WO2023153432A1 - Electrolytic capacitor element - Google Patents

Electrolytic capacitor element Download PDF

Info

Publication number
WO2023153432A1
WO2023153432A1 PCT/JP2023/004164 JP2023004164W WO2023153432A1 WO 2023153432 A1 WO2023153432 A1 WO 2023153432A1 JP 2023004164 W JP2023004164 W JP 2023004164W WO 2023153432 A1 WO2023153432 A1 WO 2023153432A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solid electrolyte
electrolytic capacitor
capacitor element
electrolyte layer
Prior art date
Application number
PCT/JP2023/004164
Other languages
French (fr)
Japanese (ja)
Inventor
啓史 吉田
泰央 田中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023153432A1 publication Critical patent/WO2023153432A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Definitions

  • the present invention relates to electrolytic capacitor elements.
  • Patent Document 1 discloses, as a solid electrolytic capacitor with low equivalent series resistance (ESR) and leakage current, an anode body made of a valve action metal, a dielectric oxide film formed on the surface of the anode body, and a solid electrolyte on the dielectric oxide film.
  • ESR equivalent series resistance
  • the solid electrolyte layer is dielectric from a solution or dispersion containing a conductive polymer selected from the group consisting of polyaniline, polypyrrole and derivatives thereof.
  • a solid electrolytic capacitor having a third solid electrolyte layer formed on the layer.
  • a solid electrolytic capacitor having an anode body made of a valve action metal foil having a porous expanded surface in order to reduce the defect rate due to leakage current, a second solid electrolyte is added to the capacitor element.
  • Forming an insulating resin layer between the second solid electrolyte layer and the graphite layer so as to extend from the side surface of the layer and cover at least a part of the outer edge of the planar portion of the second solid electrolyte layer. is disclosed.
  • Patent Document 1 a polyaniline- or polypyrrole-based conductive polymer is used for the first solid electrolyte layer, and a polythiophene-based conductive polymer is used for the second solid electrolyte layer and the third solid electrolyte layer.
  • the first solid electrolyte layer and the second solid electrolyte layer are made of different materials, and there is room for improvement in that the equivalent series resistance (ESR) increases due to an increase in interfacial resistance due to poor adhesion between these layers.
  • ESR equivalent series resistance
  • Patent Document 2 since the side surface (corner) of the element, which is easily damaged by molding stress during molding, is partially covered with an insulator, electrical responsiveness is maintained between the solid electrolyte layer, the graphite layer, and the silver paste layer. There is room for improvement in that the ESR is increased due to the worsening of the ESR (path becomes longer). In addition, since different materials are exposed when forming the graphite layer, the wettability of the surface is not constant, a uniform coating cannot be formed, and the ESR characteristics vary.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an electrolytic capacitor element capable of suppressing leakage current while suppressing an increase in equivalent series resistance.
  • an anode is composed of a valve metal substrate and has a distal end surface and a proximal end surface; a mask layer made of an insulating material and provided on the dielectric layer along the proximal face; and a mask layer provided on the dielectric layer on the distal face side of the mask layer.
  • a cathode having a solid electrolyte layer provided on the dielectric layer; and a conductive layer provided on the solid electrolyte layer, the solid electrolyte layer comprising the dielectric a first layer provided on the body layer and containing a first conductive polymer; a second layer containing a second conductive polymer and a binder component; and a third layer containing a conductive polymer, wherein the second layer is partially arranged in the plane of the solid electrolyte layer, and the first layer and the third layer are composed of the solid It is arranged at least in a region where the second layer is not arranged in the plane of the electrolyte layer.
  • the anode is composed of a valve metal substrate and has a distal end surface and a proximal end surface, and at least one main surface of the anode except for the proximal end surface is provided on at least one main surface.
  • a mask layer made of an insulating material and provided on the dielectric layer along the proximal face; and a mask layer provided on the dielectric layer on the distal face side of the mask layer.
  • a cathode having a solid electrolyte layer provided on the dielectric layer; and a conductive layer provided on the solid electrolyte layer, the solid electrolyte layer comprising the dielectric
  • an electrolytic capacitor element capable of suppressing leakage current while suppressing an increase in equivalent series resistance.
  • FIG. 1 is a plan view schematically showing an example of an electrolytic capacitor element according to an embodiment of the invention.
  • FIG. 2 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 1 along line XX.
  • 3 is a perspective view of the electrolytic capacitor element shown in FIG. 1.
  • FIG. 4 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 3 along line AA.
  • FIG. 5 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 3 along line BB.
  • FIG. 6 is a perspective view schematically showing an example of an electrolytic capacitor element according to another embodiment of the invention. 7 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 6 along line CC.
  • FIG. 8 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 6 taken along line DD.
  • FIG. 9 is a perspective view schematically showing an example of an electrolytic capacitor element according to still another embodiment of the invention.
  • 10 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 9 taken along line EE.
  • 11 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 9 taken along line FF.
  • FIG. 12 is a perspective view schematically showing an example of an electrolytic capacitor element according to still another embodiment of the invention.
  • 13 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 12 along line GG.
  • 14 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 12 taken along line HH.
  • FIG. 15 is an enlarged cross-sectional view of the mask layer portion of the electrolytic capacitor element shown in FIG. 2.
  • FIG. FIG. 16 is a schematic diagram showing an example of a process of preparing a valve metal substrate on which a mask layer is formed.
  • FIG. 17 is a schematic diagram showing an example of the process of forming the first layer and the third layer of the solid electrolyte layer.
  • FIG. 18 is a schematic diagram showing an example of the process of forming the second layer of the solid electrolyte layer.
  • FIG. 19 is a perspective view schematically showing an example of an electrolytic capacitor including an electrolytic capacitor element according to an embodiment of the invention. 20 is a cross-sectional view of the electrolytic capacitor shown in FIG. 19 taken along line ZZ. 21 shows a SEM photograph of a cross section of the electrolytic capacitor of Example 1.
  • FIG. 16 is a schematic diagram showing an example of a process of preparing a valve metal substrate on which a mask layer is formed.
  • FIG. 17 is a schematic diagram showing
  • the electrolytic capacitor element of the present invention will be described below.
  • the present invention is not limited to the following configurations, and can be appropriately modified and applied without changing the gist of the present invention. Combinations of two or more of the individual desirable configurations described below are also part of the present invention.
  • FIG. 1 is a plan view schematically showing an example of an electrolytic capacitor element according to an embodiment of the invention.
  • FIG. 2 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 1 along line XX. Note that in FIG. 1, the solid electrolyte layer 50 covered with the conductive layer 60 is indicated by a dashed line. 1 and 2 show the solid electrolyte layer 50 without distinguishing between the first layer 51, the second layer 52 and the third layer 53.
  • FIG. 1 is a plan view schematically showing an example of an electrolytic capacitor element according to an embodiment of the invention.
  • FIG. 2 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 1 along line XX. Note that in FIG. 1, the solid electrolyte layer 50 covered with the conductive layer 60 is indicated by a dashed line. 1 and 2 show the solid electrolyte layer 50 without distinguishing between the first layer 51, the second layer 52 and the third layer 53.
  • FIG. 1 is a plan view schematically showing an
  • the electrolytic capacitor element 1 shown in FIGS. 1 and 2 is a solid electrolytic capacitor element, which is composed of a valve action metal substrate 11, an anode 10 having a distal end surface 10a and a proximal end surface 10b, and an anode 10 except for the proximal end surface 10b.
  • FIG. 3 is a perspective view of the electrolytic capacitor element shown in FIG. 4 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 3 along line AA.
  • FIG. 5 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 3 along line BB.
  • 3 4 and 5 show the state before the conductive layer 60 of the cathode 40 is formed.
  • FIG. 3 omits illustration of the dielectric layer 20 and shows a state in which the members inside the third layer 53 of the solid electrolyte layer 50 are seen through.
  • the solid electrolyte layer 50 is provided on the dielectric layer 20 and comprises a first layer 51 containing a first conductive polymer and a second conductive polymer. and a second layer 52 containing a binder component, and a third layer 53 provided on at least the first layer 51 and containing a third conductive polymer, and the second layer 52 is a solid electrolyte layer 50 , and the first layer 51 and the third layer 53 are arranged at least in a region in the plane of the solid electrolyte layer 50 where the second layer 52 is not arranged. Thereby, leakage current can be suppressed while suppressing an increase in the equivalent series resistance of the electrolytic capacitor element 1 .
  • each layer contains a conductive polymer and the second layer 52 contains a binder component
  • the first layer 51 and the third layer 53 do not contain a binder component or have a high conductivity with a small amount of binder component.
  • the second layer may be a dense and/or deformable membrane.
  • the first layer 51 and the third layer 53 which are more highly conductive than the second layer 52, that is, can suppress an increase in equivalent series resistance, are arranged in the plane of the solid electrolyte layer 50.
  • the term "dense and/or deformable film” means that the film does not decompose when the anode is deformed due to heating during the sealing process, element lamination process, reflow process, etc. It shows a membrane that is strong and/or deformable so that it does not become thin.
  • the second layer 52 expands differently from the first layer 51 and the third layer 53, and stress may occur. It is believed that the second layer 52 deforms to relieve the stress.
  • the film has deformation followability, the flexibility of the film is improved, and the characteristics of the electrolytic capacitor element 1 can be improved.
  • conductive polymer includes a main chain and a dopant.
  • Each of the first layer 51 and the third layer 53 preferably contains less binder components than the second layer 52, and more preferably contains no binder components. This makes it possible to more effectively suppress an increase in equivalent series resistance.
  • not containing a binder component includes the case where the binder component is not substantially contained.
  • the second layer 52 is preferably a denser film than the first layer 51 and the third layer 53 . Thereby, leakage current can be suppressed more effectively.
  • the second layer 52 contains the second conductive polymer (however, the presence or absence of a binder component does not matter), and the first layer 51 and the third layer It may be a denser film than the layer 53 .
  • This also makes it possible to suppress leakage current while suppressing an increase in the equivalent series resistance of the electrolytic capacitor element 1 .
  • the second layer 52 is a denser film than the first layer 51 and the third layer 53, so the first layer 51 and the third layer 53 are It can be a highly conductive film and the second layer can be a dense film.
  • the second layer 52 Since the second layer 52 is partially arranged in the plane of the solid electrolyte layer 50, leakage current is likely to occur, for example, the corners and tip of the anode 10 where stress is likely to concentrate. Since the dense conductive polymer film can be locally arranged, the solid electrolyte layer 50 can be formed on the corners and ridges of the front end surface 10a of the anode 10 (valve metal substrate) or along the mask layer 30. It is possible to suppress the formation of a thin film portion at a location where the solid electrolyte layer 50 is difficult to adhere. As a result, leakage current can be reduced.
  • the first layer 51 and the third layer 53 which are more highly conductive than the second layer 52, that is, can suppress an increase in equivalent series resistance, are arranged in the plane of the solid electrolyte layer 50. Since it is arranged at least in the region where the electrolytic capacitor element 1 is not formed, an increase in the equivalent series resistance of the entire electrolytic capacitor element 1 is prevented. From the above, it is considered that leakage current can be reduced while suppressing an increase in the equivalent series resistance of the entire electrolytic capacitor element 1 .
  • the second layer is a denser film than the first and third layers.
  • the second layer is observed to have a smooth (film-like) surface.
  • the first and third layers are observed to have rougher surfaces than the second layer.
  • the method for making the second layer 52 more dense than the first layer 51 and the third layer 53 is not particularly limited to the above-described method of containing the binder component.
  • a polymerization reaction of the second conductive polymer is performed on the dielectric layer 20 at a low temperature.
  • a slow polymerization reaction of the second conductive polymer is carried out on the dielectric layer 20 using a polymerization retardant (silane coupling agent or the like). In either method, a fine polymer is likely to be generated, so that the second layer 52, which is a lump thereof, can be a dense layer.
  • the anode 10 has six surfaces: a distal end surface 10a, a proximal end surface 10b, a pair of main surfaces 10c and 10d, and a pair of side surfaces 10e and 10f, It has corners where three of these six faces intersect and ridges where two of these six faces intersect, and the second layer 52 covers each corner 10g by the tip face 10a. ing. Since leakage current is generally likely to occur at the corners of the anode, this makes it possible to more effectively suppress the leakage current.
  • FIG. 6 is a perspective view schematically showing an example of an electrolytic capacitor element according to another embodiment of the invention.
  • 7 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 6 along line CC.
  • 8 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 6 taken along line DD.
  • 6, 7 and 8 show the state before the conductive layer 60 of the cathode 40 is formed.
  • FIG. 6 omits illustration of the dielectric layer 20 and shows a state in which the members inside the third layer 53 of the solid electrolyte layer 50 are seen through.
  • the second layer 52 may further cover the tip surface 10a and each ridge line portion 10h formed by the tip surface 10a. Since leakage current is generally likely to occur even at the ridge of the anode, this can further effectively suppress the leakage current. Also, the second layer 52 is easier to form in the case shown in FIG. 6 than in the case shown in FIG.
  • a corner portion is a portion where three surfaces intersect, and a ridge portion is a portion where two surfaces intersect.
  • a corner portion formed by a certain surface means a corner portion where three surfaces including the surface intersect, and a ridge portion formed by a surface means a ridge portion where two surfaces including the surface intersect.
  • FIG. 9 is a perspective view schematically showing an example of an electrolytic capacitor element according to still another embodiment of the invention.
  • 10 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 9 taken along line EE.
  • 11 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 9 taken along line FF.
  • 9 omits illustration of the dielectric layer 20 and shows a state in which the members inside the third layer 53 of the solid electrolyte layer 50 are seen through.
  • the second layer 52 may further cover the side surfaces 10e and 10f and the ridgeline portions 10j formed by the side surfaces 10e and 10f. Thereby, leakage current can be suppressed particularly effectively.
  • FIG. 12 is a perspective view schematically showing an example of an electrolytic capacitor element according to still another embodiment of the invention.
  • 13 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 12 along line GG.
  • 14 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 12 taken along line HH. 12, 13 and 14 show the state before the conductive layer 60 of the cathode 40 is formed.
  • FIG. 12 omits illustration of the dielectric layer 20 and shows a state in which the members inside the third layer 53 of the solid electrolyte layer 50 are seen through.
  • the second layer 52 may be arranged along the mask layer 30, as shown in FIGS.
  • the thickness of the solid electrolyte layer becomes thin along the mask layer, and as a result, leakage current may occur. It is possible to effectively suppress the leakage current at the location.
  • a second layer having both the structure shown in FIG. 3, 6 or 9 and the structure shown in FIG. 12 may be formed. That is, for example, by combining the structures shown in FIGS. 6 and 12, the second layer 52 covers each corner 10g formed by the tip surface 10a, the tip surface 10a, and each ridgeline portion 10h formed by the tip surface 10a. , may be arranged along the mask layer 30 .
  • the anode 10 is a square-shaped thin film (foil) formed from the valve action metal base 11, and preferably has a rectangular shape (strip shape) having a pair of long sides and a pair of short sides.
  • the distal end surface 10a and the proximal end surface 10b are end surfaces located on a pair of sides (preferably a pair of short sides) of the anode 10, and the proximal end surface 10b is an exposed end surface not covered with the dielectric layer 20, It is exposed at one end face of the electrolytic capacitor and connected to an external electrode which will be described later.
  • the anode 10 has a distal end surface 10a, a proximal end surface 10b, main surfaces 10c and 10d, and side surfaces 10e and 10f.
  • planar view means viewing from the direction normal to the main surface of the anode (valve action metal substrate).
  • FIG. 15 is an enlarged cross-sectional view of the mask layer portion of the electrolytic capacitor element shown in FIG.
  • each main surface of the valve action metal substrate 11 (anode 10) is provided with a plurality of recesses. Therefore, each main surface of the valve metal substrate 11 is porous. As a result, the surface area of the valve metal substrate 11 is increased. Both main surfaces of the valve action metal substrate 11 are not limited to being porous, and only one of the two main surfaces of the valve action metal substrate 11 may be porous.
  • the valve action metal substrate 11 is made of, for example, a single metal such as aluminum, tantalum, niobium, titanium, or zirconium, or a valve action metal such as an alloy containing these metals.
  • An oxide film can be formed on the surface of the valve metal.
  • the valve action metal substrate 11 may be composed of a core portion and a porous portion provided on at least one main surface of the core portion.
  • a porous fine powder sintered body or the like can be used as appropriate.
  • Dielectric layer 20 is provided here on the surface of anode 10 except for base end surface 10b. That is, the dielectric layer 20 is provided on the distal end surface 10a, the main surfaces 10c and 10d, and the side surfaces 10e and 10f of the anode 10, while the dielectric layer 20 is provided on the proximal end surface 10b of the anode 10. not However, dielectric layer 20 may be provided on at least one of major surfaces 10c and 10d of anode 10 except for base end surface 10b.
  • the dielectric layer 20 is preferably composed of an oxide film provided on the surface of the valve action metal substrate 11 .
  • dielectric layer 20 is composed of an oxide of aluminum.
  • the oxide of aluminum is formed by anodizing the surface of the valve action metal substrate 11, as will be described later.
  • the mask layer 30 is a linear (extending in a strip) insulating member provided on the dielectric layer 20 along the base end surface 10b of the anode 10, preferably along the short side of the anode 10, It separates the anode 10 and the cathode 40 to ensure insulation therebetween.
  • the mask layer 30 divides the anode 10 into a region on the side of the proximal end surface 10b and a region on the side of the distal end surface 10a.
  • the mask layer 30 is arranged at a predetermined distance from the base end surface 10b, but may be arranged up to the base end surface 10b.
  • the mask layer 30 is provided on the main surfaces 10c and 10d and the side surfaces 10e and 10f of the anode 10 with the dielectric layer 20 interposed therebetween. It may be provided on at least one of 10c and 10d (however, the main surface on which dielectric layer 20 is provided).
  • the mask layer 30 is preferably provided so as to fill a plurality of pores (concave portions) of the valve metal substrate 11 .
  • the mask layer 30 only needs to partially cover the outer surface of the dielectric layer 20, and there may be pores (recesses) in the valve metal substrate 11 that are not filled with the mask layer 30. .
  • the mask layer 30 is made of an insulating material.
  • the mask layer 30 is formed, for example, by applying a mask material such as a composition containing an insulating resin.
  • insulating resins include polyphenylsulfone (PPS), polyethersulfone (PES), cyanate ester resin, fluorine resin (tetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, etc.), and soluble polyimide.
  • Compositions comprising siloxane and epoxy resins, polyimide resins, polyamideimide resins, derivatives or precursors thereof, and the like are included.
  • the application of the mask material can be performed, for example, by screen printing, roller transfer, dispenser, inkjet printing, or the like.
  • the cathode 40 has a solid electrolyte layer 50 provided on the dielectric layer 20 and a conductive layer 60 provided on the solid electrolyte layer 50 . Also, the cathode 40 is provided on the dielectric layer 20 on the tip surface 10 a side of the mask layer 30 . That is, it is provided on the dielectric layer 20 in a region on the tip surface 10 a side of the anode 10 partitioned by the mask layer 30 .
  • the solid electrolyte layer 50 is provided on the dielectric layer 20 . As shown in FIG. 15 , the solid electrolyte layer 50 is preferably provided so as to fill a plurality of pores (recesses) of the valve metal substrate 11 . However, it is sufficient that a portion of the outer surface of the dielectric layer 20 is covered with the solid electrolyte layer 50, and there are pores (recesses) of the valve metal substrate 11 that are not filled with the solid electrolyte layer 50. good too.
  • the solid electrolyte layer 50 is provided on the dielectric layer 20 on the tip surface 10 a side of the mask layer 30 . That is, it is provided on the dielectric layer 20 in a region on the tip surface 10 a side of the anode 10 partitioned by the mask layer 30 .
  • the solid electrolyte layer 50 includes the first layer 51 containing the first conductive polymer, the second layer 52 containing the second conductive polymer, and the third conductive polymer. a third layer 53;
  • the second layer 52 is arranged only in a partial region of the plane of the solid electrolyte layer 50 instead of the entire region. That is, the second layer 52 is unevenly distributed not in the thickness direction of the solid electrolyte layer 50 but in the in-plane direction.
  • the first layer 51 and the third layer 53 are arranged at least in regions in the plane of the solid electrolyte layer 50 where the second layer 52 is not arranged. Therefore, the solid electrolyte layer 50 has at least one of the first layer 51, the third layer 53, and the second layer 52 arranged in its plane.
  • the third layer 53 is provided on the first layer 51 and the second layer 52 . That is, the second layer 52 is arranged only in a part of the area on the first layer 51, and the third layer 53 is arranged on the second layer 52 and the first layer in the area where the second layer 52 is not arranged. layer 51 and .
  • the formation variation in the subsequent processing for example, the carbon layer formation step of graphite or the like
  • Variations in the characteristics of the electrolytic capacitor element 1, particularly variations in ESR can be reduced.
  • the thicknesses of the first layer 51 and the third layer 53 are not particularly limited, and may be, for example, approximately the same thicknesses as the inner and outer layers of a general solid electrolyte layer, respectively.
  • the maximum thickness of the first layer 51 is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.2 ⁇ m or more and 5 ⁇ m or less, and 0.3 ⁇ m or more and 3 ⁇ m or less. is more preferred.
  • the maximum thickness of the third layer 53 is preferably 2 ⁇ m or more and 50 ⁇ m or less, more preferably 3 ⁇ m or more and 40 ⁇ m or less, and even more preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the second layer 52 is also not particularly limited. More preferably, it is 3 ⁇ m or more and 30 ⁇ m or less.
  • the total thickness of the first layer 51, the second layer 52 and the third layer 53, that is, the thickness of the solid electrolyte layer 50 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and 25 ⁇ m or less. is more preferred.
  • the location where the second layer 52 is arranged can be set as appropriate.
  • a configuration in which the second layer 52 further covers the front end surface 10a of the anode 10 and each ridgeline portion 10h formed by the front end surface 10a (see FIG. 6, etc.); and each ridgeline portion 10j by each of the side surfaces 10e and 10f (see FIG. 9 etc.), and (4) a mode in which the second layer 52 is arranged along the mask layer 30 (see FIG. 12 etc.).
  • the second layer 52 may cover at least one of the four corners 10g of the tip surface 10a, but preferably covers the four corners 10g.
  • FIG. 3 shows a case where two corners 10g (vertical corners 10g in FIG. 3) formed by the same side surface 10e or 10f are independently covered with the second layer 52.
  • the corner 10 g may be integrally covered with the second layer 52 . That is, the four ridgeline portions 10h formed by the tip surface 10a include two ridgeline portions 10ha formed by the side surface 10e or 10f and the tip surface 10a, but the second layer 52 may further cover the ridgeline portions 10ha.
  • the second layer 52 may cover at least one of the four ridgeline portions 10h formed by the tip surface 10a, but preferably covers each of the four ridgeline portions 10h. In this way, the second layer 52 preferably covers the tip of the anode 10 (the part including the tip face 10a as a part). is preferably provided over each of the
  • the second layer 52 may cover at least one of the two sides 10e and 10f, but preferably covers the two sides 10e and 10f respectively.
  • the second layer 52 may cover at least one of the four ridgeline portions 10j formed by the side surfaces 10e and 10f, but preferably covers the four ridgeline portions 10j.
  • the second layer 52 does not have to cover the tip end face 10a and the ridge line portions 10h formed by the tip end face 10a.
  • the second layer 52 may be arranged along the mask layer 30 on at least one of the main surfaces 10c and 10d and the side surfaces 10e and 10f of the anode 10, although these are preferably arranged along the mask layer 30 on each side of the .
  • the second layer 52 preferably fills the gap between the first layer 51 and the mask layer 30 .
  • the shape of the second layer 52 is not particularly limited.
  • a conductive polymer having a main chain such as polypyrrole, polythiophene, polyaniline, or the like is used as the material forming the solid electrolyte layer 50 .
  • polythiophene is preferred, and poly(3,4-ethylenedioxythiophene) called PEDOT is particularly preferred.
  • the conductive polymer contains a dopant such as polystyrene sulfonic acid (PSS).
  • At least part of the solid electrolyte layer 50 contains a binder component.
  • the first layer 51 and the third layer 53 may each contain a binder component.
  • the content of the binder component contained in each of the first layer 51 and the third layer 53 is It is preferably less than the content of the binder component contained in the second layer 52 . More preferably, each of the first layer 51 and the third layer 53 does not contain a binder component.
  • the second layer 52 is partially arranged in the plane of the solid electrolyte layer 50, the content of the binder component can be increased compared to the conventional case.
  • the content of the binder component contained in the first layer 51 or the third layer 53 is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, It is more preferably 0.01% by weight or less.
  • the content of the binder component contained in the second layer 52 is preferably 0.1% by weight or more and 20% by weight or less, more preferably 0.3% by weight or more and 10% by weight or less. More preferably, it is 5% by weight or more and 5% by weight or less.
  • Suitable specific examples of the binder component contained in the second layer 52 include, for example, polyisoprene, polystyrene, polyethylene, polyvinylpyrrolidone, polyvinyl alcohol, polymethyl methacrylate, polyacrylonitrile, polyester (preferably polyethylene terephthalate), polyamide, Polyurethane, polycarbonate, cellulose, cellulose nanofibers, polyphthalates, and the like. These may be used alone or in combination of two or more.
  • Suitable specific examples of the binder component that can be included in the first layer 51 and the third layer 53 are the same as the binder component included in the second layer 52 . These may be used alone or in combination of two or more.
  • the content of the binder component and the conductivity of the solid electrolyte layer 50 are in a trade-off relationship.
  • the first layer 51, the second layer 52 and the third layer 53 all function as conductive layers.
  • the solid electrolyte layer 50 is formed by depositing a conductive material such as poly(3,4-ethylenedioxythiophene) on the surface of the dielectric layer 20 using a liquid containing a polymerizable monomer such as 3,4-ethylenedioxythiophene. It is formed by a method of forming a polymeric film, a method of applying a dispersion of a conductive polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric layer 20 and drying it, or the like. .
  • each corner portion 10g and each ridge portion 10h of the anode 10 Since the thickness of the solid electrolyte layer 50 tends to be thin above 10j and above the mask layer 30, leakage current can be suppressed more effectively.
  • the first layer 51 and the third layer 53 are formed by forming poly(3,4 It is preferably formed by a method of forming a polymer film of a conductive polymer such as (ethylenedioxythiophene).
  • the second layer 52 is preferably formed by, for example, a method of applying a conductive polymer dispersion containing a binder component onto the dielectric layer 20 and drying it.
  • the conductive polymer for the second layer 52 is poly(3,4-ethylenedioxythiophene, which has excellent conductivity. ) are particularly preferred.
  • the first conductive polymer contained in the first layer 51, the second conductive polymer contained in the second layer 52, and the third conductive polymer contained in the third layer 53 may be the same conductive polymer (having the same main chain and dopant), or at least two of them may be different conductive polymers (at least the main chain and dopant one side may be different).
  • the first layer 51 is preferably formed as an inner layer that fills the pores (recesses) of the valve action metal substrate 11 .
  • the inner layer can be formed by, for example, a dipping method, sponge transfer, screen printing, dispenser, inkjet printing, or the like.
  • the formation of the second layer 52 can be performed by, for example, an immersion method, sponge transfer, screen printing, dispenser, inkjet printing, etc.
  • an immersion method for example, an immersion method, sponge transfer, screen printing, dispenser, inkjet printing, etc.
  • Inkjet printing is preferred, and in the case of (2) above, immersion is preferred.
  • the third layer 53 is preferably formed as an outer layer covering the entire dielectric layer 20 .
  • the outer layer can be formed by, for example, an immersion method, sponge transfer, screen printing, dispenser, inkjet printing, or the like.
  • the conductive layer 60 is provided on the solid electrolyte layer 50 .
  • the conductive layer 60 covers substantially the entire solid electrolyte layer 50 and is in contact with the mask layer 30 . Note that the conductive layer 60 may be arranged up to the front of the mask layer 30 .
  • the conductive layer 60 has a substantially constant thickness.
  • the conductive layer 60 includes, for example, a carbon layer or a cathode conductor layer. Also, the conductive layer 60 may be a composite layer in which a cathode conductor layer is provided on the outer surface of a carbon layer, or a mixed layer containing carbon and a cathode conductor layer material.
  • the carbon layer is formed, for example, by applying a carbon paste containing carbon particles and resin to the surface of the solid electrolyte layer 50 and drying it.
  • the carbon paste can be applied by, for example, an immersion method, sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like.
  • the cathode conductor layer is formed, for example, by a method of applying a conductive paste containing metal particles such as gold, silver, copper, platinum, and a resin to the surface of the solid electrolyte layer or carbon layer and drying the paste.
  • the cathode conductor layer is preferably a silver layer.
  • the conductive paste can be applied by, for example, dipping, sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like.
  • FIG. 16 is a schematic diagram showing an example of a process of preparing a valve metal substrate on which a mask layer is formed.
  • Valve action metal substrate 11A having a dielectric layer 20 on its surface is prepared.
  • Valve action metal substrate 11A includes a plurality of element portions 12 and support portions 13 .
  • Each element portion 12 is strip-shaped and protrudes from the support portion 13 .
  • a mask layer 30 is formed on the dielectric layer 20 of each element portion 12 .
  • valve action metal substrate 11A having a porous portion on its surface is cut by laser processing, punching, or the like to be processed into a shape including a plurality of element portions 12 and support portions 13 .
  • mask layers 30 are formed on both main surfaces and both side surfaces of the element portions 12 along the short sides of each element portion 12 .
  • valve action metal substrate 11A is anodized to form an oxide film that will become the dielectric layer 20 on the surface of the valve action metal substrate 11A.
  • an oxide film is also formed on the side surfaces of the element portion 12 cut by laser processing, punching, or the like.
  • a chemically processed foil on which an oxide of a valve action metal has already been formed may be used as the valve action metal substrate 11A.
  • an oxide film is formed on the side surface of the cut element portion 12 by anodizing the cut valve metal substrate 11A.
  • FIG. 17 is a schematic diagram showing an example of the process of forming the first layer and the third layer of the solid electrolyte layer.
  • a first layer 51 (see FIG. 3, etc.) of the solid electrolyte layer 50 is formed on the dielectric layer 20 of the element section 12 .
  • FIG. 17 shows a state in which the processing liquid 70 for forming the first layer 51 or the processing liquid 72 for forming the third layer 53 is supplied to the processing bath 75 .
  • the treatment liquid 70 for forming the first layer 51 for example, a liquid containing a polymerizable monomer such as 3,4-ethylenedioxythiophene and an oxidizing agent such as iron (III) p-toluenesulfonate is used. .
  • a liquid containing a polymerizable monomer can be adhered to the outer surface of the dielectric layer 20 and chemically polymerized to form a film containing the first conductive polymer.
  • a dispersion liquid of the first conductive polymer is used as the treatment liquid 70 for forming the first layer 51.
  • a conductive polymer film can be formed by attaching the dispersion liquid of the first conductive polymer to the outer surface of the dielectric layer 20 and drying it. This conductive polymer film becomes the first layer 51 of the solid electrolyte layer 50 .
  • the treatment liquid 70 for forming the first layer 51 may contain the binder component described above, but preferably does not contain the binder component.
  • its concentration in the treatment liquid 70 is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and more preferably 0.01% by weight. It is more preferable to:
  • the treatment liquid 70 is impregnated into the porous portion of the valve action metal substrate 11A.
  • the valve metal substrate 11A is pulled out of the treatment liquid 70 and dried at a predetermined temperature for a predetermined time. The immersion in the treatment liquid 70, the withdrawal, and the drying may be repeated a predetermined number of times. As a result, the first layer 51 of the solid electrolyte layer 50 is formed.
  • the valve action metal substrate 11A is immersed in a liquid containing a polymerizable monomer (a dispersion liquid containing a first conductive polymer may be used), taken out, and then dried to form the first layer 51 as a solid electrolyte. It is formed as an inner layer of the layer 50 (a portion provided on the dielectric layer 20 and filling the pores of the valve action metal substrate 11).
  • a liquid containing a polymerizable monomer a dispersion liquid containing a first conductive polymer may be used
  • the immersion in the liquid containing the polymerizable monomer, pulling out and drying may be performed multiple times.
  • the primer layer may be formed by immersing the valve metal substrate 11A in a solution containing a primer compound, pulling it out, and drying it.
  • the valve metal substrate 11A is washed with pure water to remove excess primer compound. After washing, a drying process is performed.
  • FIG. 18 is a schematic diagram showing an example of the process of forming the second layer of the solid electrolyte layer.
  • the second layer 52 (see FIG. 6 etc.) of the solid electrolyte layer 50 is formed on the first layer 51 .
  • a treatment liquid for forming the second layer 52 is applied to the first layer 51 by an immersion method.
  • FIG. 18 shows a state in which the processing liquid 71 for forming the second layer 52 is supplied to the processing bath 76 .
  • the treatment liquid 71 for forming the second layer 52 for example, a second conductive polymer dispersion containing a binder component is used. By applying this dispersion to the outer surface of the first layer 51 and drying it, a conductive polymer film containing a binder component can be formed.
  • the treatment liquid 71 for forming the second layer 52 contains a polymerizable monomer such as 3,4-ethylenedioxythiophene, an oxidizing agent such as iron (III) p-toluenesulfonate, and a binder component.
  • a liquid may be used.
  • a liquid containing a polymerizable monomer containing a binder component can be adhered to the outer surface of the first layer 51 and chemically polymerized to form a conductive polymer film containing the binder component.
  • the conductive polymer film containing this binder component becomes the second layer 52 of the solid electrolyte layer 50 .
  • the concentration of the binder component in the treatment liquid 71 is preferably 0.1% by weight or more and 20% by weight or less, more preferably 0.3% by weight or more and 10% by weight or less, and 0.5% by weight. % or more and 5% by weight or less is more preferable.
  • the treatment liquid 71 adheres to the outer surface of the first layer 51 by immersing the tip of the valve action metal substrate 11A in the treatment liquid 71 .
  • the valve metal substrate 11A is pulled out of the treatment liquid 71 and dried at a predetermined temperature for a predetermined time.
  • the immersion in the treatment liquid 71, the withdrawal, and the drying may be repeated a predetermined number of times.
  • the second layer 52 of the solid electrolyte layer 50 as shown in FIG. 6 is formed.
  • a treatment liquid for forming the second layer 52 (for example, the dispersion liquid of the second conductive polymer or the liquid containing the polymerizable monomer) is applied to the outside of the first layer 51 by inkjet printing.
  • the second layer 52 of the solid electrolyte layer 50 may be formed in a predetermined region by discharging onto the surface. Thereby, the second layer 52 of the solid electrolyte layer 50 as shown in FIGS. 3, 9 and 12 can be formed.
  • the third layer 53 (see FIG. 3 etc.) of the solid electrolyte layer 50 is formed on the first layer 51 and the second layer 52 .
  • a treatment liquid 72 for forming the third layer 53 it is preferable to apply to the first layer 51 and the second layer 52 by an immersion method.
  • the treatment liquid 72 for forming the third layer 53 for example, a liquid containing a polymerizable monomer such as 3,4-ethylenedioxythiophene and an oxidizing agent such as iron (III) p-toluenesulfonate is used. .
  • a liquid containing a polymerizable monomer can be adhered to the outer surfaces of the first layer 51 and the second layer 52 and chemically polymerized to form a film containing the third conductive polymer.
  • a dispersion liquid of a third conductive polymer is used as the treatment liquid 72 for forming the third layer 53.
  • a conductive polymer film can be formed by attaching a dispersion liquid of the third conductive polymer to the outer surfaces of the first layer 51 and the second layer 52 and drying it. This conductive polymer film becomes the third layer 53 of the solid electrolyte layer 50 .
  • the treatment liquid 72 for forming the third layer 53 may contain the binder component described above, but preferably does not contain the binder component.
  • its concentration in the treatment liquid 72 is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and more preferably 0.01% by weight. It is more preferable to:
  • the treatment liquid 72 adheres to the outer surfaces of the first layer 51 and the second layer 52 by immersing the valve metal substrate 11A in the treatment liquid 72 .
  • the valve metal substrate 11A is pulled out of the treatment liquid 72 and dried at a predetermined temperature for a predetermined time.
  • the immersion in the treatment liquid 72, the withdrawal, and the drying may be repeated a predetermined number of times.
  • the third layer 53 of the solid electrolyte layer 50 is formed.
  • valve metal substrate 11A is immersed in a liquid containing a polymerizable monomer (a dispersion liquid containing a third conductive polymer may be used), taken out, and then dried to form the third layer 53 as a solid electrolyte. It is formed as the outer layer of layer 50 (the portion that is connected to the inner layer and covers the entire dielectric layer 20).
  • the immersion in the liquid containing the polymerizable monomer, pulling out and drying may be performed multiple times.
  • the first layer 51, the second layer 52 and the third layer 53 of the solid electrolyte layer 50 are formed in predetermined regions.
  • valve metal substrate 11A is immersed in the carbon paste, pulled out, and dried to form a carbon layer in a predetermined region.
  • valve action metal substrate 11A is immersed in a conductive paste containing metal particles such as silver paste, pulled out, and dried to form a cathode conductor layer in a predetermined region.
  • valve action metal substrate 11A is cut to separate the element portion 12, thereby forming the strip-shaped anode 10 whose cut surface serves as the base end surface 10b.
  • the electrolytic capacitor element 1 is obtained through the above steps.
  • electrolytic capacitor An example of an electrolytic capacitor including the electrolytic capacitor element of the present invention will be described below. Note that the electrolytic capacitor element of the present invention may be included in electrolytic capacitors having other configurations. For example, lead frames may be used as external electrodes.
  • the electrolytic capacitor may also include electrolytic capacitor elements other than the electrolytic capacitor element of the present invention (that is, electrolytic capacitor elements having a structure different from that of the electrolytic capacitor element of the present invention).
  • FIG. 19 is a perspective view schematically showing an example of an electrolytic capacitor including an electrolytic capacitor element according to an embodiment of the invention. 20 is a cross-sectional view of the electrolytic capacitor shown in FIG. 19 taken along line ZZ.
  • L indicates the length direction of the electrolytic capacitor 100 and the exterior body 110
  • W indicates the width direction
  • T indicates the height direction.
  • the length direction L, the width direction W, and the height direction T are orthogonal to each other.
  • the electrolytic capacitor 100 has a substantially rectangular parallelepiped outer shape.
  • the electrolytic capacitor 100 is a solid electrolytic capacitor, and includes an exterior body 110 , a first external electrode 120 , a second external electrode 130 , and a plurality of electrolytic capacitor elements 1 .
  • the exterior body 110 seals a plurality of electrolytic capacitor elements 1 . That is, a plurality of electrolytic capacitor elements 1 are embedded in the exterior body 110 . Note that the exterior body 110 may seal one electrolytic capacitor element 1 . That is, one electrolytic capacitor element 1 may be embedded inside the exterior body 110 .
  • the exterior body 110 has a substantially rectangular parallelepiped outer shape.
  • the exterior body 110 has a first major surface 110a and a second major surface 110b that face each other in the height direction T, a first side face 110c and a second side face 110d that face each other in the width direction W, and a first side face 110c and a second side face 110d that face each other in the length direction L. It has one end face 110e and a second end face 110f.
  • the exterior body 110 has a substantially rectangular parallelepiped outer shape, and it is preferable that the corners and ridges are rounded.
  • the exterior body 110 is made of sealing resin, for example.
  • the sealing resin contains at least resin, and preferably contains resin and filler.
  • epoxy resin epoxy resin, phenol resin, polyimide resin, silicone resin, polyamide resin, liquid crystal polymer, etc. are preferably used.
  • Silica particles, alumina particles, etc. are preferably used as the filler.
  • a material containing solid epoxy resin, phenol resin, and silica particles is preferably used as the sealing resin.
  • resin molds such as compression molds and transfer molds are preferably used, and compression molds are more preferably used.
  • molding methods such as a dispensing method and a printing method are preferably used. Among them, it is preferable to seal the periphery of the electrolytic capacitor element 1 with a sealing resin by compression molding to form the exterior body 110 .
  • the exterior body 110 may be composed of a substrate and a sealing resin provided on the substrate.
  • the substrate is, for example, an insulating resin substrate such as a glass epoxy substrate.
  • the bottom surface of the substrate constitutes the second main surface 110b of the exterior body 110.
  • the thickness of the substrate is, for example, 100 ⁇ m.
  • a plurality of electrolytic capacitor elements 1 are stacked in the height direction T with conductive adhesive 140 interposed therebetween.
  • the extension direction of each of the plurality of electrolytic capacitor elements 1 is substantially parallel to the first main surface 110 a and the second main surface 110 b of the outer package 110 .
  • Electrolytic capacitor elements 1 are bonded to each other via conductive adhesive 140 .
  • the conductive adhesive 140 contains, for example, metal particles such as gold, silver, copper, platinum, etc., and resin.
  • metal particles such as gold, silver, copper, platinum, etc.
  • resin such as gold, silver, copper, platinum, etc.
  • silver is used as the metal particles
  • acrylic resin is used as the resin.
  • Other examples of the resin contained in the conductive adhesive 140 include urethane resin, epoxy resin, polyimide resin, phenol resin, and the like.
  • the first external electrode 120 is provided on the first end face 110e of the exterior body 110.
  • the first external electrode 120 is provided from the first end surface 110e of the exterior body 110 over each of the first main surface 110a, the second main surface 110b, the first side surface 110c, and the second side surface 110d.
  • First external electrode 120 is electrically connected to conductive layer 60 of cathode 40 of electrolytic capacitor element 1 exposed from exterior body 110 at first end face 110e.
  • the first external electrode 120 may be directly or indirectly connected to the conductive layer 60 on the first end face 110 e of the outer casing 110 .
  • the second external electrode 130 is provided on the second end face 110f of the exterior body 110.
  • the second external electrode 130 is provided from the second end surface 110f of the exterior body 110 over each of the first main surface 110a, the second main surface 110b, the first side surface 110c, and the second side surface 110d.
  • Second external electrode 130 is electrically connected to anode 10 (valve metal substrate 11) of electrolytic capacitor element 1 exposed from exterior body 110 at second end surface 110f.
  • the second external electrode 130 may be directly or indirectly connected to the anode 10 (valve metal substrate 11 ) at the second end surface 110 f of the exterior body 110 .
  • the first external electrode 120 and the second external electrode 130 are each formed by a dip coating method, a screen printing method, a transfer method, an inkjet printing method, a dispensing method, a spray coating method, a brush coating method, a drop casting method, an electrostatic coating method, It is preferably formed by at least one method selected from the group consisting of plating and sputtering.
  • the first external electrode 120 preferably has a resin electrode layer containing a conductive component and a resin component. Since the first external electrode 120 contains a resin component, the adhesion between the first external electrode 120 and the sealing resin of the exterior body 110 is enhanced, thereby improving the reliability.
  • the second external electrode 130 preferably has a resin electrode layer containing a conductive component and a resin component. Since the second external electrode 130 contains a resin component, the adhesion between the second external electrode 130 and the sealing resin of the exterior body 110 is enhanced, thereby improving the reliability.
  • the conductive component preferably contains, as a main component, an elemental metal such as silver, copper, nickel, or tin, or an alloy containing at least one of these metals.
  • the resin component preferably contains epoxy resin, phenol resin, etc. as the main component.
  • the resin electrode layer is formed by methods such as dip coating, screen printing, transfer, inkjet printing, dispensing, spray coating, brush coating, drop casting, and electrostatic coating.
  • the resin electrode layer is preferably a printed resin electrode layer formed by applying a conductive paste by a screen printing method.
  • the resin electrode layer is formed by applying a conductive paste by a screen printing method, compared with the case where the resin electrode layer is formed by applying a conductive paste by a dip coating method, the first external electrode 120 And the second external electrode 130 tends to be flat. That is, the thicknesses of the first external electrode 120 and the second external electrode 130 tend to be uniform.
  • both the first external electrode 120 and the cathode conductor layer contain a resin component, so reliability is improved. improves.
  • At least one of the first external electrode 120 and the second external electrode 130 may have a so-called plated layer formed by a plating method.
  • plating layers include zinc/silver/nickel layers, silver/nickel layers, nickel layers, zinc/nickel/gold layers, nickel/gold layers, zinc/nickel/copper layers, and nickel/copper layers.
  • a copper plated layer, a nickel plated layer, and a tin plated layer are preferably provided in this order (or with the exception of some plated layers).
  • At least one of the first external electrode 120 and the second external electrode 130 may have both a resin electrode layer and a plating layer.
  • the second external electrode 130 may have a resin electrode layer connected to the anode 10 (valve metal substrate 11) and an outer plated layer provided on the surface of the resin electrode layer.
  • the second external electrode 130 includes an inner plated layer connected to the anode 10 (valve metal substrate 11), a resin electrode layer provided to cover the inner plated layer, and a resin electrode layer provided on the surface of the resin electrode layer. and an outer plated layer.
  • the electrolytic capacitor element 1 is a solid electrolytic capacitor using a conductive polymer as an electrolyte material.
  • a so-called hybrid type electrolytic capacitor element may be used in which an electrolytic solution is used together with the solid electrolyte.
  • the electrolytic capacitor element 1 is used in the chip-type electrolytic capacitor 100 has been described, but the electrolytic capacitor element of the present invention can be used by being embedded in a package substrate included in a semiconductor device, for example.
  • semiconductor devices include semiconductor composite devices in which a voltage regulator (voltage control device) and a load are mounted on a package substrate.
  • Example 1 An aluminum foil having an etching layer on its surface was prepared as an anode (valve metal substrate), and immersed in an ammonium adipate aqueous solution for anodization to form a dielectric layer on the surface of the aluminum foil.
  • a mask layer is formed on both main surfaces and both side surfaces of the foil through the dielectric layer by roller-transferring a composition comprising a soluble polyimidesiloxane and an epoxy resin onto the aluminum foil having the dielectric layer formed on the surface. formed.
  • a PEDOT-PSS dispersion containing 5% by weight of polyester as a binder component is applied only to each corner of the aluminum foil by inkjet printing, and dried to form a second solid electrolyte layer on the first layer. partially formed (see FIG. 3).
  • the PEDOT-PSS dispersion is an aqueous dispersion of poly(3,4-ethylenedioxythiophene) and polystyrenesulfonic acid.
  • an electrolytic capacitor element was obtained by sequentially forming a carbon layer and a silver layer.
  • the resulting four electrolytic capacitor elements were laminated using a conductive adhesive to obtain a laminate. After that, the laminate was sealed with an epoxy resin and separated into pieces using a dicer. Next, a silver paste containing a resin component was screen-printed on the cathode-side and anode-side end surfaces of the solidified sealing body to form external electrodes on the cathode and anode, thereby obtaining a finished electrolytic capacitor.
  • Example 2 A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
  • an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, and pulled up. and then dried.
  • iron (III) p-toluenesulfonate 3,4-ethylenedioxythiophene
  • 1-butanol 1-butanol
  • Example 3 A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
  • an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, and pulled up. and then dried.
  • iron (III) p-toluenesulfonate 3,4-ethylenedioxythiophene
  • 1-butanol 1-butanol
  • a PEDOT-PSS dispersion containing 5% by weight of polyester as a binder component is applied by inkjet printing to the tip surface (bottom surface), each side surface, each corner portion, and each ridge portion of the aluminum foil. and dried to partially form the second layer of the solid electrolyte layer on the first layer (see FIG. 9).
  • Example 1 A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
  • an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene and 1-butanol up to just below the mask layer, and then pulled out. By drying, a first layer of a solid electrolyte layer was formed on the dielectric layer.
  • the aluminum foil was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer. , pulled up, and dried to form a third layer of the solid electrolyte layer on the first layer.
  • Example 2 A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
  • an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene and 1-butanol up to just below the mask layer, and then pulled out. By drying, a first layer of a solid electrolyte layer was formed on the dielectric layer.
  • the solid electrolyte layer is immersed in a PEDOT-PSS dispersion containing 5% by weight of polyester as a binder component so as to cover the entire first layer, pulled out, and dried to cover the entire area of the first layer. to form a second layer of
  • an aluminum foil is immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, pulled out, and dried to form a second layer.
  • a third layer of a solid electrolyte layer was formed thereon.
  • Example 3 A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
  • an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene and 1-butanol up to just below the mask layer, and then pulled out. By drying, a first layer of a solid electrolyte layer was formed on the dielectric layer.
  • an aluminum foil is immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, pulled out, and dried to form the first layer. And a third layer of a solid electrolyte layer was formed on the insulating layer.
  • Example 4 A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
  • an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene and 1-butanol up to just below the mask layer, and then pulled out. By drying, a first layer of a solid electrolyte layer was formed on the dielectric layer.
  • an aluminum foil is immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, pulled out, and dried to form the first layer. and a third layer of a solid electrolyte layer was formed on the second layer.
  • ESR equivalent series resistance
  • LC leakage current
  • Example 1 the dense second layer containing the binder component is formed only at locations where leakage current is likely to occur, such as the corners of the tip of the aluminum foil.
  • the LC non-defective product rate was improved, and the ESR was lower than in Comparative Example 2.
  • Example 2 had a lower ESR than Comparative Example 3.
  • Comparative Example 4 had a lower LC non-defective rate because the second layer did not contain a binder component.
  • FIG. 21 shows a SEM photograph of the cross section of the electrolytic capacitor of Example 1.
  • the inclusion of the binder component made the second layer a denser film than the first and third layers. That is, in cross-sectional photographs, the second layer was observed to have a smooth (film-like) surface. On the other hand, the first and third layers were observed to have rougher surfaces than the second layer.
  • Electrolytic capacitor element 10 anode 10a tip surface 10b base end surface 10c, 10d main surface 10e, 10f side surface 10g corner portions 10h, 10ha, 10j edge portion 11, 11A valve action metal substrate 12 element portion 13 support portion 20 dielectric layer 30 mask Layer 40
  • Cathode 50 Solid electrolyte layer 51 First layer 52 Second layer 53 Third layer 60

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

An electrolytic capacitor element 1 comprises: a positive electrode 10 that is formed from a valve-action metal substrate 11, and has a leading end surface 10a and a base end surface 10b; a dielectric layer 20 provided on at least one of main surfaces 10c, 10d of the positive electrode 10, excluding at least the base end surface 10b; a mask layer 30 formed from an insulating material and provided on the dielectric layer 20 along the base end surface 10b; and a negative electrode 40 provided on the dielectric layer 20 farther on the leading end surface 10a side as compared to the mask layer 30. The negative electrode 40 has a solid electrolyte layer 50 provided on the dielectric layer 20, and an electroconductive layer 60 provided on the solid electrolyte layer 50. The solid electrolyte layer 50 includes a first layer 51 containing a first electroconductive polymer and provided on the dielectric layer 20, a second layer 52 containing a second electroconductive polymer and a binder component, and a third layer 53 containing a third electroconductive polymer and provided on at least the first layer 51. The second layer 52 is disposed partially within the plane of the solid electrolyte layer 50, and the first layer 51 and the third layer 53 are disposed at least in a region where the second layer 52 is not disposed within the plane of the solid electrolyte 50.

Description

電解コンデンサ素子electrolytic capacitor element
 本発明は、電解コンデンサ素子に関する。 The present invention relates to electrolytic capacitor elements.
 特許文献1には、等価直列抵抗(ESR)及び漏れ電流の低い固体電解コンデンサとして、弁作用金属からなる陽極体、陽極体表面に形成された誘電体酸化皮膜、誘電体酸化皮膜上の固体電解質層及び固体電解質層上の陰極集電体層を有する固体電解コンデンサにおいて、固体電解質層が、ポリアニリン、ポリピロール及びこれらの誘導体からなる群から選ばれる導電性高分子を含有する溶液又は分散液から誘電体酸化皮膜上に形成された第1固体電解質層と、ポリチオフェン及びその誘導体からなる群から選ばれる導電性高分子を含有する溶液又は分散液から第1固体電解質層上に形成された第2固体電解質層と、ポリチオフェン及びその誘導体からなる群から選ばれる導電性高分子を含有し、第2固体電解質層の形成に用いた溶液又は分散液とは組成の異なる溶液又は分散液から第2固体電解質層上に形成された第3固体電解質層を有する固体電解コンデンサが開示されている。 Patent Document 1 discloses, as a solid electrolytic capacitor with low equivalent series resistance (ESR) and leakage current, an anode body made of a valve action metal, a dielectric oxide film formed on the surface of the anode body, and a solid electrolyte on the dielectric oxide film. In a solid electrolytic capacitor having a layer and a cathode current collector layer on the solid electrolyte layer, the solid electrolyte layer is dielectric from a solution or dispersion containing a conductive polymer selected from the group consisting of polyaniline, polypyrrole and derivatives thereof. a first solid electrolyte layer formed on the solid oxide film; and a second solid layer formed on the first solid electrolyte layer from a solution or dispersion containing a conductive polymer selected from the group consisting of polythiophene and derivatives thereof. a second solid electrolyte from a solution or dispersion containing an electrolyte layer and a conductive polymer selected from the group consisting of polythiophene and derivatives thereof, and having a composition different from that of the solution or dispersion used for forming the second solid electrolyte layer; A solid electrolytic capacitor is disclosed having a third solid electrolyte layer formed on the layer.
 特許文献2には、漏れ電流による不良率を低くするために、表面が多孔質状に拡面化された弁作用金属箔を陽極体とする固体電解コンデンサにおいて、コンデンサ素子に第二の固体電解質層の側面部から延伸して、第二の固体電解質層における平面部の外縁部の少なくとも一部を覆うように、第二の固体電解質層とグラファイト層との間に絶縁樹脂層を形成することが開示されている。 In Patent Document 2, a solid electrolytic capacitor having an anode body made of a valve action metal foil having a porous expanded surface in order to reduce the defect rate due to leakage current, a second solid electrolyte is added to the capacitor element. Forming an insulating resin layer between the second solid electrolyte layer and the graphite layer so as to extend from the side surface of the layer and cover at least a part of the outer edge of the planar portion of the second solid electrolyte layer. is disclosed.
特開2011-253878号公報JP 2011-253878 A 特開2012-134389号公報JP 2012-134389 A
 特許文献1では、第1固体電解質層に、ポリアニリン、ポリピロール系の導電性高分子を使用し、第2固体電解質層及び第3固体電解質層に、ポリチオフェン系の導電性高分子を使用することとしているが、第1固体電解質層と第2固体電解質層とが異なる材料であり、これらの層の密着不良による界面抵抗の上昇により、等価直列抵抗(ESR)が高くなるといった点で改善の余地がある。また、各層に絶縁性バインダ(ポリビニルアルコール、段落[0030]参照)を含む分散液を使用してもよいとしており、導電性高分子膜(バルク)の導電率が低くなるため、ESRが高くなるといった点でも改善の余地もある。 In Patent Document 1, a polyaniline- or polypyrrole-based conductive polymer is used for the first solid electrolyte layer, and a polythiophene-based conductive polymer is used for the second solid electrolyte layer and the third solid electrolyte layer. However, the first solid electrolyte layer and the second solid electrolyte layer are made of different materials, and there is room for improvement in that the equivalent series resistance (ESR) increases due to an increase in interfacial resistance due to poor adhesion between these layers. be. In addition, it is also possible to use a dispersion containing an insulating binder (polyvinyl alcohol, see paragraph [0030]) for each layer. There is room for improvement in this respect as well.
 特許文献2では、モールド成型時の成型応力により損傷しやすい素子の側面部(角部)を絶縁体で一部覆うため、固体電解質層と、グラファイト層及び銀ペースト層との間で電気応答性が悪化する(経路が長くなる)ため、ESRが高くなるといった点で改善の余地がある。また、グラファイト層を形成する際に、異なる材料が露出しているため、表面の濡れ性が一定でなく、均一な被覆を形成できず、ESR特性がばらついてしまう。 In Patent Document 2, since the side surface (corner) of the element, which is easily damaged by molding stress during molding, is partially covered with an insulator, electrical responsiveness is maintained between the solid electrolyte layer, the graphite layer, and the silver paste layer. There is room for improvement in that the ESR is increased due to the worsening of the ESR (path becomes longer). In addition, since different materials are exposed when forming the graphite layer, the wettability of the surface is not constant, a uniform coating cannot be formed, and the ESR characteristics vary.
 本発明は、上記の問題を解決するためになされたものであり、等価直列抵抗の増大を抑制しつつ漏れ電流の抑制が可能な電解コンデンサ素子を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an electrolytic capacitor element capable of suppressing leakage current while suppressing an increase in equivalent series resistance.
 本発明の電解コンデンサ素子は、第1の態様において、弁作用金属基体から構成され、先端面及び基端面を有する陽極と、少なくとも上記基端面を除いて上記陽極の少なくとも一方の主面上に設けられた誘電体層と、絶縁材料から構成され、上記基端面に沿って上記誘電体層上に設けられたマスク層と、上記マスク層よりも上記先端面側において上記誘電体層上に設けられた陰極と、を備え、上記陰極は、上記誘電体層上に設けられた固体電解質層と、上記固体電解質層上に設けられた導電層と、を有し、上記固体電解質層は、上記誘電体層上に設けられ、第1の導電性高分子を含む第1層と、第2の導電性高分子及びバインダ成分を含む第2層と、少なくとも上記第1層上に設けられ、第3の導電性高分子を含む第3層と、を含み、上記第2層は、上記固体電解質層の面内において部分的に配置されており、上記第1層及び上記第3層は、上記固体電解質層の面内において上記第2層が配置されていない領域に少なくとも配置されている。 In a first aspect of the electrolytic capacitor element of the present invention, an anode is composed of a valve metal substrate and has a distal end surface and a proximal end surface; a mask layer made of an insulating material and provided on the dielectric layer along the proximal face; and a mask layer provided on the dielectric layer on the distal face side of the mask layer. a cathode, the cathode having a solid electrolyte layer provided on the dielectric layer; and a conductive layer provided on the solid electrolyte layer, the solid electrolyte layer comprising the dielectric a first layer provided on the body layer and containing a first conductive polymer; a second layer containing a second conductive polymer and a binder component; and a third layer containing a conductive polymer, wherein the second layer is partially arranged in the plane of the solid electrolyte layer, and the first layer and the third layer are composed of the solid It is arranged at least in a region where the second layer is not arranged in the plane of the electrolyte layer.
 本発明の電解コンデンサ素子は、第2の態様において、弁作用金属基体から構成され、先端面及び基端面を有する陽極と、少なくとも上記基端面を除いて上記陽極の少なくとも一方の主面上に設けられた誘電体層と、絶縁材料から構成され、上記基端面に沿って上記誘電体層上に設けられたマスク層と、上記マスク層よりも上記先端面側において上記誘電体層上に設けられた陰極と、を備え、上記陰極は、上記誘電体層上に設けられた固体電解質層と、上記固体電解質層上に設けられた導電層と、を有し、上記固体電解質層は、上記誘電体層上に設けられ、第1の導電性高分子を含む第1層と、第2の導電性高分子を含む第2層と、少なくとも上記第1層上に設けられ、第3の導電性高分子を含む第3層と、を含み、上記第2層は、上記固体電解質層の面内において部分的に配置されており、上記第1層及び上記第3層は、上記固体電解質層の面内において上記第2層が配置されていない領域に少なくとも配置されており、上記第2層は、上記第1層及び上記第3層に比べて、より緻密な膜である。 In the second aspect of the electrolytic capacitor element of the present invention, the anode is composed of a valve metal substrate and has a distal end surface and a proximal end surface, and at least one main surface of the anode except for the proximal end surface is provided on at least one main surface. a mask layer made of an insulating material and provided on the dielectric layer along the proximal face; and a mask layer provided on the dielectric layer on the distal face side of the mask layer. a cathode, the cathode having a solid electrolyte layer provided on the dielectric layer; and a conductive layer provided on the solid electrolyte layer, the solid electrolyte layer comprising the dielectric A first layer provided on the body layer and containing a first conductive polymer, a second layer containing a second conductive polymer, and a third conductive layer provided on at least the first layer a third layer containing a polymer, wherein the second layer is partially arranged in the plane of the solid electrolyte layer, and the first layer and the third layer are formed on the solid electrolyte layer. It is arranged at least in a region where the second layer is not arranged in the plane, and the second layer is a denser film than the first layer and the third layer.
 本発明によれば、等価直列抵抗の増大を抑制しつつ漏れ電流の抑制が可能な電解コンデンサ素子を提供することができる。 According to the present invention, it is possible to provide an electrolytic capacitor element capable of suppressing leakage current while suppressing an increase in equivalent series resistance.
図1は、本発明の実施形態に係る電解コンデンサ素子の一例を模式的に示す平面図である。FIG. 1 is a plan view schematically showing an example of an electrolytic capacitor element according to an embodiment of the invention. 図2は、図1に示す電解コンデンサ素子のX-X線に沿った断面図である。FIG. 2 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 1 along line XX. 図3は、図1に示す電解コンデンサ素子の斜視図である。3 is a perspective view of the electrolytic capacitor element shown in FIG. 1. FIG. 図4は、図3に示す電解コンデンサ素子のA-A線に沿った断面図である。4 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 3 along line AA. 図5は、図3に示す電解コンデンサ素子のB-B線に沿った断面図である。FIG. 5 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 3 along line BB. 図6は、本発明の別の実施形態に係る電解コンデンサ素子の一例を模式的に示す斜視図である。FIG. 6 is a perspective view schematically showing an example of an electrolytic capacitor element according to another embodiment of the invention. 図7は、図6に示す電解コンデンサ素子のC-C線に沿った断面図である。7 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 6 along line CC. 図8は、図6に示す電解コンデンサ素子のD-D線に沿った断面図である。8 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 6 taken along line DD. 図9は、本発明のさらに別の実施形態に係る電解コンデンサ素子の一例を模式的に示す斜視図である。FIG. 9 is a perspective view schematically showing an example of an electrolytic capacitor element according to still another embodiment of the invention. 図10は、図9に示す電解コンデンサ素子のE-E線に沿った断面図である。10 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 9 taken along line EE. 図11は、図9に示す電解コンデンサ素子のF-F線に沿った断面図である。11 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 9 taken along line FF. 図12は、本発明のさらに別の実施形態に係る電解コンデンサ素子の一例を模式的に示す斜視図である。FIG. 12 is a perspective view schematically showing an example of an electrolytic capacitor element according to still another embodiment of the invention. 図13は、図12に示す電解コンデンサ素子のG-G線に沿った断面図である。13 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 12 along line GG. 図14は、図12に示す電解コンデンサ素子のH-H線に沿った断面図である。14 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 12 taken along line HH. 図15は、図2に示す電解コンデンサ素子のマスク層部分を拡大した断面図である。15 is an enlarged cross-sectional view of the mask layer portion of the electrolytic capacitor element shown in FIG. 2. FIG. 図16は、マスク層が形成された弁作用金属基体を準備する工程の一例を示す模式図である。FIG. 16 is a schematic diagram showing an example of a process of preparing a valve metal substrate on which a mask layer is formed. 図17は、固体電解質層の第1層及び第3層を形成する工程の一例を示す模式図である。FIG. 17 is a schematic diagram showing an example of the process of forming the first layer and the third layer of the solid electrolyte layer. 図18は、固体電解質層の第2層を形成する工程の一例を示す模式図である。FIG. 18 is a schematic diagram showing an example of the process of forming the second layer of the solid electrolyte layer. 図19は、本発明の実施形態に係る電解コンデンサ素子を含む電解コンデンサの一例を模式的に示す斜視図である。FIG. 19 is a perspective view schematically showing an example of an electrolytic capacitor including an electrolytic capacitor element according to an embodiment of the invention. 図20は、図19に示す電解コンデンサのZ-Z線に沿った断面図である。20 is a cross-sectional view of the electrolytic capacitor shown in FIG. 19 taken along line ZZ. 図21は、実施例1の電解コンデンサの断面のSEM写真を示す。21 shows a SEM photograph of a cross section of the electrolytic capacitor of Example 1. FIG.
 以下、本発明の電解コンデンサ素子について説明する。
 しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
The electrolytic capacitor element of the present invention will be described below.
However, the present invention is not limited to the following configurations, and can be appropriately modified and applied without changing the gist of the present invention. Combinations of two or more of the individual desirable configurations described below are also part of the present invention.
 また、以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。複数の実施形態で共通の事項についての記述の繰り返しは省略し、異なる点についてのみ説明する。 Also, each embodiment shown below is an example, and it goes without saying that partial replacement or combination of configurations shown in different embodiments is possible. Descriptions of items common to multiple embodiments will be omitted, and only different points will be described.
[電解コンデンサ素子]
 図1は、本発明の実施形態に係る電解コンデンサ素子の一例を模式的に示す平面図である。図2は、図1に示す電解コンデンサ素子のX-X線に沿った断面図である。なお、図1では、導電層60に覆われた固体電解質層50を破線で示す。また、図1及び図2では、第1層51、第2層52及び第3層53を区別せずに固体電解質層50を示す。
[Electrolytic capacitor element]
FIG. 1 is a plan view schematically showing an example of an electrolytic capacitor element according to an embodiment of the invention. FIG. 2 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 1 along line XX. Note that in FIG. 1, the solid electrolyte layer 50 covered with the conductive layer 60 is indicated by a dashed line. 1 and 2 show the solid electrolyte layer 50 without distinguishing between the first layer 51, the second layer 52 and the third layer 53. FIG.
 図1及び図2に示す電解コンデンサ素子1は、固体電解コンデンサ素子であり、弁作用金属基体11から構成され、先端面10a及び基端面10bを有する陽極10と、基端面10bを除いて陽極10の表面上に設けられた誘電体層20と、絶縁材料から構成され、基端面10bに沿って誘電体層20上に設けられたマスク層30と、マスク層30よりも先端面10a側において誘電体層20上に設けられた陰極40と、を備えており、陰極40は、誘電体層20上に設けられた固体電解質層50と、固体電解質層50上に設けられた導電層60と、を有している。 The electrolytic capacitor element 1 shown in FIGS. 1 and 2 is a solid electrolytic capacitor element, which is composed of a valve action metal substrate 11, an anode 10 having a distal end surface 10a and a proximal end surface 10b, and an anode 10 except for the proximal end surface 10b. a dielectric layer 20 provided on the surface of the dielectric layer 20, a mask layer 30 made of an insulating material and provided on the dielectric layer 20 along the base end face 10b, and a dielectric layer 30 on the tip face 10a side of the mask layer 30 a cathode 40 provided on the body layer 20, the cathode 40 comprising a solid electrolyte layer 50 provided on the dielectric layer 20; a conductive layer 60 provided on the solid electrolyte layer 50; have.
 図3は、図1に示す電解コンデンサ素子の斜視図である。図4は、図3に示す電解コンデンサ素子のA-A線に沿った断面図である。図5は、図3に示す電解コンデンサ素子のB-B線に沿った断面図である。なお、図3、図4及び図5では、陰極40の導電層60を形成する前の状態を示す。また、図3では、誘電体層20の図示を省略し、また、固体電解質層50の第3層53より内側の部材を透視した状態を示す。 FIG. 3 is a perspective view of the electrolytic capacitor element shown in FIG. 4 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 3 along line AA. FIG. 5 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 3 along line BB. 3, 4 and 5 show the state before the conductive layer 60 of the cathode 40 is formed. In addition, FIG. 3 omits illustration of the dielectric layer 20 and shows a state in which the members inside the third layer 53 of the solid electrolyte layer 50 are seen through.
 図3、図4及び図5に示すように、固体電解質層50は、誘電体層20上に設けられ、第1の導電性高分子を含む第1層51と、第2の導電性高分子及びバインダ成分を含む第2層52と、少なくとも第1層51上に設けられ、第3の導電性高分子を含む第3層53と、を含んでおり、第2層52は、固体電解質層50の面内において部分的に配置されており、第1層51及び第3層53は、固体電解質層50の面内において第2層52が配置されていない領域に少なくとも配置されている。
 これにより、電解コンデンサ素子1の等価直列抵抗の増大を抑制しつつ漏れ電流の抑制が可能である。この効果が得られる理由(作用)については以下が考えられる。すなわち、
 (1)各層が導電性高分子を含む一方で、第2層52がバインダ成分を含むことから、第1層51及び第3層53はバインダ成分を含まないか、又はバインダ成分が少ない高導電な膜とし、第2層を緻密な、及び/又は、変形追従性のある膜とすることができる。
 (2)第2層52が固体電解質層50の面内において部分的に配置されていることから、漏れ電流が発生しやすい箇所、例えば応力が集中しやすい陽極10の角部や先端部に、緻密な、及び/又は、変形追従性のある導電性高分子膜を局所的に配置できるため、陽極10(弁作用金属基体)の先端面10aの角部及び稜線部、或いはマスク層30に沿った部分等、固体電解質層50の形成時に固体電解質層50が付きにくい箇所に薄膜部が形成されるのを抑制できる。その結果、漏れ電流を低減できる。
 (3)第2層52に比べてより高導電な、すなわち等価直列抵抗の増大を抑制可能な第1層51及び第3層53が、固体電解質層50の面内において第2層52が配置されていない領域に少なくとも配置されているため、電解コンデンサ素子1全体の等価直列抵抗の上昇は防止される。
 以上より、電解コンデンサ素子1全体の等価直列抵抗の上昇を抑制しつつ漏れ電流が低減できると考えられる。
As shown in FIGS. 3, 4 and 5, the solid electrolyte layer 50 is provided on the dielectric layer 20 and comprises a first layer 51 containing a first conductive polymer and a second conductive polymer. and a second layer 52 containing a binder component, and a third layer 53 provided on at least the first layer 51 and containing a third conductive polymer, and the second layer 52 is a solid electrolyte layer 50 , and the first layer 51 and the third layer 53 are arranged at least in a region in the plane of the solid electrolyte layer 50 where the second layer 52 is not arranged.
Thereby, leakage current can be suppressed while suppressing an increase in the equivalent series resistance of the electrolytic capacitor element 1 . The reason (action) that this effect is obtained is considered as follows. i.e.
(1) Since each layer contains a conductive polymer and the second layer 52 contains a binder component, the first layer 51 and the third layer 53 do not contain a binder component or have a high conductivity with a small amount of binder component. The second layer may be a dense and/or deformable membrane.
(2) Since the second layer 52 is partially arranged in the plane of the solid electrolyte layer 50, leakage current is likely to occur, for example, corners and tips of the anode 10 where stress is likely to concentrate. Since a dense and/or deformation-following conductive polymer film can be locally arranged, the corners and ridges of the tip surface 10a of the anode 10 (valve metal substrate) or along the mask layer 30 It is possible to suppress the formation of a thin film portion in a portion where the solid electrolyte layer 50 is difficult to adhere when the solid electrolyte layer 50 is formed, such as a portion where the solid electrolyte layer 50 is formed. As a result, leakage current can be reduced.
(3) The first layer 51 and the third layer 53, which are more highly conductive than the second layer 52, that is, can suppress an increase in equivalent series resistance, are arranged in the plane of the solid electrolyte layer 50. Since it is arranged at least in the region where the electrolytic capacitor element 1 is not formed, an increase in the equivalent series resistance of the entire electrolytic capacitor element 1 is prevented.
From the above, it is considered that leakage current can be reduced while suppressing an increase in the equivalent series resistance of the entire electrolytic capacitor element 1 .
 なお、「緻密な、及び/又は、変形追従性のある膜」とは、封止工程や素子の積層工程、リフロー時等に加熱されて陽極が変形したときに膜が分解せず、かつ局所的に薄くならないような強度及び/又は変形追従性がある膜を示す。また、加熱されると第2層52と第1層51及び第3層53とでは膨張に違いができ、応力が発生し得るが、このような膜が第2層52として存在することにより、第2層52が変形して当該応力を緩和すると考えられる。特に変形追従性があると、当該膜の可撓性が向上し、電解コンデンサ素子1の特性を向上することができる。 The term "dense and/or deformable film" means that the film does not decompose when the anode is deformed due to heating during the sealing process, element lamination process, reflow process, etc. It shows a membrane that is strong and/or deformable so that it does not become thin. When heated, the second layer 52 expands differently from the first layer 51 and the third layer 53, and stress may occur. It is believed that the second layer 52 deforms to relieve the stress. In particular, if the film has deformation followability, the flexibility of the film is improved, and the characteristics of the electrolytic capacitor element 1 can be improved.
 漏れ電流防止の観点のみからは、第2層52を固体電解質層50の面内全域に配置することも考えられるが、その場合、固体電解質層50全体の導電性が低下し、電解コンデンサ素子1の等価直列抵抗の増大をまねく可能性がある。 Only from the viewpoint of preventing leakage current, it is conceivable to dispose the second layer 52 over the entire plane of the solid electrolyte layer 50 . can lead to an increase in the equivalent series resistance of
 なお、本明細書において、「導電性高分子」とは、主鎖及びドーパントを含んでいるものとする。 In this specification, the term "conductive polymer" includes a main chain and a dopant.
 第1層51及び第3層53は、各々、第2層52に比べて、バインダ成分が少ないことが好ましく、バインダ成分を含まないことがより好ましい。これにより、等価直列抵抗の増大をより効果的に抑制できる。 Each of the first layer 51 and the third layer 53 preferably contains less binder components than the second layer 52, and more preferably contains no binder components. This makes it possible to more effectively suppress an increase in equivalent series resistance.
 なお、ここで、「バインダ成分を含まない」とは、バインダ成分を実質的に含まない場合を包含するものとする。 It should be noted that, here, "not containing a binder component" includes the case where the binder component is not substantially contained.
 第2層52は、第1層51及び第3層53に比べて、より緻密な膜であることが好ましい。これにより、漏れ電流をさらに効果的に抑制できる。 The second layer 52 is preferably a denser film than the first layer 51 and the third layer 53 . Thereby, leakage current can be suppressed more effectively.
 このように、本実施形態の電解コンデンサ素子1では、第2層52は、第2の導電性高分子を含み(ただし、バインダ成分の有無は問わない)、かつ、第1層51及び第3層53に比べて、より緻密な膜であってもよい。
 これによっても、電解コンデンサ素子1の等価直列抵抗の増大を抑制しつつ漏れ電流の抑制が可能である。すなわち、
 (A)各層が導電性高分子を含む一方で、第2層52が第1層51及び第3層53に比べてより緻密な膜であることから、第1層51及び第3層53を高導電な膜とし、第2層を緻密な膜とすることができる。
 (B)第2層52が固体電解質層50の面内において部分的に配置されていることから、漏れ電流が発生しやすい箇所、例えば応力が集中しやすい陽極10の角部や先端部に、緻密な導電性高分子膜を局所的に配置できるため、陽極10(弁作用金属基体)の先端面10aの角部及び稜線部、或いはマスク層30に沿った部分等、固体電解質層50の形成時に固体電解質層50が付きにくい箇所に薄膜部が形成されるのを抑制できる。その結果、漏れ電流を低減できる。
 (C)第2層52に比べてより高導電な、すなわち等価直列抵抗の増大を抑制可能な第1層51及び第3層53が、固体電解質層50の面内において第2層52が配置されていない領域に少なくとも配置されているため、電解コンデンサ素子1全体の等価直列抵抗の上昇は防止される。
 以上より、電解コンデンサ素子1全体の等価直列抵抗の上昇を抑制しつつ漏れ電流が低減できると考えられる。
Thus, in the electrolytic capacitor element 1 of the present embodiment, the second layer 52 contains the second conductive polymer (however, the presence or absence of a binder component does not matter), and the first layer 51 and the third layer It may be a denser film than the layer 53 .
This also makes it possible to suppress leakage current while suppressing an increase in the equivalent series resistance of the electrolytic capacitor element 1 . i.e.
(A) While each layer contains a conductive polymer, the second layer 52 is a denser film than the first layer 51 and the third layer 53, so the first layer 51 and the third layer 53 are It can be a highly conductive film and the second layer can be a dense film.
(B) Since the second layer 52 is partially arranged in the plane of the solid electrolyte layer 50, leakage current is likely to occur, for example, the corners and tip of the anode 10 where stress is likely to concentrate. Since the dense conductive polymer film can be locally arranged, the solid electrolyte layer 50 can be formed on the corners and ridges of the front end surface 10a of the anode 10 (valve metal substrate) or along the mask layer 30. It is possible to suppress the formation of a thin film portion at a location where the solid electrolyte layer 50 is difficult to adhere. As a result, leakage current can be reduced.
(C) The first layer 51 and the third layer 53, which are more highly conductive than the second layer 52, that is, can suppress an increase in equivalent series resistance, are arranged in the plane of the solid electrolyte layer 50. Since it is arranged at least in the region where the electrolytic capacitor element 1 is not formed, an increase in the equivalent series resistance of the entire electrolytic capacitor element 1 is prevented.
From the above, it is considered that leakage current can be reduced while suppressing an increase in the equivalent series resistance of the entire electrolytic capacitor element 1 .
 なお、「第2層が、第1層及び第3層に比べて、より緻密な膜である」か否かは、第1層、第2層及び第3層を含む断面写真から判断することができる。断面写真において、第2層は、なめらかな(フィルムのような)表面であるように観察される。一方、第1層及び第3層は、第2層に比べて粗雑な表面であるように観察される。 Whether or not "the second layer is a denser film than the first and third layers" should be determined from cross-sectional photographs including the first, second and third layers. can be done. In the cross-sectional photograph, the second layer is observed to have a smooth (film-like) surface. On the other hand, the first and third layers are observed to have rougher surfaces than the second layer.
 また、第2層52を第1層51及び第3層53に比べてより緻密な膜にする方法としては、上述のバインダ成分を含有させる方法に特に限定されず、例えば、下記の方法であってもよい。
 (I)誘電体層20上にて第2の導電性高分子の重合反応を低温下で行う。
 (II)誘電体層20上にて第2の導電性高分子の重合反応を重合遅延剤(シランカップリング剤等)を用いて緩やかに行う。
 いずれの方法でも細かい重合物が生成されやすくなるため、その塊である第2層52を緻密な層とすることができる。
The method for making the second layer 52 more dense than the first layer 51 and the third layer 53 is not particularly limited to the above-described method of containing the binder component. may
(I) A polymerization reaction of the second conductive polymer is performed on the dielectric layer 20 at a low temperature.
(II) A slow polymerization reaction of the second conductive polymer is carried out on the dielectric layer 20 using a polymerization retardant (silane coupling agent or the like).
In either method, a fine polymer is likely to be generated, so that the second layer 52, which is a lump thereof, can be a dense layer.
 図3、図4及び図5に示すように、陽極10は、先端面10aと、基端面10bと、一対の主面10c及び10dと、一対の側面10e及び10fとの6面を有し、これら6面のうちの3面が交わる角部と、これら6面のうちの2面が交わる稜線部と、を有しており、第2層52は、先端面10aによる各角部10gを覆っている。一般的に陽極の角部では漏れ電流が発生しやすいことから、これにより、漏れ電流をより効果的に抑制できる。 As shown in FIGS. 3, 4 and 5, the anode 10 has six surfaces: a distal end surface 10a, a proximal end surface 10b, a pair of main surfaces 10c and 10d, and a pair of side surfaces 10e and 10f, It has corners where three of these six faces intersect and ridges where two of these six faces intersect, and the second layer 52 covers each corner 10g by the tip face 10a. ing. Since leakage current is generally likely to occur at the corners of the anode, this makes it possible to more effectively suppress the leakage current.
 図6は、本発明の別の実施形態に係る電解コンデンサ素子の一例を模式的に示す斜視図である。図7は、図6に示す電解コンデンサ素子のC-C線に沿った断面図である。図8は、図6に示す電解コンデンサ素子のD-D線に沿った断面図である。なお、図6、図7及び図8では、陰極40の導電層60を形成する前の状態を示す。また、図6では、誘電体層20の図示を省略し、また、固体電解質層50の第3層53より内側の部材を透視した状態を示す。 FIG. 6 is a perspective view schematically showing an example of an electrolytic capacitor element according to another embodiment of the invention. 7 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 6 along line CC. 8 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 6 taken along line DD. 6, 7 and 8 show the state before the conductive layer 60 of the cathode 40 is formed. In addition, FIG. 6 omits illustration of the dielectric layer 20 and shows a state in which the members inside the third layer 53 of the solid electrolyte layer 50 are seen through.
 図6、図7及び図8に示すように、第2層52は、先端面10aと、先端面10aによる各稜線部10hと、をさらに覆っていてもよい。一般的に陽極の稜線部でも漏れ電流が発生しやすいことから、これにより、漏れ電流をさらに効果的に抑制できる。また、図3に示した場合に比べて、図6に示した場合の方が第2層52を形成しやすい。 As shown in FIGS. 6, 7 and 8, the second layer 52 may further cover the tip surface 10a and each ridge line portion 10h formed by the tip surface 10a. Since leakage current is generally likely to occur even at the ridge of the anode, this can further effectively suppress the leakage current. Also, the second layer 52 is easier to form in the case shown in FIG. 6 than in the case shown in FIG.
 なお、本明細書にて、角部とは、3面が交わる部分であり、稜線部とは、2面が交わる部分である。また、ある面による角部とは、その面を含む3面が交わる角部を意味し、ある面による稜線部とは、その面を含む2面が交わる稜線部を意味する。 In this specification, a corner portion is a portion where three surfaces intersect, and a ridge portion is a portion where two surfaces intersect. A corner portion formed by a certain surface means a corner portion where three surfaces including the surface intersect, and a ridge portion formed by a surface means a ridge portion where two surfaces including the surface intersect.
 図9は、本発明のさらに別の実施形態に係る電解コンデンサ素子の一例を模式的に示す斜視図である。図10は、図9に示す電解コンデンサ素子のE-E線に沿った断面図である。図11は、図9に示す電解コンデンサ素子のF-F線に沿った断面図である。なお、図9、図10及び図11では、陰極40の導電層60を形成する前の状態を示す。また、図9では、誘電体層20の図示を省略し、また、固体電解質層50の第3層53より内側の部材を透視した状態を示す。 FIG. 9 is a perspective view schematically showing an example of an electrolytic capacitor element according to still another embodiment of the invention. 10 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 9 taken along line EE. 11 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 9 taken along line FF. 9, 10 and 11 show the state before the conductive layer 60 of the cathode 40 is formed. In addition, FIG. 9 omits illustration of the dielectric layer 20 and shows a state in which the members inside the third layer 53 of the solid electrolyte layer 50 are seen through.
 図9、図10及び図11に示すように、第2層52は、各側面10e、10fと、各側面10e、10fによる各稜線部10jと、をさらに覆っていてもよい。これにより、漏れ電流を特に効果的に抑制できる。 As shown in FIGS. 9, 10 and 11, the second layer 52 may further cover the side surfaces 10e and 10f and the ridgeline portions 10j formed by the side surfaces 10e and 10f. Thereby, leakage current can be suppressed particularly effectively.
 図12は、本発明のさらに別の実施形態に係る電解コンデンサ素子の一例を模式的に示す斜視図である。図13は、図12に示す電解コンデンサ素子のG-G線に沿った断面図である。図14は、図12に示す電解コンデンサ素子のH-H線に沿った断面図である。なお、図12、図13及び図14では、陰極40の導電層60を形成する前の状態を示す。また、図12では、誘電体層20の図示を省略し、また、固体電解質層50の第3層53より内側の部材を透視した状態を示す。 FIG. 12 is a perspective view schematically showing an example of an electrolytic capacitor element according to still another embodiment of the invention. 13 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 12 along line GG. 14 is a cross-sectional view of the electrolytic capacitor element shown in FIG. 12 taken along line HH. 12, 13 and 14 show the state before the conductive layer 60 of the cathode 40 is formed. In addition, FIG. 12 omits illustration of the dielectric layer 20 and shows a state in which the members inside the third layer 53 of the solid electrolyte layer 50 are seen through.
 図12、図13及び図14に示すように、第2層52は、マスク層30に沿って配置されてもよい。マスク層に沿った箇所では固体電解質層が薄くなり、その結果、漏れ電流が発生するおそれがあるが、第2層52がマスク層30に沿って配置されることにより、マスク層30に沿った箇所での漏れ電流を効果的に抑制可能である。 The second layer 52 may be arranged along the mask layer 30, as shown in FIGS. The thickness of the solid electrolyte layer becomes thin along the mask layer, and as a result, leakage current may occur. It is possible to effectively suppress the leakage current at the location.
 さらに、図示は省略するが、図3、図6又は図9に示した構造と、図12に示した構造とを併せ持つ第2層を形成してもよい。すなわち、例えば、図6及び図12に示した構造を組み合わせて、第2層52は、先端面10aによる各角部10gと、先端面10aと、先端面10aによる各稜線部10hとを覆うとともに、マスク層30に沿って配置されてもよい。 Further, although illustration is omitted, a second layer having both the structure shown in FIG. 3, 6 or 9 and the structure shown in FIG. 12 may be formed. That is, for example, by combining the structures shown in FIGS. 6 and 12, the second layer 52 covers each corner 10g formed by the tip surface 10a, the tip surface 10a, and each ridgeline portion 10h formed by the tip surface 10a. , may be arranged along the mask layer 30 .
 電解コンデンサ素子1における各構成について以下に詳しく説明する。 Each configuration in the electrolytic capacitor element 1 will be described in detail below.
 陽極10は、弁作用金属基体11から構成された平面視四角形状の薄膜(箔)であり、好ましくは、一対の長辺及び一対の短辺を有する平面視矩形状(短冊状)である。先端面10a及び基端面10bは、陽極10の一対の辺(好ましくは一対の短辺)に位置する端面であり、基端面10bは、誘電体層20で覆われていない露出した端面であり、電解コンデンサの一方の端面において露出して後述する外部電極に接続される。陽極10は、先端面10aと、基端面10bと、主面10c及び10dと、側面10e及び10fとを有している。 The anode 10 is a square-shaped thin film (foil) formed from the valve action metal base 11, and preferably has a rectangular shape (strip shape) having a pair of long sides and a pair of short sides. The distal end surface 10a and the proximal end surface 10b are end surfaces located on a pair of sides (preferably a pair of short sides) of the anode 10, and the proximal end surface 10b is an exposed end surface not covered with the dielectric layer 20, It is exposed at one end face of the electrolytic capacitor and connected to an external electrode which will be described later. The anode 10 has a distal end surface 10a, a proximal end surface 10b, main surfaces 10c and 10d, and side surfaces 10e and 10f.
 なお、本明細書にて、「平面視」とは、陽極(弁作用金属基体)の主面の法線方向から見ることを意味する。 In this specification, "planar view" means viewing from the direction normal to the main surface of the anode (valve action metal substrate).
 図15は、図2に示す電解コンデンサ素子のマスク層部分を拡大した断面図である。 FIG. 15 is an enlarged cross-sectional view of the mask layer portion of the electrolytic capacitor element shown in FIG.
 弁作用金属基体11(陽極10)の各主面には、図15に示すように、複数の凹部が設けられている。そのため、弁作用金属基体11の各主面は、多孔質状になっている。これにより、弁作用金属基体11の表面積が大きくなっている。なお、弁作用金属基体11の両主面が多孔質状である場合に限られず、弁作用金属基体11の両主面の一方のみが多孔質状であってもよい。 As shown in FIG. 15, each main surface of the valve action metal substrate 11 (anode 10) is provided with a plurality of recesses. Therefore, each main surface of the valve metal substrate 11 is porous. As a result, the surface area of the valve metal substrate 11 is increased. Both main surfaces of the valve action metal substrate 11 are not limited to being porous, and only one of the two main surfaces of the valve action metal substrate 11 may be porous.
 弁作用金属基体11は、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム等の金属単体、又は、これらの金属を含む合金等の弁作用金属によって構成されている。弁作用金属の表面には、酸化被膜を形成することができる。 The valve action metal substrate 11 is made of, for example, a single metal such as aluminum, tantalum, niobium, titanium, or zirconium, or a valve action metal such as an alloy containing these metals. An oxide film can be formed on the surface of the valve metal.
 なお、弁作用金属基体11は、芯部と当該芯部の少なくとも一方の主面に設けられた多孔質部とによって構成されていればよく、金属箔の表面をエッチングしたもの、金属箔の表面に多孔質状の微粉焼結体を形成したもの等を適宜採用することができる。 The valve action metal substrate 11 may be composed of a core portion and a porous portion provided on at least one main surface of the core portion. A porous fine powder sintered body or the like can be used as appropriate.
 誘電体層20は、ここでは、基端面10bを除いて陽極10の表面上に設けられている。すなわち、誘電体層20は、陽極10の先端面10a上と、主面10c及び10d上と、側面10e及び10f上とに設けられている一方で、陽極10の基端面10b上には設けられていない。
 ただし、誘電体層20は、少なくとも基端面10bを除いて陽極10の主面10c及び10dの少なくとも一方上に設けられていればよい。
Dielectric layer 20 is provided here on the surface of anode 10 except for base end surface 10b. That is, the dielectric layer 20 is provided on the distal end surface 10a, the main surfaces 10c and 10d, and the side surfaces 10e and 10f of the anode 10, while the dielectric layer 20 is provided on the proximal end surface 10b of the anode 10. not
However, dielectric layer 20 may be provided on at least one of major surfaces 10c and 10d of anode 10 except for base end surface 10b.
 誘電体層20は、弁作用金属基体11の表面に設けられた酸化被膜によって構成されていることが好ましい。例えば、誘電体層20は、アルミニウムの酸化物で構成されている。アルミニウムの酸化物は、後述するように、弁作用金属基体11の表面が陽極酸化処理されることにより形成される。 The dielectric layer 20 is preferably composed of an oxide film provided on the surface of the valve action metal substrate 11 . For example, dielectric layer 20 is composed of an oxide of aluminum. The oxide of aluminum is formed by anodizing the surface of the valve action metal substrate 11, as will be described later.
 マスク層30は、陽極10の基端面10bに沿って、好ましくは陽極10の短辺に沿って、誘電体層20上に設けられた直線状の(帯状に延在する)絶縁部材であり、陽極10と陰極40とを隔て、両者間の絶縁を確保している。マスク層30によって、陽極10は、基端面10b側の領域と、先端面10a側の領域とに区画されている。ここでは、マスク層30は、基端面10bから所定の間隔を空けて配置されているが、基端面10bの際まで配置されていてもよい。また、マスク層30は、誘電体層20を介して、陽極10の主面10c及び10d上と側面10e及び10f上に設けられているが、誘電体層20と同様に、陽極10の主面10c及び10dの少なくとも一方(ただし誘電体層20が設けられた主面)上に設けられていればよい。 The mask layer 30 is a linear (extending in a strip) insulating member provided on the dielectric layer 20 along the base end surface 10b of the anode 10, preferably along the short side of the anode 10, It separates the anode 10 and the cathode 40 to ensure insulation therebetween. The mask layer 30 divides the anode 10 into a region on the side of the proximal end surface 10b and a region on the side of the distal end surface 10a. Here, the mask layer 30 is arranged at a predetermined distance from the base end surface 10b, but may be arranged up to the base end surface 10b. The mask layer 30 is provided on the main surfaces 10c and 10d and the side surfaces 10e and 10f of the anode 10 with the dielectric layer 20 interposed therebetween. It may be provided on at least one of 10c and 10d (however, the main surface on which dielectric layer 20 is provided).
 図15に示すように、マスク層30は、弁作用金属基体11の複数の細孔(凹部)を充填するように設けられていることが好ましい。ただし、マスク層30によって誘電体層20の外表面の一部が覆われていればよく、マスク層30によって充填されていない弁作用金属基体11の細孔(凹部)が存在していてもよい。 As shown in FIG. 15, the mask layer 30 is preferably provided so as to fill a plurality of pores (concave portions) of the valve metal substrate 11 . However, the mask layer 30 only needs to partially cover the outer surface of the dielectric layer 20, and there may be pores (recesses) in the valve metal substrate 11 that are not filled with the mask layer 30. .
 マスク層30は、絶縁材料から構成されている。マスク層30は、例えば、絶縁性樹脂を含む組成物等のマスク材を塗布して形成される。絶縁性樹脂としては、例えば、ポリフェニルスルホン(PPS)、ポリエーテルスルホン(PES)、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、可溶性ポリイミドシロキサンとエポキシ樹脂からなる組成物、ポリイミド樹脂、ポリアミドイミド樹脂、及び、それらの誘導体又は前駆体等が挙げられる。 The mask layer 30 is made of an insulating material. The mask layer 30 is formed, for example, by applying a mask material such as a composition containing an insulating resin. Examples of insulating resins include polyphenylsulfone (PPS), polyethersulfone (PES), cyanate ester resin, fluorine resin (tetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, etc.), and soluble polyimide. Compositions comprising siloxane and epoxy resins, polyimide resins, polyamideimide resins, derivatives or precursors thereof, and the like are included.
 マスク材の塗布は、例えば、スクリーン印刷、ローラー転写、ディスペンサ、インクジェット印刷等により行うことができる。 The application of the mask material can be performed, for example, by screen printing, roller transfer, dispenser, inkjet printing, or the like.
 陰極40は、誘電体層20上に設けられた固体電解質層50と、固体電解質層50上に設けられた導電層60と、を有している。また、陰極40は、マスク層30よりも先端面10a側において誘電体層20上に設けられている。すなわち、マスク層30によって区画された陽極10の先端面10a側の領域において誘電体層20上に設けられている。 The cathode 40 has a solid electrolyte layer 50 provided on the dielectric layer 20 and a conductive layer 60 provided on the solid electrolyte layer 50 . Also, the cathode 40 is provided on the dielectric layer 20 on the tip surface 10 a side of the mask layer 30 . That is, it is provided on the dielectric layer 20 in a region on the tip surface 10 a side of the anode 10 partitioned by the mask layer 30 .
 固体電解質層50は、誘電体層20上に設けられている。図15に示すように、固体電解質層50は、弁作用金属基体11の複数の細孔(凹部)を充填するように設けられていることが好ましい。ただし、固体電解質層50によって誘電体層20の外表面の一部が覆われていればよく、固体電解質層50によって充填されていない弁作用金属基体11の細孔(凹部)が存在していてもよい。 The solid electrolyte layer 50 is provided on the dielectric layer 20 . As shown in FIG. 15 , the solid electrolyte layer 50 is preferably provided so as to fill a plurality of pores (recesses) of the valve metal substrate 11 . However, it is sufficient that a portion of the outer surface of the dielectric layer 20 is covered with the solid electrolyte layer 50, and there are pores (recesses) of the valve metal substrate 11 that are not filled with the solid electrolyte layer 50. good too.
 固体電解質層50は、マスク層30よりも先端面10a側において誘電体層20上に設けられている。すなわち、マスク層30によって区画された陽極10の先端面10a側の領域において誘電体層20上に設けられている。 The solid electrolyte layer 50 is provided on the dielectric layer 20 on the tip surface 10 a side of the mask layer 30 . That is, it is provided on the dielectric layer 20 in a region on the tip surface 10 a side of the anode 10 partitioned by the mask layer 30 .
 固体電解質層50は、上述のように、第1の導電性高分子を含む第1層51と、第2の導電性高分子を含む第2層52と、第3の導電性高分子を含む第3層53と、を含んでいる。
 第2層52は、固体電解質層50の面内において全域ではなく部分的な領域のみに配置されている。すなわち、固体電解質層50の厚み方向ではなく面内方向において第2層52が偏在している。
 他方、第1層51及び第3層53は、固体電解質層50の面内において第2層52が配置されていない領域に少なくとも配置されている。したがって、固体電解質層50は、その面内において、第1層51及び第3層53と、第2層52との少なくとも一方が配置されている。
As described above, the solid electrolyte layer 50 includes the first layer 51 containing the first conductive polymer, the second layer 52 containing the second conductive polymer, and the third conductive polymer. a third layer 53;
The second layer 52 is arranged only in a partial region of the plane of the solid electrolyte layer 50 instead of the entire region. That is, the second layer 52 is unevenly distributed not in the thickness direction of the solid electrolyte layer 50 but in the in-plane direction.
On the other hand, the first layer 51 and the third layer 53 are arranged at least in regions in the plane of the solid electrolyte layer 50 where the second layer 52 is not arranged. Therefore, the solid electrolyte layer 50 has at least one of the first layer 51, the third layer 53, and the second layer 52 arranged in its plane.
 ここでは、図3等に示したように、第1層51及び第3層53は、固体電解質層50の面内の全域に配置されており、第2層52は、第1層51上に設けられており、第3層53は、第1層51及び第2層52上に設けられている。すなわち、第2層52は、第1層51上の領域の一部のみに配置されており、第3層53は、第2層52と、第2層52が配置されていない領域の第1層51と、を覆っている。 Here, as shown in FIG. The third layer 53 is provided on the first layer 51 and the second layer 52 . That is, the second layer 52 is arranged only in a part of the area on the first layer 51, and the third layer 53 is arranged on the second layer 52 and the first layer in the area where the second layer 52 is not arranged. layer 51 and .
 このように、固体電解質層50の最表面を同じ材料面、ここでは全て第3層53にすることで、後工程の加工(例えば、グラファイト等のカーボン層形成工程)における形成ばらつきが低減し、電解コンデンサ素子1の特性ばらつき、特にESRばらつきを低減できる。 In this way, by making the outermost surface of the solid electrolyte layer 50 the same material surface, here, all of them are the third layer 53, the formation variation in the subsequent processing (for example, the carbon layer formation step of graphite or the like) is reduced, Variations in the characteristics of the electrolytic capacitor element 1, particularly variations in ESR, can be reduced.
 第1層51及び第3層53の厚みは、特に限定されず、例えば、それぞれ、一般的な固体電解質層の内層及び外層と同程度の厚みであってもよい。具体的には、第1層51の最大厚みは、0.1μm以上、10μm以下であることが好ましく、0.2μm以上、5μm以下であることがより好ましく、0.3μm以上、3μm以下であることがさらに好ましい。第3層53の最大厚みは、2μm以上、50μm以下であることが好ましく、3μm以上、40μm以下であることがより好ましく、5μm以上、30μm以下であることがさらに好ましい。 The thicknesses of the first layer 51 and the third layer 53 are not particularly limited, and may be, for example, approximately the same thicknesses as the inner and outer layers of a general solid electrolyte layer, respectively. Specifically, the maximum thickness of the first layer 51 is preferably 0.1 μm or more and 10 μm or less, more preferably 0.2 μm or more and 5 μm or less, and 0.3 μm or more and 3 μm or less. is more preferred. The maximum thickness of the third layer 53 is preferably 2 μm or more and 50 μm or less, more preferably 3 μm or more and 40 μm or less, and even more preferably 5 μm or more and 30 μm or less.
 第2層52の厚みも、特に限定されないが、具体的には、第2層52の最大厚みは、1μm以上、50μm以下であることが好ましく、2μm以上、40μm以下であることがより好ましく、3μm以上、30μm以下であることがさらに好ましい。
 なお、第1層51、第2層52及び第3層53の合計厚み、すなわち固体電解質層50の厚みは、100μm以下であることが好ましく、50μm以下であることがより好ましく、25μm以下であることがさらに好ましい。
The thickness of the second layer 52 is also not particularly limited. More preferably, it is 3 μm or more and 30 μm or less.
The total thickness of the first layer 51, the second layer 52 and the third layer 53, that is, the thickness of the solid electrolyte layer 50 is preferably 100 μm or less, more preferably 50 μm or less, and 25 μm or less. is more preferred.
 第2層52が配置される箇所は適宜設定可能であるが、上述のように、(1)第2層52が陽極10の各角部10gを覆う形態(図3等参照)、(2)第2層52が陽極10の先端面10aと、先端面10aによる各稜線部10hと、をさらに覆う形態(図6等参照)、(3)第2層52が陽極10の各側面10e、10fと、各側面10e、10fによる各稜線部10jと、をさらに覆う形態(図9等参照)、(4)第2層52がマスク層30に沿って配置される形態(図12等参照)が好ましい。 The location where the second layer 52 is arranged can be set as appropriate. A configuration in which the second layer 52 further covers the front end surface 10a of the anode 10 and each ridgeline portion 10h formed by the front end surface 10a (see FIG. 6, etc.); and each ridgeline portion 10j by each of the side surfaces 10e and 10f (see FIG. 9 etc.), and (4) a mode in which the second layer 52 is arranged along the mask layer 30 (see FIG. 12 etc.). preferable.
 (1)の場合、第2層52は、先端面10aによる4つの角部10gのうちの少なくとも1つを覆っていてもよいが、4つの角部10gをそれぞれ覆うことが好ましい。
 また、図3には、同じ側面10e又は10fによる2つの角部10g(図3で上下に並ぶ角部10g)をそれぞれ独立して第2層52で覆う場合を示しているが、これら2つの角部10gを一体的に第2層52で覆ってもよい。すなわち、先端面10aによる4つの稜線部10hは、側面10e又は10fと先端面10aとによる2つの稜線部10haを含むが、第2層52は、稜線部10haをさらに覆っていてもよい。
In the case of (1), the second layer 52 may cover at least one of the four corners 10g of the tip surface 10a, but preferably covers the four corners 10g.
Also, FIG. 3 shows a case where two corners 10g (vertical corners 10g in FIG. 3) formed by the same side surface 10e or 10f are independently covered with the second layer 52. The corner 10 g may be integrally covered with the second layer 52 . That is, the four ridgeline portions 10h formed by the tip surface 10a include two ridgeline portions 10ha formed by the side surface 10e or 10f and the tip surface 10a, but the second layer 52 may further cover the ridgeline portions 10ha.
 (2)の場合、第2層52は、先端面10aによる4つの稜線部10hのうちの少なくとも1つを覆っていてもよいが、4つの稜線部10hをそれぞれ覆うことが好ましい。このように、第2層52は、陽極10の先端部(先端面10aを一部として含む部分)を覆うことが好ましく、先端面10aから、主面10c、主面10d、側面10e及び側面10fの各々に亘って設けられることが好ましい。 In the case of (2), the second layer 52 may cover at least one of the four ridgeline portions 10h formed by the tip surface 10a, but preferably covers each of the four ridgeline portions 10h. In this way, the second layer 52 preferably covers the tip of the anode 10 (the part including the tip face 10a as a part). is preferably provided over each of the
 (3)の場合、第2層52は、2つの側面10e及び10fのうちの少なくとも1つを覆っていてもよいが、2つの側面10e及び10fをそれぞれ覆うことが好ましい。また、第2層52は、側面10e及び10fによる4つの稜線部10jのうちの少なくとも1つを覆っていてもよいが、4つの稜線部10jをそれぞれ覆うことが好ましい。
 また、この場合、第2層52は、先端面10aと、先端面10aによる各稜線部10hと、を覆っていなくてもよい。
In case (3), the second layer 52 may cover at least one of the two sides 10e and 10f, but preferably covers the two sides 10e and 10f respectively. The second layer 52 may cover at least one of the four ridgeline portions 10j formed by the side surfaces 10e and 10f, but preferably covers the four ridgeline portions 10j.
In this case, the second layer 52 does not have to cover the tip end face 10a and the ridge line portions 10h formed by the tip end face 10a.
 (4)の場合、第2層52は、陽極10の主面10c及び10dと、側面10e及び10fとのうちの少なくとも1つの面上においてマスク層30に沿って配置されてもよいが、これらの各面上においてマスク層30に沿って配置されることが好ましい。
 また、この場合、第2層52とマスク層30との間には隙間が設けられていないことが好ましく、第2層52は、マスク層30に接触した状態でマスク層30と並んで配置されることが好ましい。
 さらに、第1層51だけではマスク層30との間に隙間が発生することがあるが、第2層52は、第1層51とマスク層30との間のその隙間を埋めることが好ましい。
In case (4), the second layer 52 may be arranged along the mask layer 30 on at least one of the main surfaces 10c and 10d and the side surfaces 10e and 10f of the anode 10, although these are preferably arranged along the mask layer 30 on each side of the .
In this case, it is preferable that no gap is provided between the second layer 52 and the mask layer 30 , and the second layer 52 is arranged side by side with the mask layer 30 while being in contact with the mask layer 30 . preferably.
Furthermore, while the first layer 51 alone may create a gap with the mask layer 30 , the second layer 52 preferably fills the gap between the first layer 51 and the mask layer 30 .
 なお、いずれの場合も第2層52の形状は特に限定されず、例えば、図3等に示したように互いに直交する複数の直線から周縁の輪郭線が構成される形状や、この形状において周縁の輪郭線のうちの少なくとも2つの直線が斜めに交わる形状、この形状において周縁の輪郭線のうちの少なくとも1つの直線が曲線になった形状等が挙げられる。 In any case, the shape of the second layer 52 is not particularly limited. For example, as shown in FIG. A shape in which at least two straight lines out of the contour lines of the shape obliquely intersect, and a shape in which at least one straight line out of the contour lines of the peripheral edge is curved.
 固体電解質層50を構成する材料としては、例えば、ポリピロール、ポリチオフェン、ポリアニリン等の主鎖を有する導電性高分子が用いられる。これらの中では、ポリチオフェンが好ましく、PEDOTと呼ばれるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。また、上記導電性高分子は、ポリスチレンスルホン酸(PSS)等のドーパントを含んでいる。 A conductive polymer having a main chain such as polypyrrole, polythiophene, polyaniline, or the like is used as the material forming the solid electrolyte layer 50 . Among these, polythiophene is preferred, and poly(3,4-ethylenedioxythiophene) called PEDOT is particularly preferred. Moreover, the conductive polymer contains a dopant such as polystyrene sulfonic acid (PSS).
 固体電解質層50の少なくとも一部、具体的には第2層52は、バインダ成分を含んでいる。他方、第1層51及び第3層53は、各々、バインダ成分を含んでいてもよいが、その場合は、第1層51及び第3層53の各々に含まれるバインダ成分の含有量は、第2層52に含まれるバインダ成分の含有量より少ないことが好ましい。第1層51及び第3層53は、各々、バインダ成分を含んでいないことがより好ましい。他方、第2層52は、固体電解質層50の面内において部分的に配置されていることから、バインダ成分の含有量を従来に比べて多くすることができる。 At least part of the solid electrolyte layer 50, specifically the second layer 52, contains a binder component. On the other hand, the first layer 51 and the third layer 53 may each contain a binder component. In that case, the content of the binder component contained in each of the first layer 51 and the third layer 53 is It is preferably less than the content of the binder component contained in the second layer 52 . More preferably, each of the first layer 51 and the third layer 53 does not contain a binder component. On the other hand, since the second layer 52 is partially arranged in the plane of the solid electrolyte layer 50, the content of the binder component can be increased compared to the conventional case.
 より具体的には、第1層51又は第3層53に含まれるバインダ成分の含有量は、0.1重量%以下であることが好ましく、0.05重量%以下であることがより好ましく、0.01重量%以下であることがさらに好ましい。第2層52に含まれるバインダ成分の含有量は、0.1重量%以上、20重量%以下であることが好ましく、0.3重量%以上、10重量%以下であることがより好ましく、0.5重量%以上、5重量%以下であることがさらに好ましい。 More specifically, the content of the binder component contained in the first layer 51 or the third layer 53 is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, It is more preferably 0.01% by weight or less. The content of the binder component contained in the second layer 52 is preferably 0.1% by weight or more and 20% by weight or less, more preferably 0.3% by weight or more and 10% by weight or less. More preferably, it is 5% by weight or more and 5% by weight or less.
 第2層52に含まれるバインダ成分の好適な具体例としては、例えば、ポリイソプレン、ポリスチレン、ポリエチレン、ポリビニルピロリドン、ポリビニルアルコール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリエステル(好適にはポリエチレンテレフタレート)、ポリアミド、ポリウレタン、ポリカーボネート、セルロース、セルロースナノファイバー及びポリフタル酸エステル等が挙げられる。これらは、単独で用いてもよいし、2種以上併用してもよい。 Suitable specific examples of the binder component contained in the second layer 52 include, for example, polyisoprene, polystyrene, polyethylene, polyvinylpyrrolidone, polyvinyl alcohol, polymethyl methacrylate, polyacrylonitrile, polyester (preferably polyethylene terephthalate), polyamide, Polyurethane, polycarbonate, cellulose, cellulose nanofibers, polyphthalates, and the like. These may be used alone or in combination of two or more.
 第1層51及び第3層53に含まれ得るバインダ成分の好適な具体例としては、第2層52に含まれるバインダ成分と同じものを例示することができる。これらは、単独で用いてもよいし、2種以上併用してもよい。 Suitable specific examples of the binder component that can be included in the first layer 51 and the third layer 53 are the same as the binder component included in the second layer 52 . These may be used alone or in combination of two or more.
 なお、バインダ成分の含有量と固体電解質層50の導電性とは、トレードオフの関係にあり、例えば、バインダ成分が多くなるほど第2層52の導電性は低下する。ただし、第1層51、第2層52及び第3層53は、いずれも導電性を有する層として機能する。 The content of the binder component and the conductivity of the solid electrolyte layer 50 are in a trade-off relationship. For example, the more the binder component, the lower the conductivity of the second layer 52 . However, the first layer 51, the second layer 52 and the third layer 53 all function as conductive layers.
 固体電解質層50は、例えば、3,4-エチレンジオキシチオフェン等の重合性モノマーの含有液を用いて、誘電体層20の表面にポリ(3,4-エチレンジオキシチオフェン)等の導電性高分子の重合膜を形成する方法や、ポリ(3,4-エチレンジオキシチオフェン)等の導電性高分子の分散液を誘電体層20の表面に塗布して乾燥させる方法等によって形成される。特に重合性モノマーの含有液を用いて導電性高分子の重合膜を形成する方法では、導電性高分子の分散液を用いる方法に比べて、陽極10の各角部10g及び各稜線部10h、10j上や、マスク層30の際の領域上において固体電解質層50の厚みが薄くなりやすいため、より効果的に漏れ電流を抑制することができる。 The solid electrolyte layer 50 is formed by depositing a conductive material such as poly(3,4-ethylenedioxythiophene) on the surface of the dielectric layer 20 using a liquid containing a polymerizable monomer such as 3,4-ethylenedioxythiophene. It is formed by a method of forming a polymeric film, a method of applying a dispersion of a conductive polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric layer 20 and drying it, or the like. . In particular, in the method of forming a polymer film of a conductive polymer using a liquid containing a polymerizable monomer, each corner portion 10g and each ridge portion 10h of the anode 10, Since the thickness of the solid electrolyte layer 50 tends to be thin above 10j and above the mask layer 30, leakage current can be suppressed more effectively.
 より詳細には、第1層51及び第3層53は、例えば、3,4-エチレンジオキシチオフェン等の重合性モノマーの含有液を用いて、誘電体層20上にてポリ(3,4-エチレンジオキシチオフェン)等の導電性高分子の重合膜を形成する方法によって形成されることが好ましい。 More specifically, the first layer 51 and the third layer 53 are formed by forming poly(3,4 It is preferably formed by a method of forming a polymer film of a conductive polymer such as (ethylenedioxythiophene).
 他方、第2層52は、例えば、バインダ成分を含有する導電性高分子の分散液を誘電体層20上に塗布して乾燥させる方法によって形成されることが好ましい。ここで、第2層52は、バインダ成分を含み、その導電性が低下するため、第2層52用の導電性高分子としては、導電性に優れたポリ(3,4-エチレンジオキシチオフェン)が特に好適である。
 このように、第1層51に含まれる第1の導電性高分子と、第2層52に含まれる第2の導電性高分子と、第3層53に含まれる第3の導電性高分子とは、同じ導電性高分子(主鎖及びドーパントが同じもの)であってもよいし、これらのうちの少なくとも2つの導電性高分子は、互いに異なる導電性高分子(主鎖及びドーパントの少なくとも一方が異なるもの)であってもよい。
On the other hand, the second layer 52 is preferably formed by, for example, a method of applying a conductive polymer dispersion containing a binder component onto the dielectric layer 20 and drying it. Here, since the second layer 52 contains a binder component and its conductivity decreases, the conductive polymer for the second layer 52 is poly(3,4-ethylenedioxythiophene, which has excellent conductivity. ) are particularly preferred.
Thus, the first conductive polymer contained in the first layer 51, the second conductive polymer contained in the second layer 52, and the third conductive polymer contained in the third layer 53 may be the same conductive polymer (having the same main chain and dopant), or at least two of them may be different conductive polymers (at least the main chain and dopant one side may be different).
 第1層51は、弁作用金属基体11の細孔(凹部)を充填する内層として形成されることが好ましい。内層の形成は、例えば、浸漬法、スポンジ転写、スクリーン印刷、ディスペンサ、インクジェット印刷等により行うことができる。 The first layer 51 is preferably formed as an inner layer that fills the pores (recesses) of the valve action metal substrate 11 . The inner layer can be formed by, for example, a dipping method, sponge transfer, screen printing, dispenser, inkjet printing, or the like.
 同様に、第2層52の形成は、例えば、浸漬法、スポンジ転写、スクリーン印刷、ディスペンサ、インクジェット印刷等により行うことができるが、上記(1)、(3)及び(4)の場合は、インクジェット印刷が好適であり、上記(2)の場合は、浸漬法が好適である。 Similarly, the formation of the second layer 52 can be performed by, for example, an immersion method, sponge transfer, screen printing, dispenser, inkjet printing, etc. In the above cases (1), (3) and (4), Inkjet printing is preferred, and in the case of (2) above, immersion is preferred.
 第3層53は、誘電体層20全体を被覆する外層として形成されることが好ましい。外層の形成は、例えば、浸漬法、スポンジ転写、スクリーン印刷、ディスペンサ、インクジェット印刷等により行うことができる。 The third layer 53 is preferably formed as an outer layer covering the entire dielectric layer 20 . The outer layer can be formed by, for example, an immersion method, sponge transfer, screen printing, dispenser, inkjet printing, or the like.
 導電層60は、固体電解質層50上に設けられている。導電層60は、固体電解質層50の略全域を覆っており、マスク層30に接触している。なお、導電層60は、マスク層30の手前まで配置されていてもよい。導電層60は、略一定の厚さを有している。 The conductive layer 60 is provided on the solid electrolyte layer 50 . The conductive layer 60 covers substantially the entire solid electrolyte layer 50 and is in contact with the mask layer 30 . Note that the conductive layer 60 may be arranged up to the front of the mask layer 30 . The conductive layer 60 has a substantially constant thickness.
 導電層60は、例えば、カーボン層又は陰極導体層を含む。また、導電層60は、カーボン層の外表面に陰極導体層が設けられた複合層や、カーボン及び陰極導体層材料を含む混合層であってもよい。 The conductive layer 60 includes, for example, a carbon layer or a cathode conductor layer. Also, the conductive layer 60 may be a composite layer in which a cathode conductor layer is provided on the outer surface of a carbon layer, or a mixed layer containing carbon and a cathode conductor layer material.
 カーボン層は、例えば、カーボン粒子と樹脂とを含むカーボンペーストを固体電解質層50の表面に塗布して乾燥させる方法等によって形成される。 The carbon layer is formed, for example, by applying a carbon paste containing carbon particles and resin to the surface of the solid electrolyte layer 50 and drying it.
 カーボンペーストの塗布は、例えば、浸漬法、スポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等により行うことができる。 The carbon paste can be applied by, for example, an immersion method, sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like.
 陰極導体層は、例えば、金、銀、銅、白金等の金属粒子と樹脂とを含む導電性ペーストを固体電解質層又はカーボン層の表面に塗布して乾燥させる方法等によって形成される。陰極導体層は、銀層であることが好ましい。 The cathode conductor layer is formed, for example, by a method of applying a conductive paste containing metal particles such as gold, silver, copper, platinum, and a resin to the surface of the solid electrolyte layer or carbon layer and drying the paste. The cathode conductor layer is preferably a silver layer.
 導電性ペーストの塗布は、例えば、浸漬法、スポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等により行うことができる。 The conductive paste can be applied by, for example, dipping, sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like.
[電解コンデンサ素子の製造方法]
 電解コンデンサ素子1の製造方法について以下に説明する。以下の例では、大判の弁作用金属基体を用いて、複数の電解コンデンサ素子を同時に製造する方法について説明する。
[Manufacturing method of electrolytic capacitor element]
A method for manufacturing the electrolytic capacitor element 1 will be described below. In the following example, a method for simultaneously manufacturing a plurality of electrolytic capacitor elements using a large-sized valve action metal substrate will be described.
 図16は、マスク層が形成された弁作用金属基体を準備する工程の一例を示す模式図である。 FIG. 16 is a schematic diagram showing an example of a process of preparing a valve metal substrate on which a mask layer is formed.
 図16に示すように、誘電体層20を表面に有する弁作用金属基体11Aを準備する。弁作用金属基体11Aは、複数の素子部12と支持部13とを含む。各々の素子部12は短冊状であり、支持部13から突出している。また、各々の素子部12の誘電体層20上にはマスク層30が形成されている。 As shown in FIG. 16, a valve action metal substrate 11A having a dielectric layer 20 on its surface is prepared. Valve action metal substrate 11A includes a plurality of element portions 12 and support portions 13 . Each element portion 12 is strip-shaped and protrudes from the support portion 13 . A mask layer 30 is formed on the dielectric layer 20 of each element portion 12 .
 まず、表面に多孔質部を有する弁作用金属基体11Aをレーザー加工又は打ち抜き加工等で切断することにより、複数の素子部12と支持部13とを含む形状に加工する。 First, the valve action metal substrate 11A having a porous portion on its surface is cut by laser processing, punching, or the like to be processed into a shape including a plurality of element portions 12 and support portions 13 .
 次に、各々の素子部12の短辺に沿うように、素子部12の両主面及び両側面にマスク層30を形成する。 Next, mask layers 30 are formed on both main surfaces and both side surfaces of the element portions 12 along the short sides of each element portion 12 .
 その後、弁作用金属基体11Aに陽極酸化処理を行うことにより、弁作用金属基体11Aの表面に誘電体層20となる酸化被膜を形成する。この際、レーザー加工又は打ち抜き加工等で切断された素子部12の側面にも酸化被膜が形成される。なお、すでに弁作用金属の酸化物が形成されている化成箔を弁作用金属基体11Aとして用いてもよい。この場合も、切断後の弁作用金属基体11Aに陽極酸化処理を行うことにより、切断された素子部12の側面に酸化被膜を形成する。 After that, the valve action metal substrate 11A is anodized to form an oxide film that will become the dielectric layer 20 on the surface of the valve action metal substrate 11A. At this time, an oxide film is also formed on the side surfaces of the element portion 12 cut by laser processing, punching, or the like. A chemically processed foil on which an oxide of a valve action metal has already been formed may be used as the valve action metal substrate 11A. In this case also, an oxide film is formed on the side surface of the cut element portion 12 by anodizing the cut valve metal substrate 11A.
 図17は、固体電解質層の第1層及び第3層を形成する工程の一例を示す模式図である。 FIG. 17 is a schematic diagram showing an example of the process of forming the first layer and the third layer of the solid electrolyte layer.
 素子部12の誘電体層20上に固体電解質層50の第1層51(図3等参照)を形成する。図17に示すように、第1層51を形成するための処理液を浸漬法によって弁作用金属基体11Aに塗布することが好ましい。図17には、第1層51を形成するための処理液70又は第3層53を形成するための処理液72が処理槽75に供給されている状態が示されている。 A first layer 51 (see FIG. 3, etc.) of the solid electrolyte layer 50 is formed on the dielectric layer 20 of the element section 12 . As shown in FIG. 17, it is preferable to apply the treatment liquid for forming the first layer 51 to the valve metal substrate 11A by an immersion method. FIG. 17 shows a state in which the processing liquid 70 for forming the first layer 51 or the processing liquid 72 for forming the third layer 53 is supplied to the processing bath 75 .
 第1層51を形成するための処理液70として、例えば、重合性モノマー、例えば3,4-エチレンジオキシチオフェンと、酸化剤、例えばパラトルエンスルホン酸鉄(III)との含有液が用いられる。重合性モノマーの含有液を誘電体層20の外表面に付着させて、化学重合により、第1の導電性高分子を含む膜を形成することができる。あるいは、第1層51を形成するための処理液70として、第1の導電性高分子の分散液が用いられる。第1の導電性高分子の分散液を誘電体層20の外表面に付着し乾燥させることで、導電性高分子膜を形成することができる。この導電性高分子膜が、固体電解質層50の第1層51となる。 As the treatment liquid 70 for forming the first layer 51, for example, a liquid containing a polymerizable monomer such as 3,4-ethylenedioxythiophene and an oxidizing agent such as iron (III) p-toluenesulfonate is used. . A liquid containing a polymerizable monomer can be adhered to the outer surface of the dielectric layer 20 and chemically polymerized to form a film containing the first conductive polymer. Alternatively, as the treatment liquid 70 for forming the first layer 51, a dispersion liquid of the first conductive polymer is used. A conductive polymer film can be formed by attaching the dispersion liquid of the first conductive polymer to the outer surface of the dielectric layer 20 and drying it. This conductive polymer film becomes the first layer 51 of the solid electrolyte layer 50 .
 第1層51を形成するための処理液70は、上述のバインダ成分を含有してもよいが、バインダ成分を含有しないことが好ましい。処理液70がバインダ成分を含有する場合、その濃度は、処理液70中、0.1重量%以下とすることが好ましく、0.05重量%以下とすることがより好ましく、0.01重量%以下とすることがさらに好ましい。 The treatment liquid 70 for forming the first layer 51 may contain the binder component described above, but preferably does not contain the binder component. When the treatment liquid 70 contains a binder component, its concentration in the treatment liquid 70 is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and more preferably 0.01% by weight. It is more preferable to:
 図17に示すように、弁作用金属基体11Aを処理液70に浸漬することにより、処理液70が弁作用金属基体11Aの多孔質部に含浸される。所定時間の浸漬後、弁作用金属基体11Aを処理液70から引き上げ、所定温度及び所定時間で乾燥させる。処理液70への浸漬、引き上げ及び乾燥を所定回数繰り返してもよい。この結果、固体電解質層50の第1層51が形成される。 As shown in FIG. 17, by immersing the valve action metal substrate 11A in the treatment liquid 70, the treatment liquid 70 is impregnated into the porous portion of the valve action metal substrate 11A. After being immersed for a predetermined time, the valve metal substrate 11A is pulled out of the treatment liquid 70 and dried at a predetermined temperature for a predetermined time. The immersion in the treatment liquid 70, the withdrawal, and the drying may be repeated a predetermined number of times. As a result, the first layer 51 of the solid electrolyte layer 50 is formed.
 例えば、重合性モノマーの含有液(第1の導電性高分子を含む分散液でもよい)に弁作用金属基体11Aを浸漬し、引き上げた後、乾燥することにより、第1層51を、固体電解質層50の内層(誘電体層20上に設けられ、弁作用金属基体11の細孔を充填する部分)として形成する。重合性モノマーの含有液への浸漬、引き上げ及び乾燥は複数回行ってもよい。 For example, the valve action metal substrate 11A is immersed in a liquid containing a polymerizable monomer (a dispersion liquid containing a first conductive polymer may be used), taken out, and then dried to form the first layer 51 as a solid electrolyte. It is formed as an inner layer of the layer 50 (a portion provided on the dielectric layer 20 and filling the pores of the valve action metal substrate 11). The immersion in the liquid containing the polymerizable monomer, pulling out and drying may be performed multiple times.
 第1層51を形成した後、プライマー化合物を含む溶液に弁作用金属基体11Aを浸漬、引き上げ及び乾燥することにより、プライマー層を形成してもよい。プライマー層が形成された場合には、弁作用金属基体11Aを純水で洗浄し、余剰のプライマー化合物を除去する。洗浄後、乾燥処理を行う。 After forming the first layer 51, the primer layer may be formed by immersing the valve metal substrate 11A in a solution containing a primer compound, pulling it out, and drying it. When the primer layer is formed, the valve metal substrate 11A is washed with pure water to remove excess primer compound. After washing, a drying process is performed.
 図18は、固体電解質層の第2層を形成する工程の一例を示す模式図である。 FIG. 18 is a schematic diagram showing an example of the process of forming the second layer of the solid electrolyte layer.
 固体電解質層50の第1層51を形成した後、第1層51上に固体電解質層50の第2層52(図6等参照)を形成する。例えば、図18に示すように、第2層52を形成するための処理液を浸漬法によって第1層51に塗布する。図18には、第2層52を形成するための処理液71が処理槽76に供給されている状態が示されている。 After forming the first layer 51 of the solid electrolyte layer 50 , the second layer 52 (see FIG. 6 etc.) of the solid electrolyte layer 50 is formed on the first layer 51 . For example, as shown in FIG. 18, a treatment liquid for forming the second layer 52 is applied to the first layer 51 by an immersion method. FIG. 18 shows a state in which the processing liquid 71 for forming the second layer 52 is supplied to the processing bath 76 .
 第2層52を形成するための処理液71として、例えば、バインダ成分を含有する第2の導電性高分子の分散液が用いられる。この分散液を第1層51の外表面に付着し乾燥させることで、バインダ成分を含む導電性高分子膜を形成することができる。あるいは、第2層52を形成するための処理液71として、重合性モノマー、例えば3,4-エチレンジオキシチオフェンと、酸化剤、例えばパラトルエンスルホン酸鉄(III)と、バインダ成分との含有液が用いられてもよい。バインダ成分を含有する重合性モノマーの含有液を第1層51の外表面に付着させて、化学重合により、バインダ成分を含む導電性高分子膜を形成することができる。このバインダ成分を含む導電性高分子膜が、固体電解質層50の第2層52となる。 As the treatment liquid 71 for forming the second layer 52, for example, a second conductive polymer dispersion containing a binder component is used. By applying this dispersion to the outer surface of the first layer 51 and drying it, a conductive polymer film containing a binder component can be formed. Alternatively, the treatment liquid 71 for forming the second layer 52 contains a polymerizable monomer such as 3,4-ethylenedioxythiophene, an oxidizing agent such as iron (III) p-toluenesulfonate, and a binder component. A liquid may be used. A liquid containing a polymerizable monomer containing a binder component can be adhered to the outer surface of the first layer 51 and chemically polymerized to form a conductive polymer film containing the binder component. The conductive polymer film containing this binder component becomes the second layer 52 of the solid electrolyte layer 50 .
 処理液71中におけるバインダ成分の濃度は、0.1重量%以上、20重量%以下とすることが好ましく、0.3重量%以上、10重量%以下とすることがより好ましく、0.5重量%以上、5重量%以下とすることがさらに好ましい。 The concentration of the binder component in the treatment liquid 71 is preferably 0.1% by weight or more and 20% by weight or less, more preferably 0.3% by weight or more and 10% by weight or less, and 0.5% by weight. % or more and 5% by weight or less is more preferable.
 図18に示すように、弁作用金属基体11Aの先端部を処理液71に浸漬することにより、処理液71が第1層51の外表面に付着する。所定時間の浸漬後、弁作用金属基体11Aを処理液71から引き上げ、所定温度及び所定時間で乾燥させる。処理液71への浸漬、引き上げ及び乾燥を所定回数繰り返してもよい。この結果、図6に示したような固体電解質層50の第2層52が形成される。 As shown in FIG. 18, the treatment liquid 71 adheres to the outer surface of the first layer 51 by immersing the tip of the valve action metal substrate 11A in the treatment liquid 71 . After being immersed for a predetermined time, the valve metal substrate 11A is pulled out of the treatment liquid 71 and dried at a predetermined temperature for a predetermined time. The immersion in the treatment liquid 71, the withdrawal, and the drying may be repeated a predetermined number of times. As a result, the second layer 52 of the solid electrolyte layer 50 as shown in FIG. 6 is formed.
 この方法とは別に、第2層52を形成するための処理液(例えば、上述の第2の導電性高分子の分散液又は重合性モノマーの含有液)をインクジェット印刷により第1層51の外表面に吐出して、固体電解質層50の第2層52を所定の領域に形成してもよい。これにより、図3、図9及び図12に示したような固体電解質層50の第2層52を形成することができる。 Separately from this method, a treatment liquid for forming the second layer 52 (for example, the dispersion liquid of the second conductive polymer or the liquid containing the polymerizable monomer) is applied to the outside of the first layer 51 by inkjet printing. The second layer 52 of the solid electrolyte layer 50 may be formed in a predetermined region by discharging onto the surface. Thereby, the second layer 52 of the solid electrolyte layer 50 as shown in FIGS. 3, 9 and 12 can be formed.
 固体電解質層50の第2層52を形成した後、第1層51及び第2層52上に固体電解質層50の第3層53(図3等参照)を形成する。例えば、図17に示したように、第3層53を形成するための処理液72を浸漬法によって第1層51及び第2層52に塗布することが好ましい。 After forming the second layer 52 of the solid electrolyte layer 50 , the third layer 53 (see FIG. 3 etc.) of the solid electrolyte layer 50 is formed on the first layer 51 and the second layer 52 . For example, as shown in FIG. 17, it is preferable to apply a treatment liquid 72 for forming the third layer 53 to the first layer 51 and the second layer 52 by an immersion method.
 第3層53を形成するための処理液72として、例えば、重合性モノマー、例えば3,4-エチレンジオキシチオフェンと、酸化剤、例えばパラトルエンスルホン酸鉄(III)との含有液が用いられる。重合性モノマーの含有液を第1層51及び第2層52の外表面に付着させて、化学重合により、第3の導電性高分子を含む膜を形成することができる。あるいは、第3層53を形成するための処理液72として、第3の導電性高分子の分散液が用いられる。第3の導電性高分子の分散液を第1層51及び第2層52の外表面に付着し乾燥させることで、導電性高分子膜を形成することができる。この導電性高分子膜が、固体電解質層50の第3層53となる。 As the treatment liquid 72 for forming the third layer 53, for example, a liquid containing a polymerizable monomer such as 3,4-ethylenedioxythiophene and an oxidizing agent such as iron (III) p-toluenesulfonate is used. . A liquid containing a polymerizable monomer can be adhered to the outer surfaces of the first layer 51 and the second layer 52 and chemically polymerized to form a film containing the third conductive polymer. Alternatively, as the treatment liquid 72 for forming the third layer 53, a dispersion liquid of a third conductive polymer is used. A conductive polymer film can be formed by attaching a dispersion liquid of the third conductive polymer to the outer surfaces of the first layer 51 and the second layer 52 and drying it. This conductive polymer film becomes the third layer 53 of the solid electrolyte layer 50 .
 第3層53を形成するための処理液72は、上述のバインダ成分を含有してもよいが、バインダ成分を含有しないことが好ましい。処理液72がバインダ成分を含有する場合、その濃度は、処理液72中、0.1重量%以下とすることが好ましく、0.05重量%以下とすることがより好ましく、0.01重量%以下とすることがさらに好ましい。 The treatment liquid 72 for forming the third layer 53 may contain the binder component described above, but preferably does not contain the binder component. When the treatment liquid 72 contains a binder component, its concentration in the treatment liquid 72 is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and more preferably 0.01% by weight. It is more preferable to:
 図17に示すように、弁作用金属基体11Aを処理液72に浸漬することにより、処理液72が第1層51及び第2層52の外表面に付着する。所定時間の浸漬後、弁作用金属基体11Aを処理液72から引き上げ、所定温度及び所定時間で乾燥させる。処理液72への浸漬、引き上げ及び乾燥を所定回数繰り返してもよい。この結果、固体電解質層50の第3層53が形成される。 As shown in FIG. 17, the treatment liquid 72 adheres to the outer surfaces of the first layer 51 and the second layer 52 by immersing the valve metal substrate 11A in the treatment liquid 72 . After being immersed for a predetermined time, the valve metal substrate 11A is pulled out of the treatment liquid 72 and dried at a predetermined temperature for a predetermined time. The immersion in the treatment liquid 72, the withdrawal, and the drying may be repeated a predetermined number of times. As a result, the third layer 53 of the solid electrolyte layer 50 is formed.
 例えば、重合性モノマーの含有液(第3の導電性高分子を含む分散液でもよい)に弁作用金属基体11Aを浸漬し、引き上げた後、乾燥することにより、第3層53を、固体電解質層50の外層(内層と接続され、誘電体層20全体を被覆する部分)として形成する。重合性モノマーの含有液への浸漬、引き上げ及び乾燥は複数回行ってもよい。 For example, the valve metal substrate 11A is immersed in a liquid containing a polymerizable monomer (a dispersion liquid containing a third conductive polymer may be used), taken out, and then dried to form the third layer 53 as a solid electrolyte. It is formed as the outer layer of layer 50 (the portion that is connected to the inner layer and covers the entire dielectric layer 20). The immersion in the liquid containing the polymerizable monomer, pulling out and drying may be performed multiple times.
 以上により、固体電解質層50の第1層51、第2層52及び第3層53を所定の領域に形成する。 As described above, the first layer 51, the second layer 52 and the third layer 53 of the solid electrolyte layer 50 are formed in predetermined regions.
 固体電解質層50を形成した後、カーボンペーストに弁作用金属基体11Aを浸漬、引き上げ及び乾燥することにより、カーボン層を所定の領域に形成する。 After the solid electrolyte layer 50 is formed, the valve metal substrate 11A is immersed in the carbon paste, pulled out, and dried to form a carbon layer in a predetermined region.
 カーボン層を形成した後、銀ペースト等の金属粒子を含む導電性ペーストに弁作用金属基体11Aを浸漬、引き上げ及び乾燥することにより、陰極導体層を所定の領域に形成する。 After forming the carbon layer, the valve action metal substrate 11A is immersed in a conductive paste containing metal particles such as silver paste, pulled out, and dried to form a cathode conductor layer in a predetermined region.
 そして、弁作用金属基体11Aを切断して、素子部12を分離し、切断面が基端面10bとなる短冊状の陽極10を形成する。 Then, the valve action metal substrate 11A is cut to separate the element portion 12, thereby forming the strip-shaped anode 10 whose cut surface serves as the base end surface 10b.
 以上の工程を経て、電解コンデンサ素子1が得られる。 The electrolytic capacitor element 1 is obtained through the above steps.
[電解コンデンサ]
 以下、本発明の電解コンデンサ素子を含む電解コンデンサの一例について説明する。なお、本発明の電解コンデンサ素子は、他の構成を有する電解コンデンサに含まれてもよい。例えば、リードフレームが外部電極として用いられてもよい。また、電解コンデンサには、本発明の電解コンデンサ素子以外の電解コンデンサ素子(すなわち、本発明の電解コンデンサ素子の構造とは異なる構造を有する電解コンデンサ素子)が含まれてもよい。
[Electrolytic capacitor]
An example of an electrolytic capacitor including the electrolytic capacitor element of the present invention will be described below. Note that the electrolytic capacitor element of the present invention may be included in electrolytic capacitors having other configurations. For example, lead frames may be used as external electrodes. The electrolytic capacitor may also include electrolytic capacitor elements other than the electrolytic capacitor element of the present invention (that is, electrolytic capacitor elements having a structure different from that of the electrolytic capacitor element of the present invention).
 図19は、本発明の実施形態に係る電解コンデンサ素子を含む電解コンデンサの一例を模式的に示す斜視図である。図20は、図19に示す電解コンデンサのZ-Z線に沿った断面図である。 FIG. 19 is a perspective view schematically showing an example of an electrolytic capacitor including an electrolytic capacitor element according to an embodiment of the invention. 20 is a cross-sectional view of the electrolytic capacitor shown in FIG. 19 taken along line ZZ.
 図19及び図20においては、電解コンデンサ100及び外装体110の長さ方向をL、幅方向をW、高さ方向をTで示している。ここで、長さ方向Lと幅方向Wと高さ方向Tとは互いに直交している。 19 and 20, L indicates the length direction of the electrolytic capacitor 100 and the exterior body 110, W indicates the width direction, and T indicates the height direction. Here, the length direction L, the width direction W, and the height direction T are orthogonal to each other.
 図19及び図20に示すように、電解コンデンサ100は、略直方体状の外形を有している。電解コンデンサ100は、固体電解コンデンサであり、外装体110と、第1外部電極120と、第2外部電極130と、複数の電解コンデンサ素子1と、を備える。 As shown in FIGS. 19 and 20, the electrolytic capacitor 100 has a substantially rectangular parallelepiped outer shape. The electrolytic capacitor 100 is a solid electrolytic capacitor, and includes an exterior body 110 , a first external electrode 120 , a second external electrode 130 , and a plurality of electrolytic capacitor elements 1 .
 外装体110は、複数の電解コンデンサ素子1を封止している。すなわち、外装体110には、複数の電解コンデンサ素子1が埋設されている。なお、外装体110は、1つの電解コンデンサ素子1を封止していてもよい。すなわち、外装体110の内部には、1つの電解コンデンサ素子1が埋設されていてもよい。 The exterior body 110 seals a plurality of electrolytic capacitor elements 1 . That is, a plurality of electrolytic capacitor elements 1 are embedded in the exterior body 110 . Note that the exterior body 110 may seal one electrolytic capacitor element 1 . That is, one electrolytic capacitor element 1 may be embedded inside the exterior body 110 .
 外装体110は、略直方体状の外形を有している。外装体110は、高さ方向Tにおいて相対する第1主面110a及び第2主面110b、幅方向Wにおいて相対する第1側面110c及び第2側面110d、並びに、長さ方向Lにおいて相対する第1端面110e及び第2端面110fを有している。 The exterior body 110 has a substantially rectangular parallelepiped outer shape. The exterior body 110 has a first major surface 110a and a second major surface 110b that face each other in the height direction T, a first side face 110c and a second side face 110d that face each other in the width direction W, and a first side face 110c and a second side face 110d that face each other in the length direction L. It has one end face 110e and a second end face 110f.
 上記のように外装体110は、略直方体状の外形を有しているが、角部及び稜線部に丸みが付けられていることが好ましい。 As described above, the exterior body 110 has a substantially rectangular parallelepiped outer shape, and it is preferable that the corners and ridges are rounded.
 外装体110は、例えば、封止樹脂から構成される。 The exterior body 110 is made of sealing resin, for example.
 封止樹脂は、少なくとも樹脂を含み、樹脂及びフィラーを含むことが好ましい。 The sealing resin contains at least resin, and preferably contains resin and filler.
 樹脂としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂、液晶ポリマー等が好ましく用いられる。 As the resin, epoxy resin, phenol resin, polyimide resin, silicone resin, polyamide resin, liquid crystal polymer, etc. are preferably used.
 フィラーとしては、シリカ粒子、アルミナ粒子等が好ましく用いられる。 Silica particles, alumina particles, etc. are preferably used as the filler.
 封止樹脂としては、固形エポキシ樹脂とフェノール樹脂とシリカ粒子とを含む材料が好ましく用いられる。 A material containing solid epoxy resin, phenol resin, and silica particles is preferably used as the sealing resin.
 固形の封止樹脂を用いる場合、コンプレッションモールド、トランスファーモールド等の樹脂モールドが好ましく用いられ、コンプレッションモールドがより好ましく用いられる。また、液状の封止樹脂を用いる場合、ディスペンス法、印刷法等の成形方法が好ましく用いられる。中でも、コンプレッションモールドにより電解コンデンサ素子1の周囲を封止樹脂で封止して、外装体110を形成することが好ましい。 When a solid sealing resin is used, resin molds such as compression molds and transfer molds are preferably used, and compression molds are more preferably used. Moreover, when using a liquid sealing resin, molding methods such as a dispensing method and a printing method are preferably used. Among them, it is preferable to seal the periphery of the electrolytic capacitor element 1 with a sealing resin by compression molding to form the exterior body 110 .
 外装体110は、基板と、基板上に設けられた封止樹脂とから構成されてもよい。基板は、例えば、ガラスエポキシ基板等の絶縁性樹脂基板である。この場合、基板の底面が、外装体110の第2主面110bを構成する。基板の厚さは、例えば、100μmである。 The exterior body 110 may be composed of a substrate and a sealing resin provided on the substrate. The substrate is, for example, an insulating resin substrate such as a glass epoxy substrate. In this case, the bottom surface of the substrate constitutes the second main surface 110b of the exterior body 110. As shown in FIG. The thickness of the substrate is, for example, 100 μm.
 複数の電解コンデンサ素子1は、導電性接着剤140を介して高さ方向Tに積層されている。複数の電解コンデンサ素子1の各々の延在方向は、外装体110の第1主面110a及び第2主面110bと略平行となっている。電解コンデンサ素子1同士は、導電性接着剤140を介して互いに接合されている。 A plurality of electrolytic capacitor elements 1 are stacked in the height direction T with conductive adhesive 140 interposed therebetween. The extension direction of each of the plurality of electrolytic capacitor elements 1 is substantially parallel to the first main surface 110 a and the second main surface 110 b of the outer package 110 . Electrolytic capacitor elements 1 are bonded to each other via conductive adhesive 140 .
 導電性接着剤140は、例えば、金、銀、銅、白金等の金属粒子と樹脂とを含むが、ここでは、金属粒子として銀を、樹脂としてアクリル樹脂を使用する。
 なお、導電性接着剤140に含まれる樹脂の他の例としては、例えば、ウレタン樹脂、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂等が挙げられる。
The conductive adhesive 140 contains, for example, metal particles such as gold, silver, copper, platinum, etc., and resin. Here, silver is used as the metal particles and acrylic resin is used as the resin.
Other examples of the resin contained in the conductive adhesive 140 include urethane resin, epoxy resin, polyimide resin, phenol resin, and the like.
 第1外部電極120は、外装体110の第1端面110eに設けられている。図19では、第1外部電極120は、外装体110の第1端面110eから、第1主面110a、第2主面110b、第1側面110c及び第2側面110dの各々に亘って設けられている。第1外部電極120は、第1端面110eにおいて外装体110から露出する電解コンデンサ素子1の陰極40の導電層60と電気的に接続されている。第1外部電極120は、外装体110の第1端面110eにおいて導電層60と直接的に接続されてもよく、間接的に接続されてもよい。 The first external electrode 120 is provided on the first end face 110e of the exterior body 110. In FIG. 19, the first external electrode 120 is provided from the first end surface 110e of the exterior body 110 over each of the first main surface 110a, the second main surface 110b, the first side surface 110c, and the second side surface 110d. there is First external electrode 120 is electrically connected to conductive layer 60 of cathode 40 of electrolytic capacitor element 1 exposed from exterior body 110 at first end face 110e. The first external electrode 120 may be directly or indirectly connected to the conductive layer 60 on the first end face 110 e of the outer casing 110 .
 第2外部電極130は、外装体110の第2端面110fに設けられている。図19では、第2外部電極130は、外装体110の第2端面110fから、第1主面110a、第2主面110b、第1側面110c及び第2側面110dの各々に亘って設けられている。第2外部電極130は、第2端面110fにおいて外装体110から露出する電解コンデンサ素子1の陽極10(弁作用金属基体11)と電気的に接続されている。第2外部電極130は、外装体110の第2端面110fにおいて陽極10(弁作用金属基体11)と直接的に接続されてもよく、間接的に接続されてもよい。 The second external electrode 130 is provided on the second end face 110f of the exterior body 110. In FIG. 19, the second external electrode 130 is provided from the second end surface 110f of the exterior body 110 over each of the first main surface 110a, the second main surface 110b, the first side surface 110c, and the second side surface 110d. there is Second external electrode 130 is electrically connected to anode 10 (valve metal substrate 11) of electrolytic capacitor element 1 exposed from exterior body 110 at second end surface 110f. The second external electrode 130 may be directly or indirectly connected to the anode 10 (valve metal substrate 11 ) at the second end surface 110 f of the exterior body 110 .
 第1外部電極120及び第2外部電極130は、各々、浸漬塗布法、スクリーン印刷法、転写法、インクジェット印刷法、ディスペンス法、スプレーコート法、刷毛塗り法、ドロップキャスト法、静電塗装法、めっき法、及び、スパッタ法からなる群より選択される少なくとも1種の方法により形成されることが好ましい。 The first external electrode 120 and the second external electrode 130 are each formed by a dip coating method, a screen printing method, a transfer method, an inkjet printing method, a dispensing method, a spray coating method, a brush coating method, a drop casting method, an electrostatic coating method, It is preferably formed by at least one method selected from the group consisting of plating and sputtering.
 第1外部電極120は、導電成分と樹脂成分とを含む樹脂電極層を有することが好ましい。第1外部電極120が樹脂成分を含むことにより、第1外部電極120と外装体110の封止樹脂との密着性が高まるため、信頼性が向上する。 The first external electrode 120 preferably has a resin electrode layer containing a conductive component and a resin component. Since the first external electrode 120 contains a resin component, the adhesion between the first external electrode 120 and the sealing resin of the exterior body 110 is enhanced, thereby improving the reliability.
 第2外部電極130は、導電成分と樹脂成分とを含む樹脂電極層を有することが好ましい。第2外部電極130が樹脂成分を含むことにより、第2外部電極130と外装体110の封止樹脂との密着性が高まるため、信頼性が向上する。 The second external electrode 130 preferably has a resin electrode layer containing a conductive component and a resin component. Since the second external electrode 130 contains a resin component, the adhesion between the second external electrode 130 and the sealing resin of the exterior body 110 is enhanced, thereby improving the reliability.
 導電成分は、銀、銅、ニッケル、錫等の金属単体、又は、これらの金属の少なくとも1種を含有する合金等を主成分として含むことが好ましい。 The conductive component preferably contains, as a main component, an elemental metal such as silver, copper, nickel, or tin, or an alloy containing at least one of these metals.
 樹脂成分は、エポキシ樹脂、フェノール樹脂等を主成分として含むことが好ましい。 The resin component preferably contains epoxy resin, phenol resin, etc. as the main component.
 樹脂電極層は、例えば、浸漬塗布法、スクリーン印刷法、転写法、インクジェット印刷法、ディスペンス法、スプレーコート法、刷毛塗り法、ドロップキャスト法、静電塗装法等の方法により形成される。中でも、樹脂電極層は、スクリーン印刷法で導電性ペーストを塗工することにより形成された印刷樹脂電極層であることが好ましい。樹脂電極層が、スクリーン印刷法で導電性ペーストを塗工することにより形成される場合、浸漬塗布法で導電性ペーストを塗工することにより形成される場合と比較して、第1外部電極120及び第2外部電極130が平坦になりやすい。すなわち、第1外部電極120及び第2外部電極130の厚みが均一になりやすい。 The resin electrode layer is formed by methods such as dip coating, screen printing, transfer, inkjet printing, dispensing, spray coating, brush coating, drop casting, and electrostatic coating. Among them, the resin electrode layer is preferably a printed resin electrode layer formed by applying a conductive paste by a screen printing method. When the resin electrode layer is formed by applying a conductive paste by a screen printing method, compared with the case where the resin electrode layer is formed by applying a conductive paste by a dip coating method, the first external electrode 120 And the second external electrode 130 tends to be flat. That is, the thicknesses of the first external electrode 120 and the second external electrode 130 tend to be uniform.
 第1外部電極120が樹脂電極層を有する場合、第1外部電極120及び陰極導体層が共に樹脂成分を含むことにより、第1外部電極120と陰極導体層との密着性が高まるため、信頼性が向上する。 When the first external electrode 120 has a resin electrode layer, since both the first external electrode 120 and the cathode conductor layer contain a resin component, the adhesiveness between the first external electrode 120 and the cathode conductor layer is increased, so reliability is improved. improves.
 第1外部電極120及び第2外部電極130の少なくとも一方は、めっき法により形成される、いわゆるめっき層を有していてもよい。めっき層としては、例えば、亜鉛・銀・ニッケル層、銀・ニッケル層、ニッケル層、亜鉛・ニッケル・金層、ニッケル・金層、亜鉛・ニッケル・銅層、ニッケル・銅層等が挙げられる。これらのめっき層上には、例えば、銅めっき層と、ニッケルめっき層と、錫めっき層とが順に(あるいは、一部のめっき層を除いて)設けられることが好ましい。 At least one of the first external electrode 120 and the second external electrode 130 may have a so-called plated layer formed by a plating method. Examples of plating layers include zinc/silver/nickel layers, silver/nickel layers, nickel layers, zinc/nickel/gold layers, nickel/gold layers, zinc/nickel/copper layers, and nickel/copper layers. On these plated layers, for example, a copper plated layer, a nickel plated layer, and a tin plated layer are preferably provided in this order (or with the exception of some plated layers).
 第1外部電極120及び第2外部電極130の少なくとも一方は、樹脂電極層及びめっき層をともに有していてもよい。例えば、第2外部電極130は、陽極10(弁作用金属基体11)に接続された樹脂電極層と、樹脂電極層の表面上に設けられた外層めっき層と、を有していてもよい。また、第2外部電極130は、陽極10(弁作用金属基体11)に接続された内層めっき層と、内層めっき層を覆うように設けられた樹脂電極層と、樹脂電極層の表面上に設けられた外層めっき層と、を有していてもよい。 At least one of the first external electrode 120 and the second external electrode 130 may have both a resin electrode layer and a plating layer. For example, the second external electrode 130 may have a resin electrode layer connected to the anode 10 (valve metal substrate 11) and an outer plated layer provided on the surface of the resin electrode layer. The second external electrode 130 includes an inner plated layer connected to the anode 10 (valve metal substrate 11), a resin electrode layer provided to cover the inner plated layer, and a resin electrode layer provided on the surface of the resin electrode layer. and an outer plated layer.
 なお、上記実施形態では、第1層51及び第3層53が固体電解質層50の面内の全域に配置されている場合について説明したが、第1層51及び第3層53の少なくとも一方は、固体電解質層50の面内において部分的に配置されていてもよい。すなわち、第1層51及び第3層53の少なくとも一方は、固体電解質層50の面内において第2層52が配置されていない領域のみに選択的に配置されてもよい。この場合は、第1層51及び/又は第3層53の形成方法としては、インクジェット印刷が好適である。 In the above embodiment, the case where the first layer 51 and the third layer 53 are arranged over the entire surface of the solid electrolyte layer 50 has been described, but at least one of the first layer 51 and the third layer 53 is , may be partially arranged in the plane of the solid electrolyte layer 50 . That is, at least one of the first layer 51 and the third layer 53 may be selectively arranged only in a region in the plane of the solid electrolyte layer 50 where the second layer 52 is not arranged. In this case, inkjet printing is suitable as a method for forming the first layer 51 and/or the third layer 53 .
 また、上記実施形態では、電解コンデンサ素子1が電解質材料として導電性高分子を用いた固体電解コンデンサである場合について説明したが、本発明の電解コンデンサ素子は、電解質材料として、導電性高分子等の固体電解質以外に電解液を合わせて用いる、いわゆるハイブリッド型の電解コンデンサ素子であってもよい。 Further, in the above embodiment, the case where the electrolytic capacitor element 1 is a solid electrolytic capacitor using a conductive polymer as an electrolyte material has been described. A so-called hybrid type electrolytic capacitor element may be used in which an electrolytic solution is used together with the solid electrolyte.
 また、上記実施形態では、電解コンデンサ素子1がチップ型の電解コンデンサ100に利用される場合について説明したが、本発明の電解コンデンサ素子は、例えば、半導体装置に含まれるパッケージ基板に埋め込まれて利用されてもよい。ここで、半導体装置としては、例えば、パッケージ基板にボルテージレギュレータ(電圧制御装置)と負荷を実装した半導体複合装置が挙げられる。 Further, in the above-described embodiment, the case where the electrolytic capacitor element 1 is used in the chip-type electrolytic capacitor 100 has been described, but the electrolytic capacitor element of the present invention can be used by being embedded in a package substrate included in a semiconductor device, for example. may be Here, examples of semiconductor devices include semiconductor composite devices in which a voltage regulator (voltage control device) and a load are mounted on a package substrate.
 以下、本発明の電解コンデンサ素子をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。 Examples that more specifically disclose the electrolytic capacitor element of the present invention are shown below. It should be noted that the present invention is not limited only to these examples.
(実施例1)
 陽極(弁作用金属基体)として、表面にエッチング層を有するアルミニウム箔を準備し、アジピン酸アンモニウム水溶液に浸漬させて陽極酸化処理することにより、アルミニウム箔の表面に誘電体層を形成した。
(Example 1)
An aluminum foil having an etching layer on its surface was prepared as an anode (valve metal substrate), and immersed in an ammonium adipate aqueous solution for anodization to form a dielectric layer on the surface of the aluminum foil.
 次に、表面に誘電体層が形成されたアルミニウム箔に可溶性ポリイミドシロキサンとエポキシ樹脂からなる組成物をローラー転写することにより、箔の両主面及び両側面に誘電体層を介してマスク層を形成した。 Next, a mask layer is formed on both main surfaces and both side surfaces of the foil through the dielectric layer by roller-transferring a composition comprising a soluble polyimidesiloxane and an epoxy resin onto the aluminum foil having the dielectric layer formed on the surface. formed.
 次に、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下までアルミニウム箔を浸漬し、引き上げた後、乾燥した。これにより、誘電体層上で3,4-エチレンジオキシチオフェンを化学重合させ、誘電体層上に固体電解質層の第1層を形成した。 Next, an aluminum foil was immersed in a mixed solution of iron (III) paratoluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, pulled out, and then dried. As a result, 3,4-ethylenedioxythiophene was chemically polymerized on the dielectric layer to form a first solid electrolyte layer on the dielectric layer.
 次に、アルミニウム箔の各角部のみに、バインダ成分としてポリエステルを5重量%含むPEDOT-PSS分散液をインクジェット印刷で塗布し、乾燥することで第1層上に固体電解質層の第2層を部分的に形成した(図3参照)。
 なお、PEDOT-PSS分散液とは、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸の水分散液である。
Next, a PEDOT-PSS dispersion containing 5% by weight of polyester as a binder component is applied only to each corner of the aluminum foil by inkjet printing, and dried to form a second solid electrolyte layer on the first layer. partially formed (see FIG. 3).
The PEDOT-PSS dispersion is an aqueous dispersion of poly(3,4-ethylenedioxythiophene) and polystyrenesulfonic acid.
 次に、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下までアルミニウム箔を浸漬し、引き上げた後、乾燥した。これにより、第1層及び第2層上で3,4-エチレンジオキシチオフェンを化学重合させ、第1層及び第2層上に固体電解質層の第3層を形成した。 Next, an aluminum foil was immersed in a mixed solution of iron (III) paratoluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, pulled out, and then dried. As a result, 3,4-ethylenedioxythiophene was chemically polymerized on the first and second layers to form a third solid electrolyte layer on the first and second layers.
 次に、カーボン層、銀層を順次形成することで、電解コンデンサ素子を得た。 Next, an electrolytic capacitor element was obtained by sequentially forming a carbon layer and a silver layer.
 得られた電解コンデンサ素子4枚を、導電性接着剤を用いて積層し、積層体を得た。この後、エポキシ樹脂を用いて上記積層体の封止を行い、ダイサーを用いて固片化した。次に、固片化した封止体の陰極側及び陽極側端面に樹脂成分を含む銀ペーストをスクリーン印刷することで、陰極及び陽極に外部電極を形成し、電解コンデンサの完成品を得た。 The resulting four electrolytic capacitor elements were laminated using a conductive adhesive to obtain a laminate. After that, the laminate was sealed with an epoxy resin and separated into pieces using a dicer. Next, a silver paste containing a resin component was screen-printed on the cathode-side and anode-side end surfaces of the solidified sealing body to form external electrodes on the cathode and anode, thereby obtaining a finished electrolytic capacitor.
(実施例2)
 実施例1において、固体電解質層の形成を以下のようにすることを除いては同様の方法で電解コンデンサの完成品を得た。
(Example 2)
A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
 すなわち、表面に誘電体層を形成したアルミニウム箔を、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下までアルミニウム箔を浸漬し、引き上げた後、乾燥した。これにより、誘電体層上で3,4-エチレンジオキシチオフェンを化学重合させ、誘電体層上に固体電解質層の第1層を形成した。 Specifically, an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, and pulled up. and then dried. As a result, 3,4-ethylenedioxythiophene was chemically polymerized on the dielectric layer to form a first solid electrolyte layer on the dielectric layer.
 次に、アルミニウム箔の先端部(下端部)のみを、バインダ成分としてポリエステルを5重量%含むPEDOT-PSS分散液に浸漬し、引き上げた後、乾燥することで第1層上に固体電解質層の第2層を部分的に形成した(図6参照)。 Next, only the tip (lower end) of the aluminum foil is immersed in a PEDOT-PSS dispersion containing 5% by weight of polyester as a binder component, pulled out, and dried to form a solid electrolyte layer on the first layer. A second layer was partially formed (see FIG. 6).
 次に、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下までアルミニウム箔を浸漬し、引き上げた後、乾燥した。これにより、第1層及び第2層上で3,4-エチレンジオキシチオフェンを化学重合させ、第1層及び第2層上に固体電解質層の第3層を形成した。 Next, an aluminum foil was immersed in a mixed solution of iron (III) paratoluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, pulled out, and then dried. As a result, 3,4-ethylenedioxythiophene was chemically polymerized on the first and second layers to form a third solid electrolyte layer on the first and second layers.
(実施例3)
 実施例1において、固体電解質層の形成を以下のようにすることを除いては同様の方法で電解コンデンサの完成品を得た。
(Example 3)
A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
 すなわち、表面に誘電体層を形成したアルミニウム箔を、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下までアルミニウム箔を浸漬し、引き上げた後、乾燥した。これにより、誘電体層上で3,4-エチレンジオキシチオフェンを化学重合させ、誘電体層上に固体電解質層の第1層を形成した。 Specifically, an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, and pulled up. and then dried. As a result, 3,4-ethylenedioxythiophene was chemically polymerized on the dielectric layer to form a first solid electrolyte layer on the dielectric layer.
 次に、アルミニウム箔の先端面(下端面)と、各側面と、その各角部と、その各稜線部とに、バインダ成分としてポリエステルを5重量%含むPEDOT-PSS分散液をインクジェット印刷で塗布し、乾燥することで第1層上に固体電解質層の第2層を部分的に形成した(図9参照)。 Next, a PEDOT-PSS dispersion containing 5% by weight of polyester as a binder component is applied by inkjet printing to the tip surface (bottom surface), each side surface, each corner portion, and each ridge portion of the aluminum foil. and dried to partially form the second layer of the solid electrolyte layer on the first layer (see FIG. 9).
 次に、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下までアルミニウム箔を浸漬し、引き上げた後、乾燥した。これにより、第1層及び第2層上で3,4-エチレンジオキシチオフェンを化学重合させ、第1層及び第2層上に固体電解質層の第3層を形成した。 Next, an aluminum foil was immersed in a mixed solution of iron (III) paratoluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, pulled out, and then dried. As a result, 3,4-ethylenedioxythiophene was chemically polymerized on the first and second layers to form a third solid electrolyte layer on the first and second layers.
(比較例1)
 実施例1において、固体電解質層の形成を以下のようにすることを除いては同様の方法で電解コンデンサの完成品を得た。
(Comparative example 1)
A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
 すなわち、表面に誘電体層を形成したアルミニウム箔を、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下まで浸漬し、引き上げた後、乾燥することで、誘電体層上に固体電解質層の第1層を形成した。 That is, an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene and 1-butanol up to just below the mask layer, and then pulled out. By drying, a first layer of a solid electrolyte layer was formed on the dielectric layer.
 次に、固体電解質層の第2層は形成せずに、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下までアルミニウム箔を浸漬し、引き上げた後、乾燥することで、第1層上に固体電解質層の第3層を形成した。 Next, without forming the second layer of the solid electrolyte layer, the aluminum foil was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer. , pulled up, and dried to form a third layer of the solid electrolyte layer on the first layer.
(比較例2)
 実施例1において、固体電解質層の形成を以下のようにすることを除いては同様の方法で電解コンデンサの完成品を得た。
(Comparative example 2)
A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
 すなわち、表面に誘電体層を形成したアルミニウム箔を、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下まで浸漬し、引き上げた後、乾燥することで、誘電体層上に固体電解質層の第1層を形成した。 That is, an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene and 1-butanol up to just below the mask layer, and then pulled out. By drying, a first layer of a solid electrolyte layer was formed on the dielectric layer.
 次に、第1層の全体を覆うように、バインダ成分としてポリエステルを5重量%含むPEDOT-PSS分散液に浸漬し、引き上げた後、乾燥することで、第1層上の全域に固体電解質層の第2層を形成した。 Next, the solid electrolyte layer is immersed in a PEDOT-PSS dispersion containing 5% by weight of polyester as a binder component so as to cover the entire first layer, pulled out, and dried to cover the entire area of the first layer. to form a second layer of
 次に、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下までアルミニウム箔を浸漬し、引き上げた後、乾燥することで、第2層上に固体電解質層の第3層を形成した。 Next, an aluminum foil is immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, pulled out, and dried to form a second layer. A third layer of a solid electrolyte layer was formed thereon.
(比較例3)
 実施例1において、固体電解質層の形成を以下のようにすることを除いては同様の方法で電解コンデンサの完成品を得た。
(Comparative Example 3)
A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
 すなわち、表面に誘電体層を形成したアルミニウム箔を、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下まで浸漬し、引き上げた後、乾燥することで、誘電体層上に固体電解質層の第1層を形成した。 That is, an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene and 1-butanol up to just below the mask layer, and then pulled out. By drying, a first layer of a solid electrolyte layer was formed on the dielectric layer.
 次に、アルミニウム箔の先端部(下端部)のみをポリイミド樹脂溶液に浸漬し、引き上げた後、乾燥することで、第1層上に絶縁層を部分的に形成した。 Next, only the front end (lower end) of the aluminum foil was immersed in a polyimide resin solution, pulled out, and then dried to partially form an insulating layer on the first layer.
 次に、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下までアルミニウム箔を浸漬し、引き上げた後、乾燥することで、第1層及び絶縁層上に固体電解質層の第3層を形成した。 Next, an aluminum foil is immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, pulled out, and dried to form the first layer. And a third layer of a solid electrolyte layer was formed on the insulating layer.
(比較例4)
 実施例1において、固体電解質層の形成を以下のようにすることを除いては同様の方法で電解コンデンサの完成品を得た。
(Comparative Example 4)
A finished electrolytic capacitor was obtained in the same manner as in Example 1, except that the solid electrolyte layer was formed as follows.
 すなわち、表面に誘電体層を形成したアルミニウム箔を、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下まで浸漬し、引き上げた後、乾燥することで、誘電体層上に固体電解質層の第1層を形成した。 That is, an aluminum foil having a dielectric layer formed on its surface was immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene and 1-butanol up to just below the mask layer, and then pulled out. By drying, a first layer of a solid electrolyte layer was formed on the dielectric layer.
 次に、アルミニウム箔の先端部(下端部)のみをバインダ成分を含まないPEDOT-PSS分散液に浸漬し、引き上げた後、乾燥することで第1層上に固体電解質層の第2層を部分的に形成した。 Next, only the tip (lower end) of the aluminum foil is immersed in a PEDOT-PSS dispersion containing no binder component, pulled out, and then dried to partially form the second layer of the solid electrolyte layer on the first layer. was formed.
 次に、パラトルエンスルホン酸鉄(III)、3,4-エチレンジオキシチオフェン及び1-ブタノールの混合液にマスク層直下までアルミニウム箔を浸漬し、引き上げた後、乾燥することで、第1層及び第2層上に固体電解質層の第3層を形成した。 Next, an aluminum foil is immersed in a mixed solution of iron (III) p-toluenesulfonate, 3,4-ethylenedioxythiophene, and 1-butanol to just below the mask layer, pulled out, and dried to form the first layer. and a third layer of a solid electrolyte layer was formed on the second layer.
 実施例1~3と比較例1~4で得られた電解コンデンサについて、完成品の等価直列抵抗(ESR)、及び、漏れ電流(LC)良品率を評価した。その結果を下記表1に示す。
 なお、ESRは、比較例1で得られた電解コンデンサのESRに対する相対値を示す。
Regarding the electrolytic capacitors obtained in Examples 1-3 and Comparative Examples 1-4, the equivalent series resistance (ESR) and leakage current (LC) of finished products were evaluated. The results are shown in Table 1 below.
ESR indicates a relative value to the ESR of the electrolytic capacitor obtained in Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1、2、3では、バインダ成分を含む緻密な第2層がアルミニウム箔の先端部の各角部等の漏れ電流が発生しやすい箇所のみに形成されているため、比較例1よりもLC良品率が向上し、比較例2よりもESRが低減した。実施例2は、比較例3よりもESRが低減した。実施例2と比べ、比較例4は第2層にバインダ成分がないため、LC良品率が低下した。 In Examples 1, 2, and 3, the dense second layer containing the binder component is formed only at locations where leakage current is likely to occur, such as the corners of the tip of the aluminum foil. The LC non-defective product rate was improved, and the ESR was lower than in Comparative Example 2. Example 2 had a lower ESR than Comparative Example 3. Compared with Example 2, Comparative Example 4 had a lower LC non-defective rate because the second layer did not contain a binder component.
 図21は、実施例1の電解コンデンサの断面のSEM写真を示す。 FIG. 21 shows a SEM photograph of the cross section of the electrolytic capacitor of Example 1.
 図21に示すように、バインダ成分を含むことによって、第2層は、第1層及び第3層に比べて、より緻密な膜となることが確認できた。すなわち、断面写真において、第2層は、なめらかな(フィルムのような)表面であるように観察された。一方、第1層及び第3層は、第2層に比べて粗雑な表面であるように観察された。 As shown in FIG. 21, it was confirmed that the inclusion of the binder component made the second layer a denser film than the first and third layers. That is, in cross-sectional photographs, the second layer was observed to have a smooth (film-like) surface. On the other hand, the first and third layers were observed to have rougher surfaces than the second layer.
 1 電解コンデンサ素子
 10 陽極
 10a 先端面
 10b 基端面
 10c、10d 主面
 10e、10f 側面
 10g 角部
 10h、10ha、10j 稜線部
 11、11A 弁作用金属基体
 12 素子部
 13 支持部
 20 誘電体層
 30 マスク層
 40 陰極
 50 固体電解質層
 51 第1層
 52 第2層
 53 第3層
 60 導電層
 70、71、72 処理液
 75、76 処理槽
 100 電解コンデンサ
 110 外装体
 110a 第1主面
 110b 第2主面
 110c 第1側面
 110d 第2側面
 110e 第1端面
 110f 第2端面
 120 第1外部電極
 130 第2外部電極
 140 導電性接着剤
Reference Signs List 1 electrolytic capacitor element 10 anode 10a tip surface 10b base end surface 10c, 10d main surface 10e, 10f side surface 10g corner portions 10h, 10ha, 10j edge portion 11, 11A valve action metal substrate 12 element portion 13 support portion 20 dielectric layer 30 mask Layer 40 Cathode 50 Solid electrolyte layer 51 First layer 52 Second layer 53 Third layer 60 Conductive layer 70, 71, 72 Treatment liquid 75, 76 Treatment bath 100 Electrolytic capacitor 110 Exterior body 110a First main surface 110b Second main surface 110c first side face 110d second side face 110e first end face 110f second end face 120 first external electrode 130 second external electrode 140 conductive adhesive

Claims (10)

  1.  弁作用金属基体から構成され、先端面及び基端面を有する陽極と、
     少なくとも前記基端面を除いて前記陽極の少なくとも一方の主面上に設けられた誘電体層と、
     絶縁材料から構成され、前記基端面に沿って前記誘電体層上に設けられたマスク層と、
     前記マスク層よりも前記先端面側において前記誘電体層上に設けられた陰極と、を備え、
     前記陰極は、前記誘電体層上に設けられた固体電解質層と、前記固体電解質層上に設けられた導電層と、を有し、
     前記固体電解質層は、前記誘電体層上に設けられ、第1の導電性高分子を含む第1層と、第2の導電性高分子及びバインダ成分を含む第2層と、少なくとも前記第1層上に設けられ、第3の導電性高分子を含む第3層と、を含み、
     前記第2層は、前記固体電解質層の面内において部分的に配置されており、
     前記第1層及び前記第3層は、前記固体電解質層の面内において前記第2層が配置されていない領域に少なくとも配置されている、電解コンデンサ素子。
    an anode composed of a valve metal substrate and having a distal end surface and a proximal end surface;
    a dielectric layer provided on at least one main surface of the anode except at least the base end surface;
    a mask layer made of an insulating material and provided on the dielectric layer along the proximal surface;
    a cathode provided on the dielectric layer on the tip surface side of the mask layer,
    The cathode has a solid electrolyte layer provided on the dielectric layer and a conductive layer provided on the solid electrolyte layer,
    The solid electrolyte layer is provided on the dielectric layer and comprises a first layer containing a first conductive polymer, a second layer containing a second conductive polymer and a binder component, and at least the first a third layer provided on the layer and comprising a third conductive polymer;
    The second layer is partially arranged in the plane of the solid electrolyte layer,
    The electrolytic capacitor element, wherein the first layer and the third layer are arranged at least in a region in which the second layer is not arranged in the plane of the solid electrolyte layer.
  2.  前記第1層及び前記第3層は、各々、前記第2層に比べて、バインダ成分が少ない、請求項1に記載の電解コンデンサ素子。 2. The electrolytic capacitor element according to claim 1, wherein each of said first layer and said third layer contains less binder component than said second layer.
  3.  前記第1層及び前記第3層は、各々、バインダ成分を含まない、請求項2に記載の電解コンデンサ素子。 3. The electrolytic capacitor element according to claim 2, wherein each of said first layer and said third layer does not contain a binder component.
  4.  前記第2層に含まれる前記バインダ成分は、ポリイソプレン、ポリスチレン、ポリエチレン、ポリビニルピロリドン、ポリビニルアルコール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリエステル、ポリアミド、ポリウレタン、ポリカーボネート、セルロース、セルロースナノファイバー及びポリフタル酸エステルからなる群より選択される少なくとも1種の成分を含む、請求項1~3のいずれか1項に記載の電解コンデンサ素子。 The binder component contained in the second layer is selected from polyisoprene, polystyrene, polyethylene, polyvinylpyrrolidone, polyvinyl alcohol, polymethylmethacrylate, polyacrylonitrile, polyester, polyamide, polyurethane, polycarbonate, cellulose, cellulose nanofibers and polyphthalates. 4. The electrolytic capacitor element according to claim 1, comprising at least one component selected from the group consisting of:
  5.  前記第2層は、前記第1層及び前記第3層に比べて、より緻密な膜である、請求項1~4のいずれか1項に記載の電解コンデンサ素子。 The electrolytic capacitor element according to any one of claims 1 to 4, wherein said second layer is a denser film than said first and third layers.
  6.  弁作用金属基体から構成され、先端面及び基端面を有する陽極と、
     少なくとも前記基端面を除いて前記陽極の少なくとも一方の主面上に設けられた誘電体層と、
     絶縁材料から構成され、前記基端面に沿って前記誘電体層上に設けられたマスク層と、
     前記マスク層よりも前記先端面側において前記誘電体層上に設けられた陰極と、を備え、
     前記陰極は、前記誘電体層上に設けられた固体電解質層と、前記固体電解質層上に設けられた導電層と、を有し、
     前記固体電解質層は、前記誘電体層上に設けられ、第1の導電性高分子を含む第1層と、第2の導電性高分子を含む第2層と、少なくとも前記第1層上に設けられ、第3の導電性高分子を含む第3層と、を含み、
     前記第2層は、前記固体電解質層の面内において部分的に配置されており、
     前記第1層及び前記第3層は、前記固体電解質層の面内において前記第2層が配置されていない領域に少なくとも配置されており、
     前記第2層は、前記第1層及び前記第3層に比べて、より緻密な膜である、電解コンデンサ素子。
    an anode composed of a valve metal substrate and having a distal end surface and a proximal end surface;
    a dielectric layer provided on at least one main surface of the anode except at least the base end surface;
    a mask layer made of an insulating material and provided on the dielectric layer along the proximal surface;
    a cathode provided on the dielectric layer on the tip surface side of the mask layer,
    The cathode has a solid electrolyte layer provided on the dielectric layer and a conductive layer provided on the solid electrolyte layer,
    The solid electrolyte layer is provided on the dielectric layer and includes a first layer containing a first conductive polymer, a second layer containing a second conductive polymer, and at least on the first layer a third layer provided and comprising a third conductive polymer;
    The second layer is partially arranged in the plane of the solid electrolyte layer,
    The first layer and the third layer are arranged at least in a region where the second layer is not arranged in the plane of the solid electrolyte layer,
    The electrolytic capacitor element, wherein the second layer is a denser film than the first and third layers.
  7.  前記陽極は、前記先端面、前記基端面、一対の主面及び一対の側面の6面を有し、前記6面のうちの3面が交わる角部と、前記6面のうちの2面が交わる稜線部と、を有し、
     前記第2層は、前記先端面による角部を覆う、請求項1~6のいずれか1項に記載の電解コンデンサ素子。
    The anode has six surfaces, that is, the distal surface, the proximal surface, a pair of main surfaces, and a pair of side surfaces. and an intersecting ridgeline,
    The electrolytic capacitor element according to any one of claims 1 to 6, wherein said second layer covers corners formed by said tip end surfaces.
  8.  前記第2層は、前記先端面と、前記先端面による稜線部と、をさらに覆う、請求項7に記載の電解コンデンサ素子。 8. The electrolytic capacitor element according to claim 7, wherein said second layer further covers said tip end face and a ridge portion formed by said tip end face.
  9.  前記第2層は、前記各側面と、前記各側面による稜線部と、をさらに覆う、請求項7又は8に記載の電解コンデンサ素子。 9. The electrolytic capacitor element according to claim 7, wherein said second layer further covers each of said side surfaces and a ridge formed by each of said side surfaces.
  10.  前記第2層は、前記マスク層に沿って配置される、請求項1~9のいずれか1項に記載の電解コンデンサ素子。

     
    The electrolytic capacitor element according to any one of claims 1 to 9, wherein said second layer is arranged along said mask layer.

PCT/JP2023/004164 2022-02-14 2023-02-08 Electrolytic capacitor element WO2023153432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-020505 2022-02-14
JP2022020505 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023153432A1 true WO2023153432A1 (en) 2023-08-17

Family

ID=87564427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004164 WO2023153432A1 (en) 2022-02-14 2023-02-08 Electrolytic capacitor element

Country Status (1)

Country Link
WO (1) WO2023153432A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121281A (en) * 1997-10-21 1999-04-30 Nec Toyama Ltd Method for manufacturing solid electrolytic capacitor
JP2001250743A (en) * 2000-03-06 2001-09-14 Marcon Electronics Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2009105171A (en) * 2007-10-23 2009-05-14 Nec Tokin Corp Solid-state electrolytic capacitor and its method for manufacturing
JP2012134389A (en) * 2010-12-22 2012-07-12 Nec Tokin Corp Solid electrolytic capacitor
JP2014041933A (en) * 2012-08-22 2014-03-06 Murata Mfg Co Ltd Solid electrolytic capacitor, and method of manufacturing the same
JP2019145582A (en) * 2018-02-16 2019-08-29 ローム株式会社 Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121281A (en) * 1997-10-21 1999-04-30 Nec Toyama Ltd Method for manufacturing solid electrolytic capacitor
JP2001250743A (en) * 2000-03-06 2001-09-14 Marcon Electronics Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2009105171A (en) * 2007-10-23 2009-05-14 Nec Tokin Corp Solid-state electrolytic capacitor and its method for manufacturing
JP2012134389A (en) * 2010-12-22 2012-07-12 Nec Tokin Corp Solid electrolytic capacitor
JP2014041933A (en) * 2012-08-22 2014-03-06 Murata Mfg Co Ltd Solid electrolytic capacitor, and method of manufacturing the same
JP2019145582A (en) * 2018-02-16 2019-08-29 ローム株式会社 Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US11437198B2 (en) Method for producing solid electrolytic capacitor, and solid electrolytic capacitor
CN109791844B (en) Solid electrolytic capacitor
JP6819691B2 (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
WO2022168769A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
US20230368978A1 (en) Method for manufacturing electronic component
US20220223349A1 (en) Electrolytic capacitor, and method for manufacturing electrolytic capacitor
WO2023153432A1 (en) Electrolytic capacitor element
US20220223350A1 (en) Electrolytic capacitor
US11810728B2 (en) Electrolytic capacitor
WO2021125045A1 (en) Solid electrolytic capacitor
WO2023090141A1 (en) Electrolytic capacitor element
JP7419791B2 (en) solid electrolytic capacitor
WO2023153436A1 (en) Electrolyte capacitor element
WO2022264794A1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
WO2023026708A1 (en) Solid electrolytic capacitor element, solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor element
WO2023026709A1 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
US20240194414A1 (en) Solid electrolytic capacitor element, solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor element
WO2021205894A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP7375710B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
US20230038003A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
US20210074485A1 (en) Solid electrolytic capacitor and method of producing solid electrolytic capacitor
JP7392379B2 (en) solid electrolytic capacitor
WO2022131020A1 (en) Solid electrolytic capacitor element, solid electrolytic capacitor, method for producing solid electrolytic capacitor element, and method for producing solid electrolytic capacitor
JP2023067561A (en) Solid electrolytic capacitor element, solid electrolytic capacitor and manufacturing method of solid electrolytic capacitor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752896

Country of ref document: EP

Kind code of ref document: A1