JP2014018063A - 電動式作業車両 - Google Patents

電動式作業車両 Download PDF

Info

Publication number
JP2014018063A
JP2014018063A JP2013146432A JP2013146432A JP2014018063A JP 2014018063 A JP2014018063 A JP 2014018063A JP 2013146432 A JP2013146432 A JP 2013146432A JP 2013146432 A JP2013146432 A JP 2013146432A JP 2014018063 A JP2014018063 A JP 2014018063A
Authority
JP
Japan
Prior art keywords
resistor
mode
blower
power
heat generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013146432A
Other languages
English (en)
Inventor
Toshikazu Minojima
俊和 美濃島
Yoshio Nakajima
吉男 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2013146432A priority Critical patent/JP2014018063A/ja
Publication of JP2014018063A publication Critical patent/JP2014018063A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • B60L7/06Dynamic electric resistor braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Abstract

【課題】抵抗器や外気の状況に応じて抵抗器による発熱と送風機による送風を任意に選択することができる電動式作業車両を提供する。
【解決手段】ダンプトラック1の車体には、後輪を駆動するための電動モータからなる走行用モータ8を設ける。走行用モータ8は、双方向変換器20等を介して主発電機12に接続され、主発電機12からの給電によって駆動する。双方向変換器20には、走行用モータ8からの回生電力を消費する抵抗器21を接続する。抵抗器21には、送風機24から冷却風を供給する。抵抗器21のスイッチ23および送風機24は、コントローラ28によってその動作が制御される。コントローラ28には、発熱モード(A)、送風モード(B)、発熱送風モード(C)を選択するためのモード選択スイッチ29が接続されている。
【選択図】図4

Description

本発明は、例えばダンプトラック等に用いて好適な電動式作業車両に関する。
一般に、大型のダンプトラック等のように、走行用の駆動システムに電気駆動方式を採用した電動式作業車両が知られている。このような電動式作業車両では、車体に取付けられた電動モータと、バッテリ等の直流電源と該電動モータとの間に設けられたインバータとを備えている。一方、電動モータで回生される起電力を消費するために、インバータには抵抗器を接続して設けると共に、該抵抗器に冷却風を供給する送風機を備えたものが知られている(特許文献1、特許文献2)。
特開2006−230084号公報 特開平6−46505号公報
ところで、上述した従来技術による電動式作業車両では、例えば寒冷時に抵抗器が凍結してしまうことがあり、一方、降雨時に抵抗器が雨水等によって濡れてしまうことがある。この場合、抵抗器用の回路と車体フレームとの間の絶縁性が低下して、回路が地面に短絡する、所謂地絡する虞れがある。この地絡のトラブルを防止する機能として、抵抗器による発熱と送風機による送風を同時に行う構成が考えられる。この構成によれば、抵抗器の発熱によって氷を溶かしたり、水分を蒸発させるのに加え、送風機からの送風によって抵抗器を乾燥させることができ、絶縁性の低下要因を排除することができる。
しかし、抵抗器の状況、外気の状況等によっては、発熱と送風を一緒に行うのが不適切な場合がある。例えば抵抗器の周囲に水が溜まり、絶縁性が著しく低下した場合には、抵抗器が十分に発熱することができない。この場合、抵抗器に給電を行っても、漏洩する電力が多く、エネルギー効率が悪いという問題がある。一方、吹雪や大雨の中で送風機を動作させる場合には、送風の影響で、氷雪や雨水を抵抗器の周囲に引き入れる可能性があり、却って抵抗器の絶縁性を低下させる虞れがある。
本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、抵抗器の状況、外気の状況等に応じて、抵抗器による発熱と送風機による送風を任意に選択することができる電動式作業車両を提供することにある。
(1).上述した課題を解決するために、本発明による電動式作業車両は、車体に設けられた走行駆動用の電動モータと、前記車体に設けられ直流電源からの直流電力を可変周波数の交流電力に変換して該電動モータを駆動すると共に該電動モータからの交流電力の出力を直流電力に変換する双方向変換器と、前記車体に設けられ前記電動モータで回生される起電力を消費するように該双方向変換器に接続された抵抗器と、該抵抗器に冷却風を供給する送風機と、モード選択スイッチとを備え、前記モード選択スイッチは、前記抵抗器を発熱させる発熱モードと、前記送風機を用いて前記抵抗器に送風を行う送風モードと、前記抵抗器による発熱と前記送風機による送風を一緒に行う発熱送風モードとのうち、いずれか1つのモードを選択する構成としている。
このように構成したことにより、オペレータは、抵抗器の状況や外気の状況に応じて、モード選択スイッチによって選択することができる3つのモードのうち、適切なモードを選択することができる。具体的には、例えば吹雪や大雨のときには、発熱のみを行う発熱モードを選択し、吹雪等の吹き込みを防止しつつ、抵抗器の発熱によって周囲の水分を蒸発させることができる。一方、抵抗器の周囲に水が溜まっているときには、送風のみを行う送風モードを選択し、溜まった水を吹き飛ばすことができる。さらに、抵抗器が凍結しているときは、発熱と送風を一緒に行う発熱送風モードを選択し、抵抗器の氷を溶かしつつ、抵抗器を乾燥させることができる。このように、抵抗器や外気の状況に応じたモードを選択して、抵抗器の絶縁性を高めることができ、抵抗器によって電動モータの回生電力を確実に消費することができる。
(2).本発明によると、前記双方向変換器、前記抵抗器および前記送風機には、これらの動作を制御するコントローラを接続して設け、該コントローラは、前記車体が走行しているときには、前記車体の加速と減速とに応じて前記双方向変換器、前記抵抗器および前記送風機の動作を制御し、前記車体が停止しているときには、前記モード選択スイッチによって選択されたモードに応じて前記抵抗器および前記送風機の動作を制御する構成としている。
この構成によると、コントローラは、車体が走行しているときには、車体の加速と減速とに応じて双方向変換器、抵抗器および送風機の動作を制御する。このため、車体の加速時には、抵抗器による発熱および送風機による送風を停止させた状態で、双方向変換器によって直流電力を交流電力に変換して電動モータに供給することができる。一方、車体の減速時には、双方向変換器によって電動モータからの交流電力の出力を直流電力に変換することができると共に、この直流電力を抵抗器の発熱によって消費し、かつ送風機による送風によって抵抗器を冷却することができる。さらに、車体が停止しているときには、モード選択スイッチによって選択されたモードに応じて抵抗器および送風機の動作を制御するから、運転者が抵抗器や外気の状況に応じた最適なモードを選択することによって、車体の走行前に抵抗器の絶縁性を予め高めることができる。
(3).本発明によると、前記コントローラは、前記車体が加速しているときには、前記双方向変換器によって前記直流電源からの直流電力を交流電力に変換して前記電動モータに供給し、前記抵抗器の発熱を停止させると共に、前記送風機の送風を停止させる構成とし、前記車体が減速しているときには、前記双方向変換器によって前記電動モータで回生される交流の起電力を直流電力に変換し、該直流電力を消費するように前記抵抗器を発熱させると共に、前記送風機によって前記抵抗器に冷却風を供給する構成とし、前記車体が停止しているときには、前記双方向変換器の動作を停止させて、前記モード選択スイッチによって選択されたモードに応じて前記抵抗器および前記送風機の動作を制御する構成としている。
このように構成したことにより、コントローラは、車体の加速時には、抵抗器による発熱および送風機による送風を停止させて、余分な電力消費をなくした状態にすることができる。この状態で双方向変換器によって直流電力を交流電力に変換して電動モータに供給するから、直流電源による直流電力を抵抗器で消費することなく、電動モータに供給することができる。
一方、車体の減速時には、双方向変換器によって電動モータで回生される交流の起電力を直流電力に変換させると共に、この直流電力を抵抗器の発熱によって消費し、電動モータに制動力を発生させることができる。これに加えて、送風機によって抵抗器に冷却風を供給するから、回生電力によって発熱した抵抗器を冷却することができる。
車体の停止時には、双方向変換器の動作を停止させて、直流電源からの直流電力を抵抗器に供給可能な状態にする。この状態で、モード選択スイッチによって選択されたモードに応じて抵抗器および送風機の動作を制御するから、発熱モードまたは発熱送風モードが選択されたときには、直流電源からの直流電力によって抵抗器を発熱させることができる。
(4).本発明によると、前記抵抗器の温度を検出する温度センサを設け、前記モード選択スイッチによって前記発熱モードを選択した状態で、該温度センサによって前記抵抗器の温度上昇を検出したときには前記発熱モードを維持し、該温度センサによって前記抵抗器の温度上昇を検出しないときには前記送風モードに変更するモード変更処理装置を備える構成としている。
この構成によると、発熱モードを選択した状態で、温度センサによって抵抗器の温度上昇を検出しないときには、送風モードに変更するモード変更処理装置を備えている。ここで、発熱モードで抵抗器の温度が上昇しないときには、例えば抵抗器の絶縁性が著しく低下した場合のように、発熱モードの選択が不適切な状態であると考えられる。このような場合、発熱モード切換装置は、送風機による送風を行う送風モードに変更することができるから、抵抗器の周囲に溜まった水を吹き飛ばして、抵抗器の絶縁性を高めることができる。これにより、不適切な発熱モードから送風モードに自動的に変更することができ、適切な動作を行って、機械の停止時間を最小限に抑えることができる。
(5).本発明によると、前記抵抗器は、前記送風機が取付けられた箱状のグリッドボックスに収容され、該グリッドボックスには、前記送風機からの送風方向に対して前記抵抗器の上流側と下流側との間で圧力差を検出する差圧センサを設け、前記モード選択スイッチによって前記送風モードを選択した状態で、該差圧センサによって検出した圧力差が予め決められた最低圧力差よりも大きいときには前記送風モードを維持し、該差圧センサによって検出した圧力差が前記最低圧力差よりも小さいときには前記発熱モードに変更するモード変更処理装置を備える構成としている。
この構成によると、送風モードを選択した状態で、差圧センサによって検出した圧力差が最低圧力差よりも小さいときには、発熱モードに変更するモード変更処理装置を備えている。ここで、送風モードで抵抗器の上流側と下流側との間の圧力差が最低圧力差よりも小さいときには、例えば送風機が故障した場合のように、送風モードの選択が不適切な状態であると考えられる。このような場合、送風モード切換装置は、抵抗器による発熱を行う発熱モードに変更することができるから、抵抗器の発熱によって水分を蒸発させて、抵抗器の絶縁性を高めることができる。これにより、不適切な送風モードから発熱モードに自動的に変更することができ、適切な動作を行って、機械の停止時間を最小限に抑えることができる。
本発明の第1の実施の形態によるダンプトラックを示す正面図である。 ベッセルを外した状態のダンプトラックを示す斜視図である。 図1中のダンプトラックを示す全体構成図である。 図1中のダンプトラックを示す電気回路図である。 モード選択スイッチと発熱動作および送風動作との関係を示す説明図である。 図4中のコントローラによる制御処理を示す流れ図である。 第2の実施の形態によるダンプトラックを示す電気回路図である。 モード変更処理を示す流れ図である。 第3の実施の形態によるダンプトラックを示す電気回路図である。 モード変更処理を示す流れ図である。
以下、本発明の実施の形態による電動式作業車両として、後輪駆動式のダンプトラックを例に挙げ、添付図面に従って詳細に説明する。
ここで、図1ないし図6は本発明に係る電動式作業車両の第1の実施の形態を示している。
図中、1は電動式作業車両としてのダンプトラックを示している。図1および図2に示すように、ダンプトラック1は、頑丈なフレーム構造をなし、後述する車輪としての前輪6および後輪7によって自走する車体2と、該車体2上に後端側を支点として起伏可能に搭載された荷台としてのベッセル3とにより大略構成されている。ベッセル3は、キャビン5を上側からほぼ完全に覆う庇部3Aを有すると共に、車体2の左,右両側に配設されたホイストシリンダ4によって起伏(傾転)する。
5は庇部3Aの下側に位置して車体2の前部に設けられたキャビンを示している。このキャビン5は、例えば車体2の左側に位置して平板状の床板となるデッキ部2A上に配設されている。キャビン5は、ダンプトラック1の運転者(オペレータ)が乗降する運転室を形成し、その内部には運転席、起動スイッチ、アクセルペダル、ブレーキペダル、操舵用のハンドルおよび複数の操作レバー(いずれも図示せず)等が設けられている。
6は車体2の前側下部に回転可能に設けられた左,右の前輪を示している。これらの各前輪6は、ダンプトラック1の運転者によって操舵(ステアリング操作)される操舵輪を構成している。
7は車体2の後部下側に回転可能に設けられた左,右の後輪を示している。これらの各後輪7は、ダンプトラック1の駆動輪を構成している。
8は車体2の後部下側に設けられた駆動源としての左,右の走行用モータを示している。この走行用モータ8は、例えば3相誘導電動機、3相ブラシレス直流電動機等からなる大型の電動モータによって構成され、後述の電力制御装置15からの電力供給によって回転駆動される。図3に示すように、走行用モータ8は、左,右の後輪7を互いに独立して回転駆動するため、車体2の左,右両側にそれぞれ設けられている。走行用モータ8は出力軸としての回転軸9を有し、この回転軸9は、走行用モータ8により正方向または逆方向に回転駆動される。回転軸9は、例えば複数段の遊星歯車減速機構10を通じて後輪7に連結されている。これにより、回転軸9の回転は遊星歯車減速機構10により例えば30〜40程度の減速比で減速され、後輪7は大なる回転トルクで走行駆動する。
11はキャビン5の下側に位置して車体2内に設けられる原動機としてのエンジンを示している。このエンジン11は、例えば大型のディーゼルエンジン等により構成されている。図3に示すように、エンジン11は、主発電機12を駆動して、3相交流電力(例えば、1500kW程度)を発生させると共に、直流用の副発電機13も駆動する。この副発電機13は、コントローラ28の電源となるバッテリ14に接続され、該バッテリ14を充電する。
エンジン11は、油圧源となる油圧ポンプ(図示せず)等を回転駆動する。この油圧ポンプは、ホイストシリンダ4、パワーステアリング用の操舵シリンダ(図示せず)等に圧油を供給する機能を有している。
15はダンプトラック1の電力制御を後述のコントローラ28と共に行う電力制御装置を示している。この電力制御装置15は、キャビン5の側方に位置して車体2のデッキ部2A上に立設された配電制御盤等により構成されている。図4に示すように、電力制御装置15は、交流−直流変換器16および双方向変換器20を備えている。
交流−直流変換器16は、例えばダイオード、サイリスタ等の整流素子を用いて構成され交流電力を全波整流する整流器17と、該整流器17の後段に接続され電力波形を平滑化する平滑コンデンサ18とによって構成されている。この交流−直流変換器16は、主発電機12の出力側に接続され、主発電機12から出力されるU相、V相、W相の3相交流電力をP相、N相の直流電力に変換する。このため、交流−直流変換器16は、主発電機12と一緒に直流電源を構成している。そして、交流−直流変換器16は、一対の配線19A,19Bを用いて双方向変換器20に接続されている。
双方向変換器20は、例えばトランジスタ、サイリスタ、絶縁ゲートバイポーラトランジスタ(IGBT)を用いた複数のスイッチング素子(図示せず)を用いて構成されている。この双方向変換器20は、ダンプトラック1の走行時には、直流電力を可変周波数の3相交流電力に変換するインバータとして機能する。このため、双方向変換器20は、スイッチング素子のオン/オフを制御することによって、交流−直流変換器16から出力された直流電力をU相、V相、W相の3相交流電力に変換し、この3相交流電力を走行用モータ8に供給する。
一方、双方向変換器20は、ダンプトラック1の減速時には、3相交流電力を直流電力に変換するコンバータとして機能する。このため、双方向変換器20は、スイッチング素子のオン/オフを制御することによって、走行用モータ8で回生された3相交流電力からなる起電力を直流電力に変換し、この直流電力を後述の抵抗器21に向けて出力する。
21は交流−直流変換器16および双方向変換器20の間の配線19A,19Bに接続された抵抗器を示している。この抵抗器21は、角筒状をなすグリッドボックス22内に配設され、双方向変換器20から供給される直流電力に応じて発熱し、走行用モータ8で回生される起電力を消費する。
ここで、図2に示すように、グリッドボックス22は、左,右方向に対して電力制御装置15を挟んでキャビン5の反対側に位置して、車体2のデッキ部2A上に複数個積み重ねて設けられている。これら複数個のグリッドボックス22にはそれぞれ抵抗器21が収容され、これら複数個の抵抗器21は、配線19A,19Bに互いに並列接続されている。
抵抗器21には、スイッチ23が直列接続されている。このスイッチ23は、例えば半導体素子を用いた各種のスイッチング素子を用いて構成され、後述のコントローラ28によって接続位置と遮断位置に切換制御される。
なお、複数個の抵抗器21は、互いに直列接続する構成としてもよい。一方、グリッドボックス22は、デッキ部2Aの上側に限らず、デッキ部2Aの下側に配置する構成としてもよい。
24はグリッドボックス22に取付けられた送風機を示している。この送風機24は、例えば配線19A,19Bからの給電によって駆動する電動モータによって構成され、抵抗器21に向けて冷却風を供給する。図2に示すように、送風機24は、左,右方向に延びるグリッドボックス22のうちキャビン5に近い位置に設けられ、グリッドボックス22内に向けて冷却風を供給する。これにより、冷却風は、グリッドボックス22内の抵抗器21の周囲を通過して、グリッドボックス22の左側の開口部(排気部)から外部に向けて吹き出す。このため、抵抗器21によって加熱された冷却風は、キャビン5と反対側に向けて排出される。
25はダンプトラック1が走行と停止のいずれの状態にあるかを検出する走行状態センサとしての速度センサを示している。この速度センサ25は、例えば回転軸9の近傍に設けられ、走行用モータ8の回転軸9の回転速度を検出し、この回転速度に基づいてダンプトラック1の走行速度を算出する。即ち、後輪7には、走行用モータ8の回転速度に対して、複数段の遊星歯車減速機構により予め決められた減速比(例えば、30〜40程度の減速比)の回転が伝えられるので、回転軸9の回転速度を検出することにより、後輪7の回転速度(車両の走行速度)が求められるものである。速度センサ25の出力側は、コントローラ28に接続されている。
26はアクセルペダルの操作量を検出するアクセル操作センサを示している。このアクセル操作センサ26は、例えば角度センサ、ポテンショメータ等によって構成され、アクセルペダルの踏み込み状態に応じた検出信号を出力する。
27はブレーキペダルの操作量を検出するブレーキ操作センサを示している。このブレーキ操作センサ27は、例えば角度センサ、ポテンショメータ等によって構成され、ブレーキペダルの踏み込み状態に応じた検出信号を出力する。
アクセル操作センサ26およびブレーキ操作センサ27の出力側は、いずれの後述のコントローラ28に接続されている。コントローラ28は、アクセル操作センサ26およびブレーキ操作センサ27からの検出信号に基づいて、ダンプトラック1が加速と減速のいずれの状態にあるのか判定する。
28はマイクロコンピュータ等により構成される制御装置としてのコントローラを示している。このコントローラ28は、電力制御装置15等に接続され、ダンプトラック1の走行状態等に応じて双方向変換器20のスイッチング素子を切換制御し、双方向変換器20をインバータまたはコンバータとして機能させる。具体的には、ダンプトラック1の加速時には、コントローラ28は、主発電機12からの直流電力を3相交流電力に変換するように、双方向変換器20をインバータとして機能させる。一方、ダンプトラック1の減速時には、コントローラ28は、走行用モータ8で回生された3相交流電力からなる起電力を直流電力に変換するように、双方向変換器20をコンバータとして機能させる。
さらに、コントローラ28は、スイッチ23、送風機24にそれぞれ接続され、抵抗器21と配線19A,19Bとの間の接続/遮断を切り換えると共に、送風機24の駆動/停止を切り換える。具体的には、ダンプトラック1の加速時には、コントローラ28は、スイッチ23をオフ(遮断状態)にして抵抗器21による電力消費を停止させると共に、送風機24を停止させる。一方、ダンプトラック1の減速時には、コントローラ28は、スイッチ23をオン(接続状態)にして抵抗器21による電力消費を許可すると共に、送風機24を駆動させて抵抗器21に向けて冷却風を供給する。
なお、コントローラ28は、ダンプトラック1の減速時に、抵抗器21のスイッチ23を常にオンにする構成に限らず、例えばスイッチ23のオン/オフを周期的に切り換える構成としてもよい。この場合、スイッチ23のデューティ比は、走行用モータ8で回生された起電力に応じて変化させる構成としてもよい。
29はキャビン5内に配設されコントローラ28に接続されたモード選択スイッチを示している。このモード選択スイッチ29は、例えばダイヤル式等の選択スイッチによって構成されている。図4および図5に示すように、モード選択スイッチ29は、発熱モードA、送風モードBおよび発熱送風モードCのうちいずれか1つのモードを選択し、選択したモードに応じて、抵抗器21による発熱の有無、送風機24による送風の有無を切り換える。
具体的には、発熱モードAでは、コントローラ28は、送風機24を停止した状態でスイッチ23をオンにし、主発電機12からの電力供給によって抵抗器21を発熱させる。送風モードBでは、コントローラ28は、スイッチ23をオフにした状態で送風機24を駆動させ、送風機24から抵抗器21に向けて送風する。発熱送風モードCでは、コントローラ28は、スイッチ23をオンにした状態で送風機24を駆動させ、主発電機12からの電力供給によって抵抗器21を発熱させると共に、送風機24から抵抗器21に向けて送風する。
さらに、モード選択スイッチ29は、オフ位置に切り換えることもできる。このオフ位置では、コントローラ28は、スイッチ23をオフにすると共に、送風機24を停止させる。
なお、モード選択スイッチ29によるスイッチ23のオン/オフの切り換えと送風機24の駆動/停止の切り換えは、ダンプトラック1の停止状態で有効になる。コントローラ28は、ダンプトラック1の走行状態では、モード選択スイッチ29の切換状態に関係なく、スイッチ23のオン/オフを切り換えると共に、送風機24の駆動/停止を切り換える。即ち、ダンプトラック1の加速時には、コントローラ28は、スイッチ23をオフにし、送風機24を停止させる。一方、ダンプトラック1の減速時には、コントローラ28は、スイッチ23をオンにし、送風機24を駆動させる。
第1の実施の形態によるダンプトラック1は、上述の如き構成を有するもので、次に、その作動について説明する。
ダンプトラック1のキャビン5に乗り込んだ運転者が、図4に示すエンジン11を起動すると、主発電機12と副発電機13とにより発電が行われる。副発電機13で発生した電力は、バッテリ14を介してコントローラ28に給電される。主発電機12で発生した電力は、電力制御装置15を介して左,右の走行用モータ8に給電される。即ち、車両を走行駆動するときには、電力制御装置15から後輪7側の各走行用モータ8に駆動電流が供給される。
このとき、コントローラ28は、図6に示す制御処理を実行し、車体2の走行状態に応じて、双方向変換器20、抵抗器21および送風機24を制御する。具体的には、コントローラ28は、ステップ1で、速度センサ25の出力信号によってダンプトラック1が走行中か否かを判定する。ダンプトラック1が走行中となるときには、ステップ1で「YES」と判定してステップ2に移行する。ステップ2では、アクセル操作センサ26およびブレーキ操作センサ27からの検出信号に基づいて、ダンプトラック1が加速中か否かを判定する。
ステップ2で「YES」と判定したときには、ダンプトラック1は加速中である。このため、コントローラ28は、ステップ3に移行して、双方向変換器20をインバータとして機能させ、主発電機12からの直流電力を3相交流電力に変換して走行用モータ8に供給する。このとき、コントローラ28は、スイッチ23をオフにして抵抗器21による電力消費を停止させると共に、送風機24を停止させる。
一方、ステップ2で「NO」と判定したときには、ダンプトラック1は減速中である。このため、コントローラ28は、ステップ4に移行して、双方向変換器20をコンバータとして機能させ、走行用モータ8で回生された3相交流電力からなる起電力を直流電力に変換する。これに加え、コントローラ28は、スイッチ23をオン(接続状態)にして抵抗器21による電力消費を許可すると共に、送風機24を駆動させて抵抗器21に向けて冷却風を供給する。これにより、走行用モータ8で回生された起電力は、抵抗器21が発熱することによって消費される。
ステップ1で「NO」と判定したときには、ダンプトラック1は停止中である。このため、コントローラ28は、ステップ5に移行して、双方向変換器20の動作を停止させると共に、モード選択スイッチ29によって選択されたモードに応じて抵抗器21および送風機24の動作を制御する。
ところで、抵抗器21は、その冷却効果を高めるために、ダンプトラック1のうち外気に触れ易い部位に配設されている。このため、例えば寒冷時に抵抗器21が凍結してしまうことや、降雨時に抵抗器21が雨水によって濡れてしまうことがある。この場合、抵抗器21用の回路と車体2との間で絶縁性が低下することがあり、抵抗器21によって回生電力を消費できず、制動力が低下する可能性がある。
このようなトラブルを防止するために、例えばダンプトラック1の走行前に予め抵抗器21に給電を行い、抵抗器21の発熱によって氷を溶かしたり、水分を蒸発させるのに加え、送風機24からの送風によって抵抗器21を乾燥させる方法が考えられる。
しかし、抵抗器21の状況と外気の状況によっては、発熱と送風を一緒に行うのが不適切な場合がある。例えば抵抗器21の絶縁性が著しく低下した場合には、抵抗器21に給電を行っても、抵抗器21が十分に発熱することができず、エネルギー効率が悪いという問題がある。一方、吹雪や大雨の中で送風機24を動作させる場合には、送風の影響で、氷雪や雨水を抵抗器21の周囲に引き入れる可能性があり、却って抵抗器21の絶縁性を低下させるという問題がある。
このような問題点を考慮して、第1の実施の形態では、発熱モードA、送風モードBおよび発熱送風モードCのうちいずれか1つのモードを選択するモード選択スイッチ29を設けた。このため、運転者は、抵抗器21の凍結や浸水の有無、降雨量や降雪量等のように、抵抗器21の状況や外気の状況に応じてこれら3つのモードのうち適切なモードを選択することができる。
具体的には、例えば吹雪や大雨のときには、運転者は、モード選択スイッチ29を用いて発熱のみを行う発熱モードAを選択する。これにより、吹雪等の吹き込みを防止しつつ、抵抗器21の発熱によって周囲の水分を蒸発させることができる。一方、抵抗器21の周囲に水が溜まっているときには、運転者は、モード選択スイッチ29を用いて送風のみを行う送風モードBを選択する。これにより、抵抗器21の周囲に溜まった水を、送風機24からの送風によって吹き飛ばすことができる。さらに、抵抗器21が凍結しているときは、運転者は、モード選択スイッチ29を用いて発熱と送風を一緒に行う発熱送風モードCを選択する。これにより、抵抗器21の発熱によって氷を溶かしつつ、送風機24からの送風によって抵抗器21を乾燥させることができる。
このように、運転者は、モード選択スイッチ29を用いて抵抗器21の状況や外気の状況に応じて適切なモードを選択することができるから、ダンプトラック1の走行前に予め抵抗器21の絶縁性を高めることができ、抵抗器21によって走行用モータ8の回生電力を確実に消費することができる。
ダンプトラック1が走行しているときには、コントローラ28は、車体2の加速と減速とに応じて双方向変換器20、抵抗器21および送風機24の動作を制御する。このため、車体2の加速時には、抵抗器21による発熱および送風機24による送風を停止させた状態で、双方向変換器20によって直流電力を交流電力に変換して走行用モータ8に供給することができる。一方、車体2の減速時には、双方向変換器20によって走行用モータ8からの交流電力の出力を直流電力に変換することができると共に、この直流電力を抵抗器21の発熱によって消費し、かつ送風機24による送風によって抵抗器21を冷却することができる。
さらに、車体2が停止しているときには、コントローラ28は、双方向変換器20の動作を停止させると共に、モード選択スイッチ29によって選択されたモードに応じて抵抗器21および送風機24の動作を制御する。このため、運転者は、ダンプトラック1の走行前に抵抗器21の状況や外気の状況に応じた最適なモードを選択して、抵抗器21の絶縁性を予め高めることができる。
次に、図7および図8は本発明による第2の実施の形態を示している。第2の実施の形態の特徴は、発熱モードの選択時に温度センサによって抵抗器の温度上昇を検出しないときには、コントローラは自動的に発熱モードから送風モードに変更する構成としたことにある。第2の実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
31は第2の実施の形態によるダンプトラックを示している。このダンプトラック31は、第1の実施の形態によるダンプトラック1とほぼ同様に、走行用モータ8、エンジン11、主発電機12、電力制御装置15、抵抗器21、スイッチ23、送風機24、モード選択スイッチ29等を備えている。
32は抵抗器21の周囲に設けられた温度センサを示している。この温度センサ32は、抵抗器21またはその周囲の温度を検出し、検出温度に応じた検出信号を出力する。温度センサ32の出力側は、後述のコントローラ33に接続されている。
33は第2の実施の形態によるコントローラを示している。このコントローラ33は、第1の実施の形態によるコントローラ28とほぼ同様に構成され、電力制御装置15等に接続され、ダンプトラック1の走行状態等に応じて双方向変換器20のスイッチング素子を切換制御し、双方向変換器20をインバータまたはコンバータとして機能させる。一方、コントローラ33は、モード選択スイッチ29によって選択されたモードに応じて、抵抗器21による発熱の有無、送風機24による送風の有無を切り換える。但し、コントローラ33は、図8に示すモード変更処理を行う点で、第1の実施の形態によるコントローラ28とは異なる。
次に、図8を参照しつつ、コントローラ33によるモード変更処理について説明する。
ステップ11では、モード選択スイッチ29によって発熱モードAが選択されているか否かを判定する。ステップ11で「NO」と判定したときには、ステップ14に移ってリターンする。一方、ステップ11で「YES」と判定したときには、ステップ12に移行する。
ステップ12では、温度センサ32からの検出信号に基づいて、スイッチ23をオフにしたときに比べて抵抗器21が温度上昇しているか否かを検出する。抵抗器21の周囲温度が例えば予め決められた所定温度よりも高いときには、ステップ12で「YES」と判定して発熱モードAを維持し、ステップ14に移ってリターンする。
一方、抵抗器21の周囲温度が所定温度よりも低いときには、スイッチ23をオフにしたときに比べて抵抗器21が十分に温度上昇しておらず、抵抗器21等に異常が生じたものと考えられる。このため、ステップ12で「NO」と判定してステップ13に移行し、発熱モードAから送風モードBに自動的に変更する。その後、ステップ14に移ってリターンする。
かくして、このように構成される第2の実施の形態でも、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。しかも、第2の実施の形態では、コントローラ33は、モード選択スイッチ29によって発熱モードAを選択した状態で、温度センサ32によって抵抗器21の温度上昇を検出しないときには、発熱モードAから送風モードBに自動的に変更する構成となっている。
発熱モードAで抵抗器21の温度が上昇しないときには、例えば抵抗器21の絶縁性が著しく低下した場合のように、発熱モードAの選択が不適切な状態であると考えられる。この場合には、コントローラ33は、送風機24による送風を行う送風モードBに自動的に変更するから、抵抗器21の周囲に溜まった水を吹き飛ばして、抵抗器21の絶縁性を高めることができる。この結果、不適切な発熱モードAから送風モードBに自動的に変更することができ、適切な動作を行って、機械の停止時間を最小限に抑えることができる。
次に、図9および図10は本発明による第3の実施の形態を示している。第3の実施の形態の特徴は、送風モードの選択時に差圧センサによって検出した圧力差が最低圧力差よりも小さいときには、コントローラは自動的に送風モードから発熱モードに変更する構成としたことにある。第3の実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
41は第3の実施の形態によるダンプトラックを示している。このダンプトラック41は、第1の実施の形態によるダンプトラック1とほぼ同様に、走行用モータ8、エンジン11、主発電機12、電力制御装置15、抵抗器21、スイッチ23、送風機24、モード選択スイッチ29等を備えている。
42はグリッドボックス22に設けられた差圧センサを示している。この差圧センサ42は、送風機24からの送風方向に対して抵抗器21の上流側と下流側との間で圧力差ΔPを検出し、この圧力差ΔPに応じた検出信号を出力する。差圧センサ42の出力側は、後述のコントローラ43に接続されている。
43は第3の実施の形態によるコントローラを示している。このコントローラ43は、第1の実施の形態によるコントローラ28とほぼ同様に構成され、電力制御装置15等に接続され、ダンプトラック1の走行状態等に応じて双方向変換器20のスイッチング素子を切換制御し、双方向変換器20をインバータまたはコンバータとして機能させる。また、コントローラ43は、モード選択スイッチ29によって選択されたモードに応じて、抵抗器21による発熱の有無、送風機24による送風の有無を切り換える。但し、コントローラ43は、図10に示すモード変更処理を行う点で、第1の実施の形態によるコントローラ28とは異なる。
次に、図10を参照しつつ、コントローラ43によるモード変更処理について説明する。
ステップ21では、モード選択スイッチ29によって送風モードBが選択されているか否かを判定する。ステップ21で「NO」と判定したときには、ステップ24に移ってリターンする。一方、ステップ21で「YES」と判定したときには、ステップ22に移行する。
ステップ22では、差圧センサ42からの検出信号に基づいて、差圧センサ42によって検出した圧力差ΔPが予め決められた最低圧力差ΔPminよりも大きいか否かを判定する。差圧センサ42によって検出した圧力差ΔPが最低圧力差ΔPminよりも大きいときには、ステップ22で「YES」と判定して送風モードBを維持し、ステップ24に移ってリターンする。
一方、差圧センサ42によって検出した圧力差ΔPが最低圧力差ΔPminよりも小さいときには、送風機24に異常が生じたものと考えられる。このため、ステップ22で「NO」と判定してステップ23に移行し、送風モードBから発熱モードAに自動的に変更する。その後、ステップ24に移ってリターンする。
かくして、このように構成される第3の実施の形態でも、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。しかも、第3の実施の形態では、コントローラ43は、モード選択スイッチ29によって送風モードBを選択した状態で、差圧センサ42によって検出した圧力差ΔPが最低圧力差ΔPminよりも小さいときには、発熱モードAに変更する構成となっている。
送風モードBで抵抗器21の上流側と下流側との間の圧力差ΔPが最低圧力差ΔPminよりも小さいときには、例えば送風機24が故障した場合のように、送風モードBの選択が不適切な状態であると考えられる。この場合には、コントローラ43は、抵抗器21による発熱を行う発熱モードAに変更するから、抵抗器21の発熱によって水分を蒸発させて、抵抗器21の絶縁性を高めることができる。これにより、不適切な送風モードBから発熱モードAに自動的に変更することができ、適切な動作を行って、機械の停止時間を最小限に抑えることができる。
なお、第3の実施の形態では、差圧センサ42によって検出した圧力差ΔPが最低圧力差ΔPminよりも大きいときには、送風モードBを維持する構成とした。しかし、本発明はこれに限らず、例えば圧力差ΔPが予め設定された最大圧力差ΔPmaxよりも大きいときには、排気部に目詰まり等の異常が生じている可能性があるため、送風、発熱のいずれも停止すると共に、警報を出力して、その旨を運転者に知らせる構成としてもよい。
第2,第3の実施の形態では、図8、図10に示すモード変更処理が本発明のモード変更処理装置の具体例を示している。
さらに、前記各実施の形態にあっては、電動式作業車両として後輪駆動式のダンプトラック1,31,41を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば前輪駆動式または前,後輪を共に駆動する4輪駆動式のダンプトラックに適用してもよい。一方、ダンプトラック以外に、走行用の車輪を備えた作業車両として、例えばホイール式クレーン、ホイール式油圧ショベル等に適用してもよいものである。
1,31,41 ダンプトラック(電動式作業車両)
2 車体
6 前輪
7 後輪(駆動輪)
8 走行用モータ(電動モータ)
11 エンジン
12 主発電機
15 電力制御装置
16 交流−直流変換器
20 双方向変換器
21 抵抗器
22 グリッドボックス
23 スイッチ
24 送風機
28,33,43 コントローラ
29 モード選択スイッチ
32 温度センサ
42 差圧センサ
A 発熱モード
B 送風モード
C 発熱送風モード
述した課題を解決するために、請求項1の発明による電動式作業車両は、車体に設けられた走行駆動用の電動モータと、前記車体に設けられ直流電源からの直流電力を可変周波数の交流電力に変換して該電動モータを駆動すると共に該電動モータからの交流電力の出力を直流電力に変換する双方向変換器と、前記車体に設けられ前記電動モータで回生される起電力を消費するように該双方向変換器に接続された抵抗器と、該抵抗器に冷却風を供給する送風機と、モード選択スイッチとを備え、前記抵抗器の温度を検出する温度センサを設け、前記モード選択スイッチは、前記抵抗器を発熱させる発熱モードと、前記送風機を用いて前記抵抗器に送風を行う送風モードと、前記抵抗器による発熱と前記送風機による送風を一緒に行う発熱送風モードとのうち、いずれか1つのモードを選択する構成とし、前記モード選択スイッチによって前記発熱モードを選択した状態で、前記温度センサによって前記抵抗器の温度上昇を検出したときには前記発熱モードを維持し、前記温度センサによって前記抵抗器の温度上昇を検出しないときには前記送風モードに変更するモード変更処理装置を備えている。
また、請求項1の発明では、発熱モードを選択した状態で、温度センサによって抵抗器の温度上昇を検出しないときには、送風モードに変更するモード変更処理装置を備えている。ここで、発熱モードで抵抗器の温度が上昇しないときには、例えば抵抗器の絶縁性が著しく低下した場合のように、発熱モードの選択が不適切な状態であると考えられる。このような場合、発熱モード切換装置は、送風機による送風を行う送風モードに変更することができるから、抵抗器の周囲に溜まった水を吹き飛ばして、抵抗器の絶縁性を高めることができる。これにより、不適切な発熱モードから送風モードに自動的に変更することができ、適切な動作を行って、機械の停止時間を最小限に抑えることができる。
請求項2の発明による電動式作業車両は、車体に設けられた走行駆動用の電動モータと、前記車体に設けられ直流電源からの直流電力を可変周波数の交流電力に変換して該電動モータを駆動すると共に該電動モータからの交流電力の出力を直流電力に変換する双方向変換器と、前記車体に設けられ前記電動モータで回生される起電力を消費するように該双方向変換器に接続された抵抗器と、該抵抗器に冷却風を供給する送風機と、モード選択スイッチとを備え、前記抵抗器は、前記送風機が取付けられた箱状のグリッドボックスに収容され、該グリッドボックスには、前記送風機からの送風方向に対して前記抵抗器の上流側と下流側との間で圧力差を検出する差圧センサを設け、前記モード選択スイッチは、前記抵抗器を発熱させる発熱モードと、前記送風機を用いて前記抵抗器に送風を行う送風モードと、前記抵抗器による発熱と前記送風機による送風を一緒に行う発熱送風モードとのうち、いずれか1つのモードを選択する構成とし、前記モード選択スイッチによって前記送風モードを選択した状態で、該差圧センサによって検出した圧力差が予め決められた最低圧力差よりも大きいときには前記送風モードを維持し、該差圧センサによって検出した圧力差が前記最低圧力差よりも小さいときには前記発熱モードに変更するモード変更処理装置を備えている。
このように構成した請求項2の発明でも、オペレータは、抵抗器の状況や外気の状況に応じて、モード選択スイッチによって選択することができる3つのモードのうち、適切なモードを選択することができる。このため、抵抗器や外気の状況に応じたモードを選択して、抵抗器の絶縁性を高めることができ、抵抗器によって電動モータの回生電力を確実に消費することができる。
また、請求項2の発明では、送風モードを選択した状態で、差圧センサによって検出した圧力差が最低圧力差よりも小さいときには、発熱モードに変更するモード変更処理装置を備えている。ここで、送風モードで抵抗器の上流側と下流側との間の圧力差が最低圧力差よりも小さいときには、例えば送風機が故障した場合のように、送風モードの選択が不適切な状態であると考えられる。このような場合、送風モード切換装置は、抵抗器による発熱を行う発熱モードに変更することができるから、抵抗器の発熱によって水分を蒸発させて、抵抗器の絶縁性を高めることができる。これにより、不適切な送風モードから発熱モードに自動的に変更することができ、適切な動作を行って、機械の停止時間を最小限に抑えることができる。
本発明の参考例によるダンプトラックを示す正面図である。 ベッセルを外した状態のダンプトラックを示す斜視図である。 図1中のダンプトラックを示す全体構成図である。 図1中のダンプトラックを示す電気回路図である。 モード選択スイッチと発熱動作および送風動作との関係を示す説明図である。 図4中のコントローラによる制御処理を示す流れ図である。 の実施の形態によるダンプトラックを示す電気回路図である。 モード変更処理を示す流れ図である。 の実施の形態によるダンプトラックを示す電気回路図である。 モード変更処理を示す流れ図である。
ここで、図1ないし図6は本発明の参考例に係る電動式作業車両を示している。
参考例によるダンプトラック1は、上述の如き構成を有するもので、次に、その作動について説明する。
このような問題点を考慮して、参考例では、発熱モードA、送風モードBおよび発熱送風モードCのうちいずれか1つのモードを選択するモード選択スイッチ29を設けた。このため、運転者は、抵抗器21の凍結や浸水の有無、降雨量や降雪量等のように、抵抗器21の状況や外気の状況に応じてこれら3つのモードのうち適切なモードを選択することができる。
次に、図7および図8は本発明による第の実施の形態を示している。第の実施の形態の特徴は、発熱モードの選択時に温度センサによって抵抗器の温度上昇を検出しないときには、コントローラは自動的に発熱モードから送風モードに変更する構成としたことにある。第の実施の形態では、前記参考例と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
31は第の実施の形態によるダンプトラックを示している。このダンプトラック31は、参考例によるダンプトラック1とほぼ同様に、走行用モータ8、エンジン11、主発電機12、電力制御装置15、抵抗器21、スイッチ23、送風機24、モード選択スイッチ29等を備えている。
33は第の実施の形態によるコントローラを示している。このコントローラ33は、参考例によるコントローラ28とほぼ同様に構成され、電力制御装置15等に接続され、ダンプトラック1の走行状態等に応じて双方向変換器20のスイッチング素子を切換制御し、双方向変換器20をインバータまたはコンバータとして機能させる。一方、コントローラ33は、モード選択スイッチ29によって選択されたモードに応じて、抵抗器21による発熱の有無、送風機24による送風の有無を切り換える。但し、コントローラ33は、図8に示すモード変更処理を行う点で、参考例によるコントローラ28とは異なる。
かくして、このように構成される第の実施の形態でも、前記参考例とほぼ同様の作用効果を得ることができる。しかも、第の実施の形態では、コントローラ33は、モード選択スイッチ29によって発熱モードAを選択した状態で、温度センサ32によって抵抗器21の温度上昇を検出しないときには、発熱モードAから送風モードBに自動的に変更する構成となっている。
次に、図9および図10は本発明による第の実施の形態を示している。第の実施の形態の特徴は、送風モードの選択時に差圧センサによって検出した圧力差が最低圧力差よりも小さいときには、コントローラは自動的に送風モードから発熱モードに変更する構成としたことにある。第の実施の形態では、前記参考例と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
41は第の実施の形態によるダンプトラックを示している。このダンプトラック41は、参考例によるダンプトラック1とほぼ同様に、走行用モータ8、エンジン11、主発電機12、電力制御装置15、抵抗器21、スイッチ23、送風機24、モード選択スイッチ29等を備えている。
43は第の実施の形態によるコントローラを示している。このコントローラ43は、参考例によるコントローラ28とほぼ同様に構成され、電力制御装置15等に接続され、ダンプトラック1の走行状態等に応じて双方向変換器20のスイッチング素子を切換制御し、双方向変換器20をインバータまたはコンバータとして機能させる。また、コントローラ43は、モード選択スイッチ29によって選択されたモードに応じて、抵抗器21による発熱の有無、送風機24による送風の有無を切り換える。但し、コントローラ43は、図10に示すモード変更処理を行う点で、参考例によるコントローラ28とは異なる。
かくして、このように構成される第の実施の形態でも、前記参考例とほぼ同様の作用効果を得ることができる。しかも、第の実施の形態では、コントローラ43は、モード選択スイッチ29によって送風モードBを選択した状態で、差圧センサ42によって検出した圧力差ΔPが最低圧力差ΔPminよりも小さいときには、発熱モードAに変更する構成となっている。
なお、第の実施の形態では、差圧センサ42によって検出した圧力差ΔPが最低圧力差ΔPminよりも大きいときには、送風モードBを維持する構成とした。しかし、本発明はこれに限らず、例えば圧力差ΔPが予め設定された最大圧力差ΔPmaxよりも大きいときには、排気部に目詰まり等の異常が生じている可能性があるため、送風、発熱のいずれも停止すると共に、警報を出力して、その旨を運転者に知らせる構成としてもよい。
,第の実施の形態では、図8、図10に示すモード変更処理が本発明のモード変更処理装置の具体例を示している。
さらに、前記参考例および各実施の形態にあっては、電動式作業車両として後輪駆動式のダンプトラック1,31,41を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば前輪駆動式または前,後輪を共に駆動する4輪駆動式のダンプトラックに適用してもよい。一方、ダンプトラック以外に、走行用の車輪を備えた作業車両として、例えばホイール式クレーン、ホイール式油圧ショベル等に適用してもよいものである。

Claims (5)

  1. 車体(2)に設けられた走行駆動用の電動モータ(8)と、
    前記車体(2)に設けられ直流電源(12,16)からの直流電力を可変周波数の交流電力に変換して該電動モータ(8)を駆動すると共に該電動モータ(8)からの交流電力の出力を直流電力に変換する双方向変換器(20)と、
    前記車体(2)に設けられ前記電動モータ(8)で回生される起電力を消費するように該双方向変換器(20)に接続された抵抗器(21)と、
    該抵抗器(21)に冷却風を供給する送風機(24)と、
    モード選択スイッチ(29)とを備え、
    前記モード選択スイッチ(29)は、前記抵抗器(21)を発熱させる発熱モードと、前記送風機(24)を用いて前記抵抗器(21)に送風を行う送風モードと、前記抵抗器(21)による発熱と前記送風機(24)による送風を一緒に行う発熱送風モードとのうち、いずれか1つのモードを選択する構成としてなる電動式作業車両。
  2. 前記双方向変換器(20)、前記抵抗器(21)および前記送風機(24)には、これらの動作を制御するコントローラ(28,33,43)を接続して設け、
    該コントローラ(28,33,43)は、前記車体(2)が走行しているときには、前記車体(2)の加速と減速とに応じて前記双方向変換器(20)、前記抵抗器(21)および前記送風機(24)の動作を制御し、前記車体(2)が停止しているときには、前記モード選択スイッチ(29)によって選択されたモードに応じて前記抵抗器(21)および前記送風機(24)の動作を制御する構成としてなる請求項1に記載の電動式作業車両。
  3. 前記コントローラ(28,33,43)は、前記車体(2)が加速しているときには、前記双方向変換器(20)によって前記直流電源(12,16)からの直流電力を交流電力に変換して前記電動モータ(8)に供給し、前記抵抗器(21)の発熱を停止させると共に、前記送風機(24)の送風を停止させる構成とし、
    前記車体(2)が減速しているときには、前記双方向変換器(20)によって前記電動モータ(8)で回生される交流の起電力を直流電力に変換し、該直流電力を消費するように前記抵抗器(21)を発熱させると共に、前記送風機(24)によって前記抵抗器(21)に冷却風を供給する構成とし、
    前記車体(2)が停止しているときには、前記双方向変換器(20)の動作を停止させて、前記モード選択スイッチ(29)によって選択されたモードに応じて前記抵抗器(21)および前記送風機(24)の動作を制御する構成としてなる請求項2に記載の電動式作業車両。
  4. 前記抵抗器(21)の温度を検出する温度センサ(32)を設け、
    前記モード選択スイッチ(29)によって前記発熱モードを選択した状態で、該温度センサ(32)によって前記抵抗器(21)の温度上昇を検出したときには前記発熱モードを維持し、該温度センサ(32)によって前記抵抗器(21)の温度上昇を検出しないときには前記送風モードに変更するモード変更処理装置を備える構成としてなる請求項1に記載の電動式作業車両。
  5. 前記抵抗器(21)は、前記送風機(24)が取付けられた箱状のグリッドボックス(22)に収容され、
    該グリッドボックス(22)には、前記送風機(24)からの送風方向に対して前記抵抗器(21)の上流側と下流側との間で圧力差を検出する差圧センサ(42)を設け、
    前記モード選択スイッチ(29)によって前記送風モードを選択した状態で、該差圧センサ(42)によって検出した圧力差が予め決められた最低圧力差よりも大きいときには前記送風モードを維持し、該差圧センサ(42)によって検出した圧力差が前記最低圧力差よりも小さいときには前記発熱モードに変更するモード変更処理装置を備える構成としてなる請求項1に記載の電動式作業車両。
JP2013146432A 2010-07-15 2013-07-12 電動式作業車両 Pending JP2014018063A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013146432A JP2014018063A (ja) 2010-07-15 2013-07-12 電動式作業車両

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010160645 2010-07-15
JP2010160645 2010-07-15
JP2013146432A JP2014018063A (ja) 2010-07-15 2013-07-12 電動式作業車両

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012524482A Division JP5415619B2 (ja) 2010-07-15 2011-05-19 電動式作業車両

Publications (1)

Publication Number Publication Date
JP2014018063A true JP2014018063A (ja) 2014-01-30

Family

ID=45469230

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012524482A Expired - Fee Related JP5415619B2 (ja) 2010-07-15 2011-05-19 電動式作業車両
JP2013146432A Pending JP2014018063A (ja) 2010-07-15 2013-07-12 電動式作業車両

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012524482A Expired - Fee Related JP5415619B2 (ja) 2010-07-15 2011-05-19 電動式作業車両

Country Status (6)

Country Link
US (1) US8925661B2 (ja)
EP (1) EP2594426A4 (ja)
JP (2) JP5415619B2 (ja)
CN (1) CN102834283B (ja)
AU (1) AU2011277754B8 (ja)
WO (1) WO2012008219A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047270A1 (ja) * 2016-09-08 2018-03-15 日立建機株式会社 回生制動装置およびダンプトラック

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231673A (ja) * 2012-04-27 2013-11-14 Hitachi Constr Mach Co Ltd ダンプトラックの減速機歯車の寿命予測システム
CN203876561U (zh) * 2013-04-17 2014-10-15 栾亚伦 电动滑移式工程机械底盘
US20150158390A1 (en) * 2013-12-09 2015-06-11 Textron Inc. Using DC Motor With A Controller As A Generator
JP6438266B2 (ja) * 2014-10-20 2018-12-12 日立建機株式会社 ダンプトラック
CN104386004A (zh) * 2014-10-28 2015-03-04 广州电力机车有限公司 60吨矿用自卸车控制系统
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
EP3280607B1 (en) * 2015-04-08 2023-11-29 KATO IMER S.p.A. Gearmotor
US9925999B2 (en) 2015-09-29 2018-03-27 Radio Flyer Inc. Power assist wagon
CN107539192B (zh) * 2016-06-29 2019-08-13 比亚迪股份有限公司 一种电动矿山自卸车
US10583852B2 (en) 2016-11-02 2020-03-10 Radio Flyer Inc. Foldable wagon
CN106585390B (zh) * 2016-11-30 2019-04-16 金龙联合汽车工业(苏州)有限公司 一种电动汽车用制动电阻系统及其控制方法
CN107276371A (zh) * 2017-08-01 2017-10-20 徐州徐工矿山机械有限公司 一种电传动矿用自卸车的变流柜通风散热系统
JP6909694B2 (ja) * 2017-09-29 2021-07-28 日立建機株式会社 作業車両の電力回生システム
USD866676S1 (en) 2017-11-02 2019-11-12 Radio Flyer Inc. Foldable wagon
CN110392641B (zh) * 2018-02-23 2022-12-16 日立建机株式会社 作业车辆的电力再生系统
JP7267832B2 (ja) * 2018-04-27 2023-05-02 株式会社クボタ 作業装置及びこの作業装置を備えた作業機
JP6918741B2 (ja) * 2018-04-27 2021-08-11 株式会社クボタ 作業装置及びこの作業装置を備えた作業機
US11938979B2 (en) * 2019-01-14 2024-03-26 Transportation Ip Holdings, Llc Cooling system for a vehicle
CN113291142B (zh) * 2021-05-13 2022-11-11 广西大学 一种智能行驶系统及其控制方法
SE544948C2 (en) * 2021-06-17 2023-02-07 Scania Cv Ab System for braking an electrified vehicle
EP4163146A1 (en) * 2021-10-08 2023-04-12 Volvo Construction Equipment AB A material transportation system
CN114537242B (zh) * 2022-03-15 2023-10-27 福建宏大时代新能源科技有限公司 一种100吨级纯电驱动矿用自卸车

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030795A (ja) * 1999-07-19 2001-02-06 Nissan Motor Co Ltd 先行車追従制御装置
JP2006067790A (ja) * 2004-08-25 2006-03-09 Ford Motor Co 電気駆動部を持つ車両を制動及び停止させる方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307300A (en) * 1978-03-02 1981-12-22 Kabushiki Kaisha Komatsu Seisakusho Dump truck with safety circuit
DE3500988C1 (de) * 1985-01-09 1986-02-13 Roland 6231 Schwalbach Sommer Sonde zum Messen gasfoermiger oder fluessiger Stroemungen bezueglich Richtung und Staerke
US4843880A (en) * 1985-01-14 1989-07-04 Roland Sommer Method for measuring the direction and force of gaseous or liquid flows and probe for carrying out this method
JPS62110402A (ja) * 1985-11-06 1987-05-21 Fuji Electric Co Ltd 急こう配用電気機関車
US5280223A (en) * 1992-03-31 1994-01-18 General Electric Company Control system for an electrically propelled traction vehicle
JPH0646505A (ja) 1992-07-23 1994-02-18 Toshiba Corp 発電ブレーキ装置
JP3505826B2 (ja) * 1994-11-29 2004-03-15 日産自動車株式会社 電気自動車の回生制動装置
US6186254B1 (en) * 1996-05-29 2001-02-13 Xcelliss Fuel Cell Engines Inc. Temperature regulating system for a fuel cell powered vehicle
US8025115B2 (en) * 2003-06-02 2011-09-27 General Electric Company Hybrid vehicle power control systems and methods
AU2005249993B2 (en) * 2004-05-27 2009-06-18 Siemens Industry, Inc. System and method for cooling the power electronics of a mining machine
JP4585842B2 (ja) * 2004-12-10 2010-11-24 株式会社日立製作所 車両電気駆動装置
JP2006230084A (ja) * 2005-02-17 2006-08-31 Hitachi Ltd 交流駆動装置,車両制御装置,電力変換方法及び車両制御方法
US8453772B2 (en) * 2005-08-01 2013-06-04 Albert W. Brown Manually operated electrical control and installation scheme for electric hybrid vehicles
JP2008017563A (ja) * 2006-07-03 2008-01-24 Hitachi Ltd 車両制御装置、車両制御方法及び車両
DE112007000071B4 (de) * 2006-09-05 2016-12-15 Hitachi Construction Machinery Co., Ltd. Bremssystem in einem Elektroantrieb-Kipperfahrzeug
DE102006051337A1 (de) * 2006-10-31 2008-05-08 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Traktionsantrieb eines Schienenfahrzeugs zum Antreiben und zum generatorischen Bremsen
US8001906B2 (en) * 2007-05-07 2011-08-23 General Electric Company Electric drive vehicle retrofit system and associated method
US7854282B2 (en) * 2007-12-10 2010-12-21 International Humanities Center Hybrid electric vehicle
CN201201523Y (zh) * 2008-03-27 2009-03-04 上海工程技术大学 一种轨道交通车辆制动能量回收装置
JP5215956B2 (ja) * 2008-09-03 2013-06-19 日立建機株式会社 ダンプトラック
US8324846B2 (en) * 2008-09-15 2012-12-04 Caterpillar Inc. Electric drive retarding system and method
US8499909B2 (en) * 2009-10-23 2013-08-06 Siemens Industry, Inc. Peak demand reduction in mining haul trucks utilizing an on-board energy storage system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030795A (ja) * 1999-07-19 2001-02-06 Nissan Motor Co Ltd 先行車追従制御装置
JP2006067790A (ja) * 2004-08-25 2006-03-09 Ford Motor Co 電気駆動部を持つ車両を制動及び停止させる方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047270A1 (ja) * 2016-09-08 2018-03-15 日立建機株式会社 回生制動装置およびダンプトラック
CN108064206A (zh) * 2016-09-08 2018-05-22 日立建机株式会社 再生制动装置及自卸卡车
JPWO2018047270A1 (ja) * 2016-09-08 2018-09-06 日立建機株式会社 回生制動装置およびダンプトラック
US10583743B2 (en) 2016-09-08 2020-03-10 Hitachi Construction Machinery Co., Ltd. Regenerative braking device and dump truck

Also Published As

Publication number Publication date
EP2594426A1 (en) 2013-05-22
CN102834283B (zh) 2015-04-15
CN102834283A (zh) 2012-12-19
EP2594426A4 (en) 2018-01-10
JP5415619B2 (ja) 2014-02-12
US20130075170A1 (en) 2013-03-28
AU2011277754B8 (en) 2014-04-10
JPWO2012008219A1 (ja) 2013-09-05
AU2011277754B2 (en) 2013-09-19
AU2011277754A8 (en) 2014-04-10
US8925661B2 (en) 2015-01-06
WO2012008219A1 (ja) 2012-01-19
AU2011277754A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5415619B2 (ja) 電動式作業車両
AU2011292206B2 (en) Method and system for eliminating fuel consumption during dynamic braking of electric drive machines
US8324846B2 (en) Electric drive retarding system and method
JP5183594B2 (ja) モータの制御装置及びそれを備えたモータシステム
US8054016B2 (en) Retarding energy calculator for an electric drive machine
AU2012348038B2 (en) Method and apparatus to eliminate fuel use for electric drive machines during trolley operation
US8427086B2 (en) Brake resistor control
US20090179486A1 (en) Brake system in electric drive dump truck
JP6864781B2 (ja) 電気駆動車両
CN106945661A (zh) 一种用于电动汽车坡道驻车的控制系统及控制方法
AU2012348038A1 (en) Method and apparatus to eliminate fuel use for electric drive machines during trolley operation
JP6343019B2 (ja) 運搬車両
US7466091B2 (en) Brake responsive vehicle electric drive system
JP2009219191A (ja) 車両の回生電力制御装置及び回生電力制御方法
JP4309617B2 (ja) 産業用機関車
JP3452514B2 (ja) 悪天候に対応した産業用車両の走行駆動装置
JP6155708B2 (ja) モータ制御装置
WO2024013841A1 (ja) 電気駆動車両の制御ユニットおよびモータ駆動装置、並びに電気駆動車両
JP2015139239A (ja) 電気自動車のモータ駆動装置
WO2018104975A1 (en) Apparatus for selectively sharing the power of a multidrive unit vehicle
JP2001130249A (ja) 車両用空調装置の制御方式

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140916