a conductive adhesive so that the first portions of adjacent capacitor elements face opposite sides. Also, the capacitor elements may be stacked such that the first portions face the opposite direction in any order.
 電解コンデンサの構成として、陽極部の端面のみが外装体の外面から露出し、外部電極と電気的に接続していてもよい。陰極部の端面のみが外装体の外面から露出し、外部電極と電気的に接続していてもよい。陽極部の端面および陰極部の端面が外装体の外面から露出し、それぞれ、別の外部電極(例えば、第1外部電極および第2外部電極のそれぞれ)と電気的に接続していてもよい。無電解Agめっき層は、複数の外部電極の少なくともいずれか1つとこの外部電極が覆う外装体の外面との間に形成されており、全ての外部電極と各外部電極が覆う外面との間に形成されていてもよい。 As for the configuration of the electrolytic capacitor, only the end face of the anode portion may be exposed from the outer surface of the exterior body and electrically connected to the external electrode. Only the end face of the cathode portion may be exposed from the outer surface of the outer package and electrically connected to the external electrode. An end surface of the anode portion and an end surface of the cathode portion may be exposed from the outer surface of the exterior body and electrically connected to separate external electrodes (eg, the first external electrode and the second external electrode, respectively). The electroless Ag plating layer is formed between at least one of the plurality of external electrodes and the outer surface of the exterior body covered by this external electrode, and between all the external electrodes and the external surface covered by each external electrode. may be formed.
 電解コンデンサが積層された複数のコンデンサ素子を備える場合に、例えば、複数のコンデンサ素子のそれぞれの陽極部の端面が外装体の第1外面から露出しているとき、各陽極部の露出した端面は第1外面とともに第1外部電極で覆われていてもよい。複数のコンデンサ素子のそれぞれの陰極部の端面が外装体の第2外面から露出しているとき、各陰極部の露出した端面は、第2外面とともに第2外部電極で覆われていてもよい。無電解Agめっき層は、第1外面と第1外部電極との間、および第2外面と第2外部電極との間の少なくとも一方に介在している。より高い信頼性を確保する観点からは、無電解Agめっき層は、第1外面と第1外部電極との間、および第2外面と第2外部電極との間の双方に介在していることが好ましい。各無電解Agめっき層の組成は、同じであってもよく、異なっていてもよい。このような構成では、各コンデンサ素子の第1部分同士および第2部分同士が重なるように、複数のコンデンサ素子が積層されている。第2外面は、第1外面とは反対側に位置していてもよい。 When the electrolytic capacitor includes a plurality of laminated capacitor elements, for example, when the end surfaces of the anode portions of the plurality of capacitor elements are exposed from the first outer surface of the package, the exposed end surfaces of the anode portions are The first outer surface may be covered with the first outer electrode. When the end faces of the cathode portions of the plurality of capacitor elements are exposed from the second outer surface of the exterior body, the exposed end faces of the respective cathode portions may be covered with the second outer electrode together with the second outer surface. The electroless Ag plating layer is interposed between at least one of the first outer surface and the first outer electrode and between the second outer surface and the second outer electrode. From the viewpoint of ensuring higher reliability, the electroless Ag plating layer should be interposed both between the first outer surface and the first external electrode and between the second outer surface and the second external electrode. is preferred. The composition of each electroless Ag plating layer may be the same or different. In such a configuration, a plurality of capacitor elements are stacked such that the first portions and the second portions of each capacitor element overlap each other. The second outer surface may be located opposite the first outer surface.
 電解コンデンサが積層された複数のコンデンサ素子を備える場合、一部のコンデンサ素子の陽極部の端面は、外装体の第1外面から露出し、残部のコンデンサ素子の陽極部の端面は、第1外面とは別の外面(例えば、第1外面とは反対側の第2外面)から露出していてもよい。この場合、複数のコンデンサ素子は、例えば、第1部分と第2部分とが交互に重なるように積層されていてもよい。第1外面から露出した陽極部の端面は、第1外面とともに第1外部電極で覆われ、第2外面から露出した陽極部の端面は、第2外面とともに第3外部電極で覆われていてもよい。第1外部電極および第3外部電極は共に陽極側の外部電極であり、離間して設けられている。無電解Agめっき層は、第1外面と第1外部電極との間、および第2外面と第3外部電極との間の少なくとも一方に介在していてもよい。より高い信頼性を確保する観点からは、無電解Agめっき層は、第1外面と第1外部電極との間、および第2外面と第3外部電極との間の双方に介在していることが好ましい。陰極部側の外部電極は、外装体の第1外面および第2外面以外の外面(例えば、第1外面と第2外面との間の1つの外面(第3外面))を覆うように形成されていてもよい。例えば、第3外面から露出した各コンデンサ素子の陰極部の端面は、第3外面とともに、第2外部電極で覆われている。第3外面と第2外部電極との間には、無電解Agめっき層が介在していてもよい。第1外面、第2外面、および第3外面のそれぞれに無電解Agめっき層が形成される場合、少なくとも2つの無電解Agめっき層の組成は同じであってもよく、全ての無電解Agめっき層の組成は異なっていてもよい。 When the electrolytic capacitor includes a plurality of laminated capacitor elements, the end surfaces of the anode portions of some of the capacitor elements are exposed from the first outer surface of the package, and the end surfaces of the anode portions of the remaining capacitor elements are exposed from the first outer surface. may be exposed from a different outer surface (for example, a second outer surface opposite to the first outer surface). In this case, the plurality of capacitor elements may be stacked such that the first portions and the second portions are alternately stacked, for example. The end face of the anode portion exposed from the first outer surface is covered with the first outer electrode together with the first outer surface, and the end face of the anode portion exposed from the second outer surface is covered with the third outer electrode together with the second outer surface. good. The first external electrode and the third external electrode are both external electrodes on the anode side, and are provided apart from each other. The electroless Ag plating layer may be interposed between at least one of the first outer surface and the first outer electrode and between the second outer surface and the third outer electrode. From the viewpoint of ensuring higher reliability, the electroless Ag plating layer should be interposed both between the first outer surface and the first external electrode and between the second outer surface and the third external electrode. is preferred. The external electrode on the cathode portion side is formed so as to cover an external surface other than the first external surface and the second external surface (for example, one external surface (third external surface) between the first external surface and the second external surface) of the external body. may be For example, the end face of the cathode portion of each capacitor element exposed from the third outer surface is covered with the second outer electrode together with the third outer surface. An electroless Ag plating layer may be interposed between the third outer surface and the second external electrode. When an electroless Ag plating layer is formed on each of the first outer surface, the second outer surface, and the third outer surface, the composition of the at least two electroless Ag plating layers may be the same, and all the electroless Ag plating The composition of the layers can be different.
 陽極部および陰極部の少なくとも一方の外装体の外面から露出する端面は、外面と同一面上にあってもよい。しかし、この場合に限らず、露出する端面は、必ずしも外装体の外面と同一面上にある必要はなく、露出する端面が、外面から突出していてもよく、凹んでいてもよい。 The end face exposed from the outer surface of at least one of the anode part and the cathode part may be flush with the outer surface. However, this is not the only case, and the exposed end surface does not necessarily have to be on the same plane as the outer surface of the exterior body, and the exposed end surface may protrude from the outer surface or may be recessed.
 本開示の電解コンデンサの外部電極および外部電極と外装体外面との接続構造以外の構成要素について、以下に、より詳細に説明する。 Components other than the external electrodes of the electrolytic capacitor of the present disclosure and the connection structure between the external electrodes and the outer surface of the exterior body will be described in more detail below.
(陽極体)
 陽極体は、一方の端部(第1端部と称することがある)を含む第1部分と一方の端部とは反対側の他方の端部(第2端部と称することがある)を含む第2部分とを含む。陰極部は、陽極体の第2部分に形成される。
(Anode body)
The anode body has a first portion including one end (sometimes referred to as a first end) and the other end opposite to the one end (sometimes referred to as a second end). and a second portion comprising. A cathode portion is formed in the second portion of the anode body.
 陽極体は、例えば、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物(金属間化合物など)を含んでもよい。これらの材料は一種を単独でまたは二種以上を組み合わせて使用してもよい。弁作用金属としては、アルミニウム、タンタル、ニオブ、チタンなどが挙げられる。陽極体は、弁作用金属、弁作用金属を含む合金、または弁作用金属を含む化合物の箔であってもよく、弁作用金属、弁作用金属を含む合金、または弁作用金属を含む化合物の粒子の成形体(多孔質成形体)またはその焼結体(多孔質焼結体)であってもよい。 The anode body may contain, for example, a valve metal, an alloy containing a valve metal, and a compound containing a valve metal (such as an intermetallic compound). These materials may be used singly or in combination of two or more. Examples of valve metals include aluminum, tantalum, niobium, and titanium. The anode body may be a foil of a valve action metal, an alloy containing a valve action metal, or a compound containing a valve action metal, and particles of a valve action metal, an alloy containing a valve action metal, or a compound containing a valve action metal. or a sintered body thereof (porous sintered body).
 陽極体に金属箔を用いる場合、通常、表面積を増やすため、陽極箔の少なくとも第2部分の表面には、多孔質部が形成される。このような陽極箔は、芯部と、芯部の表面に形成された多孔質部とを有する。多孔質部は、例えば、陽極体の表面に凹凸を形成することにより形成される。多孔質部を有する陽極体は、例えば、陽極箔の少なくとも第2部分の表面をエッチング(電解エッチングなど)などにより粗面化することによって形成してもよい。第1部分の表面に所定のマスキング部材を配置した後、エッチング処理などの粗面化処理を行うことも可能である。一方で、陽極箔の表面の全面をエッチング処理などにより粗面化処理することも可能である。前者の場合、第1部分の表面には多孔質部を有さず、第2部分の表面に多孔質部を有する陽極箔が得られる。後者の場合、第2部分の表面に加え、第1部分の表面にも多孔質部が形成される。エッチング処理としては、公知の手法を用いればよく、例えば、電解エッチングが挙げられる。マスキング部材は、特に限定されず、導電性材料を含む導電体であってもよいが、樹脂などの絶縁体が好ましい。マスキング部材は、固体電解質層の形成前に取り除かれる。 When a metal foil is used for the anode body, a porous portion is usually formed on the surface of at least the second portion of the anode foil in order to increase the surface area. Such anode foil has a core portion and a porous portion formed on the surface of the core portion. The porous portion is formed, for example, by forming unevenness on the surface of the anode body. The anode body having the porous portion may be formed, for example, by roughening the surface of at least the second portion of the anode foil by etching (electrolytic etching or the like). After arranging a predetermined masking member on the surface of the first portion, it is also possible to perform surface roughening treatment such as etching treatment. On the other hand, it is also possible to roughen the entire surface of the anode foil by etching or the like. In the former case, an anode foil having no porous portion on the surface of the first portion and a porous portion on the surface of the second portion is obtained. In the latter case, a porous portion is formed on the surface of the first portion in addition to the surface of the second portion. As the etching treatment, a known method may be used, for example, electrolytic etching. The masking member is not particularly limited, and may be a conductor containing a conductive material, but is preferably an insulator such as resin. The masking member is removed prior to formation of the solid electrolyte layer.
 陽極箔の表面の全面を粗面化処理する場合、第1部分の表面に多孔質部を有する。このため、多孔質部と外装体の密着性が十分でなく、多孔質部と外装体との接触部分を通じて電解コンデンサ内部に空気(具体的には、酸素および水分)が侵入する場合がある。これを抑制するため、第1部分に形成された多孔質部の少なくとも一部を、予め、除去したり、圧縮して多孔質部の孔をつぶしたりしておいてもよい。これにより、外装体から露出する第1部分の端部側から多孔質部を介して電解コンデンサ内部に空気が侵入することを軽減できる。また、当該空気の侵入による電解コンデンサの信頼性の低下を抑制できる。 When the entire surface of the anode foil is roughened, the surface of the first portion has a porous portion. For this reason, the adhesion between the porous portion and the exterior body is not sufficient, and air (specifically, oxygen and moisture) may enter the inside of the electrolytic capacitor through the contact portion between the porous portion and the exterior body. In order to suppress this, at least part of the porous portion formed in the first portion may be previously removed or compressed to crush the pores of the porous portion. As a result, it is possible to reduce the intrusion of air into the electrolytic capacitor through the porous portion from the end portion side of the first portion exposed from the exterior body. In addition, it is possible to suppress deterioration in the reliability of the electrolytic capacitor due to the intrusion of the air.
 複数のコンデンサ素子を積層する場合、コンデンサ素子の陽極体の第1端部を束ねて、リードと接続して、外部電極と電気的に接続してもよい。しかし、束ねずに複数の第1端部の端面をそれぞれ外装体の外面から露出させて、外部電極と電気的に接続させると、第1部分に束ねるための長さを確保する必要がない。よって、端面を露出させて電気的接続を行う場合、複数の第1部分を束ねる場合と比べて、陽極体に占める第1部分の割合を小さくして高容量化することができ、第1部分によるESRへの寄与を軽減できる。 When stacking a plurality of capacitor elements, the first ends of the anode bodies of the capacitor elements may be bundled, connected to leads, and electrically connected to external electrodes. However, if the end faces of the plurality of first end portions are exposed from the outer surface of the exterior body without being bundled and electrically connected to the external electrodes, it is not necessary to secure the length for bundling them into the first portion. Therefore, when electrical connection is made by exposing the end face, compared to the case of bundling a plurality of first portions, the proportion of the first portion in the anode body can be made smaller and the capacity can be increased. can reduce the contribution to ESR due to
(誘電体層)
 誘電体層は、例えば、陽極体の少なくとも第2部分の表面の弁作用金属を、化成処理などにより陽極酸化することで形成される。誘電体層は弁作用金属の酸化物を含む。例えば、弁作用金属としてアルミニウムを用いた場合の誘電体層は酸化アルミニウムを含む。誘電体層は、少なくとも多孔質部が形成されている第2部分の表面(多孔質部の孔の内壁面を含む)に沿って形成される。なお、誘電体層の形成方法はこれに限定されず、第2部分の表面に、誘電体として機能する絶縁性の層を形成できればよい。誘電体層は、第1部分の表面(例えば、第1部分の表面の多孔質部)にも形成されてもよい。
(dielectric layer)
The dielectric layer is formed, for example, by anodizing the valve metal on the surface of at least the second portion of the anode body by chemical conversion treatment or the like. The dielectric layer contains an oxide of a valve metal. For example, the dielectric layer contains aluminum oxide when aluminum is used as the valve metal. The dielectric layer is formed along at least the surface of the second portion where the porous portion is formed (including the inner wall surfaces of the pores of the porous portion). Note that the method for forming the dielectric layer is not limited to this, as long as an insulating layer that functions as a dielectric can be formed on the surface of the second portion. The dielectric layer may also be formed on the surface of the first portion (for example, the porous portion on the surface of the first portion).
 化成処理は、例えば、陽極体を化成液中に浸漬することにより、陽極体の表面に化成液を含浸させ、陽極体をアノードとして、化成液中に浸漬したカソードとの間に電圧を印加することにより行うことができる。陽極体の表面に多孔質部を有する場合、誘電体層は、多孔質部の表面の凹凸形状に沿って形成される。 In the chemical conversion treatment, for example, the surface of the anode body is impregnated with the chemical conversion liquid by immersing the anode body in the chemical conversion liquid, and a voltage is applied between the anode body used as the anode and the cathode immersed in the chemical conversion liquid. It can be done by When the surface of the anode body has a porous portion, the dielectric layer is formed along the irregularities on the surface of the porous portion.
(陰極部)
 陰極部は、誘電体層を有する陽極体の第2部分に形成される。分離層の第2部分側の表面を陰極部が覆っている場合もある。
(cathode)
A cathode portion is formed on a second portion of the anode body having a dielectric layer. In some cases, the cathode portion covers the surface of the separation layer on the second portion side.
 陰極部は、例えば、誘電体層の少なくとも一部を覆う固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層とを備える。陰極部は、誘電体層の少なくとも一部を覆うように固体電解質を形成し、固体電解質層の少なくとも一部を多くように陰極引出層を形成することによって形成される。誘電体層を有する陽極体の一部に陰極部を形成することによって、コンデンサ素子が得られる。 The cathode section includes, for example, a solid electrolyte layer that covers at least part of the dielectric layer, and a cathode extraction layer that covers at least part of the solid electrolyte layer. The cathode section is formed by forming a solid electrolyte so as to cover at least a portion of the dielectric layer, and forming a cathode extraction layer so as to cover at least a portion of the solid electrolyte layer. A capacitor element is obtained by forming a cathode part on a part of an anode body having a dielectric layer.
(固体電解質層)
 固体電解質層は、例えば、導電性高分子(共役系高分子、ドーパントなど)を含む。共役系高分子としては、例えば、π共役系高分子(ポリピロール、ポリチオフェン、ポリアニリンおよびこれらの誘導体など)を用いてもよい。例えば、ポリチオフェン誘導体には、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)などが包含される。ドーパントとしては、ポリスチレンスルホン酸(PSS)などを用いてもよく、ナフタレンスルホン酸、トルエンスルホン酸などを用いてもよい。固体電解質層は、例えば、共役系高分子の前駆体(モノマー、オリゴマーなど)およびドーパント(ナフタレンスルホン酸、トルエンスルホン酸など)を誘電体層上で化学重合および電解重合の少なくとも一方を利用して重合することにより、形成することができる。あるいは、共役系高分子およびドーパントが溶解した溶液、または、共役系高分子およびドーパントが分散した分散液を、誘電体層に付着させ、乾燥させることによって固体電解質層を形成してもよい。分散媒(溶媒)としては、例えば、水、有機溶媒、またはこれらの混合物が挙げられる。固体電解質層は、マンガン化合物を含んでもよい。
(Solid electrolyte layer)
The solid electrolyte layer contains, for example, a conductive polymer (conjugated polymer, dopant, etc.). As the conjugated polymer, for example, a π-conjugated polymer (polypyrrole, polythiophene, polyaniline, derivatives thereof, etc.) may be used. For example, polythiophene derivatives include poly(3,4-ethylenedioxythiophene) (PEDOT) and the like. As a dopant, polystyrene sulfonic acid (PSS) or the like may be used, or naphthalene sulfonic acid, toluene sulfonic acid, or the like may be used. The solid electrolyte layer is formed by, for example, using at least one of chemical polymerization and electrolytic polymerization of a conjugated polymer precursor (monomer, oligomer, etc.) and a dopant (naphthalenesulfonic acid, toluenesulfonic acid, etc.) on the dielectric layer. It can be formed by polymerization. Alternatively, a solid electrolyte layer may be formed by applying a solution in which a conjugated polymer and a dopant are dissolved or a dispersion in which a conjugated polymer and a dopant are dispersed, to the dielectric layer and drying it. Dispersion media (solvents) include, for example, water, organic solvents, and mixtures thereof. The solid electrolyte layer may contain a manganese compound.
(陰極引出層)
 陰極引出層は、例えば、固体電解質層と接触するとともに固体電解質層の少なくとも一部を覆う導電性の層を含む。陰極引出層は、固体電解質層の少なくとも一部を覆う第1層を少なくとも備えている。陰極引出層は、固体電解質層の少なくとも一部を覆う第1層と、第1層の少なくとも一部を覆う第2層とを含んでもよい。
(Cathode extraction layer)
The cathode extraction layer includes, for example, a conductive layer that contacts the solid electrolyte layer and covers at least a portion of the solid electrolyte layer. The cathode extraction layer includes at least a first layer covering at least a portion of the solid electrolyte layer. The cathode extraction layer may include a first layer covering at least part of the solid electrolyte layer and a second layer covering at least part of the first layer.
 例えば、第1層としての金属箔で陰極引出層を構成してもよい。金属箔には、例えば、Al箔、Cu箔、弁作用金属(アルミニウム、タンタル、ニオブなど)または弁作用金属を含む合金で形成された金属箔を用いてもよい。必要に応じて、金属箔の表面を粗面化してもよい。金属箔の表面には、化成皮膜が設けられていてもよく、金属箔を構成する金属とは異なる金属(異種金属)や非金属の被膜が設けられていてもよい。異種金属や非金属としては、例えば、チタン、ニッケルのような金属、カーボン(導電性カーボンなど)のような非金属などを挙げることができる。金属箔は、金属箔(例えば、Al箔、Cu箔)の表面を蒸着あるいは塗工により導電膜で被覆した焼結箔、蒸着箔または塗工箔であってもよい。蒸着箔は、表面にNiが蒸着されたAl箔であってもよい。導電膜としては、Ti、TiC、TiO、C(カーボン)膜などが挙げられる。導電膜は、カーボン塗膜であってもよい。 For example, the cathode extraction layer may be composed of a metal foil as the first layer. The metal foil may be, for example, Al foil, Cu foil, valve metal (aluminum, tantalum, niobium, etc.), or metal foil made of an alloy containing valve metal. If necessary, the surface of the metal foil may be roughened. The surface of the metal foil may be provided with a chemical conversion coating, or may be provided with a coating of a metal (dissimilar metal) different from the metal constituting the metal foil (dissimilar metal) or a non-metal coating. Examples of dissimilar metals and non-metals include metals such as titanium and nickel, and non-metals such as carbon (such as conductive carbon). The metal foil may be a sintered foil, a vapor-deposited foil, or a coated foil obtained by coating the surface of a metal foil (eg, Al foil, Cu foil) with a conductive film by vapor deposition or coating. The vapor-deposited foil may be an Al foil having Ni vapor-deposited on its surface. Examples of conductive films include Ti, TiC, TiO, and C (carbon) films. The conductive film may be a carbon coating film.
 陰極引出層では、上記の異種金属または非金属(例えば、導電性カーボン)の被膜を第1層として、上記の金属箔を第2層としてもよい。 In the cathode extraction layer, the film of the different metal or non-metal (eg, conductive carbon) may be used as the first layer, and the metal foil may be used as the second layer.
 陰極引出層は、例えば、第1層としての導電性カーボンを含む層(カーボン層とも称する)と、第2層としての金属含有層(例えば、金属粉を含む層または金属箔)とを含んでもよい。 The cathode extraction layer may include, for example, a layer containing conductive carbon as a first layer (also referred to as a carbon layer) and a metal-containing layer (for example, a layer containing metal powder or metal foil) as a second layer. good.
 第1層としてのカーボン層に含まれる導電性カーボンとしては、例えば、黒鉛(人造黒鉛、天然黒鉛など)が挙げられる。 Examples of the conductive carbon contained in the carbon layer as the first layer include graphite (artificial graphite, natural graphite, etc.).
 第2層としての金属粉を含む層は、例えば、金属粉を含む組成物を第1層の表面に積層することにより形成できる。このような第2層としては、例えば、金属粉と樹脂(バインダ樹脂)とを含む組成物を用いて形成される金属ペースト層が挙げられる。金属ペースト層としては、銀粒子と樹脂とを含む銀ペースト層が挙げられる。樹脂としては、熱可塑性樹脂を用いることもできるが、イミド系樹脂、エポキシ樹脂などの熱硬化性樹脂を用いることが好ましい。 The layer containing metal powder as the second layer can be formed, for example, by laminating a composition containing metal powder on the surface of the first layer. Examples of such a second layer include a metal paste layer formed using a composition containing metal powder and resin (binder resin). The metal paste layer includes a silver paste layer containing silver particles and resin. As the resin, a thermoplastic resin can be used, but it is preferable to use a thermosetting resin such as an imide resin or an epoxy resin.
 第2層としての金属箔には、例えば、第1層について例示した金属箔が挙げられる。 Examples of the metal foil as the second layer include the metal foils exemplified for the first layer.
 金属箔は、固体電解質層または第1層(カーボン層など)に導電性接着剤を介して貼り付けられていてもよい。導電性接着剤としては、導電性カーボンを含む接着剤、銀粒子などの金属粒子を含む接着剤などが挙げられる。 The metal foil may be attached to the solid electrolyte layer or the first layer (carbon layer, etc.) via a conductive adhesive. Examples of conductive adhesives include adhesives containing conductive carbon, adhesives containing metal particles such as silver particles, and the like.
 陰極部が金属箔を含む場合、金属箔の端面を外装体の外面から露出させ、無電解Agめっき層を介して、外部電極と容易に電気的な接続を行うことができるため、有利である。電解コンデンサが積層された複数のコンデンサ素子を備える場合には、金属箔を、複数のコンデンサ素子の少なくとも1つに設けてもよく、隣接するコンデンサ素子間に金属箔が介在するように設けてもよい。例えば、隣接するコンデンサ素子間で、1つの金属箔を共有してもよい。例えば、電解コンデンサが積層された複数のコンデンサ素子を含む場合、隣接するコンデンサ素子の間に金属箔を挟持してもよい。 When the cathode portion contains a metal foil, the end face of the metal foil can be exposed from the outer surface of the exterior body, and electrical connection can be easily made with the external electrode via the electroless Ag plating layer, which is advantageous. . When the electrolytic capacitor includes a plurality of laminated capacitor elements, the metal foil may be provided on at least one of the plurality of capacitor elements, or may be provided so that the metal foil is interposed between adjacent capacitor elements. good. For example, one metal foil may be shared between adjacent capacitor elements. For example, if the electrolytic capacitor includes a plurality of stacked capacitor elements, a metal foil may be sandwiched between adjacent capacitor elements.
(セパレータ)
 金属箔を陰極引出層に用いる場合、金属箔と陽極箔との間にはセパレータを配置してもよい。セパレータとしては、特に制限されず、例えば、セルロース、ポリエチレンテレフタレート、ビニロン、ポリアミド(例えば、脂肪族ポリアミド、アラミドなどの芳香族ポリアミド)の繊維を含む不織布などを用いてもよい。
(separator)
When a metal foil is used for the cathode extraction layer, a separator may be arranged between the metal foil and the anode foil. The separator is not particularly limited, and for example, a nonwoven fabric containing fibers of cellulose, polyethylene terephthalate, vinylon, polyamide (eg, aromatic polyamide such as aliphatic polyamide and aramid) may be used.
(分離層)
 第1部分と陰極部とを電気的に分離するため、絶縁性の分離層を設けてもよい。分離層は、陰極部を形成する前に形成される。分離層は、第1部分の表面の少なくとも一部を覆うように、陰極部に近接して設けてもよい。分離層は、第1部分および外装体と密着していることが好ましい。これにより、上記の電解コンデンサ内部への空気の侵入を抑制できる。分離層は、第1部分の上に誘電体層を介して配置されてもよい。このような分離層は、誘電体層の形成後に設けられる。この場合に限らず、必要に応じて、誘電体層の形成前に設けてもよい。
(separation layer)
An insulating separation layer may be provided to electrically separate the first portion and the cathode portion. The separation layer is formed before forming the cathode section. The separation layer may be provided adjacent to the cathode section so as to cover at least part of the surface of the first section. Preferably, the separation layer is in close contact with the first portion and the exterior body. As a result, air can be prevented from entering the inside of the electrolytic capacitor. An isolation layer may be disposed over the first portion with a dielectric layer interposed therebetween. Such an isolation layer is provided after formation of the dielectric layer. Not limited to this case, if necessary, it may be provided before the formation of the dielectric layer.
 分離層は、例えば、樹脂を含み、後述の外装体について例示するものを用いることができる。第1部分の多孔質部に形成した誘電体層を圧縮して緻密化することで、絶縁性を持たせてもよい。 The separation layer contains, for example, a resin, and those exemplified for the exterior body described later can be used. Insulation may be imparted by compressing and densifying the dielectric layer formed on the porous portion of the first portion.
 分離層は、例えば、シート状の絶縁部材(樹脂テープなど)を、第1部分に貼り付けることにより設けてもよい。表面に多孔質部を有する陽極箔を用いる場合では、第1部分の少なくとも一部の多孔質部を除去または圧縮して平坦化してから、絶縁部材を第1部分に密着させてもよい。シート状の絶縁部材は、第1部分に貼り付ける側の表面に粘着層を有することが好ましい。 The separation layer may be provided by, for example, attaching a sheet-like insulating member (resin tape, etc.) to the first portion. When using an anode foil having a porous portion on its surface, the porous portion of at least a portion of the first portion may be removed or compressed to be flattened, and then the insulating member may be adhered to the first portion. It is preferable that the sheet-like insulating member has an adhesive layer on the surface thereof to be attached to the first portion.
 また、液状樹脂を第1部分の少なくとも一部に塗布または含浸させて、第1部分と密着する絶縁部材を形成してもよい。液状樹脂を用いた方法では、絶縁部材は、第1部分の多孔質部の少なくとも表層の凹凸を埋めるように形成してもよい。この場合、多孔質部の表層の凹部に液状樹脂が容易に入り込み、凹部内にも絶縁部材を容易に形成することができる。この場合、陽極体の表層の多孔質部が絶縁部材で保護されるため、陽極体の端部を外装体とともに部分的に除去して、外装体の外面を形成するとともに、陽極体の端面を外装体の外面から露出させる際に、陽極体の多孔質部の崩壊が抑制される。陽極体の多孔質部の表層と絶縁部材とが強固に密着しているため、陽極体の端部を外装体とともに部分的に除去する際に、絶縁部材が陽極体の多孔質部の表面から剥離することが抑制される。 Alternatively, the insulating member may be formed by coating or impregnating at least a portion of the first portion with a liquid resin to form an insulating member that is in close contact with the first portion. In the method using the liquid resin, the insulating member may be formed so as to fill the unevenness of at least the surface layer of the porous portion of the first portion. In this case, the liquid resin can easily enter the concave portions of the surface layer of the porous portion, and the insulating member can be easily formed in the concave portions as well. In this case, since the porous portion of the surface layer of the anode body is protected by the insulating member, the end portion of the anode body is partially removed together with the exterior body to form the outer surface of the exterior body, and the end face of the anode body is removed. Collapse of the porous portion of the anode body is suppressed when the anode body is exposed from the outer surface. Since the surface layer of the porous portion of the anode body and the insulating member are firmly adhered to each other, when the end portion of the anode body is partially removed together with the outer package, the insulating member may be removed from the surface of the porous portion of the anode body. Peeling is suppressed.
 液状樹脂としては、例えば、後述の外装体について例示する硬化性樹脂組成物などを用いてもよく、樹脂を溶剤に溶解させた溶液を用いてもよい。また、液状樹脂の塗布または含浸を行うとともに、シート状の絶縁部材を用いてもよい。 As the liquid resin, for example, a curable resin composition exemplified for the exterior body described later may be used, or a solution obtained by dissolving the resin in a solvent may be used. Also, a sheet-shaped insulating member may be used while applying or impregnating a liquid resin.
(スペーサ)
 スペーサは、例えば、積層された複数のコンデンサ素子の隣接する陽極部の端部間および隣接する陰極部の端部間の少なくとも一方に配置される。スペーサは、導電性(金属製など)であってもよく、絶縁性であってもよい。絶縁性のスペーサを用いる場合、陽極部または陰極部の端面ととともに、外装体の外面からスペーサを露出させてもよい。この場合、外面とともに、絶縁性のスペーサの露出した端面にも銀鏡めっき層などの無電解Agめっき層を形成することで、高いアンカー効果を確保することができる。絶縁性のスペーサは、例えば、熱可塑性樹脂、または硬化性樹脂で形成される。スペーサの材料としては、外装体の材料について例示される樹脂などを用いてもよい。
(Spacer)
The spacers are arranged, for example, at least one of between the ends of adjacent anode portions and between the ends of adjacent cathode portions of a plurality of laminated capacitor elements. The spacer may be conductive (such as made of metal) or insulating. When insulating spacers are used, the spacers may be exposed from the outer surface of the outer package together with the end faces of the anode portion or the cathode portion. In this case, a high anchor effect can be ensured by forming an electroless Ag plating layer such as a silver mirror plating layer not only on the outer surface but also on the exposed end surfaces of the insulating spacers. The insulating spacers are made of thermoplastic resin or curable resin, for example. As a material for the spacer, a resin or the like exemplified for the material for the exterior body may be used.
(基板)
 コンデンサ素子(または積層された複数のコンデンサ素子)は、導電性接着剤を介して基板の上に載置されていてもよい。積層された複数のコンデンサ素子のうち、基板に最も近いコンデンサ素子の陰極形成部は、基板側に金属箔を有していてもよい。この金属箔は必要に応じて導電性接着剤を介して、基板に接触していてもよい。
(substrate)
A capacitor element (or a plurality of stacked capacitor elements) may be mounted on the substrate via a conductive adhesive. Of the plurality of laminated capacitor elements, the cathode forming portion of the capacitor element closest to the substrate may have a metal foil on the substrate side. This metal foil may be in contact with the substrate via a conductive adhesive as required.
 基板は、絶縁基板または金属基板であってもよく、表面および裏面に配線パターンが形成された積層基板(プリント基板など)であってもよい。 The substrate may be an insulating substrate or a metal substrate, or may be a laminated substrate (printed substrate, etc.) with wiring patterns formed on the front and back surfaces.
 積層基板を用いる場合、積層基板の素子積層体が載置される側と反対側に、外部電極(陰極部と電気的に接続する第2外部電極など)を予め形成してもよい。載置により、外部電極(第2外部電極など)は、積層基板に形成された配線パターン、および、表面の配線パターンと裏面の配線パターンとを接続するスルーホールを介して、コンデンサ素子の陽極部または陰極部(通常、陰極部)と電気的に接続され得る。この場合、基板を介して、第2外部電極と、各コンデンサ素子の陰極部との電気的接続がされる。裏面の配線パターン次第で、電解コンデンサ底面の中央領域に第2外部電極(陰極)を任意に配置することができる。例えば、第2外部電極を第1外部電極に近接して配置してもよい。 When using a laminated substrate, an external electrode (such as a second external electrode electrically connected to the cathode portion) may be formed in advance on the side of the laminated substrate opposite to the side on which the element laminate is placed. By placing, the external electrode (such as the second external electrode) is connected to the anode portion of the capacitor element via the wiring pattern formed on the laminated substrate and the through hole connecting the wiring pattern on the front surface and the wiring pattern on the back surface. Alternatively, it can be electrically connected to the cathode section (usually the cathode section). In this case, the second external electrode is electrically connected to the cathode of each capacitor element through the substrate. Depending on the wiring pattern on the back surface, the second external electrode (cathode) can be arbitrarily arranged in the central region of the bottom surface of the electrolytic capacitor. For example, the second external electrode may be arranged close to the first external electrode.
 金属製の基板は、例えば、所定の形状に加工された金属板が折り曲げられたリードフレーム構造を有していてもよい。金属板の一部を外装体から露出させて、外部電極と電気的に接続させてもよい。 A metal substrate may have, for example, a lead frame structure in which a metal plate processed into a predetermined shape is bent. A part of the metal plate may be exposed from the outer package and electrically connected to the external electrode.
(外装体)
 コンデンサ素子(または積層された複数のコンデンサ素子)は、外装体で覆われることで封止される。陽極部および陰極部の少なくとも一方の端面が外装体の外面から露出するようにコンデンサ素子を封止してもよく、封止後、外装体を部分的に除去することで、外面を形成するとともに、陽極部および陰極部の少なくとも一方の端面を外面から露出させてもよい。陽極部および陰極部の一方と電気的に接続したリードの他端を、外装体から引き出した状態になるように、外装体で封止して、リードの他端と外部電極とを接続してもよい。また、所定の形状に折り曲げ加工した板状の外部リード端子を導電性のペースト等を介して、コンデンサ素子(または積層された複数のコンデンサ素子の最下層または最上層)において露出する陰極部の表面に貼り付けることにより、コンデンサ素子とリード端子との電気的接続を行ってもよい。
(Exterior body)
A capacitor element (or a plurality of laminated capacitor elements) is sealed by being covered with an exterior body. The capacitor element may be sealed so that at least one end surface of the anode part and the cathode part is exposed from the outer surface of the outer package, and after sealing, the outer package is partially removed to form the outer surface. , at least one end face of the anode portion and the cathode portion may be exposed from the outer surface. The other end of the lead electrically connected to one of the anode part and the cathode part is sealed with the outer body so as to be pulled out from the outer body, and the other end of the lead and the external electrode are connected. good too. In addition, a plate-shaped external lead terminal bent into a predetermined shape is applied to the surface of the cathode portion exposed on the capacitor element (or the bottom layer or top layer of a plurality of laminated capacitor elements) via a conductive paste or the like. The electrical connection between the capacitor element and the lead terminal may be established by attaching the capacitor element to the lead terminal.
 外装体は、例えば、硬化性樹脂組成物の硬化物を含むことが好ましく、熱可塑性樹脂もしくはそれを含む組成物を含んでもよい。 The exterior body preferably contains, for example, a cured product of a curable resin composition, and may contain a thermoplastic resin or a composition containing it.
 外装体は、例えば、射出成形などの成形技術を用いて形成してもよい。外装体は、例えば、所定の金型を用いて、硬化性樹脂組成物または熱可塑性樹脂(組成物)を、コンデンサ素子を覆うように所定の箇所に充填することによって形成してもよい。 The exterior body may be formed using a molding technique such as injection molding, for example. The exterior body may be formed, for example, by filling a curable resin composition or a thermoplastic resin (composition) using a predetermined mold into predetermined locations so as to cover the capacitor element.
 硬化性樹脂組成物は、硬化性樹脂に加え、フィラー、硬化剤、重合開始剤、および触媒などから選択される少なくとも一種を含んでもよい。硬化性樹脂としては、熱硬化性樹脂が例示される。硬化剤、重合開始剤、触媒などは、硬化性樹脂の種類に応じて適宜選択される。 The curable resin composition may contain, in addition to the curable resin, at least one selected from fillers, curing agents, polymerization initiators, catalysts, and the like. A thermosetting resin is exemplified as the curable resin. Curing agents, polymerization initiators, catalysts and the like are appropriately selected according to the type of curable resin.
 硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、ポリイミド、ポリアミドイミド、ポリウレタン、ジアリルフタレート、不飽和ポリエステルなどが挙げられる。熱可塑性樹脂としては、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)などが挙げられる。熱可塑性樹脂およびフィラーを含む熱可塑性樹脂組成物を用いてもよい。 Curable resins include epoxy resins, phenolic resins, urea resins, polyimides, polyamideimides, polyurethanes, diallyl phthalate, unsaturated polyesters, and the like. Examples of thermoplastic resins include polyphenylene sulfide (PPS) and polybutylene terephthalate (PBT). A thermoplastic resin composition containing a thermoplastic resin and a filler may be used.
 フィラーとしては、例えば、絶縁性の粒子および絶縁性の繊維が好ましい。フィラーを構成する絶縁性材料としては、例えば、シリカ、アルミナなどの絶縁性の化合物(酸化物など)、ガラス、鉱物材料(タルク、マイカ、クレーなど)などが挙げられる。外装体は、これらのフィラーを一種含んでもよく、二種以上組み合わせて含んでもよい。 As the filler, for example, insulating particles and insulating fibers are preferable. Examples of the insulating material that constitutes the filler include insulating compounds (oxides, etc.) such as silica and alumina, glass, mineral materials (talc, mica, clay, etc.), and the like. The exterior body may contain one type of these fillers or may contain two or more types in combination.
 分離層と外装体との間の密着性の観点から、絶縁部材および外装体は、それぞれ樹脂を含むことが好ましい。外装体は、弁作用金属を含む第1部分または弁作用金属の酸化物を含む誘電体層と比べて、樹脂を含む絶縁部材と密着し易い。 From the viewpoint of adhesion between the separation layer and the exterior body, it is preferable that the insulating member and the exterior body each contain a resin. The exterior body adheres more easily to the insulating member containing the resin than the first portion containing the valve metal or the dielectric layer containing the oxide of the valve metal.
 外装体の強度などを高める観点から、外装体はフィラーを含むことが好ましい。
 一方、分離層は、外装体よりも粒径が小さいフィラーを含むことが好ましく、フィラーを含まないことがより好ましい。第1部分に液状樹脂を含浸させて分離層を形成する場合、液状樹脂は、外装体よりも粒径が小さいフィラーを含むことが好ましく、フィラーを含まないことがより好ましい。この場合、第1部分の多孔質部の表面の凹部の深部にまで、液状樹脂を含浸させ易く、分離層を形成し易い。また、複数のコンデンサ素子を積層可能なように、厚みの小さい分離層を形成し易い。
From the viewpoint of increasing the strength of the exterior body, the exterior body preferably contains a filler.
On the other hand, the separation layer preferably contains a filler with a smaller particle size than the outer casing, and more preferably does not contain a filler. When the separation layer is formed by impregnating the first portion with a liquid resin, the liquid resin preferably contains a filler having a smaller particle size than the outer casing, and more preferably does not contain a filler. In this case, the liquid resin is easily impregnated into the deep recesses on the surface of the porous portion of the first portion, and the separation layer is easily formed. In addition, it is easy to form a separation layer having a small thickness so that a plurality of capacitor elements can be stacked.
(電解コンデンサの製造方法)
 電解コンデンサは、例えば、
 陽極部および陰極部を含む少なくとも1つのコンデンサ素子と、陽極部および陰極部の少なくとも一方の端面が少なくとも1つの外面から露出した状態でコンデンサ素子を封止する外装体とを備える前駆体を準備する工程と、
 少なくとも上記の少なくとも1つの外面を覆うように無電解Agめっきを行って、無電解Agめっき層を形成する工程と、
 無電解Agめっき層を覆う外部電極を形成して、電解コンデンサを得る工程と、を含む製造方法によって得られる。無電解Agめっき層の形成は、外装体の上記の少なくとも1つの外面を覆うように非めっき層である下地層を形成した後に行ってもよい。
(Manufacturing method of electrolytic capacitor)
Electrolytic capacitors, for example,
Preparing a precursor comprising at least one capacitor element including an anode portion and a cathode portion, and an exterior body sealing the capacitor element with at least one end face of the anode portion and the cathode portion exposed from at least one outer surface process and
forming an electroless Ag plating layer by performing electroless Ag plating to cover at least one outer surface;
forming an external electrode covering the electroless Ag plating layer to obtain an electrolytic capacitor. The electroless Ag-plated layer may be formed after forming a base layer, which is a non-plated layer, so as to cover at least one outer surface of the exterior body.
 (前駆体を準備する工程)
 前駆体は、コンデンサ素子の陽極部および陰極部の少なくとも一方の端面が外装体の外面から露出するようにコンデンサ素子を封止することによって準備してもよい。また、コンデンサ素子を外装体で封止した後、陽極部および陰極部の少なくとも一方の端部を、外装体とともに部分的に除去することで、外装体の外面を形成するとともに、陽極部および陰極部の少なくとも一方の端面を外面から露出させることによって準備してもよい。
(Step of preparing precursor)
The precursor may be prepared by sealing the capacitor element so that at least one end face of the anode part and the cathode part of the capacitor element is exposed from the outer surface of the package. After the capacitor element is sealed with the exterior body, at least one end of the anode portion and the cathode portion is partially removed together with the exterior body to form the outer surface of the exterior body, and the anode portion and the cathode portion are formed. You may prepare by exposing at least one end surface of a part from an outer surface.
 外装体を部分的に除去する場合、例えば、外装体による封止の後、コンデンサ素子の陽極体の第1部分の端面を形成して、外装体から露出させる。より具体的には、コンデンサ素子の陽極体の第1部分の端部側において、少なくとも陽極体を外装体とともに部分的に除去して、少なくとも陽極体の第1端部の端面を外装体から露出させる。第1端部の端面を外装体から露出させる方法としては、例えば、コンデンサ素子を外装体で覆った後、外装体から陽極体の第1部分側の端部が露出するように、外装体の表面を研磨したり、外装体の一部を切り離したりする方法が挙げられる。また、多孔質部を含まない第1部分の一部を外装体の一部とともに切り離してもよい。この場合、多孔質部を含まず、かつ、自然酸化皮膜が形成されていない端面を、外装体の外面より容易に露出させることができ、第1部分と外部電極との間において抵抗が小さく信頼性の高い接続状態が得られる。外装体の切断方法としては、ダイシングが好ましい。ダイシングで外装体を切断すると、研磨などと比べて、切断面の表面粗さが大きくなり、無電解Agめっき層のアンカー効果をさらに高めることができ、より高い密着性が得られる。外装体の部分的な切断によって、切断面には第1部分の第1端部の露出端面が現れる。切断面の少なくとも1つが第1外面となる。なお、積層された複数のコンデンサ素子では、第1部分の向きが異なる2種類のコンデンサ素子を有する場合には、第1部分の一部を外装体の一部とともに切り離す際に、2箇所で切断する必要がある。2つの切断面の一方が第1外面となり、他方が第1外面とは反対側の第2外面となる。 When the outer casing is partially removed, for example, after sealing with the outer casing, the end surface of the first portion of the anode body of the capacitor element is formed and exposed from the outer casing. More specifically, on the end side of the first portion of the anode body of the capacitor element, at least the anode body is partially removed together with the outer casing, so that at least the end face of the first end of the anode body is exposed from the outer casing. Let As a method of exposing the end face of the first end portion from the exterior body, for example, after covering the capacitor element with the exterior body, the exterior body is covered so that the end of the anode body on the first portion side is exposed from the exterior body. A method of polishing the surface or cutting off a part of the exterior body can be used. Also, a portion of the first portion that does not include the porous portion may be cut off together with a portion of the exterior body. In this case, the end face that does not include the porous portion and is not formed with the natural oxide film can be easily exposed from the outer surface of the exterior body, and the resistance between the first portion and the external electrode is small and reliable. A connection state with high reliability can be obtained. Dicing is preferable as a method for cutting the outer package. When the outer package is cut by dicing, the surface roughness of the cut surface is increased compared to polishing, etc., and the anchor effect of the electroless Ag plating layer can be further enhanced, resulting in higher adhesion. By partially cutting the outer package, the exposed end surface of the first end of the first portion appears on the cut surface. At least one of the cut surfaces becomes the first outer surface. In addition, in a plurality of stacked capacitor elements, if there are two kinds of capacitor elements with the first portions having different orientations, when a part of the first part is cut off together with a part of the exterior body, it is cut at two places. There is a need to. One of the two cut surfaces is the first outer surface, and the other is the second outer surface opposite to the first outer surface.
 コンデンサ素子(または積層された複数のコンデンサ素子)が、陰極引出層に金属箔を含む場合、金属箔を外装体とともに部分的に除去して、金属箔の端面を外装体から露出させてもよい。金属箔の端面を外装体から露出させる方法としては、陽極部の第1端部側の端面を外装体から露出させる場合と同様の方法を用いることができる。金属箔の端面が露出している外面は、陽極部の第1端部側の端面が露出している外面とは異なる面であることが好ましい。なお、陽極部および金属箔の形状を適宜設計することにより、金属箔の端面および陽極部の第1端部側の端面を、それぞれ、同じ外面の異なる場所で露出させてもよい。 When the capacitor element (or a plurality of laminated capacitor elements) includes a metal foil in the cathode extraction layer, the metal foil may be partially removed together with the outer package to expose the end face of the metal foil from the outer package. . As a method for exposing the end face of the metal foil from the outer package, the same method as in the case of exposing the end face of the anode part on the first end side from the outer package can be used. The outer surface where the end surface of the metal foil is exposed is preferably different from the outer surface where the end surface on the first end side of the anode portion is exposed. By appropriately designing the shapes of the anode portion and the metal foil, the end surface of the metal foil and the end surface of the anode portion on the first end side may be exposed at different locations on the same outer surface.
 コンデンサ素子(または積層された複数のコンデンサ素子)の端部側において、陽極部および絶縁部材を外装体とともに部分的に除去して、第1端部側の端面および絶縁部材の端面を外装体の外面から露出させてもよい。この場合、陽極部および絶縁部材にそれぞれ外装体から露出する面一の端面が形成される。これにより、外装体の表面と面一の陽極部の端面および絶縁部材の端面を、それぞれ、外装体から容易に露出させることができる。また、積層された複数のコンデンサ素子の端部側において、隣接する陽極部の端部間および隣接する陰極部の端部間の少なくとも一方に、絶縁性のスペーサが配置されている場合には、陽極部または陰極部およびスペーサを外装体とともに部分的に除去して、陽極部または陰極部の端面およびスペーサの端面を外装体の外面から露出させてもよい。 On the end side of the capacitor element (or a plurality of laminated capacitor elements), the anode part and the insulating member are partially removed together with the outer package, and the end surface of the first end side and the end surface of the insulating member are removed from the outer package. It may be exposed from the outside. In this case, the anode part and the insulating member are each formed with flush end faces exposed from the exterior body. Thereby, the end face of the anode portion and the end face of the insulating member which are flush with the surface of the exterior can be easily exposed from the exterior. Further, when insulating spacers are arranged between at least one of the ends of adjacent anode portions and between the ends of adjacent cathode portions on the end side of a plurality of laminated capacitor elements, The anode portion or the cathode portion and the spacer may be partially removed together with the exterior body to expose the end face of the anode portion or the cathode portion and the end face of the spacer from the outer surface of the exterior body.
 上記の外装体等の部分的な除去によって自然酸化皮膜が形成されていない陽極部(第1端部)の端面(および、陰極部に含まれる金属箔の端面)を外面から露出させる場合、陽極部(より具体的には、第1部分)と外部電極との間、および陰極部に含まれる金属箔と外部電極との間において、抵抗が小さく信頼性の高い接続状態が得られ易い。 When the end face of the anode portion (first end portion) where the natural oxide film is not formed (and the end face of the metal foil included in the cathode portion) is exposed from the outside by partial removal of the above-mentioned exterior body, etc., the anode A connection state with low resistance and high reliability is easily obtained between the portion (more specifically, the first portion) and the external electrode, and between the metal foil included in the cathode portion and the external electrode.
 下地層を形成せずに、外装体の外面に無電解Agめっき層を形成する場合には、外面に、油脂等の汚れを落とすための洗浄処理を行ってもよい。また、外面には、親水化処理を行ってもよい。親水化処理は、洗浄処理の後に行ってもよい。洗浄処理および親水化処理には、無電解Agめっき層の前処理として行われる公知の方法が採用できる。分離層の端面または絶縁性のスペーサの端面が外装体の外面から露出している場合には、これらの端面についても、上記のような洗浄処理、親水化処理を行ってもよい。 When an electroless Ag plating layer is formed on the outer surface of the exterior body without forming a base layer, the outer surface may be washed to remove dirt such as grease. Moreover, the outer surface may be subjected to a hydrophilic treatment. Hydrophilization treatment may be performed after washing treatment. For the cleaning treatment and hydrophilization treatment, a known method that is performed as a pretreatment for an electroless Ag plating layer can be employed. When the end face of the separation layer or the end face of the insulating spacer is exposed from the outer surface of the outer package, these end faces may also be subjected to the above-described cleaning treatment and hydrophilization treatment.
 (第1めっき層を形成する工程)
 電解コンデンサの製造方法は、陽極部または陰極部の露出した端面を覆うように第1めっき層を形成する工程を含んでもよい。第1めっき層を形成する工程は、下地層を形成する工程および無電解Agめっき層を形成する工程に先立って行われる。第1めっき層または第1めっき層を構成する各めっき層は、公知の方法で形成してもよい。
(Step of forming first plating layer)
The method for manufacturing an electrolytic capacitor may include forming a first plating layer so as to cover the exposed end face of the anode portion or the cathode portion. The step of forming the first plating layer is performed prior to the step of forming the base layer and the step of forming the electroless Ag plating layer. The first plating layer or each plating layer constituting the first plating layer may be formed by a known method.
 (下地層を形成する工程)
 下地層は、例えば、樹脂を含むコーティング剤を塗布することによって形成される。コーティング剤に含まれる樹脂は、下地層について例示した樹脂から選択される。塗布により形成される塗膜は、必要に応じて、乾燥または加熱などによって、固化または硬化(または半硬化)させてもよい。
(Step of forming base layer)
The underlayer is formed, for example, by applying a coating agent containing resin. The resin contained in the coating agent is selected from the resins exemplified for the underlayer. A coating film formed by coating may be solidified or cured (or semi-cured) by drying or heating, if necessary.
 下地層の表面には、油脂等の汚れを落とすための洗浄処理を行ってもよい。また、下地層の表面は、親水化処理を行ってもよい。親水化処理は、洗浄処理の後に行ってもよい。洗浄処理および親水化処理には、無電解Agめっき層の前処理として行われる公知の方法が採用できる。 The surface of the base layer may be washed to remove dirt such as grease. Moreover, the surface of the underlayer may be subjected to hydrophilic treatment. Hydrophilization treatment may be performed after washing treatment. For the cleaning treatment and hydrophilization treatment, a known method that is performed as a pretreatment for an electroless Ag plating layer can be employed.
 下地層を形成する場合には、高い導電性を確保する観点から、下地層は、陽極部または陰極部の外装体の外面から露出する端面および第1めっき層の表面以外の領域(例えば、外装体の外面などの絶縁性の領域)に形成されることが好ましい。より具体的には、下地層は、陽極部または陰極部の外装体の外面から露出する端面および第1めっき層の表面を覆わず、外装体の外面(絶縁性の分離部またはスペーサが外面から露出している場合には、これらの露出部分および外装体の外面(つまり、絶縁部分の表面)の全体)を覆うように形成されることが好ましい。この場合、下地層は、例えば、陽極部または陰極部の露出する端面または第1めっき層の表面をマスキングした状態で形成される。 In the case of forming the base layer, from the viewpoint of ensuring high conductivity, the base layer includes the end face exposed from the outer surface of the anode part or the cathode part and the area other than the surface of the first plating layer (for example, the exterior It is preferably formed in an insulating region such as the outer surface of the body). More specifically, the base layer does not cover the end surface of the anode part or the cathode part exposed from the outer surface of the exterior body and the surface of the first plating layer, and does not cover the outer surface of the exterior body (insulating separator or spacer is If exposed, it is preferably formed so as to cover these exposed portions and the entire outer surface of the exterior body (that is, the surface of the insulating portion). In this case, the underlying layer is formed, for example, in a state in which the exposed end face of the anode part or the cathode part or the surface of the first plating layer is masked.
 (無電解Agめっき層を形成する工程)
 無電解Agめっき層は、外装体の外面を覆うように形成される。外面から露出した陽極部または陰極部の端面を、無電解Agめっき層で直接覆ってもよい(例えば、下地層を介さずに無電解めっき層で覆ってもよい)。第1めっき層を形成する場合には、第1めっき層および外装体の外面を覆うように無電解Agめっき層が形成される。無電解めっき層は、下地層を介さずに第1めっき層の表面を覆っていることが好ましい。
(Step of forming electroless Ag plating layer)
The electroless Ag plating layer is formed so as to cover the outer surface of the exterior body. The end face of the anode portion or the cathode portion exposed from the outer surface may be directly covered with the electroless Ag plating layer (for example, it may be covered with the electroless plating layer without an underlying layer). When forming the first plating layer, an electroless Ag plating layer is formed so as to cover the first plating layer and the outer surface of the exterior body. The electroless plated layer preferably covers the surface of the first plated layer without the underlayer.
 無電解Agめっき層は、例えば、還元型の無電解Agめっき法によって形成される。無電解Agめっき層は、例えば、公知の方法によって形成してもよい。 The electroless Ag plating layer is formed, for example, by a reduction type electroless Ag plating method. The electroless Ag plating layer may be formed by a known method, for example.
 外装体の外面を覆うように、銀鏡めっきを行って、無電解Agめっき層としての銀鏡めっき層を形成することが好ましい。銀鏡めっき層は、緻密であるため、より高いアンカー効果が得られる。よって、外装体と外部電極との密着性がさらに向上し、電解コンデンサの信頼性をさらに高めることができる。 It is preferable to form a silver mirror-plated layer as an electroless Ag-plated layer by performing silver mirror plating so as to cover the outer surface of the exterior body. Since the silver mirror-plated layer is dense, a higher anchor effect can be obtained. Therefore, the adhesion between the exterior body and the external electrodes is further improved, and the reliability of the electrolytic capacitor can be further improved.
 銀鏡めっき層は、例えば、公知の手順で形成される。銀鏡めっき層は、例えば、銀アンモニア溶液および還元剤を含む銀鏡めっき液を、少なくとも外装体の外面または外面に形成された下地層に、塗布することによって形成してもよい。このとき、外装体の外面から露出した陽極部または陰極部の端面、もしくは第1めっき層の表面にも銀鏡めっき液が塗布される。また、外装体の外面から分離層またはスペーサなどが露出している場合にはこれらの端面にも銀鏡めっき液が塗布される。銀鏡めっき層は、例えば、アンモニア性の硝酸銀溶液と、還元剤およびアルカリ成分を含む溶液との2液を用いて形成してもよい。2液が混合されることで、酸化還元反応が進行して金属銀が析出し、銀鏡めっき層が形成される。例えば、2液を混合し、外面または下地層に塗布してもよく、外面または下地層上で2液が混合されるように2液を別々に付与してもよい。銀鏡めっき液、2液の各溶液の塗布は、例えば、スプレーコートを利用して行うことができる。還元剤としては、グルコース、アルデヒド化合物(グリオキサールなど)、ヒドラジン化合物などが挙げられる。銀鏡めっき液、2液の各溶液は、公知の添加剤を含んでもよい。銀鏡めっき層は、必要に応じて、脱イオン水などを用いて水洗してもよい。 A silver mirror-plated layer is formed, for example, by a known procedure. The silver mirror-plated layer may be formed, for example, by applying a silver mirror-plating solution containing a silver ammonia solution and a reducing agent to at least the outer surface of the exterior body or a base layer formed on the outer surface. At this time, the silver mirror plating solution is also applied to the end face of the anode part or the cathode part exposed from the outer surface of the package, or the surface of the first plating layer. In addition, when the separation layer or spacers are exposed from the outer surface of the package, the silver mirror plating solution is also applied to the end faces of these. The silver mirror-plated layer may be formed, for example, by using two liquids, an ammoniacal silver nitrate solution and a solution containing a reducing agent and an alkaline component. By mixing the two liquids, an oxidation-reduction reaction proceeds and metallic silver is deposited to form a silver mirror-plated layer. For example, the two liquids may be mixed and applied to the outer surface or the underlying layer, or the two liquids may be applied separately so that the two liquids are mixed on the outer surface or the underlying layer. The application of each of the silver mirror plating solution and the two solutions can be performed using, for example, spray coating. Examples of reducing agents include glucose, aldehyde compounds (glyoxal, etc.), hydrazine compounds, and the like. The silver mirror plating solution and each solution of the two solutions may contain known additives. The silver mirror-plated layer may be washed with deionized water or the like, if necessary.
 (外部電極を形成する工程)
 本工程では、無電解Agめっき層を覆うように外部電極を形成する。これによって、陽極部および陰極部の少なくとも一方と外部電極とが電気的に接続される。このようにして、外部電極を備える電解コンデンサが得られる。
(Step of forming external electrodes)
In this step, an external electrode is formed so as to cover the electroless Ag plating layer. This electrically connects at least one of the anode portion and the cathode portion to the external electrode. Thus, an electrolytic capacitor with external electrodes is obtained.
 外部電極が金属層(めっき層など)を含む場合、金属層は、例えば、電解めっき法、無電解めっき法、スパッタリング法、真空蒸着法、化学蒸着(CVD)法、コールドスプレー法、溶射法などの成膜技術を用いて形成してもよい。 When the external electrode includes a metal layer (such as a plating layer), the metal layer is formed by, for example, electroplating, electroless plating, sputtering, vacuum deposition, chemical vapor deposition (CVD), cold spraying, thermal spraying, and the like. may be formed using the film forming technique of
 金属層は、無電解Agめっき層と接触するように形成してもよい。また、外部電極は、無電解Agめっき層を覆う導電性ペースト層(または導電性樹脂層)と導電性ペースト層を覆う金属層とを含んでもよい。この場合、金属層の形成に先立って、導電性ペースト層が形成される。 The metal layer may be formed so as to be in contact with the electroless Ag plating layer. Also, the external electrode may include a conductive paste layer (or a conductive resin layer) covering the electroless Ag plating layer and a metal layer covering the conductive paste layer. In this case, a conductive paste layer is formed prior to forming the metal layer.
 導電性ペースト層は、例えば、導電性粒子と、樹脂材料と、必要に応じて分散媒とを含む導電性ペーストを、無電解Agめっき層の表面に塗布することによって形成してもよい。導電性粒子および樹脂材料としては、導電性ペースト層についての説明を参照できる。分散媒としては、例えば、水、有機溶媒またはこれらの混合溶媒が挙げられる。導電性ペーストは必要に応じて界面活性剤、分散剤などの添加剤を含んでもよい。 The conductive paste layer may be formed, for example, by applying a conductive paste containing conductive particles, a resin material, and optionally a dispersion medium to the surface of the electroless Ag plating layer. As for the conductive particles and the resin material, the description of the conductive paste layer can be referred to. Dispersion media include, for example, water, organic solvents, and mixed solvents thereof. The conductive paste may contain additives such as surfactants and dispersants, if necessary.
 導電性ペーストの塗布は、特に制限されず、ディップ法、転写法、印刷法、ディスペンス法などによって行うことができる。塗布により形成された塗膜は、通常、乾燥または加熱によって、固化される。導電性ペーストが硬化性樹脂またはその組成物を含む場合には、加熱などによって樹脂材料が硬化する。このようにして、無電解Agめっき層を覆う導電性ペースト層(換言すると、導電性樹脂層)が形成される。  The application of the conductive paste is not particularly limited, and can be performed by a dipping method, a transfer method, a printing method, a dispensing method, or the like. A coating film formed by coating is usually solidified by drying or heating. When the conductive paste contains a curable resin or a composition thereof, the resin material is cured by heating or the like. Thus, a conductive paste layer (in other words, a conductive resin layer) covering the electroless Ag plating layer is formed.
 外部電極は、外装体の、陽極部および陰極部の少なくとも一方の端面が露出している外面に形成される。例えば、第1外面から陽極部の端面が露出している場合、第1外面を覆うように第1外部電極を形成してもよい。第2外面から陰極部の端面が露出している場合、第2外面を覆うように第2外部電極を形成してもよい。積層された複数のコンデンサ素子の一部の陽極部の端面が第1外面から露出し、残部の陽極部の端面が第1外面とは反対側の第2外面から露出している場合、第1外面を覆うように第1外部電極を形成し、第2外面を覆うように第3外部電極を形成してもよい。積層された複数のコンデンサ素子の陰極部の端面は、第1外面および第2外面以外の外面(例えば、第3外面)から露出していてもよい。この場合、第3外面を覆うように第2外部電極が形成される。各外面と外部電極との間のうち、少なくとも一箇所には無電解Agめっき層を形成する。より高い信頼性を確保する観点からは、各外面と外部電極との間の全てにおいて、無電解Agめっき層を形成することが好ましい。 The external electrode is formed on the outer surface of the exterior body where at least one end face of the anode part and the cathode part is exposed. For example, when the end face of the anode part is exposed from the first outer surface, the first outer electrode may be formed so as to cover the first outer surface. When the end face of the cathode portion is exposed from the second outer surface, the second outer electrode may be formed so as to cover the second outer surface. When the end faces of the anode portions of some of the stacked capacitor elements are exposed from the first outer surface and the end faces of the remaining anode portions are exposed from the second outer surface opposite to the first outer surface, the first A first external electrode may be formed to cover the outer surface, and a third external electrode may be formed to cover the second outer surface. The end faces of the cathode portions of the plurality of laminated capacitor elements may be exposed from an outer surface other than the first outer surface and the second outer surface (for example, the third outer surface). In this case, the second external electrode is formed to cover the third external surface. An electroless Ag plating layer is formed in at least one portion between each outer surface and the external electrode. From the viewpoint of ensuring higher reliability, it is preferable to form an electroless Ag plating layer entirely between each outer surface and the external electrodes.
 (他の工程)
 電解コンデンサの製造方法は、コンデンサ素子を形成する工程と、コンデンサ素子を外装体で封止する工程とを含んでもよい。また、製造方法は、複数のコンデンサ素子を積層する工程を含んでもよい。この場合、封止工程では、積層された複数のコンデンサ素子が外装体で封止される。封止工程では、陽極部および陰極部の少なくとも一方の端面が外装体の外面から露出するように封止を行ってもよい。あるいは、封止工程の後、陽極部および陰極部の少なくとも一方の端面を外装体の外面から露出させる工程を行ってもよい。各工程については、電解コンデンサの各構成についての説明を参照できる。
(Other processes)
The method for manufacturing an electrolytic capacitor may include the steps of forming a capacitor element and sealing the capacitor element with an outer package. Moreover, the manufacturing method may include a step of stacking a plurality of capacitor elements. In this case, in the sealing step, the laminated plural capacitor elements are sealed with the outer package. In the sealing step, sealing may be performed so that at least one end surface of the anode portion and the cathode portion is exposed from the outer surface of the exterior body. Alternatively, after the sealing step, a step of exposing at least one end surface of the anode portion and the cathode portion from the outer surface of the exterior body may be performed. For each step, the description of each configuration of the electrolytic capacitor can be referred to.
 以下に、図面を参照しながら、本開示の電解コンデンサの構造について、いくつかの実施形態を例に挙げて、より具体的に説明する。しかし、本開示の電解コンデンサは、以下の実施形態のみに限定されない。 Hereinafter, the structure of the electrolytic capacitor of the present disclosure will be described more specifically by taking several embodiments as examples with reference to the drawings. However, the electrolytic capacitor of the present disclosure is not limited to only the following embodiments.
 図1は、本開示の一実施形態に係る電解コンデンサの構造を模式的に示す断面図である。図2は、図1の電解コンデンサを構成するコンデンサ素子の構造を示す断面図である。 FIG. 1 is a cross-sectional view schematically showing the structure of an electrolytic capacitor according to one embodiment of the present disclosure. 2 is a cross-sectional view showing the structure of a capacitor element that constitutes the electrolytic capacitor of FIG. 1. FIG.
 図1に示すように、電解コンデンサ100は、積層された複数のコンデンサ素子10と、コンデンサ素子10を封止する外装体14と、第1外部電極21と、第2外部電極22と、を備える。図示例では、積層された複数のコンデンサ素子10は、基板17に支持されている。 As shown in FIG. 1, an electrolytic capacitor 100 includes a plurality of laminated capacitor elements 10, an outer package 14 that seals the capacitor elements 10, a first external electrode 21, and a second external electrode 22. . In the illustrated example, a plurality of laminated capacitor elements 10 are supported by a substrate 17 .
 各コンデンサ素子10は、陽極部である陽極体3と、陰極部6とを備える。陽極体3は、例えば、陽極箔である。陽極体3は、表層に多孔質部5を有し、多孔質部5の少なくとも一部の表面に誘電体層(図示しない)が形成されている。陰極部6は、誘電体層の少なくとも一部を覆っている。陰極部6は、固体電解質層7および陰極引出層19を含む。 Each capacitor element 10 includes an anode body 3 as an anode portion and a cathode portion 6 . Anode body 3 is, for example, an anode foil. Anode body 3 has porous portion 5 on its surface, and a dielectric layer (not shown) is formed on at least a part of porous portion 5 . Cathode part 6 covers at least part of the dielectric layer. Cathode section 6 includes solid electrolyte layer 7 and cathode extraction layer 19 .
 コンデンサ素子10は、一方の端部(第1端部)1Aにおいて陰極部6で覆われることなく、陽極体3が露出している。コンデンサ素子10の他方の端部(第2端部)2Aは陰極部6で覆われている。陽極体3の陰極部6(特に、固体電解質層7)で覆われた部分を第2部分2と称し、それ以外の部分を第1部分1と称する。第1部分1は、陽極体3の陰極部6で覆われていない。第1部分1の端部が第1端部1Aであり、第2部分2の端部が第2端部2Aである。 One end (first end) 1A of the capacitor element 10 is not covered with the cathode portion 6, and the anode body 3 is exposed. The other end (second end) 2A of capacitor element 10 is covered with cathode portion 6 . A portion of anode body 3 covered with cathode portion 6 (in particular, solid electrolyte layer 7 ) is referred to as second portion 2 , and the remaining portion is referred to as first portion 1 . The first part 1 is not covered with the cathode part 6 of the anode body 3 . The end of the first portion 1 is the first end 1A, and the end of the second portion 2 is the second end 2A.
 図示例では、第2部分2は、芯部4と、芯部4の表面に形成された多孔質部5とを有する。第1部分1では、表面に多孔質部5を有していてもよく、有していなくてもよい。誘電体層は、少なくとも第2部分2に形成された多孔質部5の表面に沿って形成されている。誘電体層の少なくとも一部は、多孔質部5の孔の内壁面を覆い、その内壁面に沿って形成されている。 In the illustrated example, the second portion 2 has a core portion 4 and a porous portion 5 formed on the surface of the core portion 4 . The first portion 1 may or may not have the porous portion 5 on its surface. The dielectric layer is formed along at least the surface of the porous portion 5 formed in the second portion 2 . At least part of the dielectric layer covers the inner wall surfaces of the pores of the porous portion 5 and is formed along the inner wall surfaces.
 陰極部6は、誘電体層の少なくとも一部を覆う固体電解質層7と、固体電解質層7の少なくとも一部を覆う陰極引出層19とを備える。誘電体層の表面は、陽極体3の表面の形状に応じた凹凸形状が形成されている。固体電解質層7は、例えば、このような誘電体層の凹凸を埋めるように形成される。陰極引出層19は、例えば、固体電解質層7の少なくとも一部を覆うカーボン層などの第1層8と、第1層8の少なくとも一部を覆う第2層としての金属箔20とを備えていてもよい。 The cathode section 6 includes a solid electrolyte layer 7 that covers at least part of the dielectric layer, and a cathode extraction layer 19 that covers at least part of the solid electrolyte layer 7 . The surface of the dielectric layer has an uneven shape corresponding to the shape of the surface of anode body 3 . The solid electrolyte layer 7 is formed, for example, so as to fill such unevenness of the dielectric layer. The cathode extraction layer 19 includes, for example, a first layer 8 such as a carbon layer covering at least a portion of the solid electrolyte layer 7, and a metal foil 20 as a second layer covering at least a portion of the first layer 8. may
 金属箔20は、積層方向において隣接するコンデンサ素子10の第2部分2の間に介在している。金属箔20は、コンデンサ素子10の陰極部6の一部を構成し、積層方向において隣接するコンデンサ素子10間で共有されている。金属箔20とコンデンサ素子10との間に、導電性を有する接着層9が介在してもよい。接着層9には、例えば、導電性接着剤が用いられる。接着層9は、例えば、銀を含む。 The metal foil 20 is interposed between the second portions 2 of the capacitor elements 10 adjacent in the stacking direction. Metal foil 20 constitutes a part of cathode portion 6 of capacitor element 10 and is shared between capacitor elements 10 adjacent in the stacking direction. A conductive adhesive layer 9 may be interposed between the metal foil 20 and the capacitor element 10 . A conductive adhesive, for example, is used for the adhesive layer 9 . The adhesion layer 9 contains silver, for example.
 陽極体3の陰極部6と対向しない領域のうち、少なくとも陰極部6に隣接する部分には、陽極体3の表面を覆うように絶縁性の分離層(または絶縁部材)12を形成してもよい。これにより、陰極部6と陽極体3の露出部分(第1部分1)との接触が規制されている。分離層12は、例えば、絶縁性の樹脂層である。 An insulating separation layer (or insulating member) 12 may be formed so as to cover the surface of the anode body 3 at least in a portion adjacent to the cathode part 6 among the regions of the anode body 3 not facing the cathode part 6 . good. This restricts contact between cathode portion 6 and the exposed portion (first portion 1 ) of anode body 3 . The separation layer 12 is, for example, an insulating resin layer.
 外装体14は、ほぼ直方体の外形を有し、電解コンデンサ100もほぼ直方体の外形を有する。図示例では、外装体14は、第1外面14aおよび第1外面14aとは反対側の第2外面14bを有する。各コンデンサ素子10の陽極部である陽極体3の第1端部1Aの端面は、第1外面14aにおいて露出している。また、陰極部6を構成する金属箔20の端面20aは、第2外面14bにおいて外装体から露出している。 The exterior body 14 has a substantially rectangular parallelepiped outer shape, and the electrolytic capacitor 100 also has a substantially rectangular parallelepiped outer shape. In the illustrated example, the exterior body 14 has a first outer surface 14a and a second outer surface 14b opposite to the first outer surface 14a. The end surface of first end portion 1A of anode body 3, which is the anode portion of each capacitor element 10, is exposed at first outer surface 14a. An end surface 20a of the metal foil 20 forming the cathode portion 6 is exposed from the exterior body at the second outer surface 14b.
 外装体14から露出する金属箔20の端面のそれぞれおよび第2外面14bは、第2外部電極22で覆われている。金属箔20の端面20aには、第1めっき層15が端面20aを覆うように形成されている。第2外面14bと第2外部電極22との間には、無電解Agめっき層18が形成されている。無電解Agめっき層18は、緻密な被膜であるとともに、下地層を介してまたは介することなく、第2外面14b全体を覆っている。そのため、第2外面14bに対して高いアンカー効果が得られる。第2外部電極22は、無電解Agめっき層18および第1めっき層15を介して、陰極部6を構成する金属箔20の端面20aと電気的に接続している。 Each of the end surfaces of the metal foil 20 exposed from the exterior body 14 and the second outer surface 14b are covered with the second external electrodes 22. A first plating layer 15 is formed on the end surface 20a of the metal foil 20 so as to cover the end surface 20a. An electroless Ag plating layer 18 is formed between the second outer surface 14 b and the second external electrode 22 . The electroless Ag plating layer 18 is a dense coating and covers the entire second outer surface 14b with or without an underlying layer. Therefore, a high anchor effect can be obtained with respect to the second outer surface 14b. The second external electrode 22 is electrically connected through the electroless Ag plating layer 18 and the first plating layer 15 to the end surface 20a of the metal foil 20 forming the cathode section 6 .
 電解コンデンサ100において、複数の陽極体3の第1端部1Aの外装体14から露出する端面1aのそれぞれおよび第1外面14aは、第1外部電極21に覆われている。陽極体3の端面1aには、第1めっき層15が端面1aを覆うように形成されている。第1外面14aと第1外部電極21との間には、無電解Agめっき層18が形成されている。無電解Agめっき層18は、下地層を介してまたは介することなく第1外面14a全体を覆っている。そのため、上記と同様に、無電解Agめっき層18によって、第1外面14aに対する高いアンカー効果が得られる。図示例では、外装体14の第1外面14aから、分離層12の端面も露出しており、この露出した端面も無電解Agめっき層18で覆われている。第1外部電極21は、無電解Agめっき層18および第1めっき層15を介して、陽極体3の端面1aと電気的に接続している。 In the electrolytic capacitor 100 , each of the end surfaces 1 a of the first ends 1 A of the plurality of anode bodies 3 exposed from the exterior body 14 and the first outer surface 14 a are covered with the first external electrode 21 . A first plated layer 15 is formed on the end surface 1a of the anode body 3 so as to cover the end surface 1a. An electroless Ag plating layer 18 is formed between the first outer surface 14 a and the first external electrode 21 . The electroless Ag plating layer 18 covers the entire first outer surface 14a with or without an underlying layer. Therefore, similarly to the above, the electroless Ag plating layer 18 provides a high anchoring effect to the first outer surface 14a. In the illustrated example, the end face of the separation layer 12 is also exposed from the first outer surface 14 a of the outer package 14 , and the exposed end face is also covered with the electroless Ag plating layer 18 . First external electrode 21 is electrically connected to end surface 1 a of anode body 3 via electroless Ag plating layer 18 and first plating layer 15 .
 第1めっき層15は、例えば、無電解Niめっき層を少なくとも含む。第1めっき層は、例えば、無電解Niめっき層と、無電解Niめっき層を覆う無電解Agめっき層とを備えていてもよい。第1めっき層を構成する無電解Agめっき層は、無電解Agめっき層18とは組成が異なる。図示例では、第1めっき層15が形成されている場合を示したが、この場合に限らず、第1めっき層15は形成しなくてもよい。この場合、高い導電性を確保する観点から、陽極体3の端面1aまたは金属箔20の端面20aには、下地層を介さずに、無電解Agめっき層18で覆われていることが好ましい。 The first plating layer 15 includes at least an electroless Ni plating layer, for example. The first plating layer may include, for example, an electroless Ni plating layer and an electroless Ag plating layer covering the electroless Ni plating layer. The electroless Ag plating layer forming the first plating layer has a composition different from that of the electroless Ag plating layer 18 . Although the illustrated example shows the case where the first plating layer 15 is formed, the present invention is not limited to this case, and the first plating layer 15 may not be formed. In this case, from the viewpoint of ensuring high conductivity, the end surface 1a of the anode body 3 or the end surface 20a of the metal foil 20 is preferably covered with the electroless Ag plating layer 18 without an underlying layer.
 第1外部電極21は、例えば、銀ペースト層などの導電性ペースト層21Aと、導電性ペースト層21Aを覆うNi/Snめっき層21Bとを備える。同様に、第2外部電極22は、例えば、銀ペースト層などの導電性ペースト層22Aと、導電性ペースト層22Aを覆うNi/Snめっき層22Bとを備える。導電性ペースト層21Aおよび22Aのそれぞれは、無電解Agめっき層18全体を覆っている。導電性ペースト層21Aおよび22Aを形成する導電性ペーストは、無電解Agめっき層18との親和性が高く、高い密着性を確保し易い。加えて無電解Agめっき層18により、外装体14の第1外面14aまたは第2外面14bに対する高いアンカー効果が得られる。そのため、外装体14と第1外部電極21および第2外部電極22との高い密着性が得られ、導電性ペースト層21Aまたは22A内、もしくは導電性ペースト層21Aまたは22Aとこれと接触する部材間におけるクラックまたは剥離の発生が抑制され、ESRの増加を抑制できる。よって電解コンデンサの高い信頼性が得られる。なお、図示例では、第1外部電極21および第2外部電極22の双方と外装体14との間に無電解Agめっき層18が介在する場合を示したが、この場合に限らず、いずれか一方に無電解Agめっき層18が介在してもよい。 The first external electrode 21 includes, for example, a conductive paste layer 21A such as a silver paste layer, and a Ni/Sn plating layer 21B covering the conductive paste layer 21A. Similarly, the second external electrode 22 includes, for example, a conductive paste layer 22A such as a silver paste layer, and a Ni/Sn plating layer 22B covering the conductive paste layer 22A. Each of the conductive paste layers 21A and 22A covers the electroless Ag plating layer 18 entirely. The conductive paste that forms the conductive paste layers 21A and 22A has a high affinity with the electroless Ag plating layer 18, and can easily ensure high adhesion. In addition, the electroless Ag plating layer 18 provides a high anchoring effect to the first outer surface 14a or the second outer surface 14b of the package 14 . Therefore, high adhesion between the exterior body 14 and the first external electrode 21 and the second external electrode 22 can be obtained, and the adhesion within the conductive paste layer 21A or 22A or between the conductive paste layer 21A or 22A and the member in contact therewith can be achieved. The occurrence of cracks or peeling in is suppressed, and an increase in ESR can be suppressed. Therefore, high reliability of the electrolytic capacitor can be obtained. Although the illustrated example shows the case where the electroless Ag plating layer 18 is interposed between both the first external electrode 21 and the second external electrode 22 and the exterior body 14, the present invention is not limited to this case. An electroless Ag plating layer 18 may intervene on one side.
 第1外部電極21は、外装体14の第1外面14a全体を覆うとともに、第1外面14aと垂直な第3外面および基板17のそれぞれの第1外面14a側の一部も覆っている。第2外部電極22も同様に、第2外面14b全体を覆うとともに、第2外面14bと垂直な第3外面14cおよび基板17のそれぞれの第2外面14b側の一部も覆っている。このような構成によって、第1外部電極21と第1外面14aとの間、および第2外部電極22と第2外面14bとの間の双方において、密着性をさらに高めることができる。基板17の一部を覆う第1外部電極21および第2外部電極22は、それぞれ、電解コンデンサ100の底面において露出している。これらの露出部分は、それぞれ、電解コンデンサ100の陽極端子および陰極端子を構成する。 The first external electrode 21 covers the entire first outer surface 14a of the exterior body 14, and also covers a third outer surface perpendicular to the first outer surface 14a and part of the substrate 17 on the first outer surface 14a side. Similarly, the second external electrode 22 covers the entire second outer surface 14b, and also covers a third outer surface 14c perpendicular to the second outer surface 14b and part of the substrate 17 on the second outer surface 14b side. Such a configuration can further enhance the adhesion between the first external electrode 21 and the first outer surface 14a and between the second external electrode 22 and the second outer surface 14b. A first external electrode 21 and a second external electrode 22 covering part of the substrate 17 are exposed at the bottom surface of the electrolytic capacitor 100 . These exposed portions constitute the anode and cathode terminals of electrolytic capacitor 100, respectively.
 分離層12は、必ずしも、図示例のように、外装体14から露出させる必要はなく、陽極体3の端面1aのみが露出していてもよい。露出する端面1aは、芯部4のみで構成されていてもよく、多孔質部5を含んでいてもよい。端面1aが多孔質部5を含まない方が、コンデンサ素子10内への空気の侵入を抑制する上では有利である。 The separation layer 12 does not necessarily have to be exposed from the exterior body 14 as in the illustrated example, and only the end surface 1a of the anode body 3 may be exposed. The exposed end surface 1 a may be composed of only the core portion 4 or may include the porous portion 5 . It is advantageous for end face 1 a not to include porous portion 5 in terms of preventing air from entering capacitor element 10 .
 図3は、本開示の他の実施形態に係る電解コンデンサの構造を模式的に示す断面図である。図3に示す電解コンデンサ101は、積層された複数のコンデンサ素子10と、コンデンサ素子10を封止する外装体14と、第1外部電極21、第2外部電極22、および第3外部電極23と、を備える。第1外部電極21および第3外部電極23は、それぞれ、陽極部である陽極体3と電気的に接続しており、第2外部電極22は、陰極部6を構成する金属箔20と電気的に接続している。図3は、図1および図2とは、コンデンサ素子10の積層の向き、金属箔20の配置、および外部電極の配置が異なるだけで、その他は、図1および図2の説明を参照できる。 FIG. 3 is a cross-sectional view schematically showing the structure of an electrolytic capacitor according to another embodiment of the present disclosure. The electrolytic capacitor 101 shown in FIG. 3 includes a plurality of stacked capacitor elements 10, an exterior body 14 that seals the capacitor elements 10, a first external electrode 21, a second external electrode 22, and a third external electrode 23. , provided. The first external electrode 21 and the third external electrode 23 are electrically connected to the anode body 3 which is the anode portion, and the second external electrode 22 is electrically connected to the metal foil 20 constituting the cathode portion 6. connected to. FIG. 3 differs from FIGS. 1 and 2 only in the lamination direction of capacitor element 10, the arrangement of metal foil 20, and the arrangement of external electrodes.
 図3では、複数のコンデンサ素子10は、陽極体3の第1部分1が第2部分2に対して一方向(外装体14の第1外面14aに向かう方向)を向いた第1コンデンサ素子10aと、陽極体3の第1部分1が第2部分2に対して第1コンデンサ素子10aと反対方向(外装体14の第2外面14bに向かう方向)を向いた第2コンデンサ素子10bと、を有する。第1コンデンサ素子10aの第1端部1Aの端面1aは第1外面14aにおいて外装体から露出している。第2コンデンサ素子10bの第1端部1Aの端面1aは、第1外面14aとは反対側の第2外面14bにおいて外装体から露出している。各端面1aには、第1めっき層15が形成されている。第1外面14aを覆うように第1外部電極21が形成され、第2外面14bを覆うように第3外部電極23が形成されている。第1外部電極21と第1外面14aとの間および第3外部電極23と第2外面14bとの間にはそれぞれ無電解Agめっき層18が介在している。そして、第1外部電極は、第1コンデンサ素子10aの陽極体3の端面1aと、第1めっき層15および無電解Agめっき層18を介して電気的に接続している。同様に、第3外部電極は、第2コンデンサ素子10bの陽極体3の端面1aと、第1めっき層15および無電解Agめっき層18を介して電気的に接続している。第1外部電極21は、第1外面14a全体を覆うとともに、第1外面14aと交差する第3外面14cおよび基板17の表面のそれぞれの第1外面14a側の一部も覆っている。同様に第3外部電極23は、第2外面14b全体を覆うとともに、第2外面14bと交差する第3外面14cおよび基板17の表面のそれぞれの第1外面14a側の一部も覆っている。 In FIG. 3, the plurality of capacitor elements 10 are arranged such that the first portion 1 of the anode body 3 faces the second portion 2 in one direction (the direction toward the first outer surface 14a of the package 14). and a second capacitor element 10b in which the first portion 1 of the anode body 3 faces the second portion 2 in the direction opposite to that of the first capacitor element 10a (the direction toward the second outer surface 14b of the package 14). have. The end surface 1a of the first end portion 1A of the first capacitor element 10a is exposed from the exterior body at the first outer surface 14a. The end surface 1a of the first end portion 1A of the second capacitor element 10b is exposed from the exterior body at the second outer surface 14b opposite to the first outer surface 14a. A first plated layer 15 is formed on each end face 1a. A first external electrode 21 is formed to cover the first outer surface 14a, and a third external electrode 23 is formed to cover the second outer surface 14b. Electroless Ag plating layers 18 are interposed between the first outer electrode 21 and the first outer surface 14a and between the third outer electrode 23 and the second outer surface 14b. The first external electrode is electrically connected to end surface 1a of anode body 3 of first capacitor element 10a via first plating layer 15 and electroless Ag plating layer 18 . Similarly, the third external electrode is electrically connected to end face 1a of anode body 3 of second capacitor element 10b via first plating layer 15 and electroless Ag plating layer . The first external electrode 21 covers the entire first external surface 14a, and also partially covers the third external surface 14c intersecting the first external surface 14a and the surface of the substrate 17 on the first external surface 14a side. Similarly, the third external electrode 23 covers the entire second external surface 14b, and also partially covers the surfaces of the substrate 17 and the third external surface 14c intersecting the second external surface 14b on the side of the first external surface 14a.
 一方、図示しないが、第1外面14aおよび第2外面14bと交差する第4外面および第4外面と反対側の第5外面の少なくとも一方において、第1コンデンサ素子10aおよび第2コンデンサ素子10bの陰極部6を構成する金属箔20の端面が外装体14から露出し、第2外部電極22と電気的に接続している。金属箔20の露出する端面は、第1めっき層15で覆われていてもよい。第2外部電極22と第4外面および第5外面の少なくとも一方との間には、無電解Agめっき層18が介在していてもよい。第2外部電極22は、第4外面および第5外面の少なくとも一方を覆うとともに、連続して基板17の表面の第1外面一部も覆っている。 On the other hand, although not shown, at least one of a fourth outer surface intersecting the first outer surface 14a and the second outer surface 14b and a fifth outer surface opposite to the fourth outer surface, the cathode of the first capacitor element 10a and the second capacitor element 10b An end surface of the metal foil 20 forming the portion 6 is exposed from the exterior body 14 and electrically connected to the second external electrode 22 . The exposed end face of the metal foil 20 may be covered with the first plating layer 15 . An electroless Ag plating layer 18 may be interposed between the second external electrode 22 and at least one of the fourth outer surface and the fifth outer surface. The second external electrode 22 covers at least one of the fourth outer surface and the fifth outer surface, and also continuously covers part of the first outer surface of the surface of the substrate 17 .
 このように、電解コンデンサ101の底面(基板17の表面)に露出した第1外部電極21および第3外部電極は、陽極端子を構成し、第2外部電極は、陰極端子を構成している。 Thus, the first external electrode 21 and the third external electrode exposed on the bottom surface of the electrolytic capacitor 101 (the surface of the substrate 17) constitute an anode terminal, and the second external electrode constitutes a cathode terminal.
 図3の例では、第1コンデンサ素子10aと第2コンデンサ素子10bとは交互に積層されている。しかし、この場合に限らず、電解コンデンサは、隣接して積層された第1コンデンサ素子10a、および、隣接して積層された第2コンデンサ素子10bの少なくとも一方を含んでもよい。 In the example of FIG. 3, the first capacitor elements 10a and the second capacitor elements 10b are alternately laminated. However, this is not the only case, and the electrolytic capacitor may include at least one of the adjacently stacked first capacitor element 10a and the adjacently stacked second capacitor element 10b.
[実施例]
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
[Example]
EXAMPLES The present disclosure will be specifically described below based on examples and comparative examples, but the present disclosure is not limited to the following examples.
《電解コンデンサE1~E3およびC1》
 下記の要領で、図1に示すような積層された7つのコンデンサ素子10を含む電解コンデンサ(電解コンデンサE1~E3およびC1)を作製し、その特性を評価した。E1~E3では、無電解Agめっき層18として、銀鏡めっき層を形成した。ただし、E1では、第1めっき層15を形成しなかった。E2では、第1めっき層として、無電解Niめっき層のみを形成した。E3では、第1めっき層として、陽極体3の端面1aおよび金属箔20の端面20aを覆う無電解Niめっき層と無電解Niめっき層を覆う無電解Agめっき層とを形成した。この無電解Agめっき層は、銀鏡めっき層とは異なる。C1では、E3と同じ第1めっき層を形成するとともに、無電解Agめっき層18を形成しなかった。コンデンサ素子10の構成は図2のコンデンサ素子10の構成と同じである。
<<Electrolytic capacitors E1 to E3 and C1>>
Electrolytic capacitors (electrolytic capacitors E1 to E3 and C1) including seven stacked capacitor elements 10 as shown in FIG. 1 were produced in the following manner, and their characteristics were evaluated. In E1 to E3, a silver mirror-plated layer was formed as the electroless Ag-plated layer 18 . However, in E1, the first plating layer 15 was not formed. In E2, only an electroless Ni plating layer was formed as the first plating layer. In E3, as first plating layers, an electroless Ni-plating layer covering the end surface 1a of the anode body 3 and the end surface 20a of the metal foil 20 and an electroless Ag-plating layer covering the electroless Ni-plating layer were formed. This electroless Ag plating layer is different from the silver mirror plating layer. In C1, the same first plating layer as in E3 was formed, and the electroless Ag plating layer 18 was not formed. The configuration of capacitor element 10 is the same as the configuration of capacitor element 10 in FIG.
 (1)陽極体3の準備
 基材としてのアルミニウム箔(厚み:100μm)の両方の表面をエッチングにより粗面化することで、陽極体3を作製した。
(1) Preparation of Anode Body 3 Anode body 3 was produced by roughening both surfaces of an aluminum foil (thickness: 100 μm) as a base material by etching.
 (2)誘電体層の形成
 陽極体3の第2部分を、化成液に浸漬し、7Vの直流電圧を、20分間印加して、酸化アルミニウムを含む誘電体層を形成した。
(2) Formation of Dielectric Layer The second portion of anode body 3 was immersed in a chemical solution, and a DC voltage of 7 V was applied for 20 minutes to form a dielectric layer containing aluminum oxide.
 (3)固体電解質層7の形成
 陽極体3の第1端部1Aに分離層12を形成した。分離層12が形成された陽極体3の第2部分を覆うように導電性高分子を含む固体電解質層7を形成した。
(3) Formation of Solid Electrolyte Layer 7 Separation layer 12 was formed on first end portion 1A of anode body 3 . A solid electrolyte layer 7 containing a conductive polymer was formed so as to cover the second portion of anode body 3 on which separation layer 12 was formed.
 (4)陰極引出層19の形成およびコンデンサ素子10の積層
 上記(3)で得られた陽極体3を、黒鉛粒子を水に分散した分散液に浸漬し、分散液から取り出し後、加熱乾燥することにより、少なくとも固体電解質層7の表面に第1層8としてのカーボン層を形成した。
(4) Formation of cathode extraction layer 19 and lamination of capacitor element 10 Anode body 3 obtained in (3) above is immersed in a dispersion of graphite particles in water, removed from the dispersion, and dried by heating. Thus, a carbon layer was formed as the first layer 8 on at least the surface of the solid electrolyte layer 7 .
 第1層8が形成された7つの素子を、第1部分が重なるように、隣接する素子の第1層8間に、第2層としての金属箔20としてアルミニウム箔(厚さ20μm)を介在させて積層した。このとき、第2層の金属箔20は、導電性接着剤を用いた接着層9を介して、隣接する第1層8に貼り付けた。こうして、第1層8、第2層としての金属箔20とを含む陰極引出層19を形成するとともに、陰極引出層19を備えるコンデンサ素子10を完成させた。各コンデンサ素子10において、陰極部6は、固体電解質層7および陰極引出層19を含む。 An aluminum foil (thickness of 20 μm) is interposed between the first layers 8 of the adjacent elements so that the first layers 8 overlap each other. and laminated. At this time, the metal foil 20 of the second layer was attached to the adjacent first layer 8 via the adhesive layer 9 using a conductive adhesive. In this way, the cathode extraction layer 19 including the first layer 8 and the metal foil 20 as the second layer was formed, and the capacitor element 10 including the cathode extraction layer 19 was completed. In each capacitor element 10 , cathode portion 6 includes solid electrolyte layer 7 and cathode extraction layer 19 .
 (5)外装体14による封止
 上記(4)で得られた積層された7つのコンデンサ素子10を、導電性接着剤を用いて基板17上に載置し、モールド成形により、コンデンサ素子10の周囲に、絶縁性樹脂で形成された外装体14を形成した。外装体14の側面側の部分をダイシングにより切断して、第1外面14aおよび第2外面14bを形成した。このとき、第1外面14aから各コンデンサ素子10の陽極体3の端面1aが露出し、第2外面14bから金属箔20の端面20aが露出するように外装体14を切断した。このようにして、第1外面14aから陽極体3の端面1aが露出し、第2外面14bから陰極部6を構成する金属箔20の端面20aが露出した状態の前駆体を得た。外装体14の第1外面14aおよび第2外面14b、ならびに第1外面14aから露出した分離層12の端面には、洗浄処理および親水化処理を行った。
(5) Sealing with exterior body 14 The seven stacked capacitor elements 10 obtained in (4) above are placed on a substrate 17 using a conductive adhesive, and the capacitor elements 10 are molded by molding. An exterior body 14 made of an insulating resin was formed around it. A side portion of the exterior body 14 was cut by dicing to form a first outer surface 14a and a second outer surface 14b. At this time, the exterior body 14 was cut so that the end surface 1a of the anode body 3 of each capacitor element 10 was exposed from the first outer surface 14a and the end surface 20a of the metal foil 20 was exposed from the second outer surface 14b. Thus, a precursor was obtained in which the end surface 1a of the anode body 3 was exposed from the first outer surface 14a and the end surface 20a of the metal foil 20 constituting the cathode portion 6 was exposed from the second outer surface 14b. The first outer surface 14a and the second outer surface 14b of the outer package 14 and the end surface of the separation layer 12 exposed from the first outer surface 14a were subjected to cleaning treatment and hydrophilization treatment.
 (6)めっき層の形成
 (a)第1めっき層15の形成
 E2、E3およびC3では、(5)で得られた前駆体を用いて、第1外面14aから露出した陽極体3の端面1aを覆うように、リン含有還元剤を含む無電解Niめっき液を用いて無電解Niめっき層(厚さ5μm)を形成した。E3およびC3では、無電解Niめっき層上に、還元型の無電解Agめっき液を用いて、無電解Agめっき層(厚さ0.3μm)を形成した。このようにして、E2、E3およびC3では、無電解Niめっき層、または無電解Niめっき層および無電解Agめっき層からなる第1めっき層15を形成した。
(6) Formation of Plating Layer (a) Formation of First Plating Layer 15 In E2, E3 and C3, the precursor obtained in (5) is used to form end surface 1a of anode body 3 exposed from first outer surface 14a. An electroless Ni plating solution containing a phosphorus-containing reducing agent was used to form an electroless Ni plating layer (5 μm thick) so as to cover the . In E3 and C3, an electroless Ag plating layer (thickness: 0.3 μm) was formed on the electroless Ni plating layer using a reduced electroless Ag plating solution. In this way, in E2, E3 and C3, the first plating layer 15 composed of the electroless Ni plating layer or the electroless Ni plating layer and the electroless Ag plating layer was formed.
 (b)無電解Agめっき層18の形成
 第1外面14aおよび第2外面14bのそれぞれの全体に、二液タイプの銀鏡めっき液を混合しながらスプレー塗布した。これにより第1外面14aおよび第2外面14bのそれぞれの全体に金属銀を析出させることで、無電解Agめっき層18としての銀鏡めっき層を形成した。銀鏡めっき層の形成後、表面に防腐剤をスプレー塗布し、しばらくなじませた後、水洗し、風乾し、加熱乾燥した。
(b) Formation of Electroless Ag Plating Layer 18 A two-liquid type silver mirror plating solution was mixed and spray-coated on the entirety of each of the first outer surface 14a and the second outer surface 14b. Thus, metallic silver was deposited on the entirety of the first outer surface 14a and the second outer surface 14b, thereby forming a silver mirror-plated layer as the electroless Ag-plated layer 18 . After the silver mirror-plated layer was formed, an antiseptic was spray-coated on the surface, allowed to blend in for a while, washed with water, air-dried, and dried by heating.
 (7)第1外部電極21および第2外部電極22の形成
 E1~E3では、上記(6)(b)で得られた無電解Agめっき層18を覆うように第1外部電極21および第2外部電極22をそれぞれ形成した。C1では、上記(6)(a)で形成した第1めっき層15と第1外面14aおよび第2外面14bのそれぞれとを覆うように、第1外部電極21および第2外部電極22をそれぞれ形成した。
(7) Formation of first external electrode 21 and second external electrode 22 In E1 to E3, the first external electrode 21 and the second external electrode 21 are formed so as to cover the electroless Ag plating layer 18 obtained in (6)(b) above. External electrodes 22 were formed respectively. In C1, the first external electrode 21 and the second external electrode 22 are respectively formed so as to cover the first plating layer 15 formed in (6)(a) above and the first outer surface 14a and the second outer surface 14b. bottom.
 より具体的には、銀粒子と樹脂とを含む導電性ペーストを、無電解Agめっき層または外装体の外面に塗布し、加熱乾燥することによって、厚さ50μmの導電性ペースト層21Aおよび22Aをそれぞれ形成した。次いで、導電性ペースト層21Aおよび22Aが形成された外装体を、電解Niめっき用の電解液に浸漬させて電解Niめっきを行い、導電性ペースト層21Aおよび22Aのそれぞれを覆うように、厚さ5μmの電解Niめっき層を形成した。次いで、電解Niめっき層が形成された外装体を、電解Snめっき用の電解液に浸漬させて電解Snめっきを行い、厚さ5μmの電解Snめっき層を形成した。このようにして、Ni/Snめっき層21Bおよび22Bのそれぞれを形成した。めっき層の表面を水洗し、乾燥させることによって、第1外部電極21および第2外部電極22を有する電解コンデンサを得た。同様の手順で各例について合計20個の電解コンデンサを作製した。 More specifically, a conductive paste containing silver particles and a resin is applied to the electroless Ag plating layer or the outer surface of the exterior body and dried by heating to form conductive paste layers 21A and 22A having a thickness of 50 μm. formed respectively. Next, the exterior body on which the conductive paste layers 21A and 22A are formed is immersed in an electrolytic solution for electrolytic Ni plating to perform electrolytic Ni plating. An electrolytic Ni plating layer of 5 μm was formed. Next, the exterior body on which the electrolytic Ni plating layer was formed was immersed in an electrolytic solution for electrolytic Sn plating to perform electrolytic Sn plating, thereby forming an electrolytic Sn plating layer having a thickness of 5 μm. Thus, Ni/ Sn plating layers 21B and 22B were formed. By washing the surface of the plated layer with water and drying it, an electrolytic capacitor having the first external electrode 21 and the second external electrode 22 was obtained. A total of 20 electrolytic capacitors were produced for each example in the same manner.
 (8)評価
 得られた電解コンデンサを用いて下記の評価を行った。
 (a)初期のESR
 20℃の環境下で、4端子測定用のLCRメータを用いて、20個の電解コンデンサのそれぞれについて、周波数100kHzにおける初期のESR(mΩ)を測定し、平均値(mΩ)および標準偏差σ(mΩ)を求めた。
(8) Evaluation The following evaluation was performed using the obtained electrolytic capacitor.
(a) Initial ESR
Under an environment of 20 ° C., using an LCR meter for 4-terminal measurement, for each of the 20 electrolytic capacitors, the initial ESR (mΩ) at a frequency of 100 kHz was measured, and the average value (mΩ) and standard deviation σ ( mΩ) was obtained.
 (b)密着性
 JIS規格:JIS C5101-25:2009の「4.9耐プリント板曲げ性」試験に準拠して、電解コンデンサを固定した基板をたわませたときの静電容量の変化率(具体的には、容量減少率)を求めた。試験は、下記の条件で行った。
  基板:TAN-01(サイズ:100×40×t1.6mm)
  半田:M705-PLG-32-11(千住金属製)
  メタルマスク:MASK-01(t=0.15mm)
  たわみ量1mmでの容量変化率:≦±10%(算出式:ΔC/C)
  変化率は、JIS C5101-22:2014(高誘電率コンデンサ)を適用
 測定は、各たわみ量につき、3回行い、平均値を求めた。たわみ量は、0mmから10mmまで変化させた。たわみ量が0mmのときの容量を100%としたときの容量減少率(%)を求め、密着性評価の指標とした。容量減少率が大きいほど、端子強度が低く、陽極部または陰極部の露出する端面と外部電極との密着強度(または密着性)が低いことを意味する。密着性の評価は、E1およびC1について行った。
(b) Adhesion JIS standard: JIS C5101-25: JIS C5101-25: Percent change in capacitance when bending the substrate to which the electrolytic capacitor is fixed in accordance with the 2009 "4.9 Printed board bending resistance" test. (Specifically, the capacity reduction rate) was determined. The test was performed under the following conditions.
Substrate: TAN-01 (size: 100 x 40 x t1.6 mm)
Solder: M705-PLG-32-11 (manufactured by Senju Metal)
Metal mask: MASK-01 (t=0.15mm)
Capacity change rate at deflection amount of 1 mm: ≤ ± 10% (calculation formula: ΔC / C)
JIS C5101-22:2014 (High Dielectric Constant Capacitor) is applied to the rate of change. The measurement was performed three times for each amount of deflection, and the average value was obtained. The deflection amount was changed from 0 mm to 10 mm. The capacity reduction rate (%) was obtained when the capacity when the amount of deflection was 0 mm was defined as 100%, and was used as an index for evaluating adhesion. The larger the capacity reduction rate, the lower the terminal strength, and the lower the adhesion strength (or adhesion) between the exposed end face of the anode portion or the cathode portion and the external electrode. E1 and C1 were evaluated for adhesion.
 (c)バリア性
 電解コンデンサを、IPC/JEDEC J-STD-020Dに則ったリフロー処理を行った。具体的には、電解コンデンサを、保持温度:150~200℃、および保持時間:180秒以内で予備加熱した。予備加熱後の電解コンデンサを、255℃以上の温度(最高温度260℃)で30秒間加熱した。このときの最高温度260℃での加熱は10秒以内とした。次いで、25℃まで10分かけて冷却し、この加熱と冷却とをさらに2回(つまり、合計3回)繰り返した。次いで、25℃で、上記(a)と同様の手順で、電解コンデンサの静電容量(C)を測定した。次いで、85℃および85%RHの恒温槽内で、電解コンデンサを100時間静置した。恒温槽から取り出した電解コンデンサを、25℃に冷却し、上記(a)と同様の手順で、電解コンデンサの静電容量(C)を測定した。Cを100%としたときの、静電容量の増加率(C-C)(%)を求めた。なお、ここで求められる増加率は、水分によるもので、みかけの増加率であるため、電解コンデンサの吸湿量が多いほど、測定値が増加する傾向がある。そのため、このみかけの容量増加率が高いほど、バリア性が低いことを意味する。バリア性の評価は、E1およびC1について行った。
(c) Barrier property The electrolytic capacitor was subjected to reflow treatment according to IPC/JEDEC J-STD-020D. Specifically, the electrolytic capacitor was preheated at a holding temperature of 150 to 200° C. and a holding time of 180 seconds or less. The preheated electrolytic capacitor was heated at a temperature of 255° C. or higher (maximum temperature of 260° C.) for 30 seconds. The heating at the maximum temperature of 260° C. at this time was within 10 seconds. It was then cooled to 25° C. over 10 minutes and this heating and cooling was repeated two more times (ie a total of 3 times). Next, the capacitance (C 0 ) of the electrolytic capacitor was measured at 25° C. in the same procedure as in (a) above. Then, the electrolytic capacitor was allowed to stand for 100 hours in a constant temperature bath at 85° C. and 85% RH. The electrolytic capacitor was taken out from the constant temperature bath and cooled to 25° C., and the capacitance (C 1 ) of the electrolytic capacitor was measured in the same manner as in (a) above. The rate of increase in capacitance (C 1 −C 0 ) (%) when C 0 is 100% was obtained. Note that the rate of increase obtained here is due to moisture and is an apparent rate of increase, so there is a tendency for the measured value to increase as the amount of moisture absorbed by the electrolytic capacitor increases. Therefore, the higher the apparent capacity increase rate, the lower the barrier properties. Evaluation of barrier properties was performed on E1 and C1.
 密着性の評価結果を表1に示す。初期のESRおよびバリア性の評価結果を表2に示す。表1および表2において、E1~E3は実施例であり、C1は比較例である。 Table 1 shows the adhesion evaluation results. Table 2 shows initial ESR and barrier property evaluation results. In Tables 1 and 2, E1 to E3 are examples and C1 is a comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、外装体の外面を覆うように無電解Agめっき層を形成したE1では、無電解Agめっき層を形成せずに、外部電極を形成したC1に比べて、たわみが大きくなっても、容量減少率を低く抑えることができる。電解コンデンサC1の断面の走査型電子顕微鏡写真で確認したところ、導電性ペースト層内にクラックが形成され、導電性ペースト層と外装体および陽極部または陰極部の露出する端面との間にクラックまたは剥離が確認された。そのため、E1に比べて、C1では容量が取り出し難くなっており、たわみが大きい場合の容量減少率が大きくなったと考えられる。換言すると、E1では、C1の場合のようなクラックまたは剥離が低減されていると考えられ、陽極部および陰極部の露出する端面と外部電極との高い密着性が得られたと考えられる。 As shown in Table 1, in E1 in which the electroless Ag plating layer was formed so as to cover the outer surface of the exterior body, deflection was greater than in C1 in which the external electrodes were formed without forming the electroless Ag plating layer. Even if it becomes large, the capacity reduction rate can be kept low. A scanning electron micrograph of the cross section of the electrolytic capacitor C1 revealed that cracks were formed in the conductive paste layer, and cracks or cracks were formed between the conductive paste layer and the exposed end faces of the outer casing and the anode or cathode. Peeling was confirmed. Therefore, it is considered that C1 is more difficult to extract the capacity than E1, and the capacity decrease rate is large when the deflection is large. In other words, in E1, cracking or peeling as in C1 was reduced, and high adhesion between the exposed end faces of the anode and cathode portions and the external electrodes was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、外装体の外面を覆うように無電解Agめっき層を形成すると、初期のESRを低く抑えることができ、陽極部または陰極部と外部電極との優れた電気的接続を確保することができる(C1とE1~E3との比較)。陽極部または陰極部の端部と外部電極との間の高い密着性を確保できるため、個体間のESRのばらつき(標準偏差)を低減できる。陽極部または陰極部の露出した端部に第1めっき層を設けてもよいが、第1めっき層を設けなくても、無電解Agめっき層の形成によって、ESRを低く抑えることができるとともに、個体間のESRのばらつきを抑制することができる(E1とE2およびE3との比較)。また、E1では、C1に比較して高いバリア性が得られた。これは、E1では、C1の場合のようなクラックまたは剥離が抑制されることで、電解コンデンサが高温高湿環境下に長時間晒されても、湿度の影響を受けにくかったことによると考えられる。 As shown in Table 2, when an electroless Ag plating layer is formed so as to cover the outer surface of the exterior body, the initial ESR can be kept low, and excellent electrical connection between the anode part or the cathode part and the external electrode can be achieved. can be ensured (compare C1 with E1-E3). Since high adhesion can be ensured between the ends of the anode part or the cathode part and the external electrode, the variation (standard deviation) of ESR between individuals can be reduced. A first plating layer may be provided on the exposed end of the anode part or the cathode part. Inter-individual ESR variability can be suppressed (compare E1 with E2 and E3). Also, E1 provided a higher barrier property than C1. This is thought to be because E1 suppresses cracking or peeling as in C1, so even if the electrolytic capacitor is exposed to a high-temperature, high-humidity environment for a long period of time, it is less susceptible to the effects of humidity. .
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of its presently preferred embodiments, such disclosure should not be construed as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art to which the invention pertains after reading the above disclosure. Therefore, the appended claims are to be interpreted as covering all variations and modifications without departing from the true spirit and scope of the invention.
 本開示に係る電解コンデンサは、陽極部または陰極部の外装体の外面から露出する端面と外部電極との密着性が高く、ESRを低く抑えることができるとともに、個体間のESRのばらつきを低減できる。よって、本開示に係る電解コンデンサは、高い信頼性が求められる様々な用途に利用できる。 The electrolytic capacitor according to the present disclosure has high adhesion between the end face exposed from the outer surface of the exterior body of the anode part or the cathode part and the external electrode, so that the ESR can be kept low and the variation in ESR between individuals can be reduced. . Therefore, the electrolytic capacitor according to the present disclosure can be used in various applications that require high reliability.
 1 第1部分(陽極引出部)
  1A 第1端部
  1a 第1端部の端面
 2 第2部分(陰極形成部)
  2A 第2端部
  2a 第2端部の端面
 3 陽極体
  4 芯部
  5 多孔質部
 6 陰極部
  7 固体電解質層
  8 第1層
  9 接着層
 10 コンデンサ素子
  10a 第1コンデンサ素子
  10b 第2コンデンサ素子
 12 分離層(絶縁部材)
 14 外装体
  14a 外装体の第1外面
  14b 外装体の第2外面
  14c 外装体の第3外面
 15 第1めっき層
 17 基板
 18 無電解Agめっき層
 19 陰極引出層
 20 金属箔
  20a 金属箔の端面
 21、23 第1外部電極
  21A、23A 導電性ペースト層
  21B、23B Ni/Snめっき層
 22 第2外部電極
  22A 導電性ペースト層
  22B Ni/Snめっき層
100、101 電解コンデンサ
1 First part (anode lead-out part)
1A first end 1a end face of first end 2 second portion (cathode forming portion)
2A second end portion 2a end face of second end portion 3 anode body 4 core portion 5 porous portion 6 cathode portion 7 solid electrolyte layer 8 first layer 9 adhesive layer 10 capacitor element 10a first capacitor element 10b second capacitor element 12 Separation layer (insulating material)
14 exterior body 14a first outer surface of exterior body 14b second exterior surface of exterior body 14c third exterior surface of exterior body 15 first plating layer 17 substrate 18 electroless Ag plating layer 19 cathode extraction layer 20 metal foil 20a end surface of metal foil 21 , 23 first external electrode 21A, 23A conductive paste layer 21B, 23B Ni/Sn plating layer 22 second external electrode 22A conductive paste layer 22B Ni/ Sn plating layer 100, 101 electrolytic capacitor

Claims (17)

  1.  陽極部および陰極部を含む少なくとも1つのコンデンサ素子と、
     前記コンデンサ素子を封止する外装体と、
     前記陽極部および前記陰極部のそれぞれと電気的に接続する複数の外部電極と、を備え、
     前記コンデンサ素子の前記陽極部および前記陰極部の少なくとも一方の端面が前記外装体の少なくとも1つの外面から露出しており、
     前記露出した端面および前記外面が前記外部電極で覆われており、
     前記外部電極と前記外面との間に、少なくとも前記外面を覆う無電解Agめっき層が介在しており、
     前記無電解Agめっき層は、非めっき層である下地層を介するか、または介さずに前記外面を覆っている、電解コンデンサ。
    at least one capacitor element comprising an anode portion and a cathode portion;
    an exterior body that seals the capacitor element;
    a plurality of external electrodes electrically connected to each of the anode portion and the cathode portion;
    at least one end surface of the anode portion and the cathode portion of the capacitor element is exposed from at least one outer surface of the exterior body;
    The exposed end surface and the outer surface are covered with the external electrode,
    An electroless Ag plating layer covering at least the outer surface is interposed between the external electrode and the outer surface,
    The electrolytic capacitor, wherein the electroless Ag plating layer covers the outer surface with or without an underlying layer that is a non-plating layer.
  2.  前記無電解Agめっき層は、銀鏡めっき層を含む、請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the electroless Ag plating layer includes a silver mirror plating layer.
  3.  前記外部電極は、前記無電解Agめっき層を覆う導電性ペースト層と、前記導電性ペースト層を覆うNi/Snめっき層とを含む、請求項1または2に記載の電解コンデンサ。 3. The electrolytic capacitor according to claim 1, wherein said external electrode includes a conductive paste layer covering said electroless Ag plating layer and a Ni/Sn plating layer covering said conductive paste layer.
  4.  前記無電解Agめっき層は、前記下地層を介さずに前記露出した端面を覆っている、請求項1~3のいずれか1項に記載の電解コンデンサ。 The electrolytic capacitor according to any one of claims 1 to 3, wherein the electroless Ag plating layer covers the exposed end face without interposing the underlying layer.
  5.  前記露出した端面と、前記無電解Agめっき層との間に、第1めっき層が介在している、請求項1~3のいずれか1項に記載の電解コンデンサ。 The electrolytic capacitor according to any one of claims 1 to 3, wherein a first plating layer is interposed between the exposed end face and the electroless Ag plating layer.
  6.  前記第1めっき層は、Ag、Ni、CuおよびZnからなる群より選択される少なくとも一種を含む、請求項5に記載の電解コンデンサ。 The electrolytic capacitor according to claim 5, wherein the first plating layer contains at least one selected from the group consisting of Ag, Ni, Cu and Zn.
  7.  前記第1めっき層は、複数層のめっき層を含む請求項5または6に記載の電解コンデンサ。 The electrolytic capacitor according to claim 5 or 6, wherein the first plating layer includes a plurality of plating layers.
  8.  前記陽極部の端面が前記外装体の第1外面から露出し、前記第1外面とともに第1外部電極で覆われており、
     前記陰極部の端面が前記外装体の第2外面から露出し、前記第2外面とともに第2外部電極で覆われており、
     前記第1外面と前記第1外面を覆う前記第1外部電極との間に、前記無電解Agめっき層が介在し、
     前記第2外面と前記第2外面を覆う前記第2外部電極との間に、前記無電解Agめっき層が介在している、請求項1~7のいずれか1項に記載の電解コンデンサ。
    an end surface of the anode portion is exposed from the first outer surface of the outer package and covered with a first external electrode together with the first outer surface;
    an end face of the cathode portion is exposed from the second outer surface of the exterior body and covered with a second external electrode together with the second outer surface;
    The electroless Ag plating layer is interposed between the first outer surface and the first external electrode covering the first outer surface,
    8. The electrolytic capacitor according to claim 1, wherein said electroless Ag plating layer is interposed between said second outer surface and said second outer electrode covering said second outer surface.
  9.  積層された複数の前記コンデンサ素子を備える、請求項1~7のいずれか1項に記載の電解コンデンサ。 The electrolytic capacitor according to any one of claims 1 to 7, comprising a plurality of stacked capacitor elements.
  10.  前記複数の前記コンデンサ素子のそれぞれの前記陽極部の端面が前記外装体の第1外面から露出し、前記第1外面とともに第1外部電極で覆われており、
     前記複数の前記コンデンサ素子のそれぞれの前記陰極部の端面が前記外装体の第2外面から露出し、前記第2外面とともに第2外部電極で覆われており、
     前記第1外面と前記第1外面を覆う前記第1外部電極との間に、前記無電解Agめっき層が介在し、
     前記第2外面と前記第2外面を覆う前記第2外部電極との間に、前記無電解Agめっき層が介在している、請求項9に記載の電解コンデンサ。
    an end surface of the anode portion of each of the plurality of capacitor elements is exposed from a first outer surface of the exterior body and covered with a first external electrode together with the first outer surface;
    an end surface of the cathode portion of each of the plurality of capacitor elements is exposed from a second outer surface of the exterior body and covered with a second external electrode together with the second outer surface;
    The electroless Ag plating layer is interposed between the first outer surface and the first external electrode covering the first outer surface,
    10. The electrolytic capacitor according to claim 9, wherein said electroless Ag plating layer is interposed between said second outer surface and said second outer electrode covering said second outer surface.
  11.  一部の前記コンデンサ素子の前記陽極部の端面は、前記外装体の第1外面から露出し、前記第1外面とともに第1外部電極で覆われており、
     残部の前記コンデンサ素子の前記陽極部の端面は、前記第1外面とは反対側の第2外面から露出し、前記第2外面とともに第3外部電極で覆われており、
     前記第1外面と前記第1外面を覆う前記第1外部電極との間に、前記無電解Agめっき層が介在し、
     前記第2外面と前記第2外面を覆う前記第3外部電極との間に、前記無電解Agめっき層が介在している、請求項9に記載の電解コンデンサ。
    an end surface of the anode portion of some of the capacitor elements is exposed from the first outer surface of the outer package and covered with a first external electrode together with the first outer surface;
    an end surface of the anode portion of the remaining capacitor element is exposed from a second outer surface opposite to the first outer surface, and is covered with a third external electrode together with the second outer surface;
    The electroless Ag plating layer is interposed between the first outer surface and the first external electrode covering the first outer surface,
    10. The electrolytic capacitor according to claim 9, wherein said electroless Ag plating layer is interposed between said second outer surface and said third outer electrode covering said second outer surface.
  12.  前記無電解Agめっき層の厚さは、0.01μm以上10μm以下である、請求項1~11のいずれか1項に記載の電解コンデンサ。 The electrolytic capacitor according to any one of claims 1 to 11, wherein the electroless Ag plating layer has a thickness of 0.01 µm or more and 10 µm or less.
  13.  陽極部および陰極部を含む少なくとも1つのコンデンサ素子と、前記陽極部および前記陰極部の少なくとも一方の端面が少なくとも1つの外面から露出した状態で前記コンデンサ素子を封止する外装体とを備える前駆体を準備する工程と、
     前記外装体の前記少なくとも1つの外面を覆うように無電解Agめっきを行って、無電解Agめっき層を形成する工程と、
     前記無電解Agめっき層を覆う外部電極を形成して、電解コンデンサを得る工程と、を含む電解コンデンサの製造方法。
    A precursor comprising: at least one capacitor element including an anode portion and a cathode portion; and an exterior body sealing the capacitor element with at least one end surface of the anode portion and the cathode portion exposed from at least one outer surface. a step of preparing
    forming an electroless Ag plating layer by performing electroless Ag plating so as to cover the at least one outer surface of the exterior body;
    forming an external electrode covering the electroless Ag plating layer to obtain an electrolytic capacitor.
  14.  前記端面を覆うように第1めっき層を形成する工程を含み、
     前記無電解Agめっき層を形成する工程において、前記第1めっき層および前記外装体の前記少なくとも1つの外面を覆うように前記無電解Agめっきを行う、請求項13に記載の電解コンデンサの製造方法。
    Forming a first plating layer so as to cover the end face,
    14. The method of manufacturing an electrolytic capacitor according to claim 13, wherein in the step of forming the electroless Ag plating layer, the electroless Ag plating is performed so as to cover the outer surface of the at least one of the first plating layer and the exterior body. .
  15.  前記無電解Agめっき層を形成する工程において、前記外装体の前記少なくとも1つの外面を覆うように、銀鏡めっきを行って、前記無電解Agめっき層としての銀鏡めっき層を形成する、請求項13または14に記載の電解コンデンサの製造方法。 13. In the step of forming the electroless Ag plating layer, silver mirror plating is performed so as to cover the at least one outer surface of the exterior body to form a silver mirror plating layer as the electroless Ag plating layer. 15. The method for producing an electrolytic capacitor according to 14.
  16.  前記外装体の前記少なくとも1つの外面の前記露出した端面以外の領域において、前記外面と前記無電解Agめっき層との間に非めっき層である下地層が介在するように、前記外面に前記下地層を形成する、請求項13~15のいずれか1項に記載の電解コンデンサの製造方法。 In a region other than the exposed end surface of the at least one outer surface of the exterior body, the lower layer is formed on the outer surface so that a base layer, which is a non-plating layer, is interposed between the outer surface and the electroless Ag plating layer. 16. The method for manufacturing an electrolytic capacitor according to any one of claims 13 to 15, wherein a stratum is formed.
  17.  前記露出した端面をマスキングした状態で、前記外装体の前記少なくとも1つの外面の前記露出した端面以外の領域において、前記外面と前記無電解Agめっき層との間に非めっき層である下地層が介在するように、前記外面に前記下地層を形成する、請求項13に記載の電解コンデンサの製造方法。 With the exposed end face masked, in a region other than the exposed end face of the at least one outer surface of the exterior body, a base layer that is a non-plating layer is provided between the outer surface and the electroless Ag plating layer. 14. The method of manufacturing an electrolytic capacitor according to claim 13, wherein the underlayer is formed on the outer surface so as to be interposed.
PCT/JP2022/046246 2021-12-23 2022-12-15 Electrolytic capacitor and production method thereof WO2023120383A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021209591 2021-12-23
JP2021-209591 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120383A1 true WO2023120383A1 (en) 2023-06-29

Family

ID=86902621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046246 WO2023120383A1 (en) 2021-12-23 2022-12-15 Electrolytic capacitor and production method thereof

Country Status (1)

Country Link
WO (1) WO2023120383A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879713A (en) * 1981-11-06 1983-05-13 日本電気株式会社 Chip type electrolytic condenser and method of producing same
JPH06248464A (en) * 1993-03-01 1994-09-06 Matsushita Electric Ind Co Ltd Chip-shaped solid state electrolytic capacitor
JPH07297084A (en) * 1994-04-28 1995-11-10 Nichicon Corp Method for manufacturing chip solid electrolytic capacitor
JP2001052961A (en) * 1999-06-01 2001-02-23 Rohm Co Ltd Structure of packaged solid electrolytic capacitor and manufacture thereof
JP2017098297A (en) * 2015-11-18 2017-06-01 株式会社村田製作所 Solid electrolytic capacitor
WO2021172236A1 (en) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879713A (en) * 1981-11-06 1983-05-13 日本電気株式会社 Chip type electrolytic condenser and method of producing same
JPH06248464A (en) * 1993-03-01 1994-09-06 Matsushita Electric Ind Co Ltd Chip-shaped solid state electrolytic capacitor
JPH07297084A (en) * 1994-04-28 1995-11-10 Nichicon Corp Method for manufacturing chip solid electrolytic capacitor
JP2001052961A (en) * 1999-06-01 2001-02-23 Rohm Co Ltd Structure of packaged solid electrolytic capacitor and manufacture thereof
JP2017098297A (en) * 2015-11-18 2017-06-01 株式会社村田製作所 Solid electrolytic capacitor
WO2021172236A1 (en) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for producing same

Similar Documents

Publication Publication Date Title
CN109791844B (en) Solid electrolytic capacitor
CN1741213B (en) Solid electrolytic capacitor
CN100466124C (en) Solid electrolytic capacitor and method of manufacturing the same
JP7300616B2 (en) Electrolytic capacitor and manufacturing method thereof
JPWO2019087692A1 (en) Electrolytic capacitors and their manufacturing methods
JP2006040938A (en) Solid electrolytic capacitor, laminated capacitor using the same and its manufacturing method
WO2022168769A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
WO2013080486A1 (en) Capacitor
US20220399168A1 (en) Electrolytic capacitor
US11270846B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
US20240087817A1 (en) Electrolytic capacitor
WO2023120383A1 (en) Electrolytic capacitor and production method thereof
US11810728B2 (en) Electrolytic capacitor
US20220344102A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP2007194310A (en) Solid electrolytic capacitor, and method of manufacturing same
JP7248141B2 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
CN113488337A (en) Novel laminated polymer aluminum electrolytic capacitor and manufacturing method thereof
US11508528B2 (en) Electrolytic capacitor and method for producing same
WO2022163644A1 (en) Electrolytic capacitor
WO2023153432A1 (en) Electrolytic capacitor element
WO2022181606A1 (en) Filter circuit
JP3453999B2 (en) Chip-shaped solid electrolytic capacitors
JP2023150741A (en) solid electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911091

Country of ref document: EP

Kind code of ref document: A1