JP2014019914A - High emissivity metal foil - Google Patents

High emissivity metal foil Download PDF

Info

Publication number
JP2014019914A
JP2014019914A JP2012160348A JP2012160348A JP2014019914A JP 2014019914 A JP2014019914 A JP 2014019914A JP 2012160348 A JP2012160348 A JP 2012160348A JP 2012160348 A JP2012160348 A JP 2012160348A JP 2014019914 A JP2014019914 A JP 2014019914A
Authority
JP
Japan
Prior art keywords
nickel
metal foil
foil
cobalt
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012160348A
Other languages
Japanese (ja)
Other versions
JP6045235B2 (en
Inventor
Masato Takami
正人 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50195164&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014019914(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2012160348A priority Critical patent/JP6045235B2/en
Publication of JP2014019914A publication Critical patent/JP2014019914A/en
Application granted granted Critical
Publication of JP6045235B2 publication Critical patent/JP6045235B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide metal foil for heat dissipation including electrical-electronic fields, which has excellent heat dissipation and thermal conductivity and has excellent flexibility.SOLUTION: In the metal foil, substrate metal foil is made of copper, aluminum, nickel, iron or stainless steel, at least one side of the substrate metal foil is stuck with nickel or cobalt fine particles and/or its aggregate, the surface thereof is provided with an alloy covering layer composed of one or more kinds selected from Co, Ni, Fe, Cu, P, Zn and Sn. The metal foil has a fine particle roughened face with a grain size of 0.1 to 2 μm, and has an emissivity of 0.40 or higher.

Description

本発明は、電気、電子関連機器における放熱基板用材料、放熱伝導材料としての金属箔に関するものである。   The present invention relates to a heat radiating substrate material and a metal foil as a heat radiating conductive material in electrical and electronic equipment.

金属は通常、熱伝導性が極めて高く、その特徴を活かしてあらゆる放熱手段に使用されているが、一方でその表面については熱放射性が極めて低いという特徴をもつ。たとえば銅は熱伝導率として金属において銀に次いで2番目の元素となるが、放射率は極めて低く、研磨面、光沢面ではおよそ0.02〜0.05である。熱伝導性の良さから放熱基板用としてよく使用されているが、熱放射性が低いためその高熱伝導率性能が十分にいかされていない。アルミニウムにおいても同様で、熱伝導性が非常に高く、一般によく使用されているものの、熱放射率が研磨面、光沢面ではやはり0.02〜0.06と低い。他の金属も同様である。また、表面を少し粗し、半光沢面、艶消し面としたところでもこの放射率にはあまり変化がなく、銅、アルミニウムともに0.05〜0.1程度である。   Metals usually have a very high thermal conductivity, and are used for all heat dissipation means by taking advantage of their characteristics. On the other hand, the surface has a characteristic of extremely low thermal radiation. For example, copper is the second element in the metal after silver in terms of thermal conductivity, but the emissivity is extremely low, and is about 0.02 to 0.05 on the polished and glossy surfaces. Although it is often used as a heat dissipation board because of its good thermal conductivity, its high thermal conductivity performance is not fully utilized due to its low thermal radiation. The same applies to aluminum, which has a very high thermal conductivity and is commonly used, but its thermal emissivity is still low at 0.02 to 0.06 on the polished and glossy surfaces. The same applies to other metals. Further, even when the surface is slightly roughened to make a semi-glossy surface and a matte surface, this emissivity is not so changed, and both copper and aluminum are about 0.05 to 0.1.

熱放散性においては最近ではLED基板をはじめとして、パワーモジュール基板、自動車電装用基板、有機EL基板、大電流基板など放熱基板の需要が益々増大してきている。従来からは放熱基板、大電流基板用としてメタルコア基板、メタルベース基板があり、具体的には銅基板、アルミ基板、鉄基板など各種の金属基板がある。   In terms of heat dissipation, the demand for heat dissipation boards such as LED boards, power module boards, automobile electrical boards, organic EL boards, and large current boards has been increasing. Conventionally, there are metal core substrates and metal base substrates for heat dissipation substrates and large current substrates, and specifically, there are various metal substrates such as copper substrates, aluminum substrates, and iron substrates.

特許文献1には10〜500μmのステンレス箔の片面に形成した銅を主成分とする層5〜50μmを設け、絶縁層によって銅箔と接着した金属基板が提案されている。また、特許文献2には銅箔、絶縁層、金属板において吸収率(放射率)が0.5以上の酸化膜を設けた、すなわち、5〜100μmの酸化アルミニウム膜をつくるものが提案されている。
特許文献3には、カーボングラファイトシートの横方向(シート面)には熱伝導が良好で熱拡散が良好であるものの、縦方向(厚さ方向)には熱伝導が極めて低く、問題があるため、カーボングラファイトの上にさらにセラミックフィラーシートを重ねるということが提案されている。
Patent Document 1 proposes a metal substrate in which 5 to 50 μm of a copper-based layer formed on one side of a 10 to 500 μm stainless steel foil is provided and bonded to the copper foil by an insulating layer. Patent Document 2 proposes a copper foil, an insulating layer, and a metal plate provided with an oxide film having an absorptivity (emissivity) of 0.5 or more, that is, an aluminum oxide film having a thickness of 5 to 100 μm.
In Patent Document 3, although heat conduction is good and heat diffusion is good in the lateral direction (sheet surface) of the carbon graphite sheet, there is a problem because heat conduction is extremely low in the longitudinal direction (thickness direction). It has been proposed to further stack a ceramic filler sheet on carbon graphite.

さらにLEDは近年省エネ製品として注目され急速に実用化され、光源として応用されてきている。液晶表示装置のバックライト用としても急速に拡大し、利用されている。白熱電球と比較してLEDは使用電力が少なく、省エネではあるが、発光効率としてはあまり高くはなく、やはりエネルギーが発熱として放出される。装置の高輝度化や大型化が進んでおりLEDの実装数が増加したり入力電流が増大するなどますます発熱対策が要求されている。熱が蓄積されるとLED自身も熱によって劣化してしまい、発光効率が低下し、寿命も短くなる。この発熱に対する除去対策は重要な課題である。最近では、熱伝導性フィラーを充填し、室温での折り曲げ性も良好な放熱性を有する絶縁材などを使用して10 〜 70μm の銅箔、アルミ箔を使用した金属ベース回路基板が開発されてきている。   In addition, LEDs have recently attracted attention as energy-saving products and have been rapidly put into practical use and applied as light sources. It is also rapidly expanding and used as a backlight for liquid crystal display devices. Compared to incandescent bulbs, LEDs use less power and save energy, but their luminous efficiency is not very high, and energy is released as heat. Increasing the brightness and size of the equipment is increasing, and countermeasures against heat generation are increasingly required, such as an increase in the number of LEDs mounted and an increase in input current. When heat is accumulated, the LED itself is also deteriorated by heat, the luminous efficiency is lowered, and the lifetime is shortened. Countermeasures against this heat generation are an important issue. Recently, metal-based circuit boards using copper foil and aluminum foil of 10 to 70 μm have been developed using insulating materials that are filled with heat conductive filler and have good heat dissipation at room temperature. ing.

このように近年の回路基板においては軽量化、薄厚化の点からもその熱対策が非常に重要な課題となっている。   Thus, in recent circuit boards, countermeasures against heat are very important from the viewpoint of weight reduction and thickness reduction.

特開2010−98246号公報JP 2010-98246 A 特許第2529780号公報Japanese Patent No. 2529780 特開2007−108547号公報JP 2007-108547 A

本発明は電気、電子部品などに応用できる熱放射性の高い金属材料を提供することを課題とする。   It is an object of the present invention to provide a metal material having high thermal radiation that can be applied to electric and electronic parts.

従来技術ではすなわち半導体やLEDなど発熱体のある回路に対して絶縁材を介し、ただ単に銅やアルミニウムの金属箔、板を貼り合わせるだけでは不十分である。熱伝導性は優れているものの、その金属表面に加工などを施さない場合は表面からの熱放散性がきわめて低く、放熱基板としては問題がある。そのため、金属の厚さを厚くすることや表面に放射率の高い有機系、セラミック系などの物質をコーティングするか、あるいは放熱フィンなどヒートシンクを設けることなどが必要であった。   In the prior art, that is, it is not sufficient to simply bond a copper or aluminum metal foil or plate through an insulating material to a circuit having a heating element such as a semiconductor or LED. Although the thermal conductivity is excellent, if the metal surface is not processed, the heat dissipation from the surface is extremely low, and there is a problem as a heat dissipation substrate. Therefore, it has been necessary to increase the thickness of the metal, coat the surface with an organic or ceramic material having high emissivity, or provide a heat sink such as a heat radiating fin.

金属放熱板が厚い場合は熱容量が大きく熱放散性が高まるが、価格高騰している銅などの場合は製品における価格が課題となり、重量も増加し、問題である。厚くなると比重が大きいため重量が著しく増加するだけでなく、折り曲げができなくなり、フレキシブル特性を断念せざるをえなくなる。本発明においては従来のように銅やアルミニウム、鉄などの厚板ではなく、箔という形態によって薄肉化、軽量化をはかるものである。熱伝導率は金属固有の値でありながら熱放射特性を向上したものである。   When the metal heat sink is thick, the heat capacity is large and the heat dissipation is improved. However, when the price of copper is high, the price of the product becomes a problem and the weight increases, which is a problem. When the thickness is increased, the specific gravity is increased, so that not only the weight is remarkably increased, but also the bending cannot be performed, and the flexible characteristics must be abandoned. In the present invention, it is not a thick plate such as copper, aluminum, and iron as in the prior art, but the thickness and weight are reduced by the form of a foil. The thermal conductivity is a value inherent to the metal, but the thermal radiation characteristics are improved.

銅の場合、銅を酸化させることにより表面の放射率は高くなるが、たとえば酸化処理としていわゆる黒化処理があるが、沸点近い高温の酸化剤の入った水溶液中に浸漬処理することが必要であり、作業環境としてよくなく、また、高温であるため箔などをしわなく処理することが困難である。   In the case of copper, the surface emissivity is increased by oxidizing copper. For example, there is a so-called blackening treatment as an oxidation treatment, but it is necessary to immerse it in an aqueous solution containing a high-temperature oxidizing agent close to the boiling point. In addition, the working environment is not good, and because of the high temperature, it is difficult to process the foil without wrinkling.

アルミニウムについてはその表面を陽極酸化する方法があるが、厚めの板が必要であり、薄い箔を利用することは難しい。また、その処理工程は所要時間として数十分を要するなど、長時間を必要とするためロールツウロールなどに適用することや、箔について量産性を得ることが実用上難しい。   There is a method of anodizing the surface of aluminum, but a thick plate is required, and it is difficult to use a thin foil. In addition, since the treatment process requires a long time such as several tens of minutes, it is practically difficult to apply to a roll-to-roll roll or the like and to obtain mass productivity for the foil.

さらにカーボンを金属板、箔に塗布する方法もあるが、膜厚方向の熱伝導性が不十分であり、カーボン材料及び、塗布の別工程が必要である。カーボン膜上にさらにセラミックシートを重ねることは熱拡散が優れるが多くの工程を必要とする。   Furthermore, there is a method of applying carbon to a metal plate or foil, but the thermal conductivity in the film thickness direction is insufficient, and a carbon material and a separate process of application are required. Stacking a ceramic sheet on the carbon film is excellent in thermal diffusion but requires many steps.

本発明においてはフレキシブル性を持つ箔形態に適用でき、金属以外の別材料を使用せずに金属箔表面を改良することで熱放射率を向上し、放熱基板用として提供できる金属箔を提案するものである。   In the present invention, a metal foil that can be applied to a flexible foil form, improves the thermal emissivity by improving the surface of the metal foil without using another material other than metal, and can be provided as a heat dissipation substrate is proposed. Is.

本発明は、このような従来の問題点を解決するため、すなわち、少なくとも基体金属箔の一方の面にコバルト又はニッケル又はそれらの合金微粒子及び/又はその集合体を付着し、その上にCo、Ni、Fe、Cu、P、Zn、Snのうちの1種以上からなる合金被覆層を設けた粒子径0.1〜2μmの微粒子粗化面を持ち、放射率が0.40以上であることを特徴とする金属箔である。   The present invention solves such a conventional problem, that is, deposits cobalt or nickel or their alloy fine particles and / or aggregates on at least one surface of the base metal foil, and Co, It has a coarse particle surface with a particle diameter of 0.1-2 μm provided with an alloy coating layer made of one or more of Ni, Fe, Cu, P, Zn, Sn, and has an emissivity of 0.40 or more Metal foil.

本発明の金属箔は熱放射性、熱伝導性が高く、放熱を必要とする特にフレキシブル性を考慮した電気、電子基板用途に好適であり、配線に対しての熱設計などに有利となる。
そして本発明材料は箔の形態をとるためロールツウロールの連続的な製造が可能であって、大量生産に極めて対応しやすく、本材料を提供することが容易である。
The metal foil of the present invention has high heat radiation and thermal conductivity, and is suitable for electrical and electronic board applications that require heat dissipation, particularly flexible, and is advantageous for thermal design of wiring.
And since this invention material takes the form of foil, continuous manufacture of a roll toe roll is possible, it is very easy to respond to mass production, and it is easy to provide this material.

本発明の構成の一例を表す断面概略図を示す。The cross-sectional schematic showing an example of the structure of this invention is shown. 実施例2で得られた粗化表面の走査型電子顕微鏡(SEM)観察写真を示す。The scanning electron microscope (SEM) observation photograph of the roughened surface obtained in Example 2 is shown. 実施例、比較例において熱放散に関する温度測定に使用した試験の断面図と 平面図を示す。Sectional and plan views of tests used for temperature measurement related to heat dissipation in Examples and Comparative Examples are shown.

放射率の高い金属箔を得るためにはまず、銅、アルミニウム、鉄、ステンレス、ニッケルなどを使い、厚さとしては10〜100μmが好適である。原箔製造から表面粗化までを連続製造とすることは理想的であり電気分解で製造する電解銅箔、電解ニッケル箔、電解鉄箔などは脱脂等の必要がなく、ある程度の表面粗化析出面が形成されているため有効である。しかしながら圧延箔でも脱脂の工程を挿入すれば良く、限定されるものではない。   In order to obtain a metal foil with high emissivity, first, copper, aluminum, iron, stainless steel, nickel or the like is used, and the thickness is preferably 10 to 100 μm. It is ideal to make continuous production from raw foil production to surface roughening, and electrolytic copper foil, electrolytic nickel foil, electrolytic iron foil, etc. produced by electrolysis do not require degreasing and have some surface roughening precipitation This is effective because the surface is formed. However, it is only necessary to insert a degreasing step in the rolled foil, which is not limited.

これらの金属箔表面上に本発明の一つの形態として、まず第一段階目としてコバルト又はコバルト合金の微粒子及び/又はその集合体を付着するが、その形成方法としては水溶液電気分解法で行う。液組成としてはコバルトの水溶性塩、及びアンモニアを使い、コバルトの水溶性塩としては硫酸コバルト、硫酸コバルトアンモニウム、塩化コバルト、炭酸コバルトなどが良い。コバルト濃度は金属濃度で15〜30g/lが好ましい。アンモニアは5〜30g/lが好ましく、アンモニア水以外にも硫酸アンモニウム、塩化アンモニウムなどの塩で添加しても良い。水溶液のpHは4〜7が好ましい。pHの調整は硫酸および水酸化ナトリウムなどを使用する。温度は30〜60℃が好ましい。電流密度は10〜30A/dm2 が良く、電気量として70〜250クーロン/dm2 が好ましい。このコバルト又はコバルト合金粒子の析出量はおよそ、1.5 〜 6.0 g/m2である。少ない場合は放射率が不十分であり、放熱性が低い。多い場合は放射率は高いものの、電気量を増加させても放射率の上昇がなくなり、生産性として効率が低い。 As one form of the present invention, cobalt or cobalt alloy fine particles and / or aggregates thereof are first deposited on the surface of these metal foils as a first step, and the formation method is carried out by an aqueous electrolysis method. As the liquid composition, a water-soluble salt of cobalt and ammonia are used. As the water-soluble salt of cobalt, cobalt sulfate, cobalt ammonium sulfate, cobalt chloride, cobalt carbonate and the like are preferable. The cobalt concentration is preferably 15 to 30 g / l in terms of metal concentration. Ammonia is preferably 5 to 30 g / l, and in addition to aqueous ammonia, it may be added as a salt such as ammonium sulfate or ammonium chloride. The pH of the aqueous solution is preferably 4-7. To adjust the pH, sulfuric acid and sodium hydroxide are used. The temperature is preferably 30 to 60 ° C. The current density is preferably 10 to 30 A / dm 2 and the amount of electricity is preferably 70 to 250 coulomb / dm 2 . The precipitation amount of the cobalt or cobalt alloy particles is approximately 1.5 to 6.0 g / m 2 . If it is small, the emissivity is insufficient and the heat dissipation is low. In many cases, the emissivity is high, but even if the amount of electricity is increased, the emissivity does not increase, and the productivity is low.

次にさらにその表面の粉落ちを抑えるために粗化粒子に被覆めっきを行う。被覆めっきはCo、Ni、Fe、Cu、P、Zn、Snのうちの1種以上からなる合金被覆層とする。なお、微粒子形成後、ニッケル又はコバルトなどで被覆することは固着性を上げることでは効果があるが、被覆量を増加させ過ぎると、放射率が低下し、放熱性が低下する。また、銅は放射率を下げるので添加する場合は少量におさえる。被覆層として特に好ましくはCo-P、Ni-P、Ni-Co-Pなどが良い。電気量としては100〜500クーロン/dm2が好ましい。被覆量は0.6〜6g/m2である。この被覆めっきを行うにはニッケルとリンの合金めっきの場合はニッケルの水溶性塩と、次亜リン酸、次亜リン酸ナトリウム、亜リン酸、亜リン酸ナトリウムなどを添加した水溶液でめっきする。このニッケル被覆めっき層中のリン含有量は 2〜20%である。 Next, in order to further prevent the surface from falling off, the roughened particles are coated. The coating is an alloy coating layer made of one or more of Co, Ni, Fe, Cu, P, Zn, and Sn. Note that coating with nickel or cobalt after the formation of the fine particles is effective in increasing the adhesion, but if the coating amount is increased too much, the emissivity decreases and the heat dissipation decreases. Also, copper reduces the emissivity, so if you add it, keep it small. As the coating layer, Co—P, Ni—P, Ni—Co—P and the like are particularly preferable. The amount of electricity is preferably 100 to 500 coulomb / dm 2 . The coating amount is 0.6-6 g / m 2 . In order to perform this coating plating, in the case of nickel-phosphorus alloy plating, plating is performed with an aqueous solution to which a water-soluble salt of nickel and hypophosphorous acid, sodium hypophosphite, phosphorous acid, sodium phosphite and the like are added. . The phosphorus content in this nickel-coated plating layer is 2 to 20%.

また本発明の別の形態としては、金属箔表面上にニッケル又はニッケル合金の粒子及びその集合体を付けるが、その形成方法としては水溶液電気分解法で行う。液組成としてはニッケルの水溶性塩、及びアンモニアを使い、ニッケルの水溶性塩としては硫酸ニッケル、硫酸ニッケルアンモニウム、塩化ニッケル、炭酸ニッケルなどが良い。ニッケル濃度は金属濃度で15〜30g/lが好ましい。アンモニアは5〜30g/lが好ましく、アンモニア水以外にも硫酸アンモニウム、塩化アンモニウムなどの塩で添加しても良い。水溶液のpHは4〜7が好ましい。pHの調整は硫酸および水酸化ナトリウムなどを使用する。温度は30〜60℃が好ましい。電流密度は10〜30A/dm2 が良く、電気量として150〜600クーロン/dm2 が好ましい。この粗化ニッケル又はニッケル合金粒子の析出量はおよそ3〜15g/m2である。少ない場合は放射率が不十分であり、放熱性が低い。多い場合は放射率は高いものの、電気量を増加させても放射率の上昇がなくなり、生産性として効率が低い。 As another embodiment of the present invention, nickel or nickel alloy particles and aggregates are attached on the surface of the metal foil. The formation method is an aqueous electrolysis method. As a liquid composition, nickel water-soluble salt and ammonia are used, and nickel water-soluble salt is preferably nickel sulfate, nickel ammonium sulfate, nickel chloride, nickel carbonate or the like. The nickel concentration is preferably 15 to 30 g / l in terms of metal concentration. Ammonia is preferably 5 to 30 g / l, and in addition to aqueous ammonia, it may be added as a salt such as ammonium sulfate or ammonium chloride. The pH of the aqueous solution is preferably 4-7. To adjust the pH, sulfuric acid and sodium hydroxide are used. The temperature is preferably 30 to 60 ° C. The current density is preferably 10 to 30 A / dm 2 and the amount of electricity is preferably 150 to 600 coulomb / dm 2 . The amount of the rough nickel or nickel alloy particles deposited is about 3 to 15 g / m 2 . If it is small, the emissivity is insufficient and the heat dissipation is low. In many cases, the emissivity is high, but even if the amount of electricity is increased, the emissivity does not increase, and the productivity is low.

次にさらに表面の粉落ちを抑えるためにその粗化粒子に被覆めっきを行う。被覆めっきはCo、Fe、Cu、P、Zn、Snのうちの1種以上からなる合金被覆層とする。なお、微粒子形成後、コバルト等で被覆することは固着性を上げることでは効果があるが、被覆量を過剰に増加すると、放射率が低下し、放熱性が低下する。銅は熱伝導性を向上させるが放射率を下げるので添加する場合は少量におさえる。被覆層として特に好ましくはCo-P、Co-Ni-Pなどが良い。電気量としては20〜200クーロン/dm2が好ましい。被覆量は0.6〜6g/m2である。 Next, in order to further prevent the powder from falling on the surface, the roughened particles are coated. The coating is an alloy coating layer made of one or more of Co, Fe, Cu, P, Zn, and Sn. Although coating with cobalt or the like after the formation of the fine particles is effective in increasing the fixing property, when the coating amount is excessively increased, the emissivity is decreased and the heat dissipation is decreased. Copper improves the thermal conductivity but lowers the emissivity, so if added, keep it small. As the coating layer, Co—P, Co—Ni—P or the like is particularly preferable. The amount of electricity is preferably 20 to 200 coulomb / dm 2 . The coating amount is 0.6-6 g / m 2 .

また、本発明のさらに別の形態として、上記のニッケル、コバルトの微粒子各元素単独でなく、ニッケルとコバルトの合金微粒子とし、その上に被覆めっきをCo、Ni、Fe、Cu、P、Zn、Snのうちの1種以上からなる合金被覆層を設けることによっても同様の効果を得ることができる。   Further, as yet another embodiment of the present invention, nickel and cobalt fine particles are not each element alone, but nickel and cobalt alloy fine particles, and coating plating thereon Co, Ni, Fe, Cu, P, Zn, The same effect can be obtained by providing an alloy coating layer composed of one or more of Sn.

以上、結果として得られる微粒子サイズは0.1〜2μm程度がよく、また互いに粒子が固着した集合体状として存在してもよく、この時は集合体として0.5〜5μm程度のサイズとなる。   As described above, the resulting fine particle size is preferably about 0.1 to 2 μm, and may exist as an aggregate in which the particles are fixed to each other. At this time, the aggregate has a size of about 0.5 to 5 μm.

粗化された表面の粗さとしては素地の粗さにもよるが、光沢面などに対してはRzjisで1.5μm〜5μmが好ましい。粗面に対しては粗面粗さにRzjisとして2〜6μmの粗度上昇が好ましい。銅箔粗面に公知の0.2〜2μm程度の銅粒子による粗化処理を施し、一例として硫酸-硫酸銅水溶液中で限界電流密度かそれ以上の電流密度により樹枝状銅を析出させ、この上に銅の被覆めっきをして、さらにその上に本発明の微粒子を形成させてもよい。但し、表面粗さが大きいほど放射率は高くなる傾向にはあるが、比例するものではなく、粗化量、粗化粒子形状、付着元素、基体箔などによって大きく変わる。   The roughness of the roughened surface depends on the roughness of the substrate, but it is preferably 1.5 μm to 5 μm in terms of Rzjis for glossy surfaces. For rough surfaces, it is preferable to increase the roughness by 2 to 6 μm as Rzjis. The rough surface of the copper foil is subjected to a roughening treatment with a known copper particle of about 0.2 to 2 μm. As an example, dendritic copper is deposited at a current density higher than or equal to the limit current density in a sulfuric acid-copper sulfate aqueous solution. The fine particles of the present invention may be further formed thereon by coating with copper. However, although the emissivity tends to increase as the surface roughness increases, it is not proportional and varies greatly depending on the amount of roughening, the shape of the roughened particles, the adhering elements, the substrate foil, and the like.

なお、アルミニウムまたはアルミニウム合金箔の場合はそのままでは上記したニッケル又はコバルトなどの合金粗化粒子の形成は難しいので、前処理として一般的な2回亜鉛置換処理し、その後ニッケル又はコバルト、又は適切な金属の0.5〜1.5μm程度の薄いめっき層を設け、この上に上記した各種金属又は合金粗化粗化粒子を付着させ、被覆めっき層を施す。
以上、上記した方法等によって得られた粗面は放射率が0.40以上となり、熱放射性の高い金属箔となる。
In the case of aluminum or aluminum alloy foil, since it is difficult to form alloy coarse particles such as nickel or cobalt as it is, the zinc substitution treatment is performed twice as a general pretreatment, and then nickel or cobalt or an appropriate one is used. A thin plating layer of about 0.5 to 1.5 μm of metal is provided, and the above-described various metal or alloy roughening and roughening particles are adhered thereon to apply a coating plating layer.
As described above, the rough surface obtained by the above-described method has an emissivity of 0.40 or more, and becomes a metal foil having high thermal radiation.

電解銅箔など電解箔の場合、通常析出面側の粗面とドラム面側の光沢面とあるが、このような場合、粗面側に樹脂と接着性の高い公知の粗化処理などを加え、一方で光沢面側は本発明の微粒子粗化処理および被覆めっきすることで放熱性と樹脂密着性の両者を兼ねそなえた金属箔が得られる。   In the case of electrolytic foil such as electrolytic copper foil, there is usually a rough surface on the precipitation surface side and a gloss surface on the drum surface side. In such a case, a known roughening treatment with high adhesion to the resin is added to the rough surface side. On the other hand, on the glossy surface side, a metal foil having both heat dissipation and resin adhesion can be obtained by subjecting the fine particle roughening treatment and coating plating of the present invention to coating.

放射率を向上させる面について、たとえば銅箔の粗面側に、上記しているような公知の銅粒子による粗化処理を施し、さらにこの上にニッケル又はコバルトとリンの合金めっき被覆をしてもあまり放射率の改善にはならない。コバルト又はニッケル又はそれらの合金微粒子粗化が重要な要素となる。   For the surface to improve the emissivity, for example, the rough surface side of the copper foil is subjected to the roughening treatment with the known copper particles as described above, and further, the alloy plating coating of nickel or cobalt and phosphorus is performed thereon. However, the emissivity does not improve much. Cobalt or nickel or alloy fine particle coarsening is an important factor.

以下に実施例を示す。但し本発明はこれらに限定されるものではない。   Examples are shown below. However, the present invention is not limited to these.

(実施例1)
35μm厚さの電解銅箔を酸洗浴(A)(硫酸5%水溶液)に10秒間浸漬し、次いで水洗し、その光沢面にコバルト粗化処理浴(B)において15A/dm2、10秒間陰極電解処理した。次いで水洗後その面をニッケルめっき浴(C)において3.8A/dm2、80秒間めっきし、水洗し乾燥させた。
Example 1
An electrolytic copper foil with a thickness of 35 μm is dipped in a pickling bath (A) (5% sulfuric acid aqueous solution) for 10 seconds, then washed with water, and its glossy surface is 15 A / dm 2 in a cobalt roughening bath (B) for 10 seconds. Electrolytically treated. After washing with water, the surface was plated with nickel plating bath (C) at 3.8 A / dm 2 for 80 seconds, washed with water and dried.

(B) 硫酸コバルト(七水塩) 90 g/l
アンモニア 14 g/l
pH 6.0
温度 45℃

(C) 硫酸ニッケル(六水塩) 250 g/l
塩化ニッケル(六水塩) 50 g/l
ホウ酸 20 g/l
pH 4.0
温度 40℃
(B) Cobalt sulfate (pentahydrate) 90 g / l
Ammonia 14 g / l
pH 6.0
Temperature 45 ℃

(C) Nickel sulfate (hexahydrate) 250 g / l
Nickel chloride (hexahydrate) 50 g / l
Boric acid 20 g / l
pH 4.0
40 ℃

この粗化処理銅箔の表面粗さはRzjis 4.0μm、放射率を測定すると0.71であった。表面粗さはサーフコーダSE500(小坂研究所製)を用いて測定し、放射率はD&S AERD 放射率計(京都電子工業製)を用いて測定した。この放射率計の測定波長領域は3〜30μmである。以下の実施例、比較例においても同じ測定を行った。また蛍光X線分析(RIX2000 理学電機製)で付着元素量を調べた。Ni、Coの付着量はそれぞれ 6.99 g/m2、2.47 g/m2 であった。以下の実施例、比較例においても同様に分析した。 The roughened copper foil had a surface roughness of Rzjis 4.0 μm and an emissivity of 0.71. The surface roughness was measured using Surfcoder SE500 (manufactured by Kosaka Laboratory), and the emissivity was measured using a D & S AERD emissometer (manufactured by Kyoto Electronics Industry). The measurement wavelength region of this emissometer is 3 to 30 μm. The same measurement was performed in the following examples and comparative examples. The amount of adhering elements was examined by fluorescent X-ray analysis (RIX2000, manufactured by Rigaku Denki). The adhesion amounts of Ni and Co were 6.99 g / m 2 and 2.47 g / m 2 , respectively. The following examples and comparative examples were similarly analyzed.

一方、20μm厚さのSUS304ステンレス箔を幅3mm、長さ11cmに切り取り、この両面に5.5×5.5cm、厚さ50μmの粘着性ポリイミドフィルムを貼り付け、さらに片側にこの粗化処理銅箔を処理面側を外側にして5×5cmの大きさで貼り付け、これを図3に示したように断熱材上に設置した。そして、ステンレス箔線に10cmの端子間距離をとり、整流器で2.6Aの一定電流を連続的に通電し、5のポイント(試料表面上)の発熱による温度を調べた。15分間の通電によりおよそ安定し、その温度は59℃であった。なお、試料を貼り付けない場合は同じ電流を通電し、15分間後安定した温度は70℃であった。 以下の実施例、比較例においても同じ測定を行った。   On the other hand, SUS304 stainless steel foil with a thickness of 20 μm is cut into a width of 3 mm and a length of 11 cm, an adhesive polyimide film with a thickness of 5.5 × 5.5 cm and a thickness of 50 μm is pasted on both sides, and this roughened copper foil is further processed on one side. The surface side was affixed with a size of 5 × 5 cm, and this was placed on a heat insulating material as shown in FIG. Then, a distance between terminals of 10 cm was taken on the stainless steel foil wire, and a constant current of 2.6 A was continuously applied with a rectifier, and the temperature due to heat generation at 5 points (on the sample surface) was examined. The temperature was stabilized by energization for 15 minutes, and the temperature was 59 ° C. When the sample was not attached, the same current was applied, and after 15 minutes, the stable temperature was 70 ° C. The same measurement was performed in the following examples and comparative examples.

以後の実施例、比較例を含めて結果を表1に示す。   The results are shown in Table 1 including the following examples and comparative examples.

(実施例2)
35μm厚さの電解銅箔をその光沢面について実施例1においてニッケルめっき浴(C)でのニッケルめっきをニッケルリンめっき浴(D)とし、2.5A/dm2、140秒間めっきしたこと以外すべて同じ方法で処理した。
(Example 2)
Same as Example 1 except that the electrolytic copper foil having a thickness of 35 μm was plated with nickel phosphorous plating bath (D) in the nickel plating bath (C) in Example 1 and plated with 2.5 A / dm 2 for 140 seconds. Processed in the way.

(D) 硫酸ニッケル(六水塩) 60 g/l
次亜リン酸ナトリウム(一水塩) 7 g/l
pH 4.0
温度 30℃
(D) Nickel sulfate (hexahydrate) 60 g / l
Sodium hypophosphite (monohydrate) 7 g / l
pH 4.0
Temperature 30 ℃

この粗化処理銅箔の各特性、異種元素付着量を調べた。その結果を表1に示す。
次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。
Each characteristic of this roughened copper foil and the amount of foreign element adhesion were examined. The results are shown in Table 1.
Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

(実施例3)
35μm厚さの電解銅箔をその光沢面について実施例2においてニッケルリンめっき浴(D)でのニッケルリンめっきを2.5A/dm2、100秒間めっきとしたこと以外すべて同じ方法で処理した。この粗化処理銅箔の各特性、異種元素付着量を調べた。その結果を表1に示す。
(Example 3)
The electrolytic copper foil having a thickness of 35 μm was treated on the glossy surface in the same manner except that nickel phosphorus plating in the nickel phosphorus plating bath (D) was performed at 2.5 A / dm 2 for 100 seconds in Example 2. Each characteristic of this roughened copper foil and the amount of foreign element adhesion were examined. The results are shown in Table 1.

次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。   Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

(実施例4)
35μm厚さの電解銅箔を酸洗浴(A)(硫酸5%水溶液)に10秒間浸漬し、次いで水洗し、その光沢面にニッケル粗化処理浴(E)において21A/dm2、20秒間陰極電解処理した。次いで水洗後その面をコバルトリンめっき浴(F)において2.5A/dm2、40秒間めっきし、水洗し乾燥させた。
Example 4
An electrolytic copper foil with a thickness of 35 μm is immersed in a pickling bath (A) (5% sulfuric acid aqueous solution) for 10 seconds, then washed with water, and its glossy surface is 21 A / dm 2 in a nickel roughening bath (E), cathode for 20 seconds. Electrolytically treated. After washing with water, the surface was plated with a cobalt phosphorus plating bath (F) at 2.5 A / dm 2 for 40 seconds, washed with water and dried.

(E) 硫酸ニッケル(六水塩) 110 g/l
アンモニア 25 g/l
pH 5.8
温度 43℃

(F) 硫酸コバルト(七水塩) 80 g/l
次亜リン酸ナトリウム(一水塩) 15 g/l
pH 4.7
温度 30℃
(E) Nickel sulfate (hexahydrate) 110 g / l
Ammonia 25 g / l
pH 5.8
Temperature 43 ℃

(F) Cobalt sulfate (pentahydrate) 80 g / l
Sodium hypophosphite (monohydrate) 15 g / l
pH 4.7
Temperature 30 ℃

この粗化処理銅箔の各特性、異種元素付着量を調べた。その結果を表1に示す。
次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。
Each characteristic of this roughened copper foil and the amount of foreign element adhesion were examined. The results are shown in Table 1.
Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

(実施例5)
35μm厚さの電解銅箔をその光沢面について実施例4においてニッケル粗化浴(E)の代わりに(G)浴にて19A/dm2、15秒間陰極電解したこと以外すべて同じ方法で処理した。
(Example 5)
A 35 μm-thick electrolytic copper foil was treated in the same manner except that the glossy surface was catholyzed for 15 seconds at 19 A / dm 2 in the (G) bath instead of the nickel roughening bath (E) in Example 4. .

(G) 硫酸ニッケル(六水塩) 90 g/l
アンモニア 16 g/l
pH 5.7
温度 45℃
(G) Nickel sulfate (hexahydrate) 90 g / l
Ammonia 16 g / l
pH 5.7
Temperature 45 ℃

この粗化処理銅箔の各特性、異種元素付着量を調べた。その結果を表1に示す。
次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。
Each characteristic of this roughened copper foil and the amount of foreign element adhesion were examined. The results are shown in Table 1.
Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

(実施例6)
35μm厚さの電解銅箔を酸洗浴(A)(硫酸5%水溶液)に10秒間浸漬し、次いで水洗し、その光沢面にニッケル粗化処理浴(E)において21A/dm2、20秒間陰極電解処理した。次いで水洗後その面をコバルトめっき浴(H)において2.5A/dm2、40秒間めっきし、水洗し乾燥させた。
(Example 6)
An electrolytic copper foil with a thickness of 35 μm is immersed in a pickling bath (A) (5% sulfuric acid aqueous solution) for 10 seconds, then washed with water, and its glossy surface is 21 A / dm 2 in a nickel roughening bath (E), cathode for 20 seconds. Electrolytically treated. After washing with water, the surface was plated with a cobalt plating bath (H) at 2.5 A / dm 2 for 40 seconds, washed with water and dried.

(H) 硫酸コバルト(七水塩) 200 g/l
pH 4.0
温度 40℃
(H) Cobalt sulfate (pentahydrate) 200 g / l
pH 4.0
40 ℃

この粗化処理銅箔の各特性、異種元素付着量を調べた。その結果を表1に示す。
次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。
Each characteristic of this roughened copper foil and the amount of foreign element adhesion were examined. The results are shown in Table 1.
Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

(実施例7)
35μm厚さの電解銅箔を酸洗浴(A)に10秒間浸漬し、次いで水洗し、その光沢面にコバルト粗化処理浴(B)において15A/dm2、8秒間陰極電解処理した。次いで水洗後その面をコバルト-リンめっき浴(F)において2.5A/dm2、120秒間めっきし、水洗し乾燥させた。
この粗化処理銅箔の各特性、異種元素付着量を調べた。その結果を表1に示す。
次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。
(Example 7)
An electrolytic copper foil having a thickness of 35 μm was immersed in a pickling bath (A) for 10 seconds, then washed with water, and its glossy surface was subjected to cathodic electrolytic treatment for 15 seconds at 15 A / dm 2 in a cobalt roughening treatment bath (B). After washing with water, the surface was plated with a cobalt-phosphorous plating bath (F) at 2.5 A / dm 2 for 120 seconds, washed with water and dried.
Each characteristic of this roughened copper foil and the amount of foreign element adhesion were examined. The results are shown in Table 1.
Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

(実施例8)
35μm厚さの電解銅箔を酸洗浴(A)に10秒間浸漬し、次いで水洗し、その光沢面にニッケル-コバルト粗化処理浴(I)において19 A/dm2、15秒間陰極電解処理した。次いで水洗後その面をニッケル-リンめっき浴(D)において2.5A/dm2、100秒間めっきし、水洗し乾燥させた。
(Example 8)
35μm thick electrolytic copper foil was immersed for 10 seconds in a pickling bath (A) of, and then washed with water, nickel on the glossy surface - was 19 A / dm 2, 15 sec cathodic electrolysis treatment in the cobalt roughening treatment bath (I) . After washing with water, the surface was plated with nickel / phosphorus plating bath (D) at 2.5 A / dm 2 for 100 seconds, washed with water and dried.

(I) 硫酸ニッケル(六水塩) 90 g/l
硫酸コバルト(七水塩) 20 g/l
アンモニア 16 g/l
pH 5.5
温度 45℃
(I) Nickel sulfate (hexahydrate) 90 g / l
Cobalt sulfate (pentahydrate) 20 g / l
Ammonia 16 g / l
pH 5.5
Temperature 45 ℃

この粗化処理銅箔の各特性、異種元素付着量を調べた。その結果を表1に示す。
次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。
Each characteristic of this roughened copper foil and the amount of foreign element adhesion were examined. The results are shown in Table 1.
Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

(実施例9)
30μm厚さの1N30アルミニウム箔を用意し、脱脂浴(J)(NaOH10 g/l水溶液)に30秒間浸漬し、水洗し、酸洗浴(K)(硝酸20%水溶液)に15秒間浸漬し、次いで水洗後、亜鉛置換浴(L)(ZnO 9g/l、NaOH 80 g/l、ロッセル塩25 g/l、塩化第二鉄四水塩2 g/l)に30秒間浸漬し、次いで酸洗浴(K)に20秒間浸漬後、水洗し、次に再び亜鉛置換浴(L)に30秒間浸漬した。次いで水洗後、片側光沢面をニッケルめっき浴(C)で3.8 A/dm2、80秒間陰極電解してニッケルめっき(下地めっき)した。
Example 9
Prepare 30μm thick 1N30 aluminum foil, soak in degreasing bath (J) (NaOH 10 g / l aqueous solution) for 30 seconds, rinse with water, soak in pickling bath (K) (20% nitric acid aqueous solution) for 15 seconds, then After washing with water, immerse in a zinc replacement bath (L) (ZnO 9 g / l, NaOH 80 g / l, Rossell salt 25 g / l, ferric chloride tetrahydrate 2 g / l) for 30 seconds, then pickling bath ( After being immersed in K) for 20 seconds, washed with water, and then again immersed in the zinc replacement bath (L) for 30 seconds. Next, after washing with water, the one-side glossy surface was subjected to cathodic electrolysis in a nickel plating bath (C) at 3.8 A / dm 2 for 80 seconds to perform nickel plating (undercoat plating).

次いで水洗し、その面をコバルト粗化処理浴(B)において15A/dm2、10秒間陰極電解処理した。さらに水洗後その面をニッケル-リンめっき浴(D)において2.5A/dm2、140秒間めっきし、水洗し乾燥させた。 Next, the surface was washed with water, and the surface was subjected to cathodic electrolysis in a cobalt roughening bath (B) at 15 A / dm 2 for 10 seconds. Further, after washing with water, the surface was plated with nickel / phosphorus plating bath (D) at 2.5 A / dm 2 for 140 seconds, washed with water and dried.

この粗化処理アルミ箔の各特性、異種元素付着量を調べた。その結果を表1に示す。ここでNi量は下地めっきNi量を含む。
次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。
Each characteristic of the roughened aluminum foil and the amount of foreign elements attached were examined. The results are shown in Table 1. Here, the amount of Ni includes the amount of base plating Ni.
Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

(比較例1)
35μm厚さの電解銅箔を用意し、光沢面側の表面粗さ、放射率を調べた。この銅箔について実施例1と同じ方法でポリイミドフィルムにはりつけ、SUS箔線の発熱による温度を調べた。各測定値を表1に示す。
(Comparative Example 1)
An electrolytic copper foil having a thickness of 35 μm was prepared, and the surface roughness and emissivity on the glossy side were examined. This copper foil was attached to a polyimide film in the same manner as in Example 1, and the temperature due to heat generation of the SUS foil wire was examined. Table 1 shows the measured values.

(比較例2)
35μm厚さの電解銅箔を用意し、その光沢面にめっき浴(D)において2.5A/dm2、60秒間陰極電解し、Ni-Pめっきを行い、水洗、乾燥した。
この粗化処理銅箔の各特性、異種元素付着量を調べた。その結果を表1に示す。
次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。
(Comparative Example 2)
An electrolytic copper foil having a thickness of 35 μm was prepared, and the glossy surface was subjected to cathodic electrolysis in a plating bath (D) at 2.5 A / dm 2 for 60 seconds, Ni—P plating was performed, washed with water, and dried.
Each characteristic of this roughened copper foil and the amount of foreign element adhesion were examined. The results are shown in Table 1.
Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

(比較例3)
35μm厚さの電解銅箔を酸洗浴(A)に10秒間浸漬し、次いで水洗し、その光沢面にニッケル-銅粗化処理浴(M)において8.8 A/dm2、20秒間陰極電解処理した。次いで水洗し乾燥させた。
(Comparative Example 3)
An electrolytic copper foil having a thickness of 35 μm was immersed in a pickling bath (A) for 10 seconds, then washed with water, and its glossy surface was subjected to cathodic electrolytic treatment at 8.8 A / dm 2 for 20 seconds in a nickel-copper roughening bath (M). . It was then washed with water and dried.

(M) 硫酸ニッケル (六水塩) 120 g/l
硫酸銅(五水塩) 50 g/l
pH 1.8
温度 35℃
(M) Nickel sulfate (hexahydrate) 120 g / l
Copper sulfate (pentahydrate) 50 g / l
pH 1.8
35 ℃

この粗化処理銅箔の各特性、異種元素付着量を調べた。その結果を表1に示す。
次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。
Each characteristic of this roughened copper foil and the amount of foreign element adhesion were examined. The results are shown in Table 1.
Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

(比較例4)
35μm厚さの電解銅箔を酸洗浴(A)に10秒間浸漬し、次いで水洗し、その光沢面にコバルト-銅粗化処理浴(N)において6.3 A/dm2、20秒間陰極電解処理した。次いで水洗後その面をニッケルめっき浴(C)において3.8A/dm2、20秒間めっきし、水洗し乾燥させた。
(Comparative Example 4)
An electrolytic copper foil having a thickness of 35 μm was immersed in a pickling bath (A) for 10 seconds, then washed with water, and its glossy surface was subjected to cathodic electrolytic treatment for 6.3 A / dm 2 in a cobalt-copper roughening bath (N) for 20 seconds. . Next, after washing with water, the surface was plated at 3.8 A / dm 2 for 20 seconds in a nickel plating bath (C), washed with water and dried.

(N) 硫酸コバルト (七水塩) 60 g/l
硫酸銅(五水塩) 10 g/l
pH 1.8
温度 40℃
(N) Cobalt sulfate (pentahydrate) 60 g / l
Copper sulfate (pentahydrate) 10 g / l
pH 1.8
40 ℃

この粗化処理銅箔の各特性、異種元素付着量を調べた。その結果を表1に示す。
次に、この銅箔について実施例1と同じ方法でポリイミドフィルムに貼り付け、SUS箔線の発熱による温度を調べ、その結果を表1に示す。
Each characteristic of this roughened copper foil and the amount of foreign element adhesion were examined. The results are shown in Table 1.
Next, this copper foil was affixed to a polyimide film in the same manner as in Example 1, the temperature due to heat generation of the SUS foil wire was examined, and the results are shown in Table 1.

以上から本発明の実施例においては比較例と比べて格段に高い放射率が測定され、ポリイミドフィルムを介して発熱に対して放熱効率が良く、発熱回路による温度上昇も低いことが確認された。   From the above, in the examples of the present invention, the emissivity was remarkably higher than that of the comparative example, and it was confirmed that the heat dissipation efficiency was good for the heat generation through the polyimide film, and the temperature rise by the heat generation circuit was also low.

本発明材料は熱放射率、熱伝導性に優れ、かつ箔の形態であるため軽量であり、フレキシブル性があり、LED基板、自動車電装用基板、パワーモジュール基板、有機EL基板などの放熱基板用、プリント配線板用としてはもとより、その他の放熱板や電気伝導性材料などその形状、特性を発揮できる分野に広範囲に応用できる。   The material of the present invention is excellent in thermal emissivity and thermal conductivity and is lightweight because it is in the form of a foil, and is flexible, for heat dissipation substrates such as LED substrates, automotive electronics substrates, power module substrates, and organic EL substrates. It can be applied to a wide range of fields that can exhibit its shape and characteristics, such as other heat sinks and electrically conductive materials, as well as for printed wiring boards.

10 基体金属箔
11 一次粒子層
12 被覆層
20 試料箔
21 ポリイミドフィルム
22 ステンレス箔
23 断熱材
24 測定ポイント
DESCRIPTION OF SYMBOLS 10 Base metal foil 11 Primary particle layer 12 Coating layer 20 Sample foil 21 Polyimide film 22 Stainless steel foil 23 Heat insulating material 24 Measurement point

Claims (6)

少なくとも基体金属箔の一方の面にコバルト又はコバルト合金微粒子及び/又はその集合体を付着し、次いでその上にCo、Ni、Fe、Cu、P、Zn、Snのうちの1種以上からなる合金被覆層を設けた粒子径0.1〜2μmの微粒子粗化面を持ち、放射率が0.40以上であることを特徴とする金属箔。   An alloy composed of at least one of Co, Ni, Fe, Cu, P, Zn and Sn on which cobalt or cobalt alloy fine particles and / or aggregates thereof are attached to at least one surface of the base metal foil A metal foil having a coarse particle surface with a particle diameter of 0.1 to 2 μm provided with a coating layer and an emissivity of 0.40 or more. 少なくとも基体金属箔の一方の面にニッケル又はニッケル合金微粒子及び/又はその集合体を付着し、次いでその上にCo、Fe、Cu、P、Zn、Snのうちの1種以上からなる合金被覆層を設けた粒子径0.1〜2μmの微粒子粗化面をもち、放射率が0.40以上であることを特徴とする金属箔。   At least one surface of the base metal foil is attached with nickel or nickel alloy fine particles and / or aggregates thereof, and then an alloy coating layer composed of one or more of Co, Fe, Cu, P, Zn, and Sn A metal foil characterized by having a roughened surface of fine particles having a particle diameter of 0.1 to 2 μm and having an emissivity of 0.40 or more. 少なくとも基体金属箔の一方の面にニッケルとコバルトの合金微粒子及び/又はその集合体を付着し、次いでその上にCo、Ni、Fe、Cu、P、Zn、Snのうちの1種以上からなる合金被覆がされた粒子径0.1〜2μmの微粒子粗化面を持ち、放射率が0.40以上であることを特徴とする金属箔。   At least one surface of the base metal foil is attached with alloy fine particles of nickel and cobalt and / or aggregates thereof, and then comprises one or more of Co, Ni, Fe, Cu, P, Zn, Sn on it. A metal foil characterized by having an alloy-coated coarse particle surface with a particle diameter of 0.1 to 2 μm and an emissivity of 0.40 or more. 合金被覆層の元素がコバルトとリンであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の金属箔。   The metal foil according to any one of claims 1 to 3, wherein the elements of the alloy coating layer are cobalt and phosphorus. 合金被覆層の元素がニッケルとリンであることを特徴とする請求項1又は請求項3に記載記載の金属箔。   The metal foil according to claim 1 or 3, wherein the elements of the alloy coating layer are nickel and phosphorus. 基体金属箔が銅、アルミニウム、ニッケル、鉄、ステンレスであることを特徴とする請求項1乃至請求項5のいずれか1項に記載の金属箔。   6. The metal foil according to claim 1, wherein the base metal foil is copper, aluminum, nickel, iron, or stainless steel.
JP2012160348A 2012-07-19 2012-07-19 High emissivity metal foil Ceased JP6045235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160348A JP6045235B2 (en) 2012-07-19 2012-07-19 High emissivity metal foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160348A JP6045235B2 (en) 2012-07-19 2012-07-19 High emissivity metal foil

Publications (2)

Publication Number Publication Date
JP2014019914A true JP2014019914A (en) 2014-02-03
JP6045235B2 JP6045235B2 (en) 2016-12-14

Family

ID=50195164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160348A Ceased JP6045235B2 (en) 2012-07-19 2012-07-19 High emissivity metal foil

Country Status (1)

Country Link
JP (1) JP6045235B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169168A (en) * 1992-11-19 1994-06-14 Nikko Guurudo Foil Kk Printed circuit copper foil and manufacture thereof
JPH08236930A (en) * 1995-02-23 1996-09-13 Nikko Gould Foil Kk Copper foil for printed circuit and its manufacture
WO2005079130A1 (en) * 2004-02-17 2005-08-25 Nippon Mining & Metals Co., Ltd. Copper foil having blackened surface or layer
WO2011090044A1 (en) * 2010-01-25 2011-07-28 Jx日鉱日石金属株式会社 Copper foil for secondary battery negative electrode power collector
JP2011179078A (en) * 2010-03-02 2011-09-15 Fukuda Metal Foil & Powder Co Ltd Treated copper foil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169168A (en) * 1992-11-19 1994-06-14 Nikko Guurudo Foil Kk Printed circuit copper foil and manufacture thereof
JPH08236930A (en) * 1995-02-23 1996-09-13 Nikko Gould Foil Kk Copper foil for printed circuit and its manufacture
WO2005079130A1 (en) * 2004-02-17 2005-08-25 Nippon Mining & Metals Co., Ltd. Copper foil having blackened surface or layer
WO2011090044A1 (en) * 2010-01-25 2011-07-28 Jx日鉱日石金属株式会社 Copper foil for secondary battery negative electrode power collector
JP2011179078A (en) * 2010-03-02 2011-09-15 Fukuda Metal Foil & Powder Co Ltd Treated copper foil

Also Published As

Publication number Publication date
JP6045235B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP5898462B2 (en) High emissivity metal foil
JP6297124B2 (en) Copper foil, copper foil with carrier foil and copper clad laminate
JP5977488B2 (en) Method for producing multilayer plated aluminum or aluminum alloy foil
CN105325067B (en) Conductive radiating fins and electric component and electronic product including conductive radiating fins
JP5947400B2 (en) Method for manufacturing metal printed circuit board
JP5215631B2 (en) Surface treated copper foil
JP5281732B2 (en) Surface processing method of aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having a surface processed by the method
KR101466759B1 (en) Manufacturing for metal printed circuit board
JP5406905B2 (en) A method for producing a copper foil for a printed circuit board comprising a fine granular surface that has high peel strength and is environmentally friendly.
JP2004263210A (en) SURFACE TREATED Al SHEET SUPERIOR IN SOLDERABILITY, HEAT SINK USING IT, AND METHOD FOR MANUFACTURING SURFACE TREATED Al SHEET SUPERIOR IN SOLDERABILITY
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
JP5185759B2 (en) Conductive material and manufacturing method thereof
CN102548202B (en) Roughly-processed copper foil and manufacture method thereof
JP6086531B2 (en) Silver plating material
JP6045235B2 (en) High emissivity metal foil
WO2015099156A1 (en) Composite metal foil, composite metal foil with carrier, metal-clad laminate obtained using said composite metal foil or said composite metal foil with carrier, and printed wiring board
JP7421208B2 (en) Surface treated copper foil and its manufacturing method
JP6398175B2 (en) Two-layer flexible wiring board and manufacturing method thereof
JP5484834B2 (en) Heat dissipation member and method for manufacturing the same
JP2008147208A (en) Manufacturing method of heat dissipation substrate for electric circuit
JP6403097B2 (en) Insoluble anode, plating apparatus, electroplating method, and copper clad laminate manufacturing method
TWI405510B (en) Roughening-treated copper foil and manufacturing method thereof
JP2014101581A (en) Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode
JP6049362B2 (en) Black aluminum material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161115

R150 Certificate of patent or registration of utility model

Ref document number: 6045235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RVOP Cancellation by post-grant opposition