JP2014022548A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2014022548A
JP2014022548A JP2012159527A JP2012159527A JP2014022548A JP 2014022548 A JP2014022548 A JP 2014022548A JP 2012159527 A JP2012159527 A JP 2012159527A JP 2012159527 A JP2012159527 A JP 2012159527A JP 2014022548 A JP2014022548 A JP 2014022548A
Authority
JP
Japan
Prior art keywords
insulating film
body region
forming
region
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012159527A
Other languages
English (en)
Inventor
Tomoyasu Kakegawa
智康 掛川
Takao Adachi
隆郎 安達
Yoshinori Tanaka
義典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS4 Luxco SARL
Original Assignee
PS4 Luxco SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS4 Luxco SARL filed Critical PS4 Luxco SARL
Priority to JP2012159527A priority Critical patent/JP2014022548A/ja
Priority to US13/944,576 priority patent/US20140021428A1/en
Publication of JP2014022548A publication Critical patent/JP2014022548A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • H10B63/34Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays

Abstract

【課題】隣り合うトランジスタ間の狭い部分で配線を分離した構成では、トランジスタ間の間隔がさらに狭くなると当該配線の分離形成が困難となることが予想される。
【解決手段】主面に対して垂直方向に並んで形成された第1拡散層領域、第1ボディ領域、第2拡散層領域を含む第1トランジスタと、前記主面に対して垂直な方向に並んで形成された第3拡散層領域、第2ボディ領域、第4拡散層領域を含む第2トランジスタと、第1トランジスタの第2拡散層領域上に設けられる第1抵抗変化素子と、第2トランジスタの第4拡散層領域上に設けられる第2抵抗変化素子と、第1抵抗変化素子及び第2抵抗変化素子に共通に接続されたビット線と、第1ボディ領域の一方の側に配された第1ワード線と、第1ボディ領域の他方の側と前記第2ボディ領域の一方の側との間に配された第2ワード線と、第2ボディ領域の他方の側に配された第3ワード線と、を備える。
【選択図】図1

Description

本発明は、半導体装置及びその製造方法に関する。
半導体装置の集積度向上は、主にトランジスタサイズの平面的な縮小によって達成されてきた。ところが、トランジスタサイズをさらに平面的に縮小すると短チャネル効果などによって正しく動作しなくなるおそれがある。そこで、半導体基板を立体的に加工し、トランジスタを3次元的に形成する方法が提案されている。例えば、特許文献1では、半導体基板の主面に対して垂直方向に延びるシリコンピラーをチャネルとして用いる縦構造タイプの3次元トランジスタを用いた半導体装置が開示されている。
特開2011−77185号公報
Wookhyun Kwon, Tsu-Jae King Liu, "A Highly Scalable Capacitor-Less Cell Having a Doubly Gated Vertical Channel", Jpn. J. Appl. Phys. 49 (2010) 04DD04
以下の分析は、本願発明者により与えられる。
特許文献1に記載の3次元トランジスタのような構造では、隣り合うトランジスタ間の狭い部分で配線(特許文献1の図21の第2配線17)を分離した構成となっており、トランジスタ間の間隔がさらに狭くなると当該配線の分離形成が困難となることが予想される。
本発明の第1の視点においては、半導体装置において、主面に対して垂直方向に並んで形成された第1導電型の第1拡散層領域、及び、第2導電型の第1ボディ領域、並びに、前記第1導電型の第2拡散層領域を含む第1トランジスタと、前記主面に対して垂直な方向に並んで形成された前記第1導電型の第3拡散層領域、及び、前記第2導電型の第2ボディ領域、並びに、前記第1導電型の第4拡散層領域を含む第2トランジスタと、前記第1トランジスタの前記第2拡散層領域上に設けられる第1抵抗変化素子と、前記第2トランジスタの前記第4拡散層領域上に設けられる第2抵抗変化素子と、前記第1抵抗変化素子及び前記第2抵抗変化素子に共通に接続されたビット線と、前記第1ボディ領域の一方の側に配された第1ワード線と、前記第1ボディ領域の他方の側と前記第2ボディ領域の一方の側との間に配された第2ワード線と、前記第2ボディ領域の他方の側に配された第3ワード線と、を備えることを特徴とする。
本発明の第2の視点においては、半導体装置の製造方法において、少なくとも第1導電型の第1拡散層領域上に第2導電型のボディ領域を有する半導体基板に、前記第1拡散層領域と前記ボディ領域との界面よりも深い溝を形成することにより、複数のピラーを形成する工程と、前記ピラー間における前記ボディ領域上に、上面が前記第1拡散層領域と前記ボディ領域との界面よりも低い層間絶縁膜を形成する工程と、前記層間絶縁膜の上面よりも高い位置の前記ピラーの側壁面にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜間における前記層間絶縁膜上に、上面が前記ピラーの上面よりも低いワード線を形成する工程と、前記ピラーにおける前記ボディ領域に上面側から不純物を注入することにより前記第1導電型の第2拡散層領域を形成する工程と、前記第2拡散層領域上に抵抗変化素子を形成する工程と、を含むことを特徴とする。
本発明の第3の視点においては、半導体装置の製造方法において、第2導電型のボディ領域を有する半導体基板に複数の第1溝を形成する工程と、前記第1溝の側壁面乃至底面に絶縁膜を形成する工程と、前記第1溝間の前記絶縁膜上に所定高さの第1層間絶縁膜を形成する工程と、前記第1層間絶縁膜上にて前記絶縁膜を覆うサイドウォールを形成する工程と、前記第1層間絶縁膜の一部をエッチングすることにより前記絶縁膜の一部を露出させる工程と、前記第1溝の一方の側壁面をマスクして他方の側壁面から露出する前記絶縁膜に、前記ボディ領域に通ずる穴を形成する工程と、前記サイドウォールを除去する工程と、前記第1溝間の前記第1層間絶縁膜上に所定高さのソース線を形成する工程と、前記ボディ領域において前記ソース線に含まれる不純物の拡散により第1導電型の第1拡散層領域を形成する工程と、前記第1溝よりも浅い第2溝を形成することにより複数のピラーを形成する工程と、前記ピラー間における前記半導体基板上に所定高さの第2層間絶縁膜を形成する工程と、前記第2層間絶縁膜の上面よりも高い位置の前記ピラーの側壁面にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜間における前記第1層間絶縁膜上に、上面が前記ピラーの上面よりも低いワード線を形成する工程と、前記ピラーにおける前記ボディ領域に上面側から不純物を注入することにより前記第1導電型の第2拡散層領域を形成する工程と、前記第2拡散層領域上に抵抗変化素子を形成する工程と、を含むことを特徴とする。
本発明によれば、エッチングによる隣り合うセル間のワード線の分離が不要となるため、プロセス加工が容易となり、3次元トランジスタ構造による4F(Fはメモリセルの製造プロセスにおける最小加工寸)メモリセルの最密レイアウトを簡便に実現することができる。
本発明の実施形態1に係る半導体装置におけるメモリセルの構成を模式的に示した断面図である。 本発明の実施形態1に係る半導体装置の回路構成を模式的に示したブロック図である。 本発明の実施形態1に係る半導体装置におけるメモリセルアレイの構成を模式的に示した回路図である。 本発明の実施形態1に係る半導体装置におけるメモリセルの動作を説明するための選択セル及び非選択セルの電流電圧特性図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図5に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図6に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図7に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図8に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図9に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図10に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図11に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図12に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図13に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図14に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図15に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態1に係る半導体装置の製造方法を説明するための図16に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態2に係る半導体装置の構成を模式的に示した(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態2に係る半導体装置におけるメモリセルアレイの構成を模式的に示した回路図である。 本発明の実施形態2に係る半導体装置の製造方法を説明するための(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態2に係る半導体装置の製造方法を説明するための図20に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態2に係る半導体装置の製造方法を説明するための図21に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態2に係る半導体装置の製造方法を説明するための図22に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態2に係る半導体装置の製造方法を説明するための図23に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態2に係る半導体装置の製造方法を説明するための図24に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態2に係る半導体装置の製造方法を説明するための図25に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態2に係る半導体装置の製造方法を説明するための図26に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。 本発明の実施形態2に係る半導体装置の製造方法を説明するための図27に続く(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。
[実施形態1]
本発明の実施形態1に係る半導体装置について図面を用いて説明する。図2は、本発明の実施形態1に係る半導体装置の回路構成を模式的に示したブロック図である。
半導体装置は、メモリ回路を備えた半導体チップである。半導体装置は、メモリ回路として、複数のBank0〜1に区分されたメモリセルアレイ30、各Bank0〜1に付随するロウデコーダ31、センスアンプ32、ライトアンプ33、判定レジスタ34、データレジスタ35、及び、カラムデコーダ36を有する。また、半導体装置は、メモリ回路の周辺に形成される周辺回路として、ロウアドレスバッファ37と、アレイコントロール回路38と、フェーズカウンタ39と、制御ロジック回路40と、コマンドレジスタ41と、ステータスレジスタ42と、コマンドディテクタ43と、I/Oコントロール回路44と、カラムアドレスバッファ45と、アドレスレジスタ46と、トランジスタ47と、を有する。なお、図1の例では、2個のBank0〜1が設けられているが、Bank数は特に制約されない。また、図示していないが、半導体装置には、外部から外部電源電圧VDD及びVSSが供給される。
メモリセルアレイ30は、複数のメモリセルMCが行方向及び列方向に配列して設けられた回路である。メモリセルアレイ30には、一方向に延在しかつ他方向(一方向の直角の方向)に並んだ複数のワード線WLと、他方向に延在しかつ一方向に並んだ複数のビット線BLと、ワード線WL及びビット線BLの各交点の近傍に設けられた複数のメモリセルMCと、を有する。ワード線WLは、ロウデコーダ31に接続されている。各ビット線BLはセンスアンプに接続されている。メモリセルアレイ30及びメモリセルMCの詳細については、後述する。
ロウデコーダ31は、アレイコントロール回路38及びロウアドレスバッファ37からの信号に基づいて、対応するワード線WLを活性化して、ワード線WLを介してメモリセルアレイ30におけるロウ(行)アドレスを選択する回路である。
センスアンプ32は、アレイコントロール回路38からの信号に基づいて、メモリセルアレイ30からワード線WLを介して読み出されたデータの電位を増幅する回路である。センスアンプ32は、電位増幅されたデータをデータレジスタ35及び判定レジスタ34に向けて出力する。
ライトアンプ33は、アレイコントロール回路38からの信号に基づいて、データレジスタ35からのデータの電位を増幅する回路である。ライトアンプ33は、電位増幅されたデータをワード線WLを介してメモリセルアレイ30及び判定レジスタ34に向けて出力する。
判定レジスタ34は、アレイコントロール回路38からの信号に基づいて、ライトアンプ33における書き込みデータと、センスアンプ32における読み出しデータと、を比較することによりパスかフェイルかを判定(ベリファイ動作)するレジスタである。判定レジスタ34がフェイルを検出した場合、メモリセルアレイ30への再書き込みが行われ、全てのセルがパスするまで、再書き込み、読み出しのループが繰り返される。
データレジスタ35は、データを保持するレジスタである。データレジスタ35は、I/Oコントロール回路44との間でデータのやり取りをする。データレジスタ35は、I/Oコントロール回路44又はセンスアンプ32からのデータを保持する。データレジスタ35は、書き込み時に、アレイコントロール回路38からの信号に基づいて、保持されたデータをライトアンプ33に向けて出力する。データレジスタ35は、読み出し時に、アレイコントロール回路38からの信号に基づいて、保持されたデータをI/Oコントロール回路44に向けて出力する。
カラムデコーダ36は、アレイコントロール回路38及びカラムアドレスバッファ45からの各信号に基づいて、ビット線BLを介してメモリセルアレイ10におけるカラム(列)アドレスを選択する回路である。
ロウアドレスバッファ37は、アドレスレジスタ46からのアドレスのうちロウアドレスを保持するバッファである。ロウアドレスバッファ37は、保持されたロウアドレスをロウデコーダ31に向けて出力する。
アレイコントロール回路38は、制御ロジック回路40及びフェーズカウンタ39からの信号に基づいて、ロウデコーダ31、センスアンプ32、ライトアンプ33、判定レジスタ34、データレジスタ35、及び、カラムデコーダ36のそれぞれの動作を制御する回路である。アレイコントロール回路38は、ロウデコーダ31にワード線選択信号を供給し、カラムデコーダ36にビット線選択信号を供給し、センスアンプ32、ライトアンプ33、判定レジスタ34、及び、データレジスタ35に対しての各種制御信号を供給する。
フェーズカウンタ39は、アクセス対象のフェーズを制御するためのカウンタである。
制御ロジック回路40は、各種制御信号を周辺回路に向けて出力するロジック回路である。制御ロジック回路40は、コマンドディテクタ43及びコマンドレジスタ41からの信号に基づいて、各種制御信号をアレイコントロール回路38、ステータスレジスタ42、及び、トランジスタ47に向けて出力する。制御ロジック回路40は、アレイコントロール回路38との間で信号のやり取りを行なう。
コマンドレジスタ41は、I/Oコントロール回路44からのコマンドを保持するレジスタである。コマンドレジスタ41は、保持されたコマンドを制御ロジック回路40に向けて出力する。
ステータスレジスタ42は、制御ロジック回路40からのステータス(信号)を保持するレジスタである。ステータスレジスタ42は、保持されたステータス信号をI/Oコントロール回路44に向けて出力する。ここで、ステータスは、書き込みのパス、フェイル等の状態を示す情報である。
コマンドディテクタ43は、コマンド(チップイネーブル/CE、コマンドラッチイネーブルCLE、アドレスラッチイネーブルALE、ライトイネーブル/WE、リードイネーブル/RE、/WP)が入力される回路である。
ここで、/CEは、デバイス選択信号であり、例えば、リード状態でHighとするとスタンバイモードとなる。
また、CLEは、コマンドをデバイス内部のコマンドレジスタ41への取り込みをコントロールするための信号である。/WEの立ち上がり時及び立ち下り時にCLEをHighレベルとすることにより、I/O端子(I/O1〜I/O8)上のデータがコマンドとしてコマンドレジタ41に取り込まれる。
また、ALEは、アドレス、データをデバイス内部のアドレスレジスタ46、データレジスタ35への取り込みをコントロールするための信号である。/WEの立ち上がり時及び立ち下り時にALEをHighレベルとすることにより、I/O端子(I/O1〜I/O8)上のデータがアドレスデータとしてアドレスレジスタ46に取り込まれる。また、ALEをLowレベルとすることによりI/O端子(I/O1〜I/O8)上のデータが入力データとしてデータレジスタ35に取り込まれる。
また、/WEは、IO端子(I/O1〜I/O8)からのデータをデバイス内部に取り込むための書き込み信号である。
また、/REは、データを出力(シリアル出力)させる信号である。
また、/WPは、書き込み、消去動作を禁止しデータを保護するための制御信号である。通常、/WP=Highとし、電源投入遮断時等に、/WP=Lowとする。
I/Oコントロール回路44は、コマンド、アドレス、及び、データの入出力を制御する回路である。I/Oコントロール回路44は、外部に対してI/O端子(I/O1〜I/O8)を介してコマンド、アドレス、及び、データのやり取りを行なう。I/Oコントロール回路44は、入力されたコマンドをコマンドレジスタ41に向けて出力する。I/Oコントロール回路44は、入力されたアドレスをアドレスレジスタ46に向けて出力する。I/Oコントロール回路44は、データレジスタ35との間でデータのやり取りを行なう。I/Oコントロール回路44は、コマンドディテクタ43及びステータスレジスタ42からの信号に基づいて、コマンド、アドレス、及び、データの入出力を制御する。
ここで、I/O1〜8は、アドレス、コマンド、データを入出力する端子(ポート)である。
カラムアドレスバッファ45は、アドレスレジスタ46からのアドレスのうちカラムアドレスを保持するバッファである。カラムアドレスバッファ45には、保持されたカラムアドレスをカラムデコーダ36に向けて出力する。
アドレスレジスタ46は、I/Oコントロール回路44からのアドレスを保持するレジスタである。アドレスレジスタ46は、保持されたアドレスのうちロウアドレスをロウアドレスバッファ37に向けて出力する。アドレスレジスタ46は、保持されたアドレスのうちカラムアドレスをカラムアドレスバッファ45に向けて出力する。
トランジスタ47は、オープンドレイン構成のnMOSトランジスタである。トランジスタ47のゲートは制御ロジック回路40に接続されている。トランジスタ47のソースは、グランドに接続されている。トランジスタ47のドレインは、内部状態通知信号RY/BYの出力端子と接続されている。トランジスタ47のゲートは、プログラム・消去・リード動作時等の動作実行中、High電位とされる。トランジスタ47のゲートは、ターンオン(導通)し、RY/BY=Low(Busy)となり、動作が完了すると、Low電位とされ、RY/BYが電源電位にプルアップされ、RY/BY=High(Ready)となる。
ここで、RY/BYは、デバイスの内部状態を外部に通知する信号である。
図3は、本発明の実施形態1に係る半導体装置におけるメモリセルアレイの構成を模式的に示した回路図である。
メモリセルアレイ(図2の30)は、一方向に延在しかつ他方向(一方向の直角の方向)に並んだ複数のワード線WL1〜WL5と、他方向に延在しかつ一方向に並んだ複数のビット線DBL、BL1、BL2と、ワード線及びビット線の各交点の近傍に設けられた複数のメモリセルMCと、を有する。DBLは、常時0Vで、制御されないダミービット線である。BL1、BL2は、カラムデコーダ(図2の36)によって制御される。WL1〜WL5は、ロウデコーダ(図2の31)によって制御される。MCは、2つのMOSトランジスタ(図1のTr)を有し、各MOSトランジスタの共通のソースがグランドに電気的に接続され、各MOSトランジスタのチャネルが共通となっており、各MOSトランジスタの各ゲートが別々のワード線に電気的に接続され、各MOSトランジスタの共通のソースが記録素子(図1の14)を介して対応するビット線に電気的に接続されている。
図1は、本発明の実施形態1に係る半導体装置におけるメモリセルの構成を模式的に示した断面図である。
メモリセル(図3のMC)は、主面に対し垂直方向に延びるピラー2をチャネルとして用いる縦構造タイプの3次元トランジスタTrと、記録素子となる抵抗変化素子14と、を有する。メモリセルでは、下からp型拡散領域1a、n型拡散領域1b、p型ボディ領域1c、及び、n型拡散領域1dがこの順に積層した半導体基板1を有する。半導体基板1は、n型拡散領域1d及びp型ボディ領域1c並びにn型拡散領域1bの部分に形成された溝6を有する。溝6は、主面に対し垂直方向から見て網目状に形成されており、底面がn型拡散領域1bの中間部に配されている。溝6間には、n型拡散領域1b及びp型ボディ領域1c並びにn型拡散領域1dが積層した柱状のピラー2が形成されている。ピラー2におけるn型拡散領域1bの部分は、2つのMOSトランジスタの共通のソースとなり、グランド(0V)に電気的に接続されている。ピラー2におけるp型ボディ領域1cの部分は、2つのMOSトランジスタの共通のチャネルとなり、半導体基板1の基部(ピラー2以外のp型拡散領域1a及びn型拡散領域1bの部分)に対してフローティングとなっている。ピラー2におけるn型拡散領域1dの部分は、2つのMOSトランジスタの共通のドレインとなり、抵抗変化素子14に電気的に接続されている。
溝6の底面上には、下から層間絶縁膜7、ワード線9、層間絶縁膜10がこの順に積層している。ピラー2における層間絶縁膜7の上面よりも上の部分の両側壁面には、ゲート絶縁膜8が形成されている。ワード線9は、チャネルとなるp型ボディ領域1cの側方にてゲート絶縁膜8を介して配されている。図1において、ワード線9のうちWL1は、左側のピラー2のp型ボディ領域1cの一方の側に配されている。ワード線9のうちWL2は、左側のピラー2のp型ボディ領域1cの他方の側と右側のピラー2のp型ボディ領域1cの一方の側との間に配されている。ワード線9のうちWL2は、右側のピラー2のp型ボディ領域1cの他方の側に配されている。WL2は、隣り合うピラー2間で分離されていない。これにより、選択したいメモリセル(選択セルTr)に対して、ピラー2を両側から2本のワード線9を活性化させて選択動作を行うことができる。WL1、WL2、WL3は、互いに電気的に独立しており、ロウデコーダ(図2の31)に電気的に接続されている。層間絶縁膜10は、ピラー2の上面よりも上まで形成されている。層間絶縁膜10には、n型拡散領域1dに通ずる穴が形成されており、当該穴にコンタクトプラグ11が埋め込まれている。
コンタクトプラグ11を含む層間絶縁膜10上には、下から順に抵抗変化膜12、上部電極膜13、ビット線15がこの順に積層している。抵抗変化膜12、上部電極膜13、及びビット線15は、ワード線9の延在方向に対して直角の方向に延在するように形成されている。抵抗変化膜12は、下部電極となるコンタクトプラグ11と接触している。コンタクトプラグ11、抵抗変化膜12、及び上部電極膜13は、抵抗変化素子14となる。なお、ReRAM、PRAM等のメモリセルでは非選択メモリセルに多少の電流が流れても抵抗変化しないため、記憶素子として抵抗変化素子14を用いることがよい。但し、DRAMへの適用を否定するものではない。コンタクトプラグ11は、対応するピラー2のn型拡散領域1d、及び、抵抗変化膜12と電気的に接続されている。抵抗変化素子14のうち抵抗変化膜12及び上部電極膜13は、隣り合うメモリセルにおいて共通となっている。ビット線15は、カラムデコーダ(図2の36)に電気的に接続されている。抵抗変化膜12、上部電極膜13、及びビット線15を含む層間絶縁膜10上には、層間絶縁膜16が形成されている。
次に、本発明の実施形態1に係る半導体装置におけるメモリセルの動作について図面を用いて説明する。図4は、本発明の実施形態1に係る半導体装置におけるメモリセルの動作を説明するための選択セルトランジスタ及び非選択セルトランジスタの電流電圧特性図である。
図1のようなメモリセルについて、以下のようなパラメータのようにし、以下のような電圧条件としたときの選択セルトランジスタ及び非選択セルトランジスタの電流電圧特性をシミュレーションしてみた。
なお、以下のパラメータ及び電圧条件に示される条件で、非選択セルトランジスタに電流が流れないことは理想的だが、本発明はそれに限定されるものではない。つまり、非選択セルトランジスタに電流が流れてしまった場合にもその電流により抵抗変化素子14の抵抗変化が生じない範囲であれば許容される。
[パラメータ]
・テクノロジーノード=40nm
・セルサイズ=0.0064μm
・p型ボディ領域1cの不純物濃度=1×1016cm−3
・n型拡散領域1b、1dの不純物濃度=1×1020cm−3
・ゲート絶縁膜8の厚さ=5nm
・溝6の底からワード線9までの距離=30nm
・ピラー2の高さ=150nm
・ピラー2のワード線9の延在方向の幅=30nm
・ピラー2のビット線15の延在方向の幅=10nm
[電圧条件]
・WL1電圧VWL1(Vgate)=0→3V
・WL2電圧VWL2(Vgate)=0→3V
・WL3電圧VWL3=−1V(固定)
・ソース電圧Vsource=0V
・BL2電圧VBL2=2V
以上に示す電圧条件でメモリセルを動作させた場合、選択セルトランジスタ及び非選択セルトランジスタのそれぞれのソース・ドレイン間電流Idsとゲート電圧Vgateとの間の特性は図4のようになる。Vgate=1Vの場合、選択セルトランジスタには電流が流れるが、非選択セルトランジスタは対極のWL3に負バイアスを加えているため電流が流れない。このように、3次元トランジスタにおいて、選択セルトランジスタに隣接する非選択セルトランジスタの対極のゲート(ワード線)を負バイアスで動作させることで、一般的に必要だったWL2の分離が不要となる。
次に、本発明の実施形態1に係る半導体装置の製造方法について図面を用いて説明する。図5〜図17は、本発明の実施形態1に係る半導体装置の製造方法を説明するための(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。
まず、下からp型拡散領域1a、n型拡散領域1b、p型ボディ領域1cが積層した半導体基板1を用意し、p型ボディ領域1c上にシリコン窒化膜20(例えば、膜厚200nm程度)を成膜し、その後、リソグラフィー及びエッチングにより溝3(例えば、溝間隔40nm程度、溝幅40nm程度、深さ200nm程度)を形成する(ステップA1;図5参照)。
次に、酸化(例えば、熱酸化)により溝3から露出するn型拡散領域1b及びp型ボディ領域1cの表面に絶縁膜4(膜厚5nm程度)を形成する(ステップA2;図6参照)。
次に、CVD(Chemical Vapor Deposition;化学気相成長)により基板全体に層間絶縁膜5(例えば、シリコン窒化膜)を成膜し、その後、CMP(Chemical Mechanical Polishing;化学機械研磨)によりシリコン窒化膜20が表れるまで層間絶縁膜5を研磨(平坦化)する(ステップA3;図7参照)。
次に、シリコン窒化膜20を含む層間絶縁膜5上の所定の位置に溝(図1の6)形成用のフォトレジスト21を形成する(ステップA4;図8参照)。
次に、フォトレジスト(図8の21)をマスクとしてシリコン窒化膜20及び層間絶縁膜5をエッチングすることにより溝3と同程度の深さの溝6(例えば、溝間隔40nm程度、溝幅40nm程度、深さ200nm程度)を形成し、その後、フォトレジスト(図8の21)を除去する(ステップA5;図9参照)。
次に、基板全面に層間絶縁膜7(例えば、シリコン酸化膜)を成膜し、その後、CMPによりシリコン窒化膜20が表れるまで層間絶縁膜7を研磨(平坦化)する(ステップA6;図10参照)。
次に、層間絶縁膜7の上面がn型拡散領域1bとp型ボディ領域1cとの界面よりも低くなるまで層間絶縁膜7を選択的にエッチバックする(ステップA7;図11参照)。
次に、酸化(例えば、熱酸化)により溝3の層間絶縁膜7より上の部分で露出するn型拡散領域1b及びp型ボディ領域1cの表面にゲート絶縁膜8(膜厚5nm程度)を形成する(ステップA8;図12参照)。
次に、CVDにより基板全面にワード線用の導電膜9を成膜し、その後、CMPによりシリコン窒化膜20が表れるまで導電膜9を研磨(平坦化)する(ステップA9;図13参照)。
次に、導電膜(図13の9)の上面がp型ボディ領域1cの高さの半分程度となるまで導電膜(図13の9)を選択的にエッチバックすることにより、導電膜(図13の9)由来のワード線9を形成する(ステップA10;図14参照)。なお、ワード線9は隣り合うセル間で分離を必要としない。
次に、基板全面にCVDにより層間絶縁膜10を成膜し、その後、CMPによりシリコン窒化膜20が表れるまで層間絶縁膜10を研磨(平坦化)する(ステップA11;図15参照)。
次に、p型ボディ領域1cが表れるまでシリコン窒化膜20をリソグラフィー及びエッチングによりエッチング除去し、その後、p型ボディ領域1cにn型不純物を注入することによりドレインとなるn型拡散領域1dを形成し、その後、基板全面にCVDによりコンタクトプラグ11用の導電膜を成膜し、その後、CMPにより層間絶縁膜5、10が表れるまで当該導電膜を研磨(平坦化)することによりコンタクトプラグ11を形成する(ステップA12;図16参照)。なお、n型拡散領域1dの形成では、n型拡散領域1dとp型ボディ領域1cとの界面がワード線9の上面と同程度又はそれ以下となるように、p型ボディ領域1cにn型不純物を注入する。
次に、基板全面に抵抗変化膜12、上部電極膜13用の導電膜、及び、ビット線15用の導電膜(W等)をこの順に成膜し、その後、リソグラフィー及びエッチングによりライン状の抵抗変化膜12、上部電極膜13、及び、ビット線15形成し、その後、基板全面にCVDにより層間絶縁膜16を成膜する(ステップA13;図17参照)。以降、典型的な配線工程へと続く。
実施形態1によれば、エッチングによる隣り合うセル間のワード線の分離が不要となるため、トランジスタ間の間隔がさらに狭くなったとしても、プロセス加工が容易となる。
[実施形態2]
本発明の実施形態2に係る半導体装置について図面を用いて説明する。図18は、本発明の実施形態2に係る半導体装置の構成を模式的に示した(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。図19は、本発明の実施形態2に係る半導体装置におけるメモリセルアレイの構成を模式的に示した回路図である。
実施形態2は、実施形態1の変形例であり、p型ボディ領域(図1の1cに相当)を半導体基板1の基部に対してフローティングとするのをやめるとともに、半導体基板1においてn型拡散領域(図2の1b)を設けるのをやめ、ピラー2の一部となるp型ボディ領域1aaを、基部となるp型拡散領域1aと一体化したものである(図18参照)。また、溝3は、溝6よりも深く形成されている。これに伴い、溝3内の層間絶縁膜17と層間絶縁膜5との間にソース線(図19のSL1〜3に対応)となるドープトシリコン膜18を設け、絶縁膜4に穴部4aを設け、穴部4aを通じてドープトシリコン膜18と電気的に接続されたn型拡散領域1eをp型拡散領域1aに設けている(図18参照)。ドープトシリコン膜18は、ワード線9と抵触しないようにワード線9よりも深い位置に配されている。また、ドープトシリコン膜18は、ワード線9の延在方向に対して直角の方向に延在している。また、各p型ボディ領域1aaは、p型拡散領域1aと一体となっているので、同じ電位となる(図18、図19参照)。その他の構成は、実施形態1と同様である。
次に、本発明の実施形態2に係る半導体装置の製造方法について図面を用いて説明する。図20〜図28は、本発明の実施形態2に係る半導体装置の製造方法を説明するための(A)平面図、(B)X−X´間の断面図、(C)Y−Y´間の断面図である。
まず、下からp型拡散領域1aからなる半導体基板1を用意し、p型拡散領域1a上にシリコン窒化膜20(例えば、膜厚200nm程度)を成膜し、その後、リソグラフィー及びエッチングにより溝3(実施形態1に係る図5の溝3よりも深い溝)を形成する(ステップB1;図20参照)。
次に、酸化(例えば、熱酸化)により溝3から露出するp型拡散領域1aの表面に絶縁膜4(膜厚5nm程度)を形成し、その後、CVDにより基板全体に層間絶縁膜17を成膜し、その後、CMPによりシリコン窒化膜20が表れるまで層間絶縁膜17を研磨(平坦化)し、その後、層間絶縁膜17が所定の厚さとなるまで層間絶縁膜17を選択的にエッチバックする(ステップB2;図21参照)。
次に、CVDにより基板全体にサイドウォール22用の絶縁膜(例えば、シリコン窒化膜)を成膜し、その後、エッチバックを行なうことにより、溝3内の壁面(露出するシリコン窒化膜20ないし絶縁膜4の側壁面)にサイドウォール22を形成する(ステップB3;図22参照)。
次に、シリコン窒化膜20及びサイドウォール22をマスクとして、層間絶縁膜17が所定の厚さ(ステップB2よりも薄い厚さ)となるまで層間絶縁膜17を選択的にエッチバックする(ステップB4;図23参照)。これにより、サイドウォール22と層間絶縁膜17との間の部位に絶縁膜4の一部が露出する。
次に、CVDにより基板全体に層間絶縁膜23を成膜し、その後、CMPによりシリコン窒化膜20が表れない程度に層間絶縁膜23を研磨(平坦化)し、その後、層間絶縁膜23上の所定の位置に穴部(図18の4a)形成用のフォトレジスト24を形成し、その後、層間絶縁膜17及び絶縁膜4が表れるまで層間絶縁膜23を選択的にエッチバックする(ステップB5;図24参照)。
次に、フォトレジスト24、層間絶縁膜23、シリコン窒化膜20、サイドウォール22、及び、層間絶縁膜17をマスクとして、p型拡散領域1aが表れるまで絶縁膜4を選択的にエッチング除去する(ステップB6;図25参照)。
次に、フォトレジスト(図25の24)、層間絶縁膜(図25の23)、及び、サイドウォール(図25の22)を除去する(ステップB7;図26参照)。
次に、基板全面にソース線用のドープトシリコン膜18を成膜し、その後、CMPによりシリコン窒化膜20が表れるまでドープトシリコン膜18を研磨(平坦化)し、その後、ドープトシリコン膜18が所定の厚さとなるまでドープトシリコン膜18を選択的にエッチバックする(ステップB8;図27参照)。
次に、基板全面に層間絶縁膜5を成膜し、その後、CMPによりシリコン窒化膜20が表れるまで層間絶縁膜5を研磨(平坦化)する(ステップB9;図28参照)
その後、実施形態1のステップA4〜A13(図8〜図17参照)と同様な工程を行なうことにより、図18のようなメモリセルができる。
実施形態2によれば、実施形態1と同様な効果を奏するとともに、p型ボディ領域1aaの電位安定により、抵抗変化素子14に流すべき電流を相対的に安定化させることができる。
なお、非特許文献1では、縦構造タイプの3次元トランジスタに類似するものとして、固定電位が供給されないボディ領域に蓄積された電荷の状態に応じてメモリ動作させるフローティングボディメモリセルを用いた半導体装置が開示されている。非特許文献1に記載の3次元トランジスタ構造では、記録素子部が3次元トランジスタと共有した構成となっており、メモリセル間の配線を分離せずに構成するもので、フローティングボディメモリセルを挟む2本のワード線でメモリセルのプログラムを制御する。ただし、非特許文献1は、あくまでフローティングボディメモリセルの制御について説明するに過ぎず、記録素子部を3次元トランジスタの上部に形成した本願発明とは構造が異なる。
また、本出願において図面参照符号を付している場合は、それらは、専ら理解を助けるためのものであり、図示の態様に限定することを意図するものではない。
また、本発明の全開示(請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
1 半導体基板
1a p型拡散領域
1aa p型ボディ領域(第1ボディ領域、第2ボディ領域、ボディ領域)
1b n型拡散領域(ソース、第1拡散領域、第3拡散領域)
1c p型ボディ領域(第1ボディ領域、第2ボディ領域、ボディ領域)
1d n型拡散領域(ドレイン、第2拡散領域、第4拡散領域)
1e n型拡散領域(ソース、第1拡散領域、第3拡散領域)
2 ピラー
3 溝(第1溝)
4 絶縁膜
4a 穴部
5 層間絶縁膜
6 溝(第2溝)
7 層間絶縁膜
8 ゲート絶縁膜
9 ワード線(導電膜、第1〜第3ワード線)
10 層間絶縁膜
11 コンタクトプラグ
12 抵抗変化膜
13 上部電極膜
14 抵抗変化素子(第1抵抗変化素子、第2抵抗変化素子)
15 ビット線
16 層間絶縁膜
17 層間絶縁膜
18 ドープトシリコン膜(ソース線)
20 シリコン窒化膜
21 フォトレジスト
22 サイドウォール
23 平坦化膜
24 フォトレジスト
30 メモリセルアレイ
31 ロウデコーダ
32 センスアンプ
33 ライトアンプ
34 判定レジスタ
35 データレジスタ
36 カラムデコーダ
37 ロウアドレスバッファ
38 アレイコントロール回路
39 フェーズカウンタ
40 制御ロジック回路
41 コマンドレジスタ
42 ステータスレジスタ
43 コマンドディテクタ
44 I/Oコントロール回路
45 カラムアドレスバッファ
46 アドレスレジスタ
47 トランジスタ
WL、WL1〜5 ワード線
BL、BL0〜2 ビット線
DBL ダミービット線
MC メモリセル
SL1〜3 ソース線

Claims (7)

  1. 主面に対して垂直方向に並んで形成された第1導電型の第1拡散層領域、及び、第2導電型の第1ボディ領域、並びに、前記第1導電型の第2拡散層領域を含む第1トランジスタと、
    前記主面に対して垂直な方向に並んで形成された前記第1導電型の第3拡散層領域、及び、前記第2導電型の第2ボディ領域、並びに、前記第1導電型の第4拡散層領域を含む第2トランジスタと、
    前記第1トランジスタの前記第2拡散層領域上に設けられる第1抵抗変化素子と、
    前記第2トランジスタの前記第4拡散層領域上に設けられる第2抵抗変化素子と、
    前記第1抵抗変化素子及び前記第2抵抗変化素子に共通に接続されたビット線と、
    前記第1ボディ領域の一方の側に配された第1ワード線と、
    前記第1ボディ領域の他方の側と前記第2ボディ領域の一方の側との間に配された第2ワード線と、
    前記第2ボディ領域の他方の側に配された第3ワード線と、
    を備えることを特徴とする半導体装置。
  2. 前記第1ワード線及び前記第2ワード線並びに前記第3ワード線は、互いに電気的に独立していることを特徴とする請求項1記載の半導体装置。
  3. 前記第1ボディ領域及び前記第2ボディ領域は、半導体基板の基部に対してフローティングとなっていることを特徴とする請求項1又は2記載の半導体装置。
  4. 前記第1ワード線及び前記第2ワード線よりも深い位置に配された第1ソース線及び第2ソース線を備え、
    前記第1ボディ領域及び前記第2ボディ領域は、半導体基板の基部に対して一体となっており、
    前記第1拡散領域は、前記第1ソース線に電気的に接続され、
    前記第2拡散領域は、前記第2ソース線に電気的に接続されていることを特徴とする請求項1又は2記載の半導体装置。
  5. 前記第1ソース線及び前記第2ソース線は、前記第1ワード線及び前記第2ワード線の延在方向に対して直角の方向に延在することを特徴とする請求項4記載の半導体装置。
  6. 少なくとも第1導電型の第1拡散層領域上に第2導電型のボディ領域を有する半導体基板に、前記第1拡散層領域と前記ボディ領域との界面よりも深い溝を形成することにより、複数のピラーを形成する工程と、
    前記ピラー間における前記ボディ領域上に、上面が前記第1拡散層領域と前記ボディ領域との界面よりも低い層間絶縁膜を形成する工程と、
    前記層間絶縁膜の上面よりも高い位置の前記ピラーの側壁面にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜間における前記層間絶縁膜上に、上面が前記ピラーの上面よりも低いワード線を形成する工程と、
    前記ピラーにおける前記ボディ領域に上面側から不純物を注入することにより前記第1導電型の第2拡散層領域を形成する工程と、
    前記第2拡散層領域上に抵抗変化素子を形成する工程と、
    を含むことを特徴とする半導体装置の製造方法。
  7. 第2導電型のボディ領域を有する半導体基板に複数の第1溝を形成する工程と、
    前記第1溝の側壁面乃至底面に絶縁膜を形成する工程と、
    前記第1溝間の前記絶縁膜上に所定高さの第1層間絶縁膜を形成する工程と、
    前記第1層間絶縁膜上にて前記絶縁膜を覆うサイドウォールを形成する工程と、
    前記第1層間絶縁膜の一部をエッチングすることにより前記絶縁膜の一部を露出させる工程と、
    前記第1溝の一方の側壁面をマスクして他方の側壁面から露出する前記絶縁膜に、前記ボディ領域に通ずる穴を形成する工程と、
    前記サイドウォールを除去する工程と、
    前記第1溝間の前記第1層間絶縁膜上に所定高さのソース線を形成する工程と、
    前記ボディ領域において前記ソース線に含まれる不純物の拡散により第1導電型の第1拡散層領域を形成する工程と、
    前記第1溝よりも浅い第2溝を形成することにより複数のピラーを形成する工程と、
    前記ピラー間における前記半導体基板上に所定高さの第2層間絶縁膜を形成する工程と、
    前記第2層間絶縁膜の上面よりも高い位置の前記ピラーの側壁面にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜間における前記第1層間絶縁膜上に、上面が前記ピラーの上面よりも低いワード線を形成する工程と、
    前記ピラーにおける前記ボディ領域に上面側から不純物を注入することにより前記第1導電型の第2拡散層領域を形成する工程と、
    前記第2拡散層領域上に抵抗変化素子を形成する工程と、
    を含むことを特徴とする半導体装置の製造方法。
JP2012159527A 2012-07-18 2012-07-18 半導体装置及びその製造方法 Pending JP2014022548A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012159527A JP2014022548A (ja) 2012-07-18 2012-07-18 半導体装置及びその製造方法
US13/944,576 US20140021428A1 (en) 2012-07-18 2013-07-17 Semiconductor device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159527A JP2014022548A (ja) 2012-07-18 2012-07-18 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2014022548A true JP2014022548A (ja) 2014-02-03

Family

ID=49945790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159527A Pending JP2014022548A (ja) 2012-07-18 2012-07-18 半導体装置及びその製造方法

Country Status (2)

Country Link
US (1) US20140021428A1 (ja)
JP (1) JP2014022548A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222799B1 (ko) 2014-07-18 2021-03-04 삼성전자주식회사 자기 저항 메모리 소자 및 그 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675297B1 (ko) * 2005-12-19 2007-01-29 삼성전자주식회사 캐패시터가 없는 동적 메모리 셀을 구비한 반도체 메모리장치 및 이 장치의 배치 방법
US7359226B2 (en) * 2006-08-28 2008-04-15 Qimonda Ag Transistor, memory cell array and method for forming and operating a memory device
US20080203469A1 (en) * 2007-02-28 2008-08-28 Qimonda Ag Integrated circuit including an array of memory cells having dual gate transistors
US7539039B2 (en) * 2007-02-28 2009-05-26 Qimonda Ag Integrated circuit having a resistive switching device
US7898006B2 (en) * 2007-11-15 2011-03-01 Qimonda Ag Integrated circuit having memory cells and method of manufacture
US20090261312A1 (en) * 2008-04-18 2009-10-22 Qimonda Ag Integrated circuit including an array of low resistive vertical diodes and method
US8213226B2 (en) * 2008-12-05 2012-07-03 Micron Technology, Inc. Vertical transistor memory cell and array
US8710566B2 (en) * 2009-03-04 2014-04-29 Micron Technology, Inc. Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
KR20120006516A (ko) * 2009-03-31 2012-01-18 마이크론 테크놀로지, 인크. 반도체 메모리 디바이스를 제공하기 위한 기술들
US8139418B2 (en) * 2009-04-27 2012-03-20 Micron Technology, Inc. Techniques for controlling a direct injection semiconductor memory device
EP2548227B1 (en) * 2010-03-15 2021-07-14 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8729521B2 (en) * 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell

Also Published As

Publication number Publication date
US20140021428A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
US11011580B2 (en) Memory device
US9595567B2 (en) Semiconductor memory device with resistance change film and method of manufacturing the same
KR102061694B1 (ko) 3차원 크로스 포인트 어레이를 갖는 반도체 메모리 소자
JP5614915B2 (ja) 半導体装置、半導体装置の製造方法並びにデータ処理システム
US20160329340A1 (en) Nonvolatile memory device
JP5027503B2 (ja) 半導体記憶装置
US9847249B2 (en) Buried etch stop layer for damascene bit line formation
JP2010130016A (ja) 3次元半導体装置及びその動作方法
KR20080024971A (ko) 3차원적으로 배열된 메모리 셀 트랜지스터들을 구비하는낸드 플래시 메모리 장치
JP2007281198A (ja) 不揮発性半導体記憶装置
US9401305B2 (en) Air gaps structures for damascene metal patterning
JP3906177B2 (ja) 不揮発性半導体記憶装置
JP2009088134A (ja) 半導体装置、半導体装置の製造方法並びにデータ処理システム
JP2016167332A (ja) 記憶装置
US11723208B2 (en) Memory device
US9524974B1 (en) Alternating sidewall assisted patterning
JP5221024B2 (ja) 不揮発性半導体記憶装置
WO2014119537A1 (ja) 半導体装置及びその製造方法
US9245898B2 (en) NAND flash memory integrated circuits and processes with controlled gate height
JP2014022548A (ja) 半導体装置及びその製造方法
JP2011192827A (ja) Nand型不揮発性半導体記憶装置
JP4890435B2 (ja) 不揮発性メモリ及びその制御方法
TWI622160B (zh) 具有單層浮動閘極的非揮發性記憶體裝置
US9627393B2 (en) Height reduction in memory periphery
US9640544B2 (en) Integrated circuit with hydrogen absorption structure