JP2014019032A - 積層合板の製造方法 - Google Patents

積層合板の製造方法 Download PDF

Info

Publication number
JP2014019032A
JP2014019032A JP2012159008A JP2012159008A JP2014019032A JP 2014019032 A JP2014019032 A JP 2014019032A JP 2012159008 A JP2012159008 A JP 2012159008A JP 2012159008 A JP2012159008 A JP 2012159008A JP 2014019032 A JP2014019032 A JP 2014019032A
Authority
JP
Japan
Prior art keywords
oil palm
thin plate
laminated
compression
lauan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012159008A
Other languages
English (en)
Other versions
JP6083691B2 (ja
Inventor
Masao Fukuyama
昌男 福山
Takayuki Ito
隆行 伊藤
Takashi Aono
高志 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mywood2 Corp
Original Assignee
Mywood2 Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mywood2 Corp filed Critical Mywood2 Corp
Priority to JP2012159008A priority Critical patent/JP6083691B2/ja
Publication of JP2014019032A publication Critical patent/JP2014019032A/ja
Application granted granted Critical
Publication of JP6083691B2 publication Critical patent/JP6083691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Veneer Processing And Manufacture Of Plywood (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

【課題】使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板を製造すること。
【解決手段】所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成し、それを圧密加工したとき、1枚の厚みが1mm以上からなる1枚以上のオイルパーム薄板Wと、所定長のラワン幹LDまたはシナ幹または針葉樹幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板L、またはシナ薄板、または針葉樹薄板の何れかの1枚以上をオイルパーム薄板Wに面して配置し、それらを圧縮、固定化し、一体に接合したものである。
【選択図】図1

Description

本発明は、ヤシの一種であるオイルパーム(油椰子;oil palm)から得られた接着剤等による積層合板に関するもので、オイルパームを薄く剥いて形成したオイルパーム薄板を用いた積層合板の製造方法に関するものである。このオイルパームの積層合板は、家屋の床材及び壁材、隔壁材等の建築材料、家具材料、ボートを含む船舶、その他の屋内・屋外のデッキ及び遊具、車両のボディ本体の外装及び内装に使用できるものである。
なお、一般に「板」とは、広辞苑によれば「材木を薄く平たくひきわったもの」、「金属や石などを薄く平たくしたもの」等として説明されるが、ここでは、オイルパームが木材の性状を有するものではなく、竹材に近い性状もつものであるが、オイルパームにおいても「薄く平たくしたもの」を「薄板」と呼ぶこととする。また、オイルパームの材料を仔細に呼称する用語がないので、木材と同様に扱うこととする。
一般に、オイルパームの成木は単一の幹からなり高さ10〜20m以上に達する。葉は羽状で長さ3〜5m程度、若木で年間に約30枚、樹齢10年以上の木では約20枚が新しく生えている。花は3枚の花弁と3枚のがく(萼)からなり、個々には小さいが密集した集団を形成し、受粉してから果実が成熟するまでは約6ヶ月を要している。果実は油分の多い多肉質の果肉(中果皮)と、同じく油分に富んだ1つの種子からなり、果実の重さは1房あたり40〜50kg程度になる。
19世紀後半から東南アジアのプランテーションで栽培されるようになり、オイルパームから採れる植物性油脂のヤシ油(palm oil)は、大豆や菜種等他の植物性油脂よりも生産性が高く、安価であることから、マーガリン、揚げ物用の油等の食用に使用されている。また、石鹸、化粧品等にも多用されている。近年、ヤシ油(palm oil)は、マレーシやインドネシア等の東南アジアから日本への輸出される量も増大している。したがって、オイルパームといえば、果肉と種子から取れる油脂の意味と、油椰子の幹自体を指す場合もある。
通常、学術的にはオイルパームは、ヤシ科アブラヤシ属に分類される植物の総称で、西アフリカを原産とするギニアアブラヤシ(Elaeis guineensis)と、中南米原産のアメリカアブラヤシ(Elaeis oleifera)の2種類が有名であり、栽培品種の中にはギニアアブラヤシとアメリカアブラヤシの交配品種も存在する。特に、植物性油脂の原料となる椰子の一種であるアブラヤシ(油椰子)を「オイルパーム」と呼ぶ場合もある。
即ち、オイルパームは、果肉と種子から油脂が取れ、単位面積当たり得られる油脂の量は他の植物を群を抜いていることから、商業作物としてマレーシア等の東南アジア諸国を中心に大規模なプランテーション農業が行われているので、油脂の方を「オイルパーム」と呼ぶ方が著名になりつつあるかもしれない。
しかし、本発明においては、果肉と種子から取れる油脂のオイルパームを意味するものではなく、油椰子の幹自体または植物の個体全体をオイルパームと呼ぶこととする。
このオイルパームを扱った特許出願には、特許文献1(空果房を扱った発明)に掲載のものがある。特許文献1では、オイルパームを利用した建築材料の製造方法を開示している。具体的には、パーム繊維を洗滌した後乾燥油が95%になるように乾燥する段階と、前記乾燥したパーム繊維を1〜1.5cm単位で破送・切断してパーム繊維チップを製造する段階と、前記乾燥したパーム繊維を200メッシュの粒経で粉碎する段階と、竹を200メッシュの粒経で粉碎する段階と、前記パーム繊維チップ、前記パーム繊維粉末、前記竹粉末、バイオセラミック粉末を1:1:1:1の比率で混合して主原料を製造する段階と、石炭の炭化物から200メッシュの粒経を有するフライアッシュを抽出する段階と、火炎防止剤と耐熱性樹脂である硬化用難燃樹脂を1:1の比率で混合・溶融してバインダーを製造する段階と、前記製造されたバインダー20〜30重量%、前記混合した主原料50〜60重量%、フライアッシュ20〜25重量%の粉末を混合して高液状で練る段階と、前記ねりを150〜200℃の温度を発散する成形部間を通過させて1次で焼く段階と、前記焼かれた成形物を多数の上部ローラー群と下部ローラー群が後側に行くほどその間隔が徐徐に細くなるように配置された圧延部の間を通過させて徐徐に薄い厚さで圧延する段階と、前記成形物を多数の上部ローラー群と下部ローラー群からなった冷却部を通過させながら0〜4℃で冷凍させる段階と、切断シリンダーによって昇降する刃により前記成形物を一定な長さ単位で切断する段階との工程から成り立っている。
この特許文献1では、パーム繊維を主原料として利用することにより人体に無害であるだけではなく、パーム繊維を1〜1.5cmで切断したものをパーム繊維粉末とともに使用するので、パーム繊維が周辺の他の内容物との仮橋役を成して堅固な建築材料となり、竹とバイオセラミックにより抗菌及び脱臭機能を具現化することができる。また、カビが発生しないで、遠赤外線、陰イオンの発生が期待できる。そして、不燃性廃材をリサイクルすることができ、製作コストが安くなる。更に、全ての組成物から有毒性ガスが発生しないので建築材料として安全性が高いとされている。
また、特許文献2(空果房を扱った発明)では、板状体または成形体は、油ヤシの空果房を解繊して得た油ヤシ繊維にゴム状弾性を示す樹脂を付着し、圧縮成形することにより得られた板状体または成形体である。
したがって、オイルパームの空果房を解繊して得た油ヤシ繊維は、例えば、ココヤシ繊維等の他のヤシ繊維に比して、繊維表面にパームオイルが付着しているために繊維の撥水性が優れていると共に、繊維中に含まれるセルロース及びリグニンの量が相対的に多いので、耐水性に優れる。加えて、油ヤシ繊維は、ココヤシ繊維等の他のヤシ繊維に比して、繊維強度が大であると共に、繊維径が大きく、かつ、繊維長が長いので、寸法安定性が優れている。また、油ヤシ繊維は、その表面の凹凸が大きいと共に屈曲の強度が大きくて繊維同士のからみあいが大きいから、このことによっても寸法安定性が高められる。そのため、この板状体または成形体は、吸水、吸湿時における寸法安定性が優れている。
そして、油ヤシ繊維表面の凹凸が大きいので、ゴム状弾性を示す樹脂が油ヤシ繊維の表面の空隙に侵入して固化又は硬化し、これが釘または楔のように作用して、所謂、アンカー効果を発揮するから、油ヤシ繊維はゴム状弾性を示す樹脂により強く結合する。このことも吸水、吸湿時における寸法安定性の向上に寄与していると考えられる。
油ヤシ繊維は、例えば、ココヤシ繊維等の他のヤシ繊維に比して、繊維の剛性及び強度が大であると共に、繊維径が大きく、かつ、繊維長が長いので、弾性回復性に優れている。また、油ヤシ繊維は、繊維の屈曲の強度が大きくて繊維同士のからみあいが大きいので、弾性回復性が高められる。そして、ゴム状弾性を示す樹脂は弾性回復性が高い。そのため、油ヤシ繊維がゴム状弾性を示す樹脂により連結されている板状体または成形体は、優れた弾性回復性を示し、歩行感及びクッション性が良く、しかも、遮音性が良い。
この板状体または成形体では、油ヤシ繊維を使用するから、他の種類のヤシ繊維に比して解繊等に要する労力が少なく、そのため、製造コスト及びエネルギーが節減でき、製品が安価となる。例えば、ココヤシ繊維では、ヤシ殻を軟化させるために長期間水中に浸漬し、その後に機械的に繊維状に解繊するために長期間多大のエネルギーを必要とする。これに対してオイルパームは、もともと繊維状のままで集合体となっている空果房を解繊するから、水中浸漬の必要はなく、解繊のために要するエネルギーも非常に少なくて済む。また、油ヤシ繊維はココヤシ繊維に比して発塵性が少なく、その取り扱いにおいて作業環境の悪化が避けられる。
更に、油ヤシ繊維の繊維間に大きな隙間が形成されるので、噴霧または浸漬によりゴム状弾性を示す樹脂を供給したときには、樹脂が上記隙間を介して全繊維に均等に付着し、強度分布が均一になるという板状態が得られる。
そして、特許文献3(オイルパーム幹の発明)では、接着剤で貼り合わされた複数の単板の表面に露出している繊維に接着剤を浸透させた合板の技術を開示している。
特許文献3に係るパーム合板は、樹脂接着剤で貼り合わされた複数の単板を備え、複数の単板のうちの最も外側の少なくとも1枚の単板は、パーム単板であり、パーム単板の表面に露出しているパーム繊維に樹脂接着剤が浸透させたものである。これにより、品質が比較的良好な樹木の単板をフェイスとバックとして使用せずに、安価な廃棄材のヤシの幹から製造可能なパーム単板を使用して表面を樹脂接着剤で処理することで、低コストで合板を製造する。
また、特許文献3のパーム合板は、複数の単板を全てパーム単板とし、安価な廃棄材のヤシの幹から製造可能なパーム単板のみを使用し、互いを樹脂接着剤で接着してもよい。このときのパーム繊維に浸透させてある樹脂接着剤は、複数の単板を貼り合わせる樹脂接着剤と同系のものである。樹脂接着剤が同系であるため、安価に合板を製造することができる。なお、ここで、同系とは、同一の樹脂接着剤、配合(例えば、配合比率)を変えたものを含む。
そして、特許文献3のパーム合板は、パーム繊維に樹脂接着剤を浸透させる面を研磨した後に、パーム繊維に樹脂接着剤を浸透させ、合板表面から突出するパーム繊維を少なくし、パーム繊維に樹脂接着剤を浸透させるものである。この合板製造方法は、複数の単板を接着剤で貼り合わせる工程と、複数の単板の表面であり、露出している繊維に接着剤を浸透させる面を研磨する工程と、研磨した面に接着剤を塗布して繊維に接着剤を浸透させる工程と、接着剤を乾燥させる工程とを備え、これにより、品質が比較的良好な樹木の単板をフェイスとバックとして使用することなく、低いコストで合板を製造することができる。
このように、特許文献3によれば、品質が比較的良好な樹木の単板をフェイスとバックとして使用せずに、低いコストで製造が可能な合板およびパーム合板、合板製造方法が開示されている。
特開2009−166342 特開平10−8696 特開2011−68015
このように、特許文献1及び特許文献2は、何れもオイルパームの果実の空果房を解繊して得た油ヤシ繊維の利用であり、直接的にオイルパームの幹を利用するものではない。しかし、オイルパームの幹は成木で20m以上となり、全体の90〜95%を占める容積率であることからその利用が望まれていた。
特に、マレーシア等の東南アジア等では、パームオイルの生産のためにオイルパームが栽培されているが、パームオイル採取後の空果房には繊維等が多く含まれていることから、その空果房は繊維ボード等種々の用途に活用されている。しかし、毎年伐採されているヤシの幹は有効に活用されておらず、廃棄処分されているのが現状である。
また、特許文献3には、最も外側の少なくとも1枚の単板がパーム単板を複数樹脂接着剤で貼り合わせる工程と、パーム単板の表面であり、露出しているパーム繊維に樹脂接着剤を浸透させる面を研磨する工程と、研磨した面に樹脂接着剤を塗布してパーム繊維に樹脂接着剤を浸透させる工程と、樹脂接着剤を乾燥させる工程とを備えた合板製造方法を開示している。しかし、オイルパームの単板に如何に樹脂接着剤を塗布するか、露出しているパーム繊維に樹脂接着剤を浸透させるかについては説明されておらず不明であり、具体的な合板の製造方法が不明である。少なくとも、オイルパームの単板を複数樹脂接着剤で貼り合わせるという樹脂接着剤の使用を前提としている。
一般に合板と呼ばれているものに、ベニヤ材と呼ばれているラワン(lauan)合板、そのラワン合板の表面にシナ材が仕上げに貼られているシナ合板、松、杉等からなる針葉樹合板等がある。ラワン合板は長期にわたって使用されてきたが、ホルムアルデヒド系接着剤がその接合に使用されており、気化成分が人体に悪影響を与えるシックハウス症候群の原因とされている。そこで、原材料のラワンの品不足のみではなく、当該ホルムアルデヒド系接着剤が嫌われる要因となっている。シナ合板についても、ラワン合板を使用しているから同じである。また、針葉樹合板は薄板に多数のクラックが入り、接着剤の使用は多くならざるを得ないという問題がある。
したがって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えた多層合板の存在が望まれている。また、接着剤でシックハウス症候群の原因となるホルムアルデヒド系接着剤とは異なる接着剤を使用すると、コストが高くなるという問題点がある。
そこで、本発明は、かかる不具合を解決すべくなされたものであって、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板の製造方法の提供を課題とするものである。
請求項1の発明にかかる積層合板の製造方法は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースの刃物で所定の厚みに剥いて複数枚のオイルパーム薄板に形成する工程及び所定長のオイルパーム以外の幹をその周方向に回転させながらロータリーレースで所定の厚みに刃物で剥いて1枚以上の薄板に形成する工程からなり、前記両工程で形成したオイルパーム薄板及び他の剥いた薄板を乾燥し、乾燥させた前記オイルパーム薄板及び他の剥いた薄板を所定の状態に複数枚積層し、前記積層された前記オイルパーム薄板及び他の剥いた薄板の温度を上昇させるべく加熱し、加熱された前記積層された前記オイルパーム薄板及び他の剥いた薄板に、前記オイルパーム薄板及び他の剥いた薄板の面に対して平行方向に延びるのを規制しながら、前記オイルパーム薄板及び他の剥いた薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮し、所定時間圧縮した前記オイルパーム薄板及び他の剥いた薄板を、前記加熱工程で供給していた温度を降下させて冷却して固定化させるものである。
ここで、上記薄板工程は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースの刃物で外周から所定の厚みに剥いて複数枚のオイルパーム薄板に形成する工程及び所定長のオイルパーム以外の幹をその周方向に回転させながらロータリーレースの刃物で外周から所定の厚みに剥いて1枚の薄板に形成する工程からなり、同時進行するものに限られるものではなく、また、別の位置で形成されるものであってもよい。
上記乾燥工程は、前記薄板工程で形成したオイルパーム薄板及び他の剥いた薄板を乾燥するものであり、オイルパーム薄板及び他の剥いた薄板を別々に乾燥してもよいし、同時に乾燥してもよい。
また、上記積層工程は、前記乾燥工程で乾燥させたオイルパーム薄板及び他の剥いた薄板を所定の状態に複数枚積層するものであり、その積層順序位置は格別限定されるものでない。
そして、上記加熱工程は、前記積層工程以降で前記積層されたオイルパーム薄板及び他の剥いた薄板の温度を上昇させるべく加熱するものである。
更に、上記圧縮工程は、前記加熱工程によって加熱された前記積層された前記オイルパーム薄板及び他の剥いた薄板に、前記オイルパーム薄板及び他の剥いた薄板の面に対して平行方向に延びるのを規制しながら、前記オイルパーム薄板及び他の剥いた薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮するものである。
更にまた、上記固定化工程は、前記圧縮工程で所定時間圧縮した前記オイルパーム薄板及び他の剥いた薄板を、前記加熱工程で供給していた温度を降下させて冷却し、圧縮された形態を固定化するものである。
請求項2の発明にかかる積層合板の製造方法は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースの刃物で剥いて複数枚、所定の厚みのオイルパーム薄板に形成し、その形成したオイルパーム薄板を乾燥し、乾燥させたオイルパーム薄板を所定の状態に複数枚積層し、前記積層工程以降で前記積層されたオイルパーム薄板の温度を上昇させるべく加熱し、加熱された前記積層されたオイルパーム薄板に、当該オイルパーム薄板の面に対して平行方向に延びるのを規制した状態で、前記オイルパーム薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮し、前記圧縮工程で所定時間圧縮したオイルパーム薄板を、前記加熱工程で供給していた温度を降下させて冷却し、固定化させ、解圧するものである。
ここで、上記薄板工程は、所定長の前記オイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに刃物で剥いて複数枚の前記オイルパーム薄板に形成する工程からなるものである。
上記乾燥工程は、前記薄板工程で形成した前記オイルパーム薄板を乾燥する工程である。
また、上記積層工程は、前記乾燥工程で乾燥させた前記オイルパーム薄板を所定の状態に複数枚積層するものであり、その積層順序位置は格別限定されるものでない。
そして、上記加熱工程は、前記積層工程以降で前記積層された前記オイルパーム薄板の温度を上昇させるべく加熱するものである。
更に、上記圧縮工程は、前記加熱工程によって加熱された前記積層された前記オイルパーム薄板に、前記オイルパーム薄板の面に対して平行方向に延びるのを規制しながら、前記オイルパーム薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮するものである。
更にまた、上記固定化工程は、前記圧縮工程で所定時間圧縮した前記オイルパーム薄板を、前記加熱工程で供給していた温度を降下させて、圧縮された形態を固定化するものである。
ところで、オイルパームの樹幹としては、その品種や生産地等が特に限定されるものではなく、通常、果実生産性が落ちた樹幹、20年以上経過した樹幹、再植栽培や計画的な栽培のために廃棄予定の樹幹が使用されるが、樹齢の若い樹幹であってもよい。
また、オイルパーム薄板として得た薄板の乾燥は、その乾燥方法が特に問われるものではなく、天然乾燥させてもよいし、人工的に乾燥させてもよいが、人工乾燥の方が高コストである。
ここで、建築材料等に一般的に使用されているラワン等の木材が水や養分の移動が停止した細胞(死細胞)組織から成る二次木部を形成しているのに対し、オイルパームの樹幹は維管束及び柔細胞の一次組織のみで構成され、柔細胞を中心とする殆どの細胞が水や養分の移動が盛んに行われている生活細胞であるため、含水率が極めて高い。その上、オイルパーム幹には、糖類(例えば、フラクト−ス、グルコ−ス、フラクトオリゴ糖、イノシト−ル等)が多く含まれている。このため、オイルパーム幹からオイルパーム薄板の厚みが厚い場合、天然乾燥ではカビ等の細菌が繁殖して腐食しやすく生産性や商品価値が損なわれる。一方で、人工的に乾燥させる場合には、コスト高となる。そこで、本発明者らの実験研究によれば、オイルパーム幹から得るオイルパーム薄板の厚みを3mm〜35mmの範囲内とすることで、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストにできることが確認されている。
更に、オイルパーム薄板の繊維方向に対する面の垂直方向に複数枚積層するとは、繊維の長さ方向に対する垂直方向の面、即ち、木口面及び木端面以外の面で積層することを意味し、繊維方向を互いに同一にして積層してもよいし、繊維方向を互いに直交させて積層してもよく、その枚数も奇数枚であってもよいし偶数枚であってもよい。また、その積層枚数も2枚以上であればよい。
また、上記加熱状態で繊維方向に対して垂直方向に外力を加えることによって、前記乾燥させたオイルパーム薄板の全体の厚みを加熱圧縮するとは、オイルパーム薄板の積載方向に圧縮して少なくとも木口面に相当する面積を小さくしたこと、所謂、圧縮の方向性を特定して圧密加工したことを意味する。この圧密加工は、例えば、オイルパーム薄板の含水率を略均一となるように設定し、所定の条件で加熱圧縮し、固定化することによって形成することができ、このときの所定の条件となる温度、圧力、時間、圧縮スピード等については、目的とする圧縮率等をパラメータとして予め実験等によって決定される。
そして、上記圧密加工により前記オイルパーム薄板が接合され、全体の気乾比重を0.8以上とは、接着剤が使用されることなく圧密加工によって、複数枚に積層した薄板が互いに接合された状態にある積層木材全体の気乾比重が0.8以上であることを意味する。
ここで、気乾比重とは、木材を大気中で乾燥した時の比重で、通常、含水率15%の時の比重で表すものであり、木材を乾燥させた時の重さと同じ体積の水の重さを比べた値である。数値が大きいほど重く、小さいほど軽いことを表す。
また、圧密加工により全体の圧密加工した気乾比重を0.8以上とは、本発明者らが、実験を重ねた結果、オイルパーム薄板を高圧縮して気乾比重を0.8以上とすることによって、オイルパームの性質が変化して硬度が顕著に高くなると共に、強度・硬度や、寸法変化率等の物性値や特性値のばらつきが少なく物理的安定性が増すことを見出し、この知見に基づいて設定されたものである。即ち、圧縮により、強度や硬度等を増大させ、かつ、物理的性質のバラつきを少なくした特性領域であり、圧密加工された木材としての特性であることを示すもので、圧密加工により気乾比重を0.8以上にできないもの、気乾比重が0.8以上にならないものは含まれない。より好ましくは、気乾比重が0.9以上とすることによって、硬度が顕著に高くなり、硬度及び寸法変化率等の物性値や特性値のばらつきが少なくなって物理的安定性がさらに増すことになる。
なお、上記気乾比重は、最終的には、コストや、必要とされる強度・硬度等を考慮して設定されるが、気乾比重を大きくするために圧縮率を余りに高くすると木材を構成する繊維が破壊されてクラックが生じ商品性が失われることになるから、高圧縮によりクラックが発生する直前に測定される気乾比重の値が最大値となる。即ち、本発明における気乾比重の上限は圧密加工の圧縮限界で、最大値は有限値となる。また、上記気乾比重の数値は、厳格であることを要求するものではなくて概ねであり、当然、測定等により誤差を含む概略値であり、数割の誤差を否定するものではない。
請求項3の発明にかかる積層合板の製造方法における前記薄板工程は、前記オイルパーム薄板の枚数をオイルパーム以外の薄板の枚数よりも多くしたものである。
ここで、前記オイルパーム薄板の枚数が、前記オイルパーム以外の薄板の枚数よりも多いことは、前記オイルパーム薄板が含有している樹脂成分及び糖成分の量を従来に比較して1/2以下とするものである。
請求項4の発明にかかる積層合板の製造方法における前記薄板を複数枚積層する積層工程は、その繊維方向を互いに同一方向としたものである。
ここで、上記繊維方向を互いに同一にした積層とは、繊維同士の対向面において互いの繊維の長さ方向が同一であるように積層することを意味する。
請求項5の発明にかかる積層合板の製造方法における前記薄板を複数枚積層する積層工程は、その繊維方向を互いに直交する方向としたものである。
ここで、上記繊維方向を互いに直交させた積層とは、対向面において互いの繊維方向が直交するよう積層されることを意味する。
請求項6の発明にかかる積層合板の製造方法の前記乾燥工程による前記オイルパーム薄板の含水率は、5%〜30%の範囲内に乾燥させたものである。
ここで、本発明者らは鋭意実験研究を重ねた結果、一般に、含水率が5%未満の場合は、圧密加工によって十分な化学変化を起こさせることができず、また、表面が乾燥し過ぎて、圧密加工後において水に濡れた場合に圧縮した部分が元の厚さ形状に戻る現象、所謂、固定化不良が起こり易くなる。一方、含水率が30%を超えると、内部まで均一に乾燥され難く、圧密加工の固定化処理において木材中に含まれる高温・高圧の水蒸気の作用によってプレス圧に抗する内圧が発生し、プレス圧を除いた後に、割れ・破壊(パンク)等の損傷や変形・膨らみ等が生じ易くなることを見出し、この知見に基づいて本発明を完成したものである。より好ましくは、前記オイルパーム薄板、ラワン薄板、シナ薄板、針葉樹薄板の含水率は10%〜20%の範囲内である。
請求項7の発明にかかる積層合板の製造方法の前記加熱工程における加熱温度は、110℃〜170℃の範囲内としたものである。
ここで、本発明者らは実験を重ねた結果、加熱温度が低過ぎると十分な圧密加工がなされず、固定化不良や層間の接合不良が生じることがあり、一方、加熱温度が高過ぎると表面が炭化して黒色に変化し、色調や植物本来の特有の香りが損なわれたり、材質が劣化して強度が低化し脆くなったりすることがあるので、好ましくは、加熱温度が110℃〜170℃の範囲内で圧密加工する必要がある。
請求項8の発明にかかる積層合板の製造方法の前記圧縮工程による所定の圧縮圧力は、1〜100kg/cm2の範囲内としたものである。
ここで、本発明者らは実験を重ねた結果、加圧力が低過ぎると十分な圧密加工がなされず、固定化不良や木材間の接合不良が生じる。一方、加圧力が高過ぎると表面にクラックが生じることがある。したがって、1〜100kg/cm2の範囲内の加圧条件が適切であることを見出し、この知見に基づいて本発明を完成したものである。なお、より好ましくは、10〜50kg/cm2の範囲内である。
請求項9の発明にかかる積層合板の製造方法の前記加熱工程及び圧縮工程に要する時間は、10分間〜120分間の範囲内である。
ここで、本発明者らは、十分な加熱圧縮がなされて固定化不良や木材間の接合不良を防止できる一方で、処理時間が長過ぎることによる表面の炭化を防止できる加熱圧縮の処理時間について鋭意実験研究を重ねた結果、薄板の材料によって時間の違いがあるものの、適切な温度を加える所定時間が10分間〜120分間の範囲内の時間条件が適切であることを見出し、この知見に基づいて本発明を完成したものである。なお、好ましくは、所定時間が20分間〜30分間の範囲内である。
請求項1の積層合板の製造方法によれば、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物で剥いて複数枚のオイルパーム薄板に形成する工程、及び所定長のオイルパーム以外の幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物で剥いて1枚以上の薄板(例えば、ラワン薄板)に形成する工程からなる薄板工程で形成したオイルパーム薄板及び他の剥いた薄板を乾燥工程で乾燥する。その乾燥工程で乾燥させたオイルパーム薄板及び他の剥いた薄板を所定の状態に積層工程で複数枚積層する。前記積層工程以降で前記積層されたオイルパーム薄板及び他の剥いた薄板の温度を上昇させるべく加熱工程で加熱し、加熱された前記積層されたオイルパーム薄板及び他の剥いた薄板に、オイルパーム薄板及び他の剥いた薄板の面に対して平行方向に延びるのを規制しながら、前記オイルパーム薄板及び他の剥いた薄板の面に対して直角方向の圧縮力を加えて圧縮工程で所定時間圧縮し、前記圧縮工程で所定時間圧縮したオイルパーム薄板及び他の剥いた薄板を、固定化工程で前記加熱工程で供給していた温度を降下させ、冷却させて固定化させる。
したがって、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成し、それを圧密加工したときの1枚の厚みが1mm以上からなる複数枚のオイルパーム薄板と、所定長のラワンまたはシナまたは針葉樹の幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、またはシナ薄板、または針葉樹薄板の何れかの1枚以上を前記オイルパーム薄板に面して配置し、それら全体の薄板を同時に、または別々に圧縮、固定化し、一体に接合したものである。よって、複数枚以上のオイルパーム薄板と、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上を前記オイルパーム薄板に面して配置し、それらを圧縮、固定化し、一体に接合できるから、前記オイルパーム薄板が含有する樹脂成分及び糖成分を使用し、自然物で接合した多層合板が得られる。なお、この接合には、オイルパーム薄板が凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。また、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上を芯材としたり、意匠板として使用できるから、用途に合わせた積層合板が製造できる。
また、積層工程以降で積層されたオイルパーム薄板及び他の剥いた薄板の温度を加熱工程で上昇させるべく加熱し、圧縮工程で加熱された前記積層されたオイルパーム薄板及び他の剥いた薄板に、オイルパーム薄板及び他の剥いた薄板の面に対して平行方向に延びるのを規制しながら、前記オイルパーム薄板及び他の剥いた薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、圧縮工程で付与される圧縮力がオイルパーム薄板及び他の剥いた薄板の面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム薄板の圧縮力が有効的に使用され、かつ、オイルパーム薄板及び他の剥いた薄板の外形寸法を均一にすることができ、また、全オイルパーム薄板の圧縮率を樹種に応じた値にすることができ、製造中に複数のオイルパーム薄板及び他の剥いた薄板から無駄を出すことがない。
よって、前記オイルパーム薄板が含有する樹脂成分及び糖成分の使用割合を多くし、自然物で接合した多層合板が得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板が得られる。
請求項2の積層合板の製造方法によれば、薄板工程で所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物で剥いて複数枚のオイルパーム薄板に形成する。その前記薄板工程で形成したオイルパーム薄板を乾燥工程で乾燥し、乾燥させたオイルパーム薄板を所定の状態に積層工程で複数枚積層し、前記積層されたオイルパーム薄板の温度を上昇させるべく加熱工程で加熱し、加熱された前記積層されたオイルパーム薄板にオイルパーム薄板の面に対して平行方向に延びるのを規制しながら、前記オイルパーム薄板の面に対して直角方向の圧縮力を加えて圧縮工程で所定時間圧縮し、前記圧縮工程で所定時間圧縮したオイルパーム薄板を前記加熱工程で供給していた温度を降下させて冷却し、固定化する。
オイルパームの幹は節、年輪がないからロータリーレースで外周から所定の厚みに剥いて薄板を作成する場合、均質な薄板が得られ、結果的に、その前記薄板からなる積層合板は均質なものとなる。また、加える温度と圧縮力によって前記オイルパームの幹自体が含有する樹脂成分及び糖成分によってその接合力を変化させるから、加える温度と圧縮力の制御によって任意の接着力が得られる。
また、積層工程以降で積層されたオイルパーム薄板の温度を加熱工程で上昇させるべく加熱し、圧縮工程で加熱された前記積層されたオイルパーム薄板に、オイルパーム薄板の面に対して平行方向に延びるのを規制しながら、前記オイルパーム薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、圧縮工程で付与される圧縮力がオイルパーム薄板の面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム薄板の圧縮力が有効的に使用され、かつ、オイルパーム薄板の外形寸法を均一にすることができ、また、全オイルパーム薄板の圧縮率を均一にすることができ、製造中に複数のオイルパーム薄板から無駄を出すことがない。
そして、前記複数枚の薄板を前記オイルパームの幹自体が含有する樹脂成分及び糖成分によって接合して前記積層合板を形成するものであり、他の合成樹脂、合成ゴムを接着材として使用していないから、自然に戻すことができる。なお、このときのオイルパームの葉、空果房、根等は、チップ状に裁断され、好気性細菌処理によってコンポスト化(堆肥化)する有機廃棄物発酵処理方法によって処理してもよいし、特に、空果房は他の実用性のある処理を行ってもよい。また、細かく破砕し、セルロース、ヘミセルロース、リグニン等の成分抽出を行って、それを使用することもできる。更に、前記オイルパームの幹自体が含有する樹脂成分及び糖成分によって接合されるときの圧縮力によって、前記薄板の空隙が殆どなくなり、緻密な組織になるから、耐水性があり、かつ、防水、防虫性に富み、建築材料として使用しても耐用年数が長くなる。なお、ここにおける接合には、オイルパーム幹の薄板は凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。
このように、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成し、それを圧密加工したときの1枚の厚みが1mm以上からなる複数枚のオイルパーム薄板を同時に圧縮、固定化し、一体に接合できる。特に、積層工程以降で積層されたオイルパーム薄板の温度を加熱工程で上昇させるべく加熱し、圧縮工程で加熱された前記積層されたオイルパーム薄板に、オイルパーム薄板の面に対して平行方向に延びるのを規制しながら、前記オイルパーム薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、圧縮工程で付与される圧縮力がオイルパーム薄板の面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム薄板の圧縮力が有効的に使用され、かつ、全オイルパーム薄板の圧縮率を均一にすることができ、製造中に複数のオイルパーム薄板から無駄を出すことがない。
よって、前記オイルパーム薄板が含有する樹脂成分及び糖成分を使用し、自然物で接合した多層合板が得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板が得られる。
請求項3の積層合板の製造方法の前記薄板工程は、オイルパーム薄板の枚数をオイルパーム以外の薄板の枚数よりも多くしたものであるから、請求項1または請求項2に記載の効果に加えて、少なくとも従来の積層合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を1/2以下に抑えることができる。
請求項4の積層合板の製造方法の前記薄板を複数枚積層する積層工程は、その繊維方向を互いに同一方向としたものであるから、請求項1乃至請求項3のいずれか1つに記載の効果に加えて、その繊維方向を互いに同一にして積層したことから、本来の幹の長さ方向に沿った接合となり、圧密加工において軟化した繊維が、繊維方向を同一として積層方向に隣接する他の繊維と絡み易く、その絡み合った状態で固定化される。即ち、圧密加工によって互いの繊維同士が絡み合い、接合強度が高くなる。よって、機械的強度が高く、圧密化後の安定した寸法形状性が確保される。更に、互いの繊維方向を同一にして積層することで、接合面における膨張率及び収縮率を完全に同一にすることができて、ストレスがかかることなく、寸法形状安定性がより高いものとなる。
請求項5の積層合板の製造方法の前記薄板を複数枚積層する積層工程は、その繊維方向を互いに直交する方向としたものであるから、請求項1乃至請求項4のいずれか1つに記載の効果に加えて、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じても、互いの繊維同士が相互に作用し合って特定方向の反り変形が防止され、良好なバランス状態となり、寸法形状安定性が向上し、強靭な板状の積層合板となる。
請求項6の積層合板の製造方法における前記乾燥工程は、オイルパーム薄板の含水率を5%〜30%の範囲内に乾燥させるものであるから、請求項1乃至請求項5のいずれか1つに記載の効果に加えて、クラック、変形、膨らみ、破裂等が防止される。よって、より安定した寸法形状性が確保され、歩留りも高いものとなる。また、含水率を5%〜30%の範囲内の乾燥状態であると、ラワン薄板、シナ薄板、針葉樹薄板等との接合にも好適である。
請求項7の積層合板の製造方法における前記加熱工程における加熱温度は、110℃〜170℃の範囲内としたものであるから、請求項1乃至請求項7のいずれか1つに記載の効果に加えて、圧密加工における固定化不良や木材間の接合不良、また、表面炭化、材質強度の低化等の材質劣化を防止することができる。また、加熱温度が110℃〜170℃の範囲内であると、ラワン薄板、シナ薄板、針葉樹薄板等との接合にも好適である。
請求項8の積層合板の製造方法における前記圧縮工程による所定の圧縮圧力は、1〜100kg/cm2の範囲内としたものであるから、請求項1乃至請求項7のいずれか1つに記載の効果に加えて、圧密加工における固定化不良や木材間の接合不良、また表面クラックの発生を防止することができる。ラワン薄板、シナ薄板、針葉樹薄板等との接合にも問題がないことが確認された。
請求項9の積層合板の製造方法における前記加熱工程及び圧縮工程に要する時間は、10分間〜120分間の範囲内であることから、請求項1乃至請求項8のいずれか1つに記載の効果に加えて、圧密加工における固定化不良や木材間の接合不良、また、表面の炭化を防止できる。ラワン薄板、シナ薄板、針葉樹薄板等との接合にも問題がないことが確認された。
図1は本発明の実施の形態1の積層合板の製造方法におけるロータリーレースによる薄板の製造工程の説明図である。 図2は本発明の実施の形態1の積層合板の製造方法の薄板の積層位置関係を示す説明図である。 図3は本発明の実施の形態1の積層合板の製造方法の薄板の積層方法を示す説明図である。 図4は本発明の実施の形態1の積層合板の製造方法の組み合わせ状態(a)及び積層状態(b)及び圧縮状態(c)を示す説明図である。 図5は本発明の実施の形態1の積層合板の製造方法を採用した圧密加工材製造装置の概略構成を示す断面図である。 図6は本発明の実施の形態1の積層合板の製造方法の説明図で、(a)は原材料となる加工前木材の供給の説明図、(b)は加熱圧縮開始状態による説明図、(c)は密閉加熱圧縮開始状態による説明図、(d)は密閉加熱圧縮状態による蒸気圧制御処理の説明図、(e)は密閉冷却状態による説明図、(f)は圧密加工された木材(圧密加工材)の取り出しの説明図である。 図7は本発明の実施の形態1の積層合板の製造方法で用いる枠体の説明図で、斜視図(a)及び切断線A−Aによる断面図(b)である。 図8は本発明の実施の形態1の積層合板の製造方法を説明するフローチャートである。 図8は本発明の実施の形態1の積層合板の製造方法で用いた積層合板の引張強度試験の説明図である。 図10は本発明の実施の形態2の積層合板の製造方法の薄板の積層位置関係を示す説明図である。 図11は本発明の実施の形態2の積層合板の製造方法の薄板の積層方法を示す説明図である。
以下、本発明の実施の形態について、図面に基づいて説明する。なお、実施の形態において、図中の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。
[実施の形態1]
まず、この発明の実施の形態で使用するオイルパーム幹WDは、木材の板目と柾目を製材するように板取りを行うと、何れも柾目状に繊維(維管束)が並ぶ面になる。即ち、国産材の桧や杉のように年輪がなく、畳表の藺草のように0.4〜1.2mmの維管束繊維がオイルパーム幹WDの長さ方向に延びている。
オイルパーム幹WDの成分は産地によって若干違いがあるが、その差は僅かであり、一般にセルロース30.6重量%、ヘミセルロース33.2重量%、リグニン(総リグニン28.5重量%=クラーソンリグニン24.7重量%+酸可溶性リグニン3.8重量%)、抽出成分3.6重量%、灰分4.1重量%といわれており、Characterization in Chemical Composition of the Oil Palm (Elaeis guineensis) (Journal of the Japan Institute of Energy,87,383-388(2008))にも記載がある。
視認できる0.4〜1.2mmの繊維、即ち、維管束と維管束の間は、リグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類、少ない空孔によって一体なっている。
本実施の形態にかかる積層合板を構成するオイルパーム薄板の形成について図1を用いて説明する。
オイルパーム薄板Wは、20年以上成長した単一の幹を所定長のオイルパーム幹WDとして切断し、それを大根のかつら剥きと同様の周方向の剥きを行うロータリーレースと呼ばれる装置にセットする。そして、オイルパーム幹WDを回転させ刃物CTによって周方向の剥きを行う。これは、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて複数枚のオイルパーム薄板Wに形成する薄板工程となる。
図1に示すように、オイルパーム幹WDの中心を軸芯となるように回転させ、その外周側に所定幅の刃物CTを当て、所謂、かつら剥き同様の剥きにより連続薄板UWDが形成される。即ち、オイルパーム幹WDは大根のかつら剥きのように所定の厚みで連続した薄板、即ち、連続薄板UWDが削り出される。この連続薄板UWDを所定の長さにカットし、乾燥させることで所定の面積、所定の厚みのオイルパーム薄板Wが作られる。
なお、オイルパームの葉、空果房、根等は、チップ状に裁断され、好気性細菌処理によってコンポスト化(堆肥化)する有機廃棄物発酵処理方法によって処理される。特に、空果房は他の実用性のある処理を行ってもよい。また、細かく破砕し、セルロース、ヘミセルロース、リグニン等の成分抽出を行って、接合補助にそれを利用してもよい。
通常、連続薄板UWDが剥かれた時点でその乾燥が開始される。しかし、所定の積層合板PWを作る単位の枚数の切断の後に乾燥を行ってもよい。一般に、切断は流れ作業で行われるので、オイルパーム幹WDから連続薄板UWDが形成された時点で乾燥開始するのが乾燥時間の確保からは望ましい。この乾燥工程は、積層合板PWを作成する加圧前多層材NWに重ね合わせるように4枚の所定面積、所定厚さのオイルパーム薄板W2,・・・,W5が切断されてからの乾燥であると、連続薄板UWDの切断時にその端部の切りくずが出にくくなるので望ましいが、オイルパーム幹WDから連続薄板UWDが形成された時点以降であれば大きな差異はない。何れにせよ、これらのオイルパーム薄板Wを乾燥する工程は、乾燥工程となる。
この図1の工程は、所定長のラワンまたはシナまたは針葉樹の幹でも相違するものではない。ラワンまたはシナまたは針葉樹の幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、またはシナ薄板、または針葉樹薄板も同様の工程によって形成される。
所定の面積、所定の厚みのオイルパーム薄板Wは、図2(b)及び図2(c)に示すように、更に切断され、4枚の所定面積、所定厚さのオイルパーム薄板W2,・・・,W5(格別、オイルパーム薄板Wの枚数を意図しない場合には、単にオイルパーム薄板Wと記す)が切断される。
また、図2(a)に示すように、ラワン幹LDの中心を軸芯となるように回転させ、その外周側に所定幅の刃物CTを当て、所謂、かつら剥き同様の剥きにより連続薄板ULDが形成される。即ち、ラワン幹LDは大根のかつら剥きのように所定の厚みで連続した薄板、即ち、連続薄板ULDが削り出される。この連続薄板ULDを所定の長さにカットされ、乾燥させることで所定の面積、所定の厚みのラワン薄板Lが作られる。ラワン薄板Lは加圧前多層材NWを形成するため該当する位置にラワン薄板L1を配置している。
この実施の形態のラワン薄板L1と、オイルパーム薄板W2,・・・,W5の組は、露出面にラワン薄板Lを配設するものであるが、本発明を実施する場合には、両側の露出面をラワン薄板Lとすることもできる。また、逆に露出しない層の材料、例えば、オイルパーム薄板W2,W3,W4の1枚または2枚、3枚をラワン薄板Lとすることもできる。そして、ラワン薄板Lに代わってシナ薄板または針葉樹薄板とすることもできる。
特に、シナ薄板は意匠面に使用するのが好適である。また、針葉樹薄板については、1枚乃至3枚を他の接着剤、例えば、ユリア樹脂、エポキシ樹脂または非ホルムアルデヒド系接着剤等で接合しておき、その両面にオイルパーム薄板Wを接合すると機械的強度を上げることができる。ラワン薄板L、シナ薄板、針葉樹薄板を用いた場合であっても、その繊維の長さ方向は互いに直行する薄板の配列とするのが基本的であり、曲げを行う多層合板PWとして用途が決まっているものは、全体の繊維(維管束)方向を同一にしたり、多層の薄板の1枚または2枚を異なった繊維方向とすることもできる。
次いで、本実施の形態1では、所定の面積、所定の厚みのラワン薄板L1の1枚、オイルパーム薄板W2,・・・,W5の4枚の計5枚を積層し、加圧前多層材NWとする事例で説明する。なお、本発明を実施する場合には、ラワン薄板L1、オイルパーム薄板Wの枚数を限定されるものではない。
加圧前多層材NWは、図3に示すように、図2(a)を用いて説明したラワン幹LDをかつら剥きされた連続薄板ULDの供給方向に短い辺のラワン薄板L1と、同様に、図2(b)を用いて説明したオイルパーム幹WDをかつら剥きされた連続薄板UWDの供給方向に短い辺のオイルパーム薄板W3,W5と、図2(c)に示す連続薄板UWDの供給方向に長い辺の薄板W2,W4が積層配置される。
この5枚の所定面積、所定厚さのラワン薄板L1及びオイルパーム薄板W2,・・・,W5は、裁断によって形成してもよいし、歯の細かな鋸の切断によって形成してもよい。オイルパームの性質上何れでもよいが、裁断の方が作業性からみると効率的である。
本実施の形態では、オイルパーム幹WDをかつら剥きされた連続薄板UWDの供給方向に短い辺のオイルパーム薄板W3,W5と、連続薄板UWDの供給方向に長い辺の薄板W2,W4を2種類のロータリーレースで形成しているが、連続薄板UWDの供給方向の幅で4枚のオイルパーム薄板W2,・・・,W5を得られるように設定してもよい。何れにせよ、図3に示すように、連続薄板UWDの供給方向に短い辺のラワン薄板L1及びオイルパーム薄板W3,W5と、連続薄板UWDの供給方向に長い辺のオイルパーム薄板W2,W4を互いの繊維の長さ方向が直角になるように加圧前多層材NWを積載するものであればよい。
勿論、図3に示す連続薄板UWDの供給方向に短い辺のラワン薄板L1,オイルパーム薄板W3,W5と、連続薄板UWDの供給方向に長い辺のオイルパーム薄板W2,W4を繊維の長さ方向が直角になるように積載すれば、連続薄板UWDの供給方向に短い辺のラワン薄板L1及びオイルパーム薄板W3,W5を2枚、連続薄板UWDの供給方向に長い辺のオイルパーム薄板WW2,W4を3枚の組み合わせとすることもできる。
5枚の所定面積、所定厚さのラワン薄板L1及びオイルパーム薄板W2,・・・,W5が切断され、それを図3のように加圧前多層材NWの積載状態に位置合わせを行うまでには、湿度の低い温風を所定面積、所定厚さのラワン薄板L1及びオイルパーム薄板W2,・・・,W5の両面に当てて乾燥させる必要がある。加圧前多層材NWとしてラワン薄板L1及びオイルパーム薄板W2,・・・,W5の5枚を積層する生産ラインに送るまでには、5枚のラワン薄板L1及びオイルパーム薄板W2,・・・,W5の乾燥が進行するので、その乾燥状態で図4(a)に示すように、加圧前多層材NWとして積層することができる。この積層を行うときには、ラワン薄板L1及びオイルパーム薄板Wの面方向の広がりを防止するために、5枚のラワン薄板L1及びオイルパーム薄板W2,・・・,W5の各辺を位置決めする枠体20(図7参照)または位置決め孔18(図5参照)等の設定が望ましい。簡単化のために、図5及び図6では位置決め孔18の事例で説明する。
このように、前記乾燥工程で乾燥させたラワン薄板L及びオイルパーム薄板Wを所定の状態に複数枚積層する工程を、ここでは積層工程と呼ぶ。
そこで、圧密化した積層合板PWとは、加圧前多層材NWとして積層したものに、所定の温度条件下で所定の圧縮力を加えて圧縮し、所定の時間経過した後、温度を所定の温度まで降下させて固定化した後、解圧したものである。
即ち、加熱工程によって加熱した積層されたラワン薄板L1及びオイルパーム薄板W2,・・・,W5に、そのラワン薄板L及びオイルパーム薄板Wの面に対して直角方向の圧縮力を加える圧縮工程を行い、その圧縮工程で所定の温度で所定時間押圧した後、加熱工程で供給していた温度を降下させ、その圧縮状態を維持させる固定化工程を経て、圧密化した積層合板PWを得るものである。
ここで、前記積層工程以降で前記積層されたラワン薄板L及びオイルパーム薄板Wの温度を上昇させるべく加熱する工程を加熱工程と呼び、また、加熱工程によって加熱され、積層されたラワン薄板L及びオイルパーム薄板Wに、ラワン薄板L及びオイルパーム薄板Wの面に対して直角方向の圧縮力を加える工程を、圧縮工程と呼ぶ。そして、前記圧縮工程で所定時間押圧した後、前記加熱工程で供給していた温度を降下させ、常温またはそれよりも若干温度を下げて冷却して固定化する工程を、圧密化した状態を固定化する意味で固定化工程と呼ぶこととする。
まず、本発明の実施の形態の積層塑性加工木材を製造する手順について、図5乃至図8を参照して説明する。
図8のフローチャートに示されるように、最初に、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースの刃物CTで所定の厚みに剥いて複数枚のオイルパーム薄板Wに形成するステップS10の薄板工程において、オイルパーム幹WDから3mm〜35mmの範囲内の材厚のオイルパーム薄板Wが剥かれ、次いで、ステップS20の乾燥工程において、含水率10%〜30%の範囲内に乾燥され、乾燥されたオイルパーム薄板Wとなる。
また、同様に、図2(a)に示すように所定長のラワン材の幹からなるラワン幹LDをその周方向に回転させながらロータリーレースの刃物CTで所定の厚みに剥いて複数枚のラワン薄板Lに形成するステップS11の薄板工程において、ラワン幹LDから10mm〜25mmの範囲内の材厚のラワン薄板Lが剥かれ、次いで、ステップS21の乾燥工程において、含水率5%〜30%の範囲内に乾燥され、乾燥されたラワン薄板Lとなる。
ここで、乾燥工程におけるオイルパーム薄板W、ラワン薄板Lの乾燥方法には、人工乾燥または天然乾燥(天日乾燥)がある。人工乾燥としては、例えば、高温蒸気を熱源とし、かつ、湿度を除去するための冷凍機等からなる除湿機を内蔵する蒸気式乾燥機等の乾燥機を使用して熱風をオイルパーム薄板W、ラワン薄板Lに吹き付けたり、プレス盤で加熱圧搾したりすることによってオイルパーム薄板W、ラワン薄板Lの外部から加熱する外部加熱方式や、オイルパーム薄板W、ラワン薄板Lに誘電加熱を施して内側から加熱する内部加熱方式等が挙げられるが、周知のように、一般的には、人工乾燥よりも天然乾燥の方が低コストで済む。
しかし、オイルパーム薄板W、ラワン薄板Lを天然乾燥する場合、特に、オイルパーム薄板Wの厚みが厚いと、カビ等の細菌が繁殖して腐食しやすく、生産性や商品価値が損なわれる。これは、建築材料等に一般的に使用されているラワン薄板L等の木材が水や養分の移動が停止した細胞(死細胞)組織から成る二次木部を形成しているのに対し、オイルパーム幹WDは維管束及び柔細胞の一次組織のみで構成され、柔細胞を中心とする殆どの細胞が水や養分の移動がなされる生活細胞であり、含水率が極めて高いためである。更に、オイルパーム幹WD(オイルパームの樹幹)には、糖類(例えば、フラクト−ス、グルコ−ス、フラクトオリゴ糖、イノシト−ル等)が多く含まれていることが判明し、このため、オイルパームの樹幹から得たオイルパーム薄板Wの厚みが厚い場合、天然乾燥ではカビ等の細菌が繁殖して腐食しやすく生産性や商品価値が損なわれる。
そこで、本発明者らの実験によれば、オイルパーム幹WDから得たオイルパーム薄板Wの厚みを20mm以下の範囲とすることで、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストにできることが確認されている。なお、この厚みは、圧縮率65%とすると圧密加工後の3.5mm〜7.0mmの厚みに相当する。また、圧縮率70%とすると圧密加工後の3.0mm〜6.0mmに相当する厚みとなる。
更に、本発明者らの実験によれば、オイルパーム幹WDから得るオイルパーム薄板Wの厚みが3mm未満の場合(圧密加工後には0.9〜1.1未満の場合)には、厚さが薄いので剥くときに切れやすく、また、20mmを超える厚みの場合、内部まで均一に乾燥され難いため、後述する圧密加工後において変形、膨らみが起こり易く、また、曲面を直線に置き直すことから、クラック等が生じやすいことも確認されている。
このため、オイルパーム幹WDから厚み3mm以上、20mm以下の範囲内のオイルパーム薄板Wを剥き、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストで乾燥でき、更に、切り出し作業が容易で、後述する圧密加工後の寸法形状安定性も高いものとなる。
なお、好ましくは、オイルパーム幹WDからオイルパーム薄板Wの厚みが、6mm以上、15mm以下の範囲内である。この厚みは、圧縮率65%とすると圧密加工後の2.1mm以上、5.3mm以下の厚みに相当する。また、圧縮率70%とすると圧密加工後の1.8mm〜4.5mmに相当する厚みとなる。
また、含水率5%〜30%の範囲内に乾燥とは、本発明者らが実験を重ねた結果、乾燥させたオイルパーム薄板W、ラワン薄板Lの含水率が5%未満の場合は、後述する圧密加工によって十分な化学変化を起こさせることができず、また、表面が乾燥し過ぎて、圧密化後において水に濡れた場合に圧縮した部分が元の厚さ形状に戻る現象、所謂、固定化不良が起こり易くなり、一方、含水率が30%を超えるものでは、内部まで均一に乾燥され難く、圧密化後においてクラック、破裂等の損傷や、変形、膨らみ等が起こり易くなることを確認したことから、これに基づいて設定をしたものである。即ち、オイルパーム薄板W、ラワン薄板Lの含水率が厚み全体で略均一となるようにして、厚み全体が略均一な圧縮率で塑性加工されるようにするのが望ましく、含水率10%〜30%の範囲内が好適である。より好ましくは、含水率が13%〜18%の範囲内である。なお、含水率は、例えば、高周波含水率計等の測定器を使用して測定される。
次に、乾燥させたオイルパーム薄板Wを複数枚積層するステップS30の積層工程を行う。即ち、ステップS20及びステップS21の乾燥工程で乾燥させたオイルパーム薄板W、ラワン薄板Lを所定の状態に複数枚積層する工程である。このステップS30の積層工程によって加圧前多層材NWとなる。この加圧前多層材NWは、外形は全枚数一致しているが、何ら積載方向のオイルパーム薄板W、ラワン薄板L相互は自重で重ねられているにすぎない。
ここで、オイルパーム薄板W、ラワン薄板Lを積層してなる加圧前多層材NWの圧密加工を行う圧密加工木材製造装置MCについて図5を参照して説明する。
図5において、本実施の形態の積層合板PWを製造する圧密加工材製造装置MCは、主として、上プレス盤10Aと下プレス盤10Bとの2分割された構造体によって内部空間IS及び位置決め孔18を形成するプレス盤10と、下プレス盤10Bの周縁部10bに対向する上プレス盤10Aの周縁部10aに配設され、下プレス盤10Bには加圧前多層材NWの位置を定め規制する位置決め孔18が形成され、上プレス盤10Aの所定の上下動の範囲で内部空間IS及び位置決め孔18を密閉状態とするシール部材11と、上プレス盤10Aの上面側から内部空間IS及び位置決め孔18内に連通され、内部空間IS及び位置決め孔18内に蒸気を供給するための配管口12aを有する配管12と、その上流側のバルブV4と、下プレス盤10Bの側面側から内部空間IS及び位置決め孔18内に連通され、内部空間IS及び位置決め孔18内から水蒸気を排出するための配管口13aを有する配管13と、配管13内の蒸気圧を検出する圧力計P2と、その下流側のバルブV5と、バルブV5に接続されたドレン配管14等から構成されている。
なお、プレス盤10においては、加圧前多層材NWの面に対して直角な特定の面全体、即ち、加圧前多層材NWの圧縮される面全体を載置可能な平面サイズを有し、その材質は特に問われるものでないが、木材が鉄イオン汚染により黒色化しないように、例えば、ステンレス鋼、アルミニウム等の材質によって形成されたり、加圧前多層材NWとの接触表面にメッキ加工が施されたりする。更に、内部空間IS及び位置決め孔18を密閉状態とするシール部材11においても、その材質は特に問われるものでないが、通常、耐熱性や耐水性に優れたシリコンゴム、シリコン樹脂等が使用される。
また、プレス盤10の上プレス盤10A及び下プレス盤10B内には、それらを高温の水蒸気を通すことによって所望の温度に昇温するための配管路15,16が形成されており、これら配管路15,16には蒸気供給側の配管ST1から分岐された配管ST2,ST3、蒸気排出側の配管ET1,ET2がそれぞれ接続されている。そして、蒸気供給側の配管ST1,ST2,ST3の途中にはバルブV1,V2,V3、配管ST1内の蒸気圧を検出する圧力計P1が配設されており、蒸気排出側の配管ET1,ET2は、バルブV6を介してドレン配管14に接続されている。
なお、配管ST1に水蒸気を供給するボイラ装置、また、プレス盤10の固定側の下プレス盤10Bに対して上プレス盤10Aを上昇/下降させ加圧するための油圧機構を含むプレス昇降装置は省略されている。
本実施の形態1では、プレス盤10の上プレス盤10A及び下プレス盤10Bで形成される内部空間IS及び位置決め孔18内を加熱するためにバルブV4に接続された配管12を用いて高温の水蒸気を導入しているが、この他、高周波加熱、マイクロ波加熱等を用いることも可能である。特に、木材に対する高周波加熱は、マイクロ波による誘電過熱よりも、マイクロ波よりも若干周波数の低い高周波で、木材の中心から加熱する方法が好適である。
更に、プレス盤10には、上プレス盤10A及び下プレス盤10B内に形成された配管路15,16に水蒸気に換えて低温の冷却水を通すことによって所望の温度に冷却する冷却水供給側の配管ST11から分岐された配管ST12,ST13が、上記配管ST2,ST3にそれぞれ接続されている。また、冷却水供給側の配管ST11,ST12,ST13の途中にはバルブV11,V12,V13が配設されている。なお、配管ST11に冷却水を供給する冷却水供給装置は省略されている。
勿論、本発明を実施する場合には、プレス盤10にてプレス圧縮される方向は、加圧前多層材NWの5枚のオイルパーム薄板W、ラワン薄板Lの面に対して直角方向に圧縮力が加えられる。
そして、このように構成される圧密加工材製造装置MCによって加圧前多層材NWから積層合板PWを製造するにあたり、まず、図6(a)に示すように、圧密加工材製造装置MCにおけるプレス盤10の固定側の下プレス盤10Bに対して上プレス盤10Aが上昇し、予め所定の条件に乾燥させた加圧前多層材NWが、上プレス盤10A及び下プレス盤10Bで形成される内部空間IS及び位置決め孔18内に載置される。
ここで、本実施の形態においては、積層合板PWの原材料となる加圧前多層材NWは、所定の寸法(厚み・幅・長さ)に形成されたものであり、計5枚のオイルパーム薄板W、ラワン薄板Lの面側をプレス盤10の上プレス盤10A及び下プレス盤10Bに対向させ、下プレス盤10Bの位置決め孔18に載置した。
続いて、図6(b)に示すように、固定側の下プレス盤10Bの位置決め孔18上に載置された加圧前多層材NWに対して上プレス盤10Aを所定圧力にて下降させて加圧前多層材NWの上面、即ち、本実施の形態においては、ラワン薄板L1及びオイルパーム薄板W2,・・・,W5の面に対して垂直方向に当接させる。そして、ステップS40でタイマIによるタイマ制御が開始される。ステップS40のタイマIを見て、ステップS41で加熱タイミングであるか判断し、ステップS42で圧縮タイミングであるかを判断する。
加熱タイミングのとき、ステップS43で上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に所定温度(例えば、110〜180〔℃〕)の水蒸気が通され、内部空間IS及び位置決め孔18内が所定温度(例えば、110〜180〔℃〕)に保持される。ステップS41で加熱タイミングでないと判断したとき、ステップS42で圧縮タイミングであるかを判断し、圧縮タイミングのとき、ステップS44で圧縮工程に入る。
即ち、ステップS44では、固定側の下プレス盤10Bに対して上プレス盤10Aの圧縮力が所定圧力(例えば、20〜50kg/cm2)に設定され、加圧前多層材NWが上プレス盤10A及び下プレス盤10Bにて所定時間(例えば、5〜40〔min〕)加熱圧縮される。また、ステップS45で加熱・圧縮の終了であるか判断し、終了タイムになるまでステップS40からステップS45のルーチンの処理を行う。
ステップS44の圧縮力は、割れを防止するために、加圧前多層材NWの温度上昇、即ち、ステップS45のタイマIの経過時間に応じて加圧前多層材NWの内部の温度状態、加熱時間の経過に応じて徐々に大きくするのが望ましく、加熱圧縮の時間も加熱時間を考慮して設定するのが好ましい。
更に、図6(c)に示すように、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接すると上プレス盤10Aの周縁部10aに配設されたシール部材11によって、上プレス盤10A及び下プレス盤10Bにて形成される内部空間IS及び位置決め孔18が密閉状態となる。ここで、内部空間IS及び位置決め孔18内に配管12の配管口12aによって蒸気が供給される。このとき水蒸気は、乾燥状態にあったオイルパーム基材Wまたは加圧前多層材NWを同時に所定の湿度にバランス良く湿潤させる。そして、内部空間IS及び位置決め孔18の密閉状態で上プレス盤10A及び下プレス盤10Bによる圧縮力が保持されたまま、ステップS40のタイマIを基準に所定温度(例えば、150〜210〔℃〕)まで上昇される。
なお、本実施の形態1において、プレス盤10の上プレス盤10A及び下プレス盤10Bによって形成される内部空間IS及び位置決め孔18がシール部材11を介して密閉状態となったときにおける内部空間IS及び位置決め孔18の上下方向の寸法間隔は、プレス盤10によって加圧前多層材NWが圧縮率70%の積層合板PWとなるときの厚み方向の仕上がり寸法に設定されている。このため、加圧前多層材NWの厚み全体の圧縮率、即ち、加圧前多層材NWの圧縮による板厚の変化は、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接することで決まることとなる。
そして、図6(c)に示す内部空間IS及び位置決め孔18の密閉状態で、上プレス盤10A及び下プレス盤10Bの圧縮力が維持され、かつ、内部空間IS及び位置決め孔18が所定温度(例えば、150〜210〔℃〕)のまま、所定時間(例えば、30〜120〔min〕)保持され、この後の冷却圧縮を解除したときに、戻りのない積層合板PWを形成するための加熱処理が行われる。このとき、上プレス盤10A及び下プレス盤10Bで密閉状態とされている内部空間IS及び位置決め孔18を介して、加圧前多層材NWの周囲面とその内部とでは高温高圧の蒸気圧が出入り自在となっている。
なお、このように、本実施の形態においては、加圧前多層材NWの表裏面に上プレス盤10A及び下プレス盤10Bが面接触し、密閉状態の内部空間IS及び位置決め孔18に保持されるため、加圧前多層材NWは、厚み全体が十分に加熱され、効率よく圧縮変形されることになる。
次に、図6(d)に示すように、内部空間IS及び位置決め孔18の密閉状態で加熱圧縮処理が行われているときに、蒸気圧制御処理として圧力計P2で内部空間IS及び位置決め孔18の蒸気圧が検出され、バルブV5が適宜、開閉される。これにより、配管口13a、配管13を通って内部空間IS及び位置決め孔18からドレン配管14側に高温高圧の水蒸気が排出されることで、特に、加圧前多層材NWの外層部分の含水率に基づく余分な内部空間IS及び位置決め孔18内の水分が除去され、内部空間IS及び位置決め孔18内が所定の蒸気圧となるように調節される。また、必要に応じて、バルブV4に接続された配管12、配管口12a(図5)を介して内部空間ISに所定の蒸気圧を供給することができる。これらにより、木材の加熱圧縮処理の定着、所謂、木材の固定化がより促進されることとなる。
更に、上プレス盤10A及び下プレス盤10Bによる加熱圧縮から冷却圧縮へと移行する直前に、蒸気圧制御処理としてバルブV5が開状態とされることで配管口13a、配管13を通って内部空間IS及び位置決め孔18からドレン配管14側に高温高圧の水蒸気が排出される。
ステップS45でステップS40のタイマIの動作に基づくステップS43の加熱工程及びステップS44の圧縮工程が終了したことが判断されると、ステップS60で固定化工程に入る。固定化工程では、ステップS65のタイマIIに基づき、図6(e)に示すように、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水または地下水が通されることによって、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、材料によって異なる所定時間(例えば、オイルパームでは10〜120〔min〕)保持される。なお、このときの固定側の下プレス盤10Bに対する上プレス盤10Aの圧縮力は、加熱圧縮の際の圧力と同じ所定圧力(例えば、20〜50kg/cm2)に保持されたまま、上プレス盤10A及び下プレス盤10Bが冷却される。
そして、最後に、図6(f)に示すように、ステップS70で解圧工程に入り、固定側の下プレス盤10Bに対して上プレス盤10Aを上昇させ、内部空間IS及び位置決め孔18から仕上がり品である積層合板PWが取出されることで一連の処理工程が終了する。
本実施の形態の積層合板PWを製造する圧密加工材製造装置MCは、主として、上プレス盤10Aと下プレス盤10Bとの2分割された構造体によって内部空間IS及び位置決め孔18を形成するプレス盤10を具備しているが、本発明を実施する場合の加圧前多層材NWの外周の移動規制は枠体20とすることもできる。この加圧前多層材NWの外周の移動規制としての枠体20は、上プレス盤10Aの寸法によって、上下動自在な構造とするか、固定構造とするかが決定される。
ここで、積層させるオイルパーム薄板W、ラワン薄板Lにおいては、その繊維方向を同一にして積層してもよいし、その繊維方向を互いに直交させて積層してもよい。
繊維方向を同一にして積層した場合には、圧密加工において軟化した木材表面層の木繊維が、積層方向(縦方向)に隣接する繊維方向が同一の他の木材表層の木繊維と絡み易く、その絡み合った状態で固定化された木材同士は強固に接合される。しかも、接合面における膨張率及び収縮率を完全に等しくできることから周囲環境条件が変化しても接合面に全くストレスが掛かることがない。したがって、接合強度が高くて機械的強度も高く、圧密化後の安定した寸法形状性が確保される。
一方、繊維方向を互いに直交させて積層した場合には、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じても互いの木材同士が相互に作用し合って特定方向の反り変形が防止される。
特に、全枚数が奇数枚の場合には、繊維方向を互いに直交させて積層したとき表裏で単板の繊維方向が平行で断面が対称となるため、周囲環境条件の変化による歪み等が防止される。また、全枚数を4枚以上の偶数枚とする場合には、内部の一部にて繊維方向を同一にして積層しその他は繊維方向を互いに直交させて積層することによって、表裏の繊維方向を合わせ周囲環境条件の変化による歪み等を防止することが可能となる。
また、積層させるオイルパーム薄板W、ラワン薄板Lにおいて、繊維に対して平行に切断した面であって樹心側面同士、または繊維に対して平行に切断した面であって樹皮側面同士を対向させて積層するのが好ましい。互いの樹心側面同士または互いの樹皮側面同士が対向するようにし、圧密加工により接合させることによって、樹心側面と樹皮側面で細胞密度が異なることによる特定方向の反り変形が防止できる。
更には、乾燥させた積層合板PWのうち、乾燥後の気乾比重が小さい材料を表裏に配置して積層することが好ましい。これによって、上プレス盤10A及び下プレス盤10Bに接触する表裏層に乾燥後の気乾比重が小さい木材が配設され、圧密加工がなされることになるから、乾燥後の気乾比重が小さい木材において上プレス盤10A及び下プレス盤10Bによって十分な加熱圧縮がされて木材相互間の比重の差が小さくなり、製品化後における寸法変化率の差も小さくなる。よって、製品化後における寸法形状の安定性が増す。
次いで、図5に示すように、固定側の下プレス盤10B上に載置された積層した複数枚の加圧前多層材NWに対して上プレス盤10Aを所定圧力(例えば、0.5〜3kg/cm2)にて下降させ、積層した加圧前多層材NWの上面、即ち、繊維の長さ方向に対する垂直方向の平面に当接させる。
そして、圧密加工の最初は、まず、加熱工程(ステップ43)における加熱を開始し、バルブV1,バルブV2,バルブV3(図2)が開かれ図示しないボイラ装置から上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に加熱用の水蒸気が通されて内部空間IS及び位置決め孔18内が所定の加熱温度に保持され、積層した加圧前多層材NWが加熱される。
ここで、圧縮初期の加熱工程の加熱温度は、110℃〜160℃の範囲内とするのが好ましい。加熱温度が低過ぎると十分な圧密加工がなされず、強度不足や木材間が接合不良となったり、製品化後において吸湿乾燥による寸法形状変形が生じ易くなったりし、一方、加熱温度が高過ぎると表面が炭化して黒色に変化し色調や木材特有の香りが損なわれたり、材質が劣化して強度が低化し脆くなったりすることがある。本発明者らの実験によれば、適切な温度条件は110℃〜160℃の範囲内であることが判明した。この温度条件にすることによって、圧密加工における固定化不良や、表面炭化、材質強度の低化等の材質劣化を防止することができる。より好ましくは、圧縮初期の加熱工程の加熱温度は120℃〜140℃の範囲内である。なお、具体的な設定温度は、オイルパーム薄板W、ラワン薄板Lの含水率等に応じて設定される。
続いて、ステップS44の加圧工程にて、固定側の下プレス盤10Bに対して上プレス盤10Aの圧縮圧力が所定圧力に設定され、加圧前多層材NWが上プレス盤10A及び下プレス盤10Bにて所定時間加熱圧縮される。このとき、図6(c)に示すように、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接すると上プレス盤10Aの周縁部10aに配設されたシール部材11によって、上プレス盤10A及び下プレス盤10Bにて形成される内部空間IS及び位置決め孔18が密閉状態となる。
このように、プレス盤の面接触によって加熱圧縮することで、特には、加熱温度に加熱した後に加圧することによって、加圧前多層材NWにおいて乾燥時の反り変形が生じている場合でも破壊、割れ、クラック等を生じさせることなく平坦にすることができ、効率良く加熱圧縮を行うことができる。更には、加圧前多層材NWが加熱圧縮され、内部空間IS及び位置決め孔18が密閉状態に保持されている間に、加圧前多層材NWに元々含まれている水蒸気が蒸気圧となって内部空間IS及び位置決め孔18を介して乾燥木材DWに侵入拡散、排出自在となることから、厚み全体において効率よくかつ均一に加熱圧縮が行われる。
ここで、加圧前多層材NWを圧縮する所定圧力は、1〜100kg/cm2の範囲内であることが好ましい。加圧力が低過ぎると圧密加工において固定化不良となり、一方、加圧力が高過ぎると表面にクラックが生じることがある。本発明者らの実験によれば、適切な加圧条件は1〜100kg/cm2の範囲内である。この加圧条件にすることによって、圧密加工における固定化不良や、クラックの発生を防止することができる。より好ましくは、10〜50kg/cm2の範囲内である。
なお、このときの圧縮速度が速い場合には、加圧前多層材NW内の水蒸気や空気が抜けにくく、加圧前多層材NWに作用する圧力も高くなるため、クラックが生じたり、また、木材軟化が不十分で内部割れが生じたりする恐れがある。一方で、圧縮速度が遅い場合には、上プレス盤10A及び下プレス盤10Bに接触している面への負担が大きくなりクラック等が生じる可能性がある。そこで、このときの圧縮圧力は、加圧前多層材NWの内部の温度の伝達状態に応じて徐々に大きくするのが望ましい。
更に、本発明者らの実験によれば、加熱圧縮する時間は、10分間〜40分間の範囲内とするのが好ましい。この時間条件によって、処理時間が短過ぎることによるその後の固定化不良や、処理時間が長過ぎることによる表面の炭化を防止することができる。より好ましくは、圧縮している所定時間が20分間〜30分間の範囲内である。なお、この加熱圧縮の時間も加圧前多層材NWの内部の温度の伝達状態(時間)を考慮して設定するのが好ましい。
なお、プレス盤10の上プレス盤10A及び下プレス盤10Bによって形成される内部空間IS及び位置決め孔18がシール部材11を介して密閉状態となったときにおける内部空間IS及び位置決め孔18の上下方向の寸法間隔は、積層された複数枚の加圧前多層材NWが圧密加工されて気乾比重0.8以上の積層合板PWとなるときの厚み方向の仕上がり寸法に設定されている。このため、積層された加圧前多層材NWの厚み全体の圧縮率、即ち、積層された複数枚の加圧前多層材NWの圧縮による板厚の変化は、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接することで決まることとなる。
次いで、図6(c)に示す内部空間IS及び位置決め孔18の密閉状態で上プレス盤10A及び下プレス盤10Bによる上記所定の圧縮圧力(1〜100kg/cm2の範囲内が好ましい)が保持されたまま、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16によって、特定の加熱温度まで上昇され、内部空間IS及び位置決め孔18が所定の加熱温度のまま、所定時間保持される。このとき、上プレス盤11及び下プレス盤21で密閉状態とされている内部空間IS及び位置決め孔18を介して、加圧前多層材NWの周囲面とその内部とで高温高圧の蒸気圧が出入り自在となっている。
そして、この内部空間IS及び位置決め孔18の密閉状態で加熱圧縮処理が行われているときに、蒸気圧制御処理として圧力計P2で内部空間IS及び位置決め孔18の蒸気圧が検出され、図6(d)に示されるように、バルブV4に接続された配管12、配管口12aを介して内部空間ISに第2の加熱温度の蒸気圧が供給されることによって、または、バルブV5が適宜開閉されて配管口13a、配管13を通って内部空間ISからドレン配管14側に高温高圧の水蒸気が排出されることによって、内部空間IS及び位置決め孔18の蒸気圧が所定値に制御される。
このように、内部空間IS及び位置決め孔18の蒸気圧を制御することによって、木材の加熱圧縮が行われる。即ち、木材の周囲面及びその内部を内部空間IS及び位置決め孔18と同様の温度・圧力・蒸気圧状態とし加圧前多層材NW全体が均一化されることによって、加工歪が入らず、成形後の復元力及び周囲環境条件の変化による収縮膨張が顕著に抑制される。特に、所定の加圧状態を保ったまま加熱して水蒸気の排出または導入によって蒸気圧制御を行うことによって、表面の炭化が防止され、均一に加熱圧縮され、更に、表面の乾燥を防いで均一な固定化がスムースに達成され、成形加工後の回復、戻り、変形等が抑制される。
ここで、圧密加工する加熱及び圧縮状態を維持する最終加熱温度は、120℃〜210℃の範囲内とするのが好ましい。加熱温度が低過ぎると固定化が甘くなり水蒸気の作用による化学変化を十分に起こさせることができなくなって固定化不良となり、吸湿による戻りや乾燥による変形等が生じ易く、一方、加熱温度が高過ぎると表面が炭化して黒色に変化し色調や木材特有の香りが損なわれたり、材質が劣化して強度が低化し脆くなったりすることがある。本発明者らの実験によれば、適切な温度条件は120℃〜210℃の範囲内である。この温度条件にすることによって、圧密加工における固定化不良を防止して寸法形状安定性を維持し、表面炭化、材質強度の低化等の材質劣化を防止することができる。より好ましくは、加熱温度が120℃〜140℃の範囲内である。
また、本発明者らの実験研究によれば、固定化する直前の圧縮時間は、10分間〜120分間の範囲内とするのが好ましい。この時間条件によって、処理時間が短過ぎることによる固定化不良や、処理時間が長過ぎることによる表面の炭化を防止することができる。より好ましくは、所定時間が30分間〜90分間の範囲内である。なお、この固定化の直前の加熱・圧縮処理を行う具体的な設定時間は、加圧前多層材NWの含水率等を考慮して設定される。
因みに、水蒸気導入または水蒸気の排出による密閉状態にある内部空間IS及び位置決め孔18内の蒸気圧制御の開始は、上プレス盤10A及び下プレス盤10Bの温度が特定の加熱温度に到達してから行われるのが望ましい。このようにすれば、加圧前多層材NW内に水蒸気を浸透させ、それによってオイルパーム薄板W、ラワン薄板Lの化学変化を十分起こさせることができ、その結果、オイルパーム薄板W、ラワン薄板Lを十分かつ均一に固定化することができ、吸湿による戻りや乾燥による変形等が少ないものとなる。即ち、上プレス盤10A及び下プレス盤10Bの温度が特定の加熱温度に到達する前に密閉状態にある内部空間IS及び位置決め孔18内の水蒸気導入を開始した場合には、水蒸気が凝縮して密閉状態にある内部空間IS及び位置決め孔18内が水で満たされた状態となり、木材の含水率が多くなってしまい、その結果、吸湿による戻りや乾燥による変形等が生じ易い。また、上プレス盤10A及び下プレス盤10Bの温度が第2の加熱温度に到達する前に密閉状態にある内部空間IS及び位置決め孔18内の水蒸気排出を開始した場合においても、外層部分の含水率に基づく余分な内部空間IS及び位置決め孔18内の水分が除去され難くて木材の含水率が多くなってしまい、吸湿による戻りや乾燥による変形等が生じ易くなる。
なお、後述の冷却開始前にその蒸気圧制御を終了させるのが好ましい。後述の冷却開始前にその蒸気圧制御を終了しない場合には、冷却処理効率が低下する。
また、密閉状態にある内部空間IS及び位置決め孔18内に水蒸気を導入して蒸気圧を制御する場合には、上プレス盤10A及び下プレス盤10Bの温度が特定の加熱温度に到達した時における内部空間IS及び位置決め孔18内の水蒸気圧力及び温度と同等以下の水蒸気圧及び温度の水蒸気を導入するのが好ましい。導入する水蒸気の圧力及び温度が内部空間IS及び位置決め孔18内の水蒸気圧力及び温度より高い場合には、水蒸気が凝縮して密閉状態にある内部空間IS及び位置決め孔18内が水で満たされた状態となり、オイルパーム薄板W、ラワン薄板Lの含水率が多くなってしまい、その結果、吸湿による戻りや乾燥による変形等が生じ易くなる。なお、密閉状態にある内部空間IS及び位置決め孔18内において、加圧前多層材NWの外層部分の含水率に基づく余分な水分が存在する場合には、内部空間IS及び位置決め孔18内の高温高圧の水蒸気を適宜排出することによって、所定の蒸気圧となるように調節される。
続いて、ステップS60の固定化工程は、ステップS43の加熱工程、ステップS44の圧縮工程の際の圧力と同じ所定圧力(1〜100kg/cm2の範囲内が好ましい)に保持されたまま、バルブV11,バルブV12,バルブV13(図5)が開かれ図示しないボイラ装置から上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水が通されることによって、図6(e)に示すように、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、所定時間(例えば、10〜120〔min〕)保持される。
そして、最後に、ステップS60の固定化工程において解圧し、図6(f)に示すように、固定側の下プレス盤10Bに対して上プレス盤10Aを徐々に上昇させて離間させることによってプレス圧力および密閉状態を開放し、内部空間IS及び位置決め孔18から仕上がり品である積層合板PWが取出されることで一連の処理工程が終了する。
このように、変形が生じることのない圧力状態下で冷却することによって圧密状態の定着が安定する。そして、加圧状態で冷却した後、加圧を解除することによって、即ち、冷却によって加圧前多層材NW内の水蒸気圧を下げた後、徐々に解圧して内部蒸気圧を開放することによって、余分な水蒸気を液化して除くことができて冷却圧縮を解除したときに膨らみ変形、割れ、破壊(パンク)等がない積層合板PWとなる。即ち、本実施の形態の積層合板PWによれば、圧縮解除後に膨らみ変形、割れ、破壊等が生じることなく安定した品質が確保されたものである。
このようにして、積層した加圧前多層材NWの繊維の長さ方向に対して垂直方向に加えた外力によって、積層した加圧前多層材NW全体の厚みが加熱圧縮され、圧密加工により気乾比重を0.8以上とした積層合板PWが製造される。そして、このようにして得られた積層合板PWは、圧密加工により木材同士が強固に接合されている。これは、圧密加工によってセルロースや、ヘミセルロースや、リグニンが水素結合し、特に、アブラヤシの樹幹には糖類、リグニン、プラスチック成分等が多く含まれていて、圧密加工によりこれらの成分が分解や軟化して染み出し、木材間を移動した後に再結晶化・再結合化されることでバインダーとして機能し、更には、圧密加工によりオイルパーム薄板Wの表層の繊維が軟化して積層方向に隣接する木材の繊維と絡み合うことによって、木材同士が強固に接合したものと考えられる。
このように本実施の形態に係る積層合板PWによれば、ホルムアルデヒド等による環境負荷が懸念される人工接着剤やコストが高い天然接着剤を使用することなく木材同士が接合されることから、環境に優しく、また、コストを抑えることができる。
しかも、接着剤の使用によってオイルパーム薄板Wとラワン薄板Lとを接合する場合には、接着剤を塗布等した後、圧締して接着剤を硬化するのが一般的であり、接着剤塗布等の工程及び圧締工程が必要であるのに対し、本実施の形態に係る積層合板PWによれば、圧密加工によって接着剤を使用することなく木材同士が接合されるため、上記別個の接合工程が不要であり、製造工程の簡略化を図ることができる。
そして、このようにして得た積層合板PWは、圧密加工されたことによって、オイルパーム薄板Wの空隙が小さくなって、また、細胞壁を構成するリグニン、ヘミセルロース等が軟化・分解及び再結合・再結晶化され細胞密度が高まり、比重が小さくて強度が小さく変形しやすいというオイルパーム薄板Wの欠点が補完され、高い強度及び安定した寸法形状性が確保される。特に、気乾比重が0.8以上となるように圧密加工することで、積層したオイルパーム薄板Wの厚み全体が均一に圧縮され、オイルパーム薄板Wの性質が変化して硬度等が顕著に高くなり、また、硬度等の物性値・特性値のばらつきが少なくなり、更には、周囲環境条件の変化による膨張率及び乾燥率のばらつきも少なくそれによる変形等が抑えられ、寸法形状安定性が増す。したがって、物性的に安定して製品間の品質にばらつきが少なく商品価値が高いものとなる。更に、乾燥させたオイルパーム薄板Wを複数枚積層した状態で全体を圧密化しており、接合面において周囲環境条件の変化による膨張率及び収縮率は略均一となることから安定した接合性が維持され、周囲環境条件の変化で接合面にストレスがかかることによる歪み、変形、クラック等が生じることなく、安定した寸法形状性が確保される。
特に、オイルパーム薄板Wの繊維方向を同一にして積層した場合においては、圧密加工において軟化した表面層の繊維が、繊維方向を同一として縦方向に隣接しているラワン薄板Lの木表層の木繊維と絡み易く、その絡み合った状態で固定化されたオイルパーム薄板Wとラワン薄板Lは強固に接合される。しかも、接合面における膨張率及び収縮率を完全に等しくできることから周囲環境条件が変化した場合において接合面に全くストレスが掛かることがない。したがって、接合強度が高くて機械的強度も高く、高い寸法形状安定性が確保される。
一方、加圧前多層材NWの繊維方向を互いに直交させて積層した場合には、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じでも互いの木材同士が相互に作用し合って特定方向の反り変形が防止される。殊に、全枚数が奇数枚の場合には、繊維方向を互いに直交させて積層したとき表裏で単板の繊維方向が平行で断面が対称となるため、周囲環境条件の変化による歪み等が防止される。
また、全枚数を偶数枚とする場合には、内部の一部にて繊維方向を同一にして積層しその他は繊維方向を互いに直交させて積層することによって、表裏の繊維方向を合わせ周囲環境条件の変化による歪み等を防止することが可能となる。
そして、本実施の形態の積層合板PWは、その圧縮面とされた表裏面においても圧密加工により緻密化されてオイルパーム薄板Wとラワン薄板Lの繊維同士が絡み合って定着され、環境負荷が懸念される人工接着剤やコストが高い天然接着剤を使用しなくても、外表面から剥離し難くなっていて、表面の品質が良い。即ち、人工接着剤やコストが高い天然接着剤を使用しなくても繊維の表面からの剥離が抑制できることから、環境に優しく、コストを抑えることができる。
更に、厚み全体が塑性加工されたものであることから、厚み側面の稜線に対して大きな面取り加工や曲面加工を施したとしてもその端面では、高い硬度による材強度が確保される。
因みに、オイルパームにおいて特に含水率が高く軟質な樹心付近のオイルパーム薄板Wを使用した場合であっても、圧密加工によって強度を高めることができ、または、圧密加工において温度及び圧縮制御を行うことで、余分な水分の排出が可能で、加圧前多層材NW内部の水蒸気圧が均一に好適に調節されることから、圧縮加工後の膨らみ変形等も抑制される。よって、十分な強度が確保され安定した寸法形状性を有する積層合板PWを形成することが可能である。したがって、オイルパームの樹幹全体の有効活用を図ることができる。
特に、乾燥させたオイルパーム薄板W、ラワン薄板Lのうち、乾燥後の気乾比重が小さい表裏に配置して積層した場合には、上述したように、上プレス盤10A及び下プレス盤10Bに接触する表裏層に乾燥後の気乾比重が小さい材料が配設され、圧密加工がなされることになるから、乾燥後の気乾比重が小さい材料において上プレス盤10A及び下プレス盤10Bによって十分な加熱圧縮がされて木材相互間の比重の差が小さくなり、製品化後における寸法変化率の差も小さくなる。よって、製品化後における寸法形状の安定性が増す。
このように本実施の形態に係る積層合板PWは、本来含水率が高く軟質なオイルパームの樹幹をオイルパーム薄板W、ラワン薄板Lとして剥いた後、乾燥させ、更に複数枚積層し圧密加工することによって、表面のみならず板厚全体における強度及び硬度が大きく向上され、床材、腰板材、屋内家具材、表面塗装して使用する住宅用外装材等、広範な用途が見込まれる。殊に、圧密加工によって表面硬度が高められ、厚みが薄くても十分な強度及び硬度が確保できることから、製品化において厚みを薄くすることが可能である。
なお、図7に示す枠体20は、実施の形態1の変形例で、上下動自在な構造としたもので、図5及び図6の下プレス盤10Bに配設されるものであり、位置決め孔18に代わるものである。
下プレス盤10Bのベース板25に同一高さの外側下プレス盤10Ba及び内側下プレス盤10Bbを配設し、その間に枠体溝21を形成する。枠体溝21のベース板25側には複数のコイルスプリング22が配設され、その上部に四角の可動枠23が配設されている。可動枠23の内面には、切欠きが形成されていて加圧前多層材NWの側面からの水蒸気等の流体を導く流体路24となっている。四角の可動枠23の内周は加圧前多層材NWの外周に略等しくなっており、四角の可動枠23に加圧前多層材NWが入るとラワン薄板L1及び薄板W2,・・・,W5に位置ずれが生じないようになっている。したがって、上プレス盤10Aが下降した時、それが下プレス盤10Bの寸法以上の広さを有していても、可動枠23と当接すると、可動枠23が複数のコイルスプリング22の弾性に抗して下降し、加圧前多層材NWの圧縮に応答する。そして、複数のコイルスプリング22の移動限界で加圧前多層材NWの圧縮が終了する。勿論、下プレス盤10Bの可動枠23に対して上プレス盤10Aが挿入される構造である場合には、下プレス盤10Bに可動枠23を固定配置とすることができる。即ち、下プレス盤10Bの可動枠23を固定し、可動枠23の内部に挿入される上プレス盤10Aによって圧縮することもできる。
このようにして、ラワン薄板L及びオイルパーム薄板Wの繊維の長さ方向に対して垂直方向に加えた外力によって、ラワン薄板L1及びオイルパーム薄板W2,・・・,W5の厚みが加熱圧縮され、全体の圧密加工されて圧縮率60%以上とした積層合板PWが製造され、このとき、ラワン薄板L1及びオイルパーム薄板W2,・・・,W5の厚み方向への圧縮力によってラワン薄板L及びオイルパーム薄板Wの平面に平行な方向の伸びは、可動枠23に規制され、伸びることがない。
なお、本実施の形態においては、蒸気圧を制御した後、徐々に解圧して内部蒸気圧を開放し、また、冷却によって加圧前多層材NW内の水蒸気圧を下げて定着させるので、冷却圧縮を解除したときに膨らみ変形やパンクと呼ばれる表面割れのない積層合板PWを形成できる。即ち、本実施の形態で製造した積層合板PWは、圧縮解除後に膨らみ変形や表面割れを生じることがなく、安定した品質が確保されている。本実施の形態では、上プレス盤10A及び下プレス盤10Bを用いて圧縮し、定着して積層合板PWを得ているが、本発明を実施する場合には、通常の電子レンジが使用するマイクロ波の周波数帯域よりも若干周波数の低い高周波で誘電加熱して加圧前多層材NWを加熱圧縮し、定着しても、積層合板PWを得ることができる。
本実施の形態における4枚のオイルパーム薄板W2,・・・,W5は、その厚みを1.5mm,2.0mm,2.5mm,3.0mm,3.5mm,4.0mm,4.5mm,5.0mm,5.5mm,6.0mmのものを、その繊維長が直角に交差するように各同一厚さの5枚のオイルパーム薄板Wを配置した加圧前多層材NWから圧縮して積層合板PWを製造した。
基本的に圧縮前の加圧前多層材NWの厚み7.5〜30mmに対して、3〜10mmの圧密加工を行った積層合板PWを得た。供給する水蒸気の温度は、110〜210度に上昇させ、その間に加えた圧縮力は20〜50kg/cm2である。ここで、1.5mmの薄板Wは5枚積層することにより、7.5mmの加圧前多層材NWとなるが、実験室レベルでの所定の圧縮率で圧縮した場合の圧縮誤差及び解圧後の膨張によって0.5割以下であるが誤差が介在している。
また、念のため、本実施の形態における5枚のオイルパーム薄板Wは、その厚みを1.5mm,2.0mm,2.5mm,3.0mm,3.5mm,4.0mm,4.5mm,5.0mm,5.5mm,6.0mmのものを、その繊維長が平行になるように各同一厚さの5枚のオイルパーム薄板Wを配置した加圧前多層材NWから圧縮して積層合板PWを製造した。
前者と同様に、基本的に圧縮前の加圧前多層材NWの厚み7.5〜30mmに対して、3〜10mmの圧密加工を行った積層合板PWを得た。供給する水蒸気の温度は、110℃から210度に上昇させ、その間に加えた圧縮力は20〜50kg/cm2である。
Figure 2014019032
表1では、繊維(維管束)長が直角に交差するように各同一厚さの5枚のオイルパーム薄板Wを配置した加圧前多層材NWを「交差接合状態」と示し、繊維長が平行する加圧前多層材NWを「平行接合状態」として示した。表1は耐久試験の結果であり、4月〜6月の3か月間太陽光が使用者される場所に置き、自然の天候条件下で、晴れの日には10時と4時に水を30分間噴霧したものである。「交差接合状態」の1.5mmと2.0mmの積層合板PWでは、部分的に表面が面一でなくなり、内部で気泡の発生、剥離等が発生している可能性があった。即ち、使用環境条件の拘束を受けることが判明した。この試験では、自然界の温度の急変に対する対応を検討したものである。ここで、「交差接合状態」よりも「平行接合状態」の方が互いの結合が容易であり、良好な強度が得られることを証明している。しかし、維管束等の繊維方向が特定方向に定まっているから、板としての平面性には欠けるが、逆に、積層合板PWを巻回して搬送すること、特定の弧状のコンクリート枠等として使用することもできる。
しかし、他の試料は、ヘミセルロースはリグニンとセルロースとの結び付ける機能を有しているから、オイルパーム幹WDの自然栽培されている状態では、互いにどれだけ干渉し合っているかは不明であるが、所定の温度(120℃以上)、例えば、リグニンの反応開始温度の80度以上に温度を上げることにより、ヘミセルロースの反応開始温度の60度以上となり、互いに反応し、接合力が強くなり、堅固な材料となることが判明した。
「交差接合状態」の1.5mmと2.0mmの積層合板PWでは、0.4〜1.2mm
の維管束が交差すると、その独自性の強い維管束の交差位置では、ヘミセルロースがリグニンとセルロースとの結び付きを行っても、所定の温度及び圧縮力で得られる絶対的ヘミセルロース及びリグニン、セルロースの総量が少なく、接合が完全に行われていないと推定される。
Figure 2014019032
Figure 2014019032
また、発明者らは、過酷な使用条件として表2及び表3の試験を行った。なお、多くの試料を使用したが、今回提出の試料は、顕著な特徴が表れているところを抽出したものである。
積層合板Aは3.0mmのオイルパーム薄板W2,・・・,W5及び3.0mmのラワン薄板L1の5枚のオイルパーム薄板Wからなり、そのオイルパーム薄板Wの厚みを3.0mmとしたものである。また、積層合板Bは4枚のオイルパーム薄板W及び3.0mmのラワン薄板L1からなり、そのオイルパーム薄板Wの厚みを2.5mm+3.0mm+2.5mm+3.0mmとしたものである。積層合板Cは3.0mmのラワン薄板L1と3枚のオイルパーム薄板Wからなり、そのオイルパーム薄板Wの厚みを2.5mm+3.0mm+2.5mmとしたものである。積層合板Dは3.0mmのラワン薄板L1及び3枚のオイルパーム薄板Wからなり、そのオイルパーム薄板Wの厚みを3.0mm+3.0mm+3.0mmとしたものである。何れも、最上位置が3.0mmのラワン薄板L1としたものである。
加圧前多層材NWと積層合板PWの全体の圧縮率は、式
{(加圧前多層材NWの厚み)−(積層合板PWの厚み)}/加圧前多層材NWの厚み
で算出した。
ここで、30℃の湯と、60℃の湯につけるという過酷な試験を行った。積層合板A及び積層合板Bは30℃の湯につけても90分以内に変化はなかった。しかし、60℃の湯につけると積層合板Bは45分で積層面が軟化し、積層合板Aは60分で積層面が軟化した。
また、積層合板Cでは、30℃の湯につけても45分で積層面が軟化した。即ち、これはヘミセルロースの反応開始温度の60℃以上の問題ではなく、圧縮力の影響が出ていると推定できる。圧縮力を大きくすると積層合板Cの内部の空気がなくなり、緻密な接合が行われるものの、圧縮力が弱いと繊維を潰すことなく形式的な接合が行われているに過ぎないので、そこに湯が入り全体が軟化したものと推定される。当然、60℃の湯につけても30分で積層面が軟化した。
そして、積層合板Dは、オイルパーム薄板Wの厚みを増加させ、圧縮力を増加させることにより、30℃の湯に60分以下では問題なく着けられており、また、60℃の湯でも45分以下では耐えている。したがって、圧縮力を大きくすることが必要要件であり、圧縮率からいえば60%以上、より好ましくは65%以上の圧縮率が望ましい。特に、70%以上の圧縮率であると安全性が高くなる。また、圧縮率が低い場合には、表面に撥水性のコーティング剤の塗布が望ましい。
これに対して、オイルパーム薄板Wのみの試験データを掲載すると表4及び表5のようになる。
Figure 2014019032
Figure 2014019032
また、発明者らは、オイルパーム薄板Wのみの表4及び表5の試験を行った。この試料も顕著な特徴が表れているところを抽出したものである。
積層合板Eは4枚のオイルパーム薄板Wからなり、そのオイルパーム薄板Wの厚みを3.0mmとしたものである。また、積層合板Fは4枚のオイルパーム薄板Wからなり、そのオイルパーム薄板Wの厚みを2.5mm+3.0mm+2.5mm+3.0mmとしたものである。積層合板Gは3枚のオイルパーム薄板Wからなり、そのオイルパーム薄板Wの厚みを2.5mm+3.0mm+2.5mmとしたものである。積層合板Hは3枚のオイルパーム薄板Wからなり、そのオイルパーム薄板Wの厚みを3.0mm+3.0mm+3.0mmとしたものである。
ここで、30℃の湯と、60℃の湯につけるという過酷な試験を行った。積層合板E及び積層合板Fは30℃の湯につけても90分以内に変化はなかった。しかし、60℃の湯につけると45分で積層面が軟化した。
また、積層合板Gでは、30℃の湯につけても30分で積層面が軟化した。即ち、これはヘミセルロースの反応開始温度の60℃以上の問題ではなく、圧縮力の影響が出ていると推定できる。圧縮力を大きくすると積層合板Gの内部の空気がなくなり、緻密な接合が行われるものの、圧縮力が弱いと繊維を潰すことなく形式的な接合が行われているに過ぎないので、そこに湯が入り全体が軟化したものと推定される。当然、60℃の湯につけても15分で積層面が軟化した。
そして、積層合板Hは、オイルパーム薄板Wの厚みを増加させ、圧縮力を増加させることにより、30℃の湯に45分間は問題なく着けられており、また、60℃の湯でも15分間は耐えている。したがって、圧縮力を大きくすることが必要要件であり、圧縮率からいえば65%以上の圧縮率が望ましい。特に、70%以上の圧縮率が安全性が高くなる。また、圧縮率が低い場合には、表面に撥水性のコーティング剤の塗布が望ましい。
即ち、試験的には、圧縮率が65%以上であると、オイルパーム薄板Wを互いに繊維(維管束)長が直角に交差するように配置してなる加圧前多層材NWとし、しかも、オイルパーム薄板Wの厚みは2.5mmに境界線があるから、2.5mm以上であることが望ましい。ここでラワン薄板L1とオイルパーム薄板Wとを混合させると、オイルパーム薄板Wにはそれのみ以上の圧縮力が加わり、ラワン薄板L1の圧縮力が弱くなるから、総合的には、良好な圧密加工された積層合板PWが得られる。
特に、自然界で30℃の湯中に積層合板PWが浸漬される条件は皆無であるが、それでも、オイルパーム薄板Wの厚みは2.5mm、圧縮率が65%以上であれば、使用できることを示している。
また、60℃の湯中に積層合板PWが浸漬される条件は、ヘミセルロースがリグニンとセルロースとの結付きを阻害する可能性を確認するものであるが、圧縮率が65%以上であれば、それも現れ難いことを示している。
しかし、圧縮率の境界線が65%程度にあることを意味するものであるから、大量生産する場合には、望ましくは65%以上であり、また、オイルパーム薄板Wの厚みも3.0mm以上が望ましい。
本実施の形態の接合部分破壊試験を行った。
試験は、約3mm厚のラワン薄板L1及び、約3mm厚のオイルパーム薄板W2,・・・,W5を圧密加工し、約11mmの厚みとし、20cmの正方形に切断し、その両面に接着剤で30mmのケヤキ板J,Kを貼り付け、両面のケヤキ板Jとケヤキ板K間に引張り力を付与すると、オイルパーム薄板Wが含有する樹脂成分及び糖成分がのみで接合したものでは、ラワン薄板L1とオイルパーム薄板W2との間で剥離した。そこで、5枚の積層合板PWを用いて実験したが、何れもラワン薄板L1とオイルパーム薄板W2との間で剥離した。
そこで、予めラワン薄板L1のオイルパーム薄板W2との対向面に熱硬化性樹脂を塗布しておき、約3mm厚のラワン薄板L1及び、約3mm厚のオイルパーム薄板W2,・・・,W5を圧密加工した。そして、ラワン薄板L1とオイルパーム薄板W2との間で剥離を行うべく、両面のケヤキ板Jとケヤキ板K間に引張り力を付与したが、ラワン薄板L1とオイルパーム薄板W2との間で剥離が生じなかった。即ち、接着剤を補充すると堅固な接合が可能となることが確認された。
Figure 2014019032
Figure 2014019032
更に、発明者らは、オイルパーム基材Wが直行する3枚からなり、各厚みが4mmのものを使用して表2及び表3と同様の実験を行った。圧縮率が50%を割る48.75%で60℃の湯に対して浸漬されないことが確認された。即ち、圧縮率は50%以上であればよく、圧縮率40%以上であれば実用的に問題が生じないことが確認された。
上記のように、本実施の形態の積層合板は、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成し、それを圧密加工したとき、1枚の厚みが1mm以上からなる1枚以上のオイルパーム薄板Wと、所定長のラワン幹LDまたはシナ幹または針葉樹幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板L、またはシナ薄板、または針葉樹薄板の何れかの1枚以上をオイルパーム薄板Wに面して配置し、それらを圧縮、固定化し、一体に接合したものである。
したがって、1枚以上のオイルパーム薄板Wと、ラワン薄板L、シナ薄板、針葉樹薄板の何れかの1枚以上をオイルパーム薄板Wに面して配置し、それらを圧縮、固定化し、一体に接合したものであるから、オイルパーム薄板Wが含有する樹脂成分及び糖成分を使用し、自然物で接合した積層合板PWが得られる。また、ラワン薄板L、シナ薄板、針葉樹薄板の何れかの1枚以上を芯材としたり、意匠面として使用できるから、用途に合わせた積層合板PWが製造できる。
よって、予めラワン薄板L1のオイルパーム薄板W2との対向面に熱硬化性樹脂を塗布したとしても、1/4の接着剤の使用料となり、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。
このオイルパーム幹WDは節、年輪がないからロータリーレースで外周から所定の厚みに剥いてオイルパーム薄板Wを作成する場合、均質なオイルパーム薄板Wが得られ、結果的に、そのオイルパーム薄板Wからなる積層合板PWは均質なものとなる。また、加える温度と圧力によってオイルパーム幹WD自体が含有する樹脂成分及び糖成分によってその接合力を変化させるから、加える温度と圧力の制御によって任意の接着力が得られる。そして、複数枚のオイルパーム薄板Wをオイルパーム幹WD自体が含有する樹脂成分及び糖成分によって接合して積層合板PWを形成するものでは、他の合成樹脂、合成ゴムを接着材として使用していないから、自然に戻すことができ公害問題を引き起こさない。
更に、オイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によって接合されるときの圧縮力によって、オイルパーム薄板Wの空隙が殆どなくなり、緻密な組織になるから、耐水性があり、かつ、防水、防虫性に富み、建築材料として使用しても耐用年数が長くなる。
特に、ヘミセルロースはリグニンとセルロースとの結び付ける機能を有しており、オイルパーム幹WDの自然栽培されている状態では、互いにどれだけ干渉し合っているかは不明である。しかし、所定の温度、例えば、リグニンの反応開始温度の80度以上に温度を上げることにより、ヘミセルロースの反応開始温度の60度以上となり、互いに反応し、堅固な特性となることが確認された。
上記実施の形態の積層合板PWは、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成し、それを圧密加工した1枚の厚みが1mm以上からなる2枚以上のオイルパーム薄板Wと、所定長のラワン幹LDまたはシナ幹または針葉樹幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板L、またはシナ薄板、または針葉樹薄板の何れかの1枚以上をオイルパーム薄板Wに面して配置し、それらを一体に接合したものである。
したがって、少なくとも圧密加工した2枚以上のオイルパーム薄板Wと、ラワン薄板L、シナ薄板、針葉樹薄板の何れかの1枚以上をオイルパーム薄板Wに面して配置し、それらを一体に接合したものであるから、オイルパーム薄板Wが含有する樹脂成分及び糖成分が不足した場合には、ラワン薄板L、シナ薄板、針葉樹薄板の何れかの1枚以上の接合対象に接着剤を追加して貼り合せることにより、所望の積層合板PWを製造するものである。よって、オイルパーム薄板Wが含有する樹脂成分及び糖成分が不足した場合に接着剤を使用するものであるから、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。
上記実施の形態のオイルパーム薄板Wに面して配置し、一体に接合する2枚以上のオイルパーム薄板Wと、ラワン薄板Lまたはシナ薄板または針葉樹薄板の何れかの1枚以上と一体に接合する積層合板PWは、その接合にオイルパーム薄板Wが含有する樹脂成分及び糖成分を使用し、それらを圧縮、固定化し、一体に接合したものである。
したがって、2枚以上のオイルパーム薄板Wと、ラワン薄板Lまたはシナ薄板または針葉樹薄板の何れかの1枚以上を積層合板PWとして、オイルパーム薄板Wが含有する樹脂成分及び糖成分を用いて一体に接合できるから、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパーム幹WDが本来的に有している成分を利用した積層合板PWが得られる。
上記実施の形態のオイルパーム薄板Wに面して配置し、一体に接合する2枚以上のオイルパーム薄板Wの接合には、オイルパーム薄板Wが含有する樹脂成分及び糖成分とし、ラワン薄板Lまたはシナ薄板または針葉樹薄板の何れかの2枚以上と一体に接合する接合面には、オイルパーム薄板Wが含有する樹脂成分及び糖成分の他に、他の接着剤を付加したものであるから、1枚以上のオイルパーム薄板Wの接合には、オイルパーム薄板Wが含有する樹脂成分及び糖成分を使用し、更に、ラワン薄板Lまたはシナ薄板または針葉樹薄板の何れかの1枚以上の接合も堅固に行うことができるから、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。
上記実施の形態の所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いてラワン薄板L及びオイルパーム薄板Wに形成する工程を薄板工程とすることができる。また、ラワン薄板L及びオイルパーム薄板Wを乾燥する工程は、ラワン薄板L及びオイルパーム薄板Wを形成する工程と同一行程であっても、別工程であってもよく、これを乾燥工程とすることができる。
そして、乾燥させたラワン薄板L及びオイルパーム薄板Wを所定の状態に複数枚加圧前多層材NWとして積層する工程は、通常、2枚乃至5枚の単位で積層して使用されるが、原理的には、2枚以上の積層であればよく、これを積層工程とすることができる。
特に、ラワン薄板Lの枚数をオイルパーム薄板Wの枚数よりも少なくすることにより、少なくとも従来の積層合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を1/2以下に抑えることができる。
更に、積層工程以降で積層されたラワン薄板L及びオイルパーム薄板Wの温度を上昇させるべく加熱する工程で、水蒸気または電熱を導入して加熱または熱板で加熱する工程は、加熱エネルギを供給することから加熱工程とすることができる。更にまた、前記加熱工程によって加熱された前記積層されたラワン薄板L及びオイルパーム薄板Wに対して、ラワン薄板L及びオイルパーム薄板Wの面に直角方向の圧縮力を加える工程は、所定の圧縮率でラワン薄板L及びオイルパーム薄板Wの圧縮、即ち、加圧前多層材NWの圧縮が行えればよい。この工程は、圧縮工程とすることができる。
加えて、前記圧縮工程で所定時間圧縮した後、前記加熱工程で供給していた温度を降下させ、積層合板PWの圧縮状態を固定化し、所定の圧縮率で圧縮していた圧縮力を解圧するものであり、これを積層合板PWから捉えて固定化工程とすることができる。
このように、上記実施の形態の積層合板PWは、所定長のラワン薄板L及びオイルパーム薄板Wをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて複数枚のラワン薄板L及びオイルパーム薄板Wに形成するステップS10及びステップS11の薄板工程と、その薄板Wを乾燥するステップS20及びステップS21の乾燥工程と、前記乾燥工程で乾燥させたラワン薄板L及びオイルパーム薄板Wを所定の状態に複数枚積層するステップS30の積層工程と、前記積層工程以降で前記積層されたラワン薄板L及びオイルパーム薄板Wの温度を上昇させるべく加熱するステップS43の加熱工程と、前記加熱工程によって加熱された前記積層されたラワン薄板L及びオイルパーム薄板Wに、ラワン薄板L及びオイルパーム薄板Wの面に対して平行方向に延びるのを規制しながら、ラワン薄板L及びオイルパーム薄板Wの面に対して直角方向の圧縮力を加えて所定時間圧縮するステップS44の圧縮工程と、前記圧縮工程で所定時間押圧した後、前記加熱工程で供給していた温度を降下させて固定化させるステップS60の固定化工程を具備するものである。
したがって、これらの工程で使用されるオイルパーム幹WDは節、年輪がないからロータリーレースで外周から所定の厚みに剥いてラワン薄板L及びオイルパーム薄板Wを作成する場合、均質なラワン薄板L及びオイルパーム薄板Wが得られ、結果的に、そのラワン薄板L及びオイルパーム薄板Wからなる積層合板PWは均質なものとなる。また、加える温度と圧縮力によってオイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によってその接合力を変化させることができるから、加える温度と圧縮力の制御によって任意の接着力が得られる。そして、複数枚のラワン薄板L及びオイルパーム薄板Wをオイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によって接合して積層合板PWを形成するものであるから、他の合成樹脂、合成ゴムを接着材として使用していないから、自然に戻すことができ公害問題を引き起こさない。更に、オイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によって接合されるときの圧縮力によって、ラワン薄板L及びオイルパーム薄板Wの空隙が殆どなくなり、緻密な組織になるから、耐水性があり、かつ、防水、防虫性に富み、建築材料として使用しても耐用年数が長くなる。
上記実施の形態の積層合板の製造は、次のように積層合板の製造方法の実施の形態として一般化できる。
所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて複数枚のオイルパーム薄板Wに形成するステップS10からなる薄板工程及び所定長のオイルパーム以外の幹、例えば、ラワン幹LDをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて1枚のラワン薄板L等の薄板に形成するステップS11からなる薄板工程からなる薄板工程と、前記薄板工程で形成したオイルパーム薄板W及びラワン薄板L等の他の剥いた薄板を乾燥するステップS20及びステップS21からなる乾燥工程と、前記乾燥工程で乾燥させたオイルパーム薄板W及びラワン薄板L等の他の剥いた薄板を所定の状態に複数枚積層するステップS30からなる積層工程と、前記積層工程以降で前記積層されたオイルパーム薄板W及びラワン薄板L等の他の剥いた薄板の温度を上昇させるべく加熱するステップS43からなる加熱工程と、前記加熱工程によって加熱された前記積層されたオイルパーム薄板及びラワン薄板L等の他の剥いた薄板に、オイルパーム薄板及びラワン薄板L等の他の剥いた薄板の面に対して平行方向に延びるのを位置決め孔18または枠体20で規制しながら、前記オイルパーム薄板及びラワン薄板L等の他の剥いた薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮するステップS44からなる圧縮工程と、前記圧縮工程で所定時間圧縮したオイルパーム薄板W及びラワン薄板L等の他の剥いた薄板を、前記加熱工程で供給していた温度を降下させて固定化させるステップS60からなる固定化工程を具備する積層合板の製造方法とすることができる。
上記実施の形態の前記乾燥工程で乾燥させたラワン薄板L及びオイルパーム薄板Wを所定の状態に積層する積層工程の5枚のラワン薄板L1及びオイルパーム薄板W2,・・・,W5の各辺を位置決めする枠体20または位置決め孔18は、所定の積載面を規制する枠体20または位置決め孔18であり、複数枚の薄板Wの面の上下及び左右を規制するものである。したがって、その圧縮力を加える面に対して直角方向に薄板Wが伸びることが防止され、積層合板PWの位置によって厚い個所と薄い個所が生じることがない。
上記実施の形態の積層合板PWでは、ラワン薄板L1及び前記複数枚積層したオイルパーム薄板W2,・・・,W5の1枚の薄板W1をオイルパーム薄板W以外のラワン薄板Lとし、オイルパーム薄板W以外のラワン薄板Lを含めて積層合板PWとして一体に接合したものである。このように、オイルパーム薄板W2,・・・,W5の接合組成物におけるオイルパーム薄板W2,・・・,W5をラワン薄板Lと一体に接合してなる積層合板PWは、前記複数枚積層した薄板W2,・・・,W5の1枚のオイルパーム薄板W1をオイルパーム薄板W以外のラワン薄板Lとして、図3のように、片側の露出面に配設することにより、当該ラワン薄板Lをオイルパーム薄板W2,・・・,W5の接着能力で接合することができる。また、それら片側の露出面に配設した木目を生かした意匠とすることができる。したがって、積層合板PWの片側の面のみを他の材料からなる薄い木材とすることができる。特に、化粧板として使用するのに好適である。
上記実施の形態のラワン薄板L及びオイルパーム薄板Wを、所定の状態に複数枚積層する積層工程では、前記複数枚積層したラワン薄板L1及びオイルパーム薄板W2,・・・,W5の片側の面の1枚または両端面の2枚をオイルパーム薄板W2,・・・,W5以外の木材等からなるラワン薄板Lとし、オイルパーム薄板W1,・・・,W5以外の薄板を含めて積層合板PWとして一体に接合したものである。ここでは、オイルパーム薄板Wを1以上とすることができる。
勿論、オイルパーム薄板W1,・・・,W5以外の木材等は、ラワン薄板Lとすることも、ラワン薄板Lに代わってシナ薄板または針葉樹薄板とすることもできる。或いはそれらの中から1枚または2枚の組み合わせとすることもできる。
[実施の形態2]
上記実施の形態1では、前記複数枚積層したラワン薄板L1及びオイルパーム薄板W2,・・・,W5として、オイルパーム薄板W2,・・・,W5以外の木材等からなるラワン薄板Lを使用した事例で説明したが、本発明を実施する場合には、オイルパーム薄板W1,・・・,W5のみで積層合板PWを構成することもできる。
具体的には、図10及び図11に示すように、オイルパーム薄板W1,・・・,W5のみで積層合板PWを形成し、それを図11に示すように、積層した加圧前多層材NWとすることができる。
この実施の形態のオイルパーム薄板W1,・・・,W5の組は、露出面にもオイルパーム薄板Wを配設する加圧前多層材NWである。このオイルパーム薄板W1,・・・,W5のみからなる加圧前多層材NWについても、実施の形態1と同様に、全体の繊維方向を同一にしたり、多層の薄板の1枚または2枚以上を異なった繊維(維管束)方向とすることもできる。即ち、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで所定の厚みに刃物CUTで剥いて複数枚のオイルパーム薄板Wに形成するステップS10の薄板工程のみとすることができる。
この実施の形態では、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて複数枚のオイルパーム薄板Wに形成する工程からなるステップS10の薄板工程と、前記薄板工程で形成したオイルパーム薄板Wを乾燥するステップS20の乾燥工程と、前記乾燥工程で乾燥させたオイルパーム薄板Wを所定の状態に複数枚積層するステップS30の積層工程と、前記積層工程以降で前記積層されたオイルパーム薄板Wの温度を上昇させるべく加熱するステップS43の加熱工程と、前記加熱工程によって加熱された前記積層されたオイルパーム薄板Wに、オイルパーム薄板Wの面に対して平行方向に延びるのを位置決め孔18または枠体20で規制しながら、前記オイルパーム薄板Wの面に対して直角方向の圧縮力を加えて所定時間圧縮するステップS44の圧縮工程と、前記圧縮工程で所定時間圧縮したオイルパーム薄板Wを、前記加熱工程で供給していた温度を降下させて固定化させるステップS60の固定化工程とを具備する積層合板の製造方法とすることができる。
上記実施の形態の前記乾燥工程で乾燥させたオイルパーム薄板Wを所定の状態に積層するステップS30の積層工程の5枚のオイルパーム薄板W2,・・・,W5の各辺を位置決めする枠体20または位置決め孔18は、所定の積載面を規制する枠体20または位置決め孔18であり、複数枚の薄板Wの面の上下及び左右を規制するものである。したがって、その圧縮力を加える面に対して直角方向に薄板Wが伸びることが防止され、積層合板PWの位置によって厚い個所と薄い個所が生じることがない。
上記実施の形態の積層合板PWでは、前記複数枚積層したオイルパーム薄板W1,・・・,W5とし、オイルパーム薄板Wからなる積層合板PWとして一体に接合したものである。このように、オイルパーム薄板W1,・・・,W5の接合組成物におけるオイルパーム薄板W1,・・・,W5を一体に接合してなる積層合板PWは、前記複数枚積層した薄板W1,・・・,W5として、図11のように、オイルパーム薄板W1,・・・,W5の接着能力で接合することができる。したがって、積層合板PWが得られる。
上記実施の形態のオイルパーム薄板Wを、所定の状態に複数枚積層する積層工程では、前記複数枚積層したオイルパーム薄板W1,・・・,W5を含めて積層合板PWとして一体に接合したものである。ここでは、オイルパーム薄板Wを1枚以上とすることができる。
このように、本実施の形態2の積層合板の製造方法によれば、ステップS10の薄板工程で所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CUTで剥いて複数枚のオイルパーム薄板Wに形成する。そのステップS10の薄板工程で形成したオイルパーム薄板WをステップS20の乾燥工程で乾燥し、乾燥させたオイルパーム薄板Wを所定の状態にステップS30の積層工程で複数枚積層し、積層されたオイルパーム薄板Wの温度を上昇させるべくすて43の加熱工程で加熱し、加熱された前記積層されたオイルパーム薄板Wにオイルパーム薄板Wの面に対して平行方向に延びるのを規制しながら、オイルパーム薄板Wの面に対して直角方向の圧縮力を加えてステップS44の圧縮工程で所定時間圧縮し、ステップS44の圧縮工程で所定時間圧縮したオイルパーム薄板WをステップS43の加熱工程で供給していた温度を降下させて固定化する。
したがって、オイルパーム幹WDは節、年輪がないからロータリーレースで外周から所定の厚みに剥いてオイルパーム薄板Wを作成する場合、均質な薄板が得られ、結果的に、そのオイルパーム薄板Wからなる積層合板PWは均質なものとなる。また、加える温度と圧縮力によってオイルパーム幹WD自体が含有する樹脂成分及び糖成分によってその接合力を変化させるから、加える温度と圧縮力の制御によって任意の接着力が得られる。そして、前記複数枚のオイルパーム薄板Wをオイルパーム幹WD自体が含有する樹脂成分及び糖成分によって接合して積層合板PWを形成するものであり、他の合成樹脂、合成ゴムを接着材として使用していないから、自然に戻すことができ公害問題を引き起こさない。更に、前記オイルパームの幹自体が含有する樹脂成分及び糖成分によって接合されるときの圧縮力によって、オイルパーム薄板Wの空隙が殆どなくなり、緻密な組織になるから、耐水性があり、かつ、防水、防虫性に富み、建築材料として使用しても耐用年数が長くなる。なお、ここにおける接合には、オイルパーム幹WDは凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。
このように、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成し、それを圧密加工したときの1枚の厚みが1mm以上からなる複数枚のオイルパーム薄板Wを同時に圧縮、固定化し、一体に接合できる。特に、ステップS30の積層工程以降で積層されたオイルパーム薄板Wの温度を加熱工程で上昇させるべく加熱し、ステップS44の圧縮工程で加熱された積層されたオイルパーム薄板Wに、オイルパーム薄板Wの面に対して平行方向に延びるのを規制しながら、オイルパーム薄板Wの面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、ステップS44の圧縮工程で付与される圧縮力がオイルパーム薄板Wの面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム薄板Wの圧縮力が有効的に使用され、かつ、全オイルパーム薄板Wの圧縮率を均一にすることができ、製造中に複数のオイルパーム薄板Wから無駄を出すことがない。
よって、オイルパーム薄板Wが含有する樹脂成分及び糖成分を使用し、自然物で接合した積層合板PWが得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。
本実施の形態1及び本実施の形態2の積層合板の製造方法のステップS10またはステップS11の薄板工程は、オイルパーム薄板Wの枚数をオイルパーム以外のラワン等のラワン薄板Lの枚数よりも多くしたものであるから、少なくとも従来の積層合板PWに比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を1/2以下に抑えることができる。
本実施の形態1及び本実施の形態2の積層合板の製造方法のオイルパーム薄板W、ラワン薄板Lを複数枚積層するステップS30の積層工程は、その繊維方向を互いに同一方向としたものであるから、その繊維方向を互いに同一にして積層したものであるから、本来の幹の長さ方向に沿った接合となり、圧密加工において軟化した繊維が、繊維方向を同一として積層方向に隣接する他の繊維と絡み易く、その絡み合った状態で固定化される。即ち、圧密加工によって互いの繊維同士が絡み合い、接合強度が高くなる。よって、機械的強度が高く、圧密化後の安定した寸法形状性が確保される。更に、互いの繊維方向を同一にして積層することで、接合面における膨張率及び収縮率を完全に同一にすることができて、ストレスがかかることなく、寸法形状安定性がより高いものとなる。
本実施の形態1及び本実施の形態2の積層合板の製造方法のオイルパーム薄板W、ラワン薄板Lを複数枚積層するステップS30の積層工程は、その繊維方向を互いに直交する方向としたものであるから、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じても、互いの繊維同士が相互に作用し合って特定方向の反り変形が防止され、良好なバランス状態となり、寸法形状安定性が向上する。
本実施の形態1及び本実施の形態2の積層合板の製造方法のステップS20またはステップS21の乾燥工程は、オイルパーム薄板Wの含水率を5%〜30%の範囲内に乾燥させるものであるから、クラック、変形、膨らみ、破裂等が防止される。よって、より安定した寸法形状性が確保され、歩留りも高いものとなる。また、含水率を10%〜30%の範囲内の乾燥状態であると、ラワン薄板、シナ薄板、針葉樹薄板等との接合にも好適である。
本実施の形態1及び本実施の形態2の積層合板の製造方法のステップS43の加熱工程における加熱温度は、110℃〜170℃の範囲内としたものであるから、圧密加工における固定化不良や木材間の接合不良、また、表面炭化、材質強度の低化等の材質劣化を防止することができる。また、加熱温度が110℃〜170℃の範囲内であると、ラワン薄板、シナ薄板、針葉樹薄板等との接合にも好適である。
本実施の形態1及び本実施の形態2の積層合板の製造方法のステップS44の圧縮工程による所定の圧縮圧力は、1〜100kg/cm2の範囲内としたものであるから、圧密加工における固定化不良や木材間の接合不良、また表面クラックの発生を防止することができる。ラワン薄板、シナ薄板、針葉樹薄板等との接合にも問題がないことが確認された。
本実施の形態1及び本実施の形態2の積層合板の製造方法のステップS43の加熱工程及びステップS44の圧縮工程に要する時間は、10分間〜120分間の範囲内であることから、圧密加工における固定化不良や木材間の接合不良、また、表面の炭化を防止できる。ラワン薄板、シナ薄板、針葉樹薄板等との接合にも問題がないことが発明者の実験によって確認された。
なお、本実施の形態のオイルパーム基材Wの圧密化に寄与する組成物は、所定長のオイルパーム幹WDから製材したオイルパーム基材Wが有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類成分としたものである。発明者らの分析ではリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類成分が主となる組成物と認識しているが、分析能力が向上すると他の成分の関与も否定できない。少なくても、圧密化に寄与する成分が他にも存在する可能性は否定できない。
WD オイルパーム幹
CT 刃物
W、W1,・・・,W5 オイルパーム薄板
UWD 連続薄板
LD ラワン幹
L ラワン薄板
PW 積層合板
NW 加圧前多層材
MC 圧密加工材製造装置
IS 内部空間
10 プレス盤
18 位置決め孔
20 枠体

Claims (9)

  1. 所定長のオイルパーム幹をその周方向に所定の厚みに剥いて複数枚のオイルパーム薄板に形成する工程、及び所定長のオイルパーム以外の幹をその周方向に所定の厚みに剥いて1枚以上の薄板に形成する工程からなる薄板工程と、
    前記薄板工程で形成したオイルパーム薄板及び他の剥いた薄板を乾燥する乾燥工程と、
    前記乾燥工程で乾燥させたオイルパーム薄板及び他の剥いた薄板を所定の状態に複数枚積層する積層工程と、
    前記積層工程以降で前記積層されたオイルパーム薄板及び他の剥いた薄板の温度を上昇させるべく加熱する加熱工程と、
    前記加熱工程によって加熱された前記積層されたオイルパーム薄板及び他の剥いた薄板に、オイルパーム薄板及び他の剥いた薄板の面に対して平行方向に延びるのを規制しながら、前記オイルパーム薄板及び他の剥いた薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮する圧縮工程と、
    前記圧縮工程で所定時間圧縮したオイルパーム薄板及び他の剥いた薄板を、前記加熱工程で供給していた温度を降下させて固定化させる固定化工程と
    を具備することを特徴とする積層合板の製造方法。
  2. 所定長のオイルパーム幹をその周方向に所定の厚みに刃物で剥いて複数枚のオイルパーム薄板に形成する薄板工程と、
    前記薄板工程で形成したオイルパーム薄板を乾燥する乾燥工程と、
    前記乾燥工程で乾燥させたオイルパーム薄板を所定の状態に複数枚積層する積層工程と、
    前記積層工程以降で前記積層されたオイルパーム薄板の温度を上昇させるべく加熱する加熱工程と、
    前記加熱工程によって加熱された前記積層されたオイルパーム薄板に、オイルパーム薄板の面に対して平行方向に延びるのを規制しながら、前記オイルパーム薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮する圧縮工程と、
    前記圧縮工程で所定時間圧縮したオイルパーム薄板を、前記加熱工程で供給していた温度を降下させて固定化させる固定化工程と
    を具備することを特徴とする積層合板の製造方法。
  3. 前記薄板工程は、オイルパーム薄板の枚数をオイルパーム以外の他の剥いた薄板の枚数よりも多くしたことを特徴とする請求項2に記載の積層合板の製造方法。
  4. 前記薄板を複数枚積層する積層工程は、その繊維方向を互いに同一方向としたことを特徴とする請求項1乃至請求項3のいずれか1つに記載の積層合板の製造方法。
  5. 前記薄板を複数枚積層する積層工程は、その繊維方向を互いに直交する方向としたことを特徴とする請求項1乃至請求項3のいずれか1つに記載の積層合板の製造方法。
  6. 前記乾燥工程によるオイルパーム薄板の含水率を5%〜30%の範囲内に乾燥させたことを特徴とする請求項1乃至請求項5のいずれか1つに記載の積層合板の製造方法。
  7. 前記加熱工程における加熱温度は110℃〜170℃の範囲内としたことを特徴とする請求項1乃至請求項7のいずれか1つに記載の積層合板の製造方法。
  8. 前記圧縮工程による所定の圧縮圧力は、1〜100kg/cm2の範囲内としたことを特徴とする請求項1乃至請求項7のいずれか1つに記載の積層合板の製造方法。
  9. 前記加熱工程及び圧縮工程に要する時間は、10分間〜120分間の範囲内であることを特徴とする請求項1乃至請求項8のいずれか1つに記載の積層合板の製造方法。
JP2012159008A 2012-07-17 2012-07-17 積層合板の製造方法 Active JP6083691B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012159008A JP6083691B2 (ja) 2012-07-17 2012-07-17 積層合板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159008A JP6083691B2 (ja) 2012-07-17 2012-07-17 積層合板の製造方法

Publications (2)

Publication Number Publication Date
JP2014019032A true JP2014019032A (ja) 2014-02-03
JP6083691B2 JP6083691B2 (ja) 2017-02-22

Family

ID=50194477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159008A Active JP6083691B2 (ja) 2012-07-17 2012-07-17 積層合板の製造方法

Country Status (1)

Country Link
JP (1) JP6083691B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104385377A (zh) * 2014-10-17 2015-03-04 东莞市热线家具有限公司 一种相近密度材质原木锯木方法及锯木设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151703A (ja) * 1997-11-19 1999-06-08 Mywood Kk 改質木材の製造方法
JP2002018807A (ja) * 2000-07-06 2002-01-22 Toyo Plywood Kk 積層材及びその製造方法
JP2003200407A (ja) * 2001-10-24 2003-07-15 Shuichi Kawai バインダレスボード及びその製造方法
US20060078666A1 (en) * 2004-10-08 2006-04-13 Smith Daniel G Laminated coconut palm and products thereof
WO2008018784A1 (en) * 2006-08-10 2008-02-14 Ess Realty Sdn, Bhd. A method to manufacture plywood
JP2008173879A (ja) * 2007-01-19 2008-07-31 Electric Power Dev Co Ltd 可撓性積層木質材およびその製法
JP2009214364A (ja) * 2008-03-10 2009-09-24 Wood One:Kk 椰子を原材料とした木質材及びその製造方法
JP2009298132A (ja) * 2008-06-12 2009-12-24 Kono Shinsozai Kaihatsu Kk 改良木材及びその製造方法
JP2010167563A (ja) * 2006-08-29 2010-08-05 Technical System Keep:Kk ベニヤ板およびその製造方法
JP2011068015A (ja) * 2009-09-25 2011-04-07 Masako Nozoe 合板、パーム合板、合板製造方法、およびパーム合板製造方法
JP2011183667A (ja) * 2010-03-09 2011-09-22 Mywood 2 Kk 積層塑性加工木材

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151703A (ja) * 1997-11-19 1999-06-08 Mywood Kk 改質木材の製造方法
JP2002018807A (ja) * 2000-07-06 2002-01-22 Toyo Plywood Kk 積層材及びその製造方法
JP2003200407A (ja) * 2001-10-24 2003-07-15 Shuichi Kawai バインダレスボード及びその製造方法
US20060078666A1 (en) * 2004-10-08 2006-04-13 Smith Daniel G Laminated coconut palm and products thereof
WO2008018784A1 (en) * 2006-08-10 2008-02-14 Ess Realty Sdn, Bhd. A method to manufacture plywood
JP2010167563A (ja) * 2006-08-29 2010-08-05 Technical System Keep:Kk ベニヤ板およびその製造方法
JP2008173879A (ja) * 2007-01-19 2008-07-31 Electric Power Dev Co Ltd 可撓性積層木質材およびその製法
JP2009214364A (ja) * 2008-03-10 2009-09-24 Wood One:Kk 椰子を原材料とした木質材及びその製造方法
JP2009298132A (ja) * 2008-06-12 2009-12-24 Kono Shinsozai Kaihatsu Kk 改良木材及びその製造方法
JP2011068015A (ja) * 2009-09-25 2011-04-07 Masako Nozoe 合板、パーム合板、合板製造方法、およびパーム合板製造方法
JP2011183667A (ja) * 2010-03-09 2011-09-22 Mywood 2 Kk 積層塑性加工木材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104385377A (zh) * 2014-10-17 2015-03-04 东莞市热线家具有限公司 一种相近密度材质原木锯木方法及锯木设备
CN104385377B (zh) * 2014-10-17 2016-03-02 东莞市热线家具有限公司 一种相近密度材质原木锯木方法及锯木设备

Also Published As

Publication number Publication date
JP6083691B2 (ja) 2017-02-22

Similar Documents

Publication Publication Date Title
CN101607411B (zh) 竹纤维增强复合材料及其制造方法
JP7522403B2 (ja) 木質系材料及びその製造方法
JP6083700B2 (ja) オイルパームの乾燥装置及びその乾燥方法
JP6175926B2 (ja) オイルパーム圧密合板
JP5963195B2 (ja) オイルパーム圧密材
JP6143046B2 (ja) 積層合板
JP6782973B2 (ja) 複合圧密合板
WO2017010005A1 (ja) 木質積層板及びその製造方法
JP6086521B2 (ja) オイルパーム薄板の接合組成物及びその接合方法
JP6014396B2 (ja) 積層合板
JP6086522B2 (ja) オイルパーム圧密材
JP6083692B2 (ja) 積層合板の製造方法
JP6164649B2 (ja) 木質積層板、木質圧密積層板及び木質圧密積層板の製造方法
JP6083691B2 (ja) 積層合板の製造方法
JP6206902B2 (ja) 植物成型体及びその成型方法
JP6086523B2 (ja) オイルパーム圧密材
JP6083701B2 (ja) 圧密材及びその製造方法
WO2014057583A1 (ja) オイルパーム圧密材
CN106625981B (zh) 一种应用于结构材的杨木重组木及其制备方法
WO2014057581A1 (ja) オイルパーム圧密材、オイルパーム材の接合組成物、オイルパーム材の接合方法、積層合板及びその製造方法
JP6168357B2 (ja) 木質積層板及びその製造方法、並びに、木質圧密積層板及びその製造方法
WO2014057582A1 (ja) オイルパーム成型体及びその製造方法、積層合板
JP6861980B2 (ja) 圧密合板
JP6083894B2 (ja) 歪除去圧密材及びその製造装置、その製造方法
JP7306847B2 (ja) 建材用エレメント及び建材並びにこれらの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150715

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150715

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6083691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250