JP2008147208A - Manufacturing method of heat dissipation substrate for electric circuit - Google Patents

Manufacturing method of heat dissipation substrate for electric circuit Download PDF

Info

Publication number
JP2008147208A
JP2008147208A JP2006328912A JP2006328912A JP2008147208A JP 2008147208 A JP2008147208 A JP 2008147208A JP 2006328912 A JP2006328912 A JP 2006328912A JP 2006328912 A JP2006328912 A JP 2006328912A JP 2008147208 A JP2008147208 A JP 2008147208A
Authority
JP
Japan
Prior art keywords
conductive metal
metal film
heat dissipation
electric circuit
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006328912A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yaginuma
希世史 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006328912A priority Critical patent/JP2008147208A/en
Publication of JP2008147208A publication Critical patent/JP2008147208A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a heat dissipation substrate for electric circuit in which adhesion strength of an underlying insulation layer and a conductive metal film can be enhanced with regard to an aluminum-based heat dissipation substrate for electric circuit. <P>SOLUTION: After forming an insulation layer having a porous layer on the surface by performing anodization of an aluminum base, a conductive metal film is formed on the insulation layer of the aluminum base by dry plating, e.g., sputtering or deposition, and then a conductive metal film is laminated thereon by electroplating. The conductive metal film formed by dry plating is constituted of a first layer consisting of at least one kind of Ni, Cr and Ti and a second layer of Cu formed thereon. Preferably, the conductive metal film formed by electroplating consists of Cu. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放熱性を重要視した電気回路用基板、特にアルミニウムベースの電気回路用放熱基板の製造方法に関する。   The present invention relates to a method for manufacturing an electric circuit board that places importance on heat dissipation, in particular, an aluminum-based electric circuit heat dissipation board.

従来から、インバータ、電源、あるいは車載用などに用いる電気回路用基板では、回路から発生する熱を放出するため高い放熱性が要求されている。また、最近では、レーザーダイオードや発光ダイオードなどのハイパワー化の流れから、これらのダイオードを実装する回路用基板についても、放熱性の優れた基板の要求が高まっている。   2. Description of the Related Art Conventionally, an electric circuit board used for an inverter, a power source, an on-vehicle device, and the like has been required to have high heat dissipation properties because heat generated from the circuit is released. Recently, with the trend toward higher power of laser diodes, light emitting diodes, and the like, there is an increasing demand for substrates with excellent heat dissipation for circuit boards on which these diodes are mounted.

このような要求に対して、放熱性の優れた様々な基板が開発されており、メタルベース基板もその1つである。例えば、アルミニウム又は銅の基材上にエポキシあるいはガラスエポキシで絶縁層を形成し、その上に銅箔を接着した電気回路用放熱基板が知られている。尚、これらメタルベースの電気回路用放熱基板は、表面の銅箔にエッチング加工を施し、回路パターンを形成して使用される。   In response to such demands, various substrates having excellent heat dissipation have been developed, and a metal base substrate is one of them. For example, a heat dissipation board for an electric circuit is known in which an insulating layer is formed of an epoxy or glass epoxy on an aluminum or copper base material, and a copper foil is bonded thereon. These metal-based heat dissipation substrates for electric circuits are used by forming a circuit pattern by etching the copper foil on the surface.

セラミックベース基板も放熱性に優れ、特に窒化アルミニウム基板は金属並の放熱性を有している。例えば、セラミック基材上に銅板又はアルミニウム板をロウ材で貼り付けるか、あるいは金属膜をスパッタリング又は蒸着により形成したものがあり、エッチング加工により回路パターンを形成して使用される。また、セラミック基材上に金属ペーストを印刷焼成することにより、回路パターンを形成した基板もある。   A ceramic base substrate is also excellent in heat dissipation, and in particular, an aluminum nitride substrate has heat dissipation comparable to that of metal. For example, there is a ceramic substrate in which a copper plate or an aluminum plate is attached with a brazing material, or a metal film is formed by sputtering or vapor deposition, and a circuit pattern is formed by etching and used. There is also a substrate on which a circuit pattern is formed by printing and baking a metal paste on a ceramic substrate.

これら電気回路用放熱基板の熱伝導率は、電気回路に多く使用されているプリント基板の熱伝導率がおよそ0.5W/mKであるのに対して、メタルベース基板の熱伝導率は約4W/mK程度と優れている。一方、セラミックベース基板の熱伝導率は、アルミナ基板で約20W/mK、窒化アルミニウム基板では約170W/mKと非常に優れている。   The thermal conductivity of these electric circuit heat dissipation boards is about 0.5 W / mK for the printed circuit board that is often used in electric circuits, whereas the thermal conductivity of the metal base board is about 4 W. / MK and excellent. On the other hand, the thermal conductivity of the ceramic base substrate is about 20 W / mK for the alumina substrate and about 170 W / mK for the aluminum nitride substrate, which is very excellent.

しかし、セラミックベース基板は、上記のごとく放熱性に優れているが、直接穴開け加工することができないという欠点を有しており、そのため固定手段として穴開け加工可能なメタル基材を貼り付ける等の対策が必要であった。一方、メタルベース基板は、穴開け加工が容易であるが、放熱性は十分満足すべきものとはいえなかった。   However, although the ceramic base substrate is excellent in heat dissipation as described above, it has a defect that it cannot be directly drilled, and therefore a metal base material that can be drilled is attached as a fixing means. This measure was necessary. On the other hand, the metal base substrate can be easily punched, but the heat dissipation is not satisfactory.

上記欠点を解決する放熱基板の製造方法として、特開平09−266374号公報には、アルミニウム基材に陽極酸化処理を施して表面に酸化アルミニウムの絶縁層(アルマイト層)を形成し、その絶縁層上に無電解金属めっきにより電気回路を形成する方法が提案されている。また、特開平10−004260号公報には、上記方法の改良技術であって、無電解めっきの後に電解めっきを行う方法が記載されている。   As a method for manufacturing a heat dissipation substrate that solves the above-mentioned drawbacks, Japanese Patent Application Laid-Open No. 09-266374 discloses that an aluminum base material is anodized to form an aluminum oxide insulating layer (alumite layer) on the surface, and that insulating layer A method for forming an electric circuit by electroless metal plating has been proposed. Japanese Patent Application Laid-Open No. 10-004260 discloses a technique for improving the above method, in which electrolytic plating is performed after electroless plating.

一般に、無電解めっきの場合、形成しためっき膜と下地との間の密着強度が発現し難い。そこで、上記した方法では、下地となるアルミニウム基材に陽極酸化処理を施すことにより、表面に多孔質層を有する酸化アルミニウムの絶縁層(アルマイト層)を形成し、その上に無電解めっきにより電気回路を直接形成することによって、絶縁層表面に存在する多孔質層の小さな開口穴を利用して密着強度の向上を図るものである。   In general, in the case of electroless plating, the adhesion strength between the formed plating film and the base is hardly exhibited. Therefore, in the above-described method, an aluminum oxide insulating layer (alumite layer) having a porous layer on the surface is formed by anodizing the underlying aluminum base material, and electroless plating is performed thereon. By directly forming the circuit, the adhesion strength is improved by utilizing the small opening hole of the porous layer existing on the surface of the insulating layer.

特開平09−266374号公報JP 09-266374 A 特開平10−004260号公報JP-A-10-004260

上記した特開平09−266374号公報及び特開平10−004260号公報の方法によれば、優れた放熱性を有し且つ穴開け加工が可能なアルミニウムベースの放熱基板を得ることができる。しかしながら、基本的に無電解めっきにより電気回路となる導電性金属層を形成しているため、改善されたとは言え、下地である絶縁層との密着強度が弱いという問題点を有していた。   According to the methods disclosed in Japanese Patent Application Laid-Open Nos. 09-266374 and 10-004260, an aluminum-based heat dissipation substrate having excellent heat dissipation and capable of being drilled can be obtained. However, since the conductive metal layer to be an electric circuit is basically formed by electroless plating, although it is improved, there is a problem that the adhesion strength with the insulating layer as a base is weak.

本発明は、上記した従来の問題点に鑑み、陽極酸化処理を施したアルミニウム基材に導電性金属膜を形成したアルミニウムベースの電気回路用放熱基板について、下地の絶縁層と導電性金属膜との密着強度を向上させることができる電気回路用放熱基板の製造方法を提供することを目的とする。   In view of the above-described conventional problems, the present invention relates to an aluminum-based heat dissipation substrate for an electric circuit in which a conductive metal film is formed on an anodized aluminum base material. An object of the present invention is to provide a method of manufacturing a heat dissipation board for an electric circuit that can improve the adhesion strength of the electric circuit.

本発明者は、陽極酸化処理により表面に絶縁層を形成したアルミニウム基材に導電性金属膜を形成する方法について検討を重ねた結果、最初にスパッタリング法や蒸着法などの乾式めっき法で薄い導電性金属膜を形成し、その上に更に電解めっき法で厚い導電性金属膜を形成することによって、下地である絶縁層との密着性に優れた導電性金属膜が得られることを見出した。   As a result of repeated studies on a method of forming a conductive metal film on an aluminum base material having an insulating layer formed on the surface by anodization, the present inventor first conducted a thin conductive process by a dry plating method such as a sputtering method or a vapor deposition method. It was found that by forming a conductive metal film and further forming a thick conductive metal film thereon by electrolytic plating, a conductive metal film having excellent adhesion to the underlying insulating layer can be obtained.

即ち、上記目的を達成するため、本発明が提供する電気回路用放熱基板の製造方法は、アルミニウム基材に陽極酸化処理を施すことにより表面に多孔質層を有する絶縁層を形成した後、そのアルミニウム基材の絶縁層上に、スパッタリング法や蒸着法などの乾式めっき法により導電性金属膜を形成し、次に電解めっき法により導電性金属膜を積層して形成することを特徴とするものである。   That is, in order to achieve the above object, the method for manufacturing a heat dissipation board for an electric circuit provided by the present invention comprises forming an insulating layer having a porous layer on the surface by subjecting an aluminum base material to anodization, A conductive metal film is formed on an insulating layer of an aluminum base material by a dry plating method such as a sputtering method or a vapor deposition method, and then formed by laminating a conductive metal film by an electrolytic plating method. It is.

上記本発明の電気回路用放熱基板の製造方法においては、前記乾式めっき法による導電性金属膜の膜厚が0.1〜0.3μmであり、前記電解めっき法による導電性金属膜の膜厚が5〜35μmであることが好ましい。   In the method for manufacturing a heat dissipation substrate for an electric circuit according to the present invention, the film thickness of the conductive metal film by the dry plating method is 0.1 to 0.3 μm, and the film thickness of the conductive metal film by the electrolytic plating method. Is preferably 5 to 35 μm.

また、前記乾式めっき法による導電性金属膜は、Ni、Cr、Tiの少なくとも1種を含む金属からなる第1層と、その上に積層して形成されたCuを含む金属からなる第2層とで構成されることが好ましく、且つ前記電解めっき法による導電性金属膜は、Cuを含む金属からなることが好ましい。   Further, the conductive metal film formed by the dry plating method includes a first layer made of a metal containing at least one of Ni, Cr, and Ti, and a second layer made of a metal containing Cu formed by being laminated thereon. And the conductive metal film formed by the electrolytic plating method is preferably made of a metal containing Cu.

本発明によれば、本来的に放熱性に優れている陽極酸化処理されたアルミニウム基材に導電性金属膜を直接形成するため放熱性に優れると共に、導電性金属膜を乾式めっきと電解めっきの2種類の方法により積層して形成するため、導電性金属膜と下地である絶縁層との密着強度に優れた電気回路用放熱基板を提供することができる。   According to the present invention, since the conductive metal film is directly formed on the anodized aluminum base which is inherently excellent in heat dissipation, the heat dissipation is excellent, and the conductive metal film is formed by dry plating and electrolytic plating. Since it is formed by laminating by two kinds of methods, it is possible to provide an electric circuit heat dissipation substrate having excellent adhesion strength between the conductive metal film and the underlying insulating layer.

本発明方法においては、まず、アルミニウム基材に陽極酸化処理を施すことにより、表面に多孔質層を有する絶縁層を基材表面に形成する。基材となるアルミニウムとしては、例えば、一般の99%アルミニウム若しくは10重量部以下の添加物を含有したアルミニウム合金が使用可能である。このアルミニウム基材を通常のごとく燐酸、蓚酸、硫酸の浴中で陽極酸化して、表面に多孔質層を有する酸化アルミニウム(アルマイト)の絶縁層を形成する。   In the method of the present invention, an insulating layer having a porous layer on the surface is first formed on the surface of the substrate by anodizing the aluminum substrate. As aluminum used as a base material, for example, general 99% aluminum or an aluminum alloy containing 10 parts by weight or less of an additive can be used. This aluminum substrate is anodized in a phosphoric acid, oxalic acid, and sulfuric acid bath as usual to form an insulating layer of aluminum oxide (alumite) having a porous layer on the surface.

上記絶縁層の厚さとしては、電気回路用の基板として十分な絶縁性を確保するために、処理時間などの陽極酸化処理条件を調整して、5μm以上とすることが望ましい。ただし、絶縁層の厚さを200μm以上にすることは、長い処理時間を要するため実用的ではない。最も好ましい絶縁層の厚さは、20〜100μmの範囲である。   The thickness of the insulating layer is preferably 5 μm or more by adjusting anodizing conditions such as processing time in order to ensure sufficient insulation as a substrate for an electric circuit. However, it is not practical to set the thickness of the insulating layer to 200 μm or more because a long processing time is required. The most preferable thickness of the insulating layer is in the range of 20 to 100 μm.

次に、上記陽極酸化処理により得られたアルミニウム基材表面の絶縁層上に、乾式めっき法により薄い導電性金属膜を形成する。この乾式めっき法により形成する導電性金属膜の膜厚は、0.1〜0.3μmの範囲が好ましい。この導電性金属膜の膜厚が0.1μm未満では下地である絶縁層との密着強度が不十分となり、また0.3μmを超えると膜形成に時間を要するからである。乾式めっき法としてはスパッタリング法又は蒸着法が好ましいが、得られる導電性金属膜と絶縁層の密着強度の点ではスパッタリング法が優れている。   Next, a thin conductive metal film is formed by a dry plating method on the insulating layer on the surface of the aluminum substrate obtained by the anodizing treatment. The thickness of the conductive metal film formed by this dry plating method is preferably in the range of 0.1 to 0.3 μm. This is because when the thickness of the conductive metal film is less than 0.1 μm, the adhesion strength with the underlying insulating layer becomes insufficient, and when it exceeds 0.3 μm, it takes time to form the film. The dry plating method is preferably a sputtering method or a vapor deposition method, but the sputtering method is superior in terms of the adhesion strength between the obtained conductive metal film and the insulating layer.

その後、上記乾式めっき法により形成した薄い導電性金属膜の上に、電解めっき法により厚い導電性金属膜を積層して形成する。この電解めっき法により形成する導電性金属膜の膜厚は、必要に応じて任意に定めることができるが、通常は5〜35μmの範囲が好ましい。この膜厚が5μm未満では、全体として導電性金属膜の膜厚が薄すぎるため導電性が不十分となる。また、この膜厚が35μmを超えると、膜形成に時間を要するため好ましくない。   Thereafter, a thick conductive metal film is laminated on the thin conductive metal film formed by the dry plating method by an electrolytic plating method. The film thickness of the conductive metal film formed by this electrolytic plating method can be arbitrarily determined as necessary, but is usually preferably in the range of 5 to 35 μm. If the film thickness is less than 5 μm, the conductive metal film is too thin as a whole, so that the conductivity is insufficient. Moreover, when this film thickness exceeds 35 micrometers, since time is required for film formation, it is not preferable.

乾式めっき法及び電解めっき法により形成する導電性金属膜は、CuやNiなど、必要な導電性を確保できる金属であればよい。好ましい態様としては、乾式めっき法による導電性金属膜を、Ni、Cr、Tiの少なくとも1種を含む金属からなる第1層と、その上に積層されたCuを含む金属からなる第2層とで構成する。また、電解めっき法による導電性金属膜としては、Cuを含む金属からなる導電性金属膜が好ましい。Ni、Cr、Tiの少なくとも1種を含む金属としては、Ni、Cr、Tiのほか、これらの合金、例えばNiCrなどがある。また、Cuを含む金属としては、Cu又はその合金を用いる。   The conductive metal film formed by the dry plating method and the electrolytic plating method may be a metal that can ensure necessary conductivity, such as Cu or Ni. As a preferred embodiment, a conductive metal film formed by a dry plating method includes a first layer made of a metal containing at least one of Ni, Cr and Ti, and a second layer made of a metal containing Cu laminated thereon. Consists of. Moreover, as a conductive metal film formed by electrolytic plating, a conductive metal film made of a metal containing Cu is preferable. Examples of the metal containing at least one of Ni, Cr, and Ti include Ni, Cr, and Ti, and alloys thereof such as NiCr. Moreover, Cu or its alloy is used as a metal containing Cu.

乾式めっき法による導電性金属膜の第1層は、アルミニウム基材の陽極酸化処理で形成された絶縁層(アルマイト層)、中でも表面の多孔質層と強固に結合して、密着強度を向上させるためのシード層となる。また、乾式めっき法による導電性金属膜の第2層は、次の電解めっき法による導電性金属膜と同種の金属、好ましくはCuを含む金属を用いることで、電解めっき法による導電性金属膜を優れた密着性にて効率よく形成することができる。   The first layer of the conductive metal film by dry plating is firmly bonded to the insulating layer (anodite layer) formed by anodizing the aluminum base, particularly the porous layer on the surface, thereby improving the adhesion strength. For the seed layer. Further, the second layer of the conductive metal film formed by the dry plating method uses the same type of metal as that of the conductive metal film formed by the subsequent electrolytic plating method, preferably a metal containing Cu, so that the conductive metal film formed by the electrolytic plating method is used. Can be efficiently formed with excellent adhesion.

このようして得られる本発明の電気回路用放熱基板は、導電性金属膜を乾式めっき法と電解めっき法の2種類の方法により積層して形成するため、上述した特開平09−266374号公報や特開平10−004260号公報に記載の従来の放熱基板と比較して、導電性金属膜と下地である絶縁層との密着強度がはるかに優れている。また、本発明の電気回路用放熱基板の熱伝導率は、上記した従来の放熱基板と同程度であり、具体的には60〜95W/mKの範囲と優れたものである。   Since the heat dissipation substrate for an electric circuit of the present invention thus obtained is formed by laminating a conductive metal film by two kinds of methods, dry plating method and electrolytic plating method, the above-mentioned JP 09-266374 A is disclosed. Compared with the conventional heat dissipation substrate described in JP-A-10-004260, the adhesion strength between the conductive metal film and the underlying insulating layer is far superior. Moreover, the thermal conductivity of the heat dissipation board for electric circuits of the present invention is comparable to that of the above-described conventional heat dissipation board, and specifically is excellent in the range of 60 to 95 W / mK.

尚、本発明の放熱基板の製造に際して、基板をネジ止めするためや、放熱性を更に向上させるためなどにより、部分的に陽極酸化処理を施したくない領域が存在する場合には、その領域を樹脂などで部分的にマスキングすることで対応することが可能である。また、本発明の放熱基板は、導電性金属膜にエッチング加工で回路パターンを形成して使用される。   In addition, when manufacturing the heat dissipation board of the present invention, if there is an area where it is not desired to partially anodize, for example, by screwing the board or further improving heat dissipation, the area is It is possible to cope by partially masking with a resin or the like. The heat dissipation substrate of the present invention is used by forming a circuit pattern on a conductive metal film by etching.

厚さ1mm、縦横それぞれ25.4mmの純度99%のアルミニウム基材に、陽極酸化処理を施して、表面に多孔質層を有する酸化アルミニウム(アルマイト)からなる絶縁層を厚さ約50μmとなるように形成した。   An insulating layer made of aluminum oxide (alumite) having a porous layer on the surface is applied to an aluminum base material having a thickness of 1 mm and a longitudinal purity of 25.4 mm and a purity of 99%, so that the thickness is about 50 μm. Formed.

このアルミニウム基材をスパッタリング装置内に設置して、装置内の真空度を10−7torrとし、NiCrをスパッタパワー500Wで2分間スパッタリングすることにより、基材表面の絶縁層上にNiCr膜を形成した。引き続き、同じ条件にてCuを3分間スパッタリングして、NiCr膜上にCr膜を積層して形成した。 This aluminum substrate is placed in a sputtering apparatus, the degree of vacuum in the apparatus is 10 −7 torr, and NiCr is sputtered at a sputtering power of 500 W for 2 minutes to form a NiCr film on the insulating layer on the substrate surface. did. Subsequently, Cu was sputtered for 3 minutes under the same conditions, and a Cr film was laminated on the NiCr film.

その後、上記乾式めっき法による導電性金属膜形成後の基材を取り出し、電気めっき法によりCu膜を形成した。用いた電気めっき液の組成は、CuSO:90g/l、HSO:180g/l、Cl:50mg/lとした。めっき条件は、液温25℃、電流密度3A/dm、めっき時間30分間とした。 Thereafter, the substrate after forming the conductive metal film by the dry plating method was taken out, and a Cu film was formed by the electroplating method. The composition of the electroplating solution used was CuSO 4 : 90 g / l, H 2 SO 4 : 180 g / l, and Cl : 50 mg / l. The plating conditions were a liquid temperature of 25 ° C., a current density of 3 A / dm 2 , and a plating time of 30 minutes.

水洗後60℃で2時間乾燥して、アルミニウムベースの放熱基板を得た。この放熱基板の断面を顕微鏡観察した結果、導電性金属膜の膜厚は、乾式めっき法による第1層のNiCr膜が0.1μm、第2層のCu膜が0.2μm、電解めっき法によるCu膜が20μmであることが確認された。   After washing with water and drying at 60 ° C. for 2 hours, an aluminum-based heat dissipation substrate was obtained. As a result of microscopic observation of the cross section of the heat dissipation substrate, the thickness of the conductive metal film was 0.1 μm for the first NiCr film by dry plating, 0.2 μm for the second Cu film, and by electrolytic plating. It was confirmed that the Cu film was 20 μm.

得られた放熱基板の表面に、スクリーン印刷によって回路パターンを形成した後、エッチングを行うことにより2×2mmのドットパターンを5個形成した。この5個のパターンをパッドとして、直径0.6mmの錫めっき銅線を垂直になるように半田付けした後、垂直方向に引き上げる半田プル試験を実施して、導電性金属膜の密着強度を測定した。この半田プル試験を10枚の放熱基板に実施し、測定した密着強度の最大値、最小値、平均値を下記表1に示した。   A circuit pattern was formed on the surface of the obtained heat dissipation substrate by screen printing, and then etching was performed to form five 2 × 2 mm dot patterns. Using these five patterns as pads, a 0.6mm diameter tin-plated copper wire is soldered so as to be vertical, and then a solder pull test is performed to pull it up in the vertical direction to measure the adhesion strength of the conductive metal film. did. The solder pull test was performed on 10 heat dissipating substrates, and the maximum, minimum, and average values of the measured adhesion strength are shown in Table 1 below.

比較のため、上記スパッタリングによる乾式めっき法の代わりに無電解めっき法を用いて、アルミニウムベースの放熱基板を作製した。即ち、上記と同じアルミニウム基材に、陽極酸化処理により厚さ約50μmの絶縁層を形成した。この基材を、組成がPdCl:1ml/l、HCl:1ml/lの前処理液に液温25℃で1分間浸漬した後、市販の無電解Niめっき浴に10分間浸漬して、膜厚約3μmのNi膜を形成した。次に、組成がCuSO:90g/l、HSO:180g/l、Cl:50mg/lの電解Cuめっき浴にて、液温25℃、電流密度3A/dm、めっき時間30分間の処理を行って、膜厚約20μmのCu膜を形成した。 For comparison, an aluminum-based heat dissipation substrate was fabricated using an electroless plating method instead of the dry plating method by sputtering. That is, an insulating layer having a thickness of about 50 μm was formed on the same aluminum base material as described above by anodic oxidation. This substrate was immersed in a pretreatment solution having a composition of PdCl 2 : 1 ml / l, HCl: 1 ml / l for 1 minute at a liquid temperature of 25 ° C., and then immersed in a commercially available electroless Ni plating bath for 10 minutes to form a film. A Ni film having a thickness of about 3 μm was formed. Next, in an electrolytic Cu plating bath having a composition of CuSO 4 : 90 g / l, H 2 SO 4 : 180 g / l, Cl : 50 mg / l, the liquid temperature is 25 ° C., the current density is 3 A / dm 2 , and the plating time is 30. A Cu film having a thickness of about 20 μm was formed by performing a process for a minute.

得られた比較例の放熱基板について、上記と同様に、2×2mmのドットパターンを5個形成し、半田付けした錫めっき銅線を垂直方向に引き上げる半田プル試験を実施した。この半田プル試験を10枚の放熱基板に実施し、測定した密着強度の最大値、最小値、平均値を、上記本発明例の結果と併せて下記表1に示した。   About the obtained heat dissipation board | substrate of the comparative example, 5 dot patterns of 2x2mm were formed similarly to the above, and the solder pull test which pulls up the soldered tin plating copper wire to the orthogonal | vertical direction was implemented. The solder pull test was performed on 10 heat dissipating substrates, and the maximum value, the minimum value, and the average value of the measured adhesion strength were shown in Table 1 below together with the results of the above-described examples of the present invention.

Figure 2008147208
Figure 2008147208

上記表1から分るように、陽極酸化処理したアルミニウム基材上に、乾式めっき法のスパッタリングと電解めっき法を用いて導電性金属膜を形成した本発明例による放熱基板は、従来法と同様に無電解めっき法と電解めっき法を用いて導電性金属膜を形成した比較例による放熱基板に比べて、約2倍以上の密着強度を得ることができた。尚、上記本発明例及び比較例の各放熱基板の熱伝導率は、いずれも85W/mK程度であった。   As can be seen from Table 1 above, the heat dissipation substrate according to the example of the present invention in which a conductive metal film is formed on an anodized aluminum base using sputtering and electrolytic plating of the dry plating method is the same as the conventional method. Compared to the heat dissipation substrate according to the comparative example in which the conductive metal film was formed by using the electroless plating method and the electrolytic plating method, the adhesion strength of about twice or more could be obtained. The thermal conductivity of each of the heat dissipation substrates of the present invention examples and comparative examples was about 85 W / mK.

Claims (4)

アルミニウム基材に陽極酸化処理を施すことにより表面に多孔質層を有する絶縁層を形成した後、そのアルミニウム基材の絶縁層上に、乾式めっき法により導電性金属膜を形成し、次に電解めっき法により導電性金属膜を積層して形成することを特徴とする電気回路用放熱基板の製造方法。   After forming an insulating layer having a porous layer on the surface by anodizing the aluminum substrate, a conductive metal film is formed on the insulating layer of the aluminum substrate by dry plating, and then electrolyzed. A method of manufacturing a heat dissipation substrate for an electric circuit, wherein the conductive metal film is formed by laminating by a plating method. 前記乾式めっき法による導電性金属膜の膜厚が0.1〜0.3μmであり、前記電解めっき法による導電性金属膜の膜厚が5〜35μmであることを特徴とする、請求項1に記載の電気回路用放熱基板の製造方法。   The film thickness of the conductive metal film by the dry plating method is 0.1 to 0.3 μm, and the film thickness of the conductive metal film by the electrolytic plating method is 5 to 35 μm. The manufacturing method of the heat sink for electric circuits as described in any one of Claims 1-3. 前記乾式めっき法による導電性金属膜が、Ni、Cr、Tiの少なくとも1種を含む金属からなる第1層と、その上に積層して形成されたCuを含む金属からなる第2層とで構成され、且つ前記電解めっき法による導電性金属膜がCuを含む金属からなることを特徴とする、請求項1又は2に記載の電気回路用放熱基板の製造方法。   The conductive metal film formed by the dry plating method includes a first layer made of a metal containing at least one of Ni, Cr, and Ti, and a second layer made of a metal containing Cu formed by being laminated thereon. The method for manufacturing a heat dissipation substrate for an electric circuit according to claim 1, wherein the conductive metal film is made of a metal containing Cu and is formed by the electrolytic plating method. 前記乾式めっき法として、スパッタリング法又は蒸着法を用いることを特徴とする、請求項1〜3のいずれかに記載の電気回路用放熱基板の製造方法。   The method for manufacturing a heat dissipation substrate for an electric circuit according to claim 1, wherein a sputtering method or a vapor deposition method is used as the dry plating method.
JP2006328912A 2006-12-06 2006-12-06 Manufacturing method of heat dissipation substrate for electric circuit Pending JP2008147208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006328912A JP2008147208A (en) 2006-12-06 2006-12-06 Manufacturing method of heat dissipation substrate for electric circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328912A JP2008147208A (en) 2006-12-06 2006-12-06 Manufacturing method of heat dissipation substrate for electric circuit

Publications (1)

Publication Number Publication Date
JP2008147208A true JP2008147208A (en) 2008-06-26

Family

ID=39607091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328912A Pending JP2008147208A (en) 2006-12-06 2006-12-06 Manufacturing method of heat dissipation substrate for electric circuit

Country Status (1)

Country Link
JP (1) JP2008147208A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480834A (en) * 2010-11-23 2012-05-30 三星电机株式会社 Heat-radiating substrate and method of manufacturing the same
JP2013021283A (en) * 2011-07-08 2013-01-31 Samsung Electro-Mechanics Co Ltd Power module package and manufacturing method of the same
CN113122845A (en) * 2021-04-03 2021-07-16 郑小宝 Preparation method of aluminum alloy metal plated part
CN118064833A (en) * 2024-04-16 2024-05-24 杭州美迪凯光电科技股份有限公司 Anisotropic conductive film coating structure and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480834A (en) * 2010-11-23 2012-05-30 三星电机株式会社 Heat-radiating substrate and method of manufacturing the same
JP2012114393A (en) * 2010-11-23 2012-06-14 Samsung Electro-Mechanics Co Ltd Heat dissipation substrate and manufacturing method for the same
US8553417B2 (en) 2010-11-23 2013-10-08 Samsung Electro-Mechanics Co., Ltd. Heat-radiating substrate and method of manufacturing the same
JP2013021283A (en) * 2011-07-08 2013-01-31 Samsung Electro-Mechanics Co Ltd Power module package and manufacturing method of the same
US8792239B2 (en) 2011-07-08 2014-07-29 Samsung Electro-Mechanics Co., Ltd. Power module package and method for manufacturing the same
CN113122845A (en) * 2021-04-03 2021-07-16 郑小宝 Preparation method of aluminum alloy metal plated part
CN118064833A (en) * 2024-04-16 2024-05-24 杭州美迪凯光电科技股份有限公司 Anisotropic conductive film coating structure and preparation method thereof

Similar Documents

Publication Publication Date Title
US5917157A (en) Multilayer wiring board laminate with enhanced thermal dissipation to dielectric substrate laminate
US20150118391A1 (en) Thermal management circuit materials, method of manufacture thereof, and articles formed therefrom
TWI558853B (en) Insulated metal substrate
JP5706386B2 (en) Two-layer flexible substrate and printed wiring board based on two-layer flexible substrate
JPH046115B2 (en)
US20150208499A1 (en) Ceramic circuit board of laser plate copper and manufacturing method thereof
KR100969412B1 (en) Multilayer printed circuit board and a fabricating method of the same
JP4705143B2 (en) Method for manufacturing printed circuit board
WO2007091976A1 (en) Anodised aluminium, dielectric, and method
KR100917841B1 (en) Metal substrate for electronic components module and electronic components module using it and method of manufacturing metal substrate for electronic components module
KR100643320B1 (en) Pcb with metal core substrate and method for manufacturing thereof
JP2002520195A (en) Improved method of forming conductive traces and printed circuits produced thereby
KR20050103511A (en) Surface-treated al sheet excellent in solderability, heat sink using the same, and method for producing surface-treated al sheet excellent in solderability
JP2008147208A (en) Manufacturing method of heat dissipation substrate for electric circuit
JP2012212788A (en) Metal base substrate and manufacturing method of the same
JP5869404B2 (en) Wiring board and manufacturing method thereof
JP5069485B2 (en) Metal base circuit board
JP2014116351A (en) High thermal-conductivity printed wiring board and method of manufacturing the same
JP2008159647A (en) Manufacturing method of heat dissipation substrate for electric circuit
JP2009111249A (en) Manufacturing method of aluminum-based radiating substrate for electric circuit
JP2009123980A (en) Aluminum-based heat dissipation substrate for electric circuit and method for manufacturing the same
JP2008159827A (en) Heat dissipation substrate for electric circuit and its manufacturing method
JP2008153556A (en) Manufacturing method of heatsink substrate for electric circuit
KR101088410B1 (en) Surface treatment method for metal pcb substrate for improving heat dissipation
JP4165195B2 (en) Metal core board and metal core wiring board