JP2014013206A - Ultrasonic measuring device - Google Patents

Ultrasonic measuring device Download PDF

Info

Publication number
JP2014013206A
JP2014013206A JP2012151082A JP2012151082A JP2014013206A JP 2014013206 A JP2014013206 A JP 2014013206A JP 2012151082 A JP2012151082 A JP 2012151082A JP 2012151082 A JP2012151082 A JP 2012151082A JP 2014013206 A JP2014013206 A JP 2014013206A
Authority
JP
Japan
Prior art keywords
measured
temperature
flow rate
ultrasonic
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012151082A
Other languages
Japanese (ja)
Other versions
JP5990770B2 (en
Inventor
Kenji Yasuda
憲司 安田
Hirosumi Nakamura
廣純 中村
Yuji Nakabayashi
裕治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012151082A priority Critical patent/JP5990770B2/en
Publication of JP2014013206A publication Critical patent/JP2014013206A/en
Application granted granted Critical
Publication of JP5990770B2 publication Critical patent/JP5990770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic measuring device capable of reducing influences caused from self-noises by extending transmission interval even when a zero flow change occurs due to temperature changes.SOLUTION: An ultrasonic measuring device includes: a flow-rate calculating unit 9 that calculates a flow rate of a fluid to be measured based on a propagation time difference in ultrasonic transmission time to calculate an instantaneous flow rate from the flow rate; a temperature measuring unit 10 that measures a temperature of the fluid to be measured; an interval correction unit 11 that calculates the correlation between a flow rate value calculated by the flow-rate calculating means 9 in a state the fluid to be measured does not flow and the temperature measured by the temperature measuring unit 10 to control a repetition unit 7 to extend the intervals of repetition of the ultrasonic transmission between the oscillators when the flow rate value changes periodically as the temperature changes. With this, a precise ultrasonic measuring device capable of automatically correcting even when the flow rate value varies caused from self vibrations or self-noises of an ultrasonic oscillator due to temperatures changes in the ambient and/or the fluid to be measured can be provided.

Description

本発明は、超音波により気体や液体の流量や流速の計測を行う超音波計測装置に関するものである。   The present invention relates to an ultrasonic measurement apparatus that measures the flow rate and flow velocity of a gas or liquid using ultrasonic waves.

従来、この種の超音波計測装置は被計測流体が流れていない状態で計測された流量をゼロ流量補正値として実際の流量演算時に補正をして流量を算出している(例えば、特許文献1参照)。   Conventionally, this type of ultrasonic measurement apparatus calculates a flow rate by correcting a flow rate measured in a state where a fluid to be measured is not flowing as a zero flow rate correction value at the time of actual flow rate calculation (for example, Patent Document 1). reference).

図5は、特許文献1に記載された従来の構成を示すものである。図5に示すように、音波を送受信する第1振動子109および第2振動子110と、音波の伝搬時間を計測する流路計時手段111と、流路計時手段111の伝搬時間から流量を検出する流量検出手段112と、振動手段同士を音響的に連結する振動連結手段113と、振動連結手段113を伝わる信号を用い振動伝搬時間を測定する振動計時手段120と、流量検出手段112の流量ゼロのゼロ点を調整するゼロ点調整手段114から構成されている。   FIG. 5 shows a conventional configuration described in Patent Document 1. In FIG. As shown in FIG. 5, the first vibrator 109 and the second vibrator 110 that transmit and receive sound waves, the channel time measuring means 111 that measures the propagation time of sound waves, and the flow rate are detected from the propagation time of the channel time measuring means 111. The flow rate detecting means 112 for performing vibration, the vibration coupling means 113 for acoustically coupling the vibration means, the vibration timing means 120 for measuring the vibration propagation time using a signal transmitted through the vibration coupling means 113, and the flow rate zero of the flow rate detecting means 112. The zero point adjusting means 114 is configured to adjust the zero point.

これによってゼロ流量補正が流量ゼロのときの処理と同等の流量検出処理が振動伝達手段の振動信号を用いて行えるので、精度よく流量値演算ができるよう構成されている。   Thus, the flow rate detection process equivalent to the process when the zero flow rate correction is zero flow rate can be performed using the vibration signal of the vibration transmitting means, so that the flow rate value can be calculated with high accuracy.

特開平10−239126号公報Japanese Patent Laid-Open No. 10-239126

しかしながら、前記従来の構成では、ゼロ流量補正値を算出したときの温度から外気温度や被計測流体の温度が変化して振動子間の伝搬時間が変化した場合、送信側の超音波振動子が送信を行った時の超音波振動子の自己振動余韻や送信手段の内部回路での自己ノイズの影響によりゼロ流量補正時に対して超音波伝搬時間がずれてしまい、流量演算結果の精度が悪くなり高精度な計測が困難であった。   However, in the conventional configuration, when the propagation time between the transducers changes due to changes in the outside air temperature or the temperature of the fluid to be measured from the temperature at which the zero flow rate correction value is calculated, the ultrasonic transducer on the transmission side changes. Due to the influence of the self-vibration of the ultrasonic transducer during transmission and the self-noise in the internal circuit of the transmission means, the ultrasonic propagation time will be deviated from the zero flow rate correction, and the accuracy of the flow rate calculation result will deteriorate. High-precision measurement was difficult.

本発明は上記課題を解決するもので、外気温度や被計測流体の温度に影響されることなく超音波振動子の自己振動や内部回路の自己ノイズが発生しても受信時の超音波信号に悪影響を及ぼさず効率よく計測可能でより高精度な超音波計測装置を提供することを目的とする。   The present invention solves the above-described problem. Even if the self-vibration of the ultrasonic vibrator or the self-noise of the internal circuit occurs without being affected by the temperature of the outside air or the fluid to be measured, the ultrasonic signal at the time of reception is obtained. It is an object of the present invention to provide a highly accurate ultrasonic measurement apparatus that can efficiently measure without adverse effects.

前記従来の課題を解決するために、本発明の超音波計測装置は、被計測流体が流れる流体管路に設けられ超音波を送受信する第1振動子及び第2振動子と、前記第1、第2振動子の送受信の切替手段と、前記第1、第2振動子間相互の超音波伝達を一定時間間隔で複数回行う繰り返し手段と、前記第1、第2振動子間の超音波伝搬時間を測定する計時手段と、前記計時手段によって測定された前記第1振動子から前記第2振動子への超音波伝搬時間と第2振動子から前記第1振動子への超音波伝搬時間の伝搬時間差から被計測流体の流速を算出し、該流速から瞬時流量値を演算する流量演算手段と、被計測流体の温度を測定する温度計測手段と、被計測流体が流れていない状態で前記流量演算手段によって算出された流量値Q0と前記温度計測手段によって計測された温度の相関を演算し、温度変化に伴って前記流量値Q0が周期的に変動していた場合に前記繰り返し手段が行っている振
動子間相互の超音波伝達の繰り返しの時間間隔を延長するインターバル補正手段と、を備えたものである。
In order to solve the above-described conventional problems, an ultrasonic measurement apparatus according to the present invention includes a first vibrator and a second vibrator that are provided in a fluid conduit through which a fluid to be measured flows, and that transmit and receive ultrasonic waves. Transmission / reception switching means for the second vibrator, repetitive means for performing ultrasonic transmission between the first and second vibrators a plurality of times at regular time intervals, and ultrasonic propagation between the first and second vibrators Time measuring means for measuring time, ultrasonic propagation time from the first vibrator to the second vibrator and ultrasonic propagation time from the second vibrator to the first vibrator measured by the time measuring means. The flow rate of the fluid to be measured is calculated from the propagation time difference, the flow rate calculating means for calculating the instantaneous flow rate value from the flow rate, the temperature measuring means for measuring the temperature of the fluid to be measured, and the flow rate when the fluid to be measured is not flowing. The flow rate value Q0 calculated by the calculation means and the thermometer When the correlation between the temperatures measured by the means is calculated, and the flow rate value Q0 fluctuates periodically with changes in temperature, the repetition time of the ultrasonic transmission between the transducers performed by the repetition means And interval correction means for extending the interval.

これによって、超音波受信に変化を及ぼしていた自己振動や自己ノイズの余韻がおさまってから次の送信信号を出力することができ、自己振動や自己ノイズが発生しても正確な流量値が測定できる。   As a result, the next transmission signal can be output after the reverberation of self-vibration or self-noise that had changed the ultrasonic reception has subsided, and even if self-vibration or self-noise occurs, an accurate flow rate value can be measured. it can.

本発明の超音波計測装置によると、外気温度や被計測流体の温度が変化し超音波振動子の自己振動や自己ノイズによる流量値変動が発生しても自動で補正可能で、より高精度な超音波計測装置を提供することができる。   According to the ultrasonic measurement apparatus of the present invention, even if the outside air temperature or the temperature of the fluid to be measured changes, and the flow rate fluctuation due to the self vibration or self noise of the ultrasonic vibrator occurs, it can be automatically corrected, and the higher accuracy. An ultrasonic measurement apparatus can be provided.

本発明の実施の形態1における超音波計測装置のブロック図1 is a block diagram of an ultrasonic measurement apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態2における超音波計測装置のブロック図Block diagram of an ultrasonic measurement apparatus according to Embodiment 2 of the present invention 本発明の実施の形態3における超音波計測装置のブロック図Block diagram of an ultrasonic measurement apparatus according to Embodiment 3 of the present invention 本発明の実施の形態4における超音波計測装置のブロック図Block diagram of an ultrasonic measurement apparatus according to Embodiment 4 of the present invention 従来の超音波計測装置のブロック図Block diagram of a conventional ultrasonic measurement device

第1の発明は、被計測流体が流れる流体管路に設けられ超音波を送受信する第1振動子及び第2振動子と、前記第1、第2振動子の送受信の切替手段と、前記第1、第2振動子間相互の超音波伝達を一定時間間隔で複数回行う繰り返し手段と、前記第1、第2振動子間の超音波伝搬時間を測定する計時手段と、前記計時手段によって測定された前記第1振動子から前記第2振動子への超音波伝搬時間と第2振動子から前記第1振動子への超音波伝搬時間の伝搬時間差から被計測流体の流速を算出し、該流速から瞬時流量値を演算する流量演算手段と、被計測流体の温度を測定する温度計測手段と、被計測流体が流れていない状態で前記流量演算手段によって算出された流量値Q0と前記温度計測手段によって計測された温度の相関を演算し、温度変化に伴って前記流量値Q0が周期的に変動していた場合に前記繰り返し手段が行っている振動子間相互の超音波伝達の繰り返しの時間間隔を延長するインターバル補正手段と、を備えたことにより、超音波受信に変化を及ぼしていた自己振動や自己ノイズの余韻がおさまってから次の送信信号を出力することができ、外気温度や被計測流体の温度が変化し超音波振動子の自己振動や自己ノイズによる流量値変動が発生しても自動で補正可能で、より高精度な超音波計測ができる。   According to a first aspect of the present invention, there are provided a first vibrator and a second vibrator, which are provided in a fluid conduit through which a fluid to be measured flows, transmit / receive ultrasonic waves, transmission / reception switching means of the first and second vibrators, 1. Repetitive means for performing ultrasonic transmission between the second vibrators a plurality of times at regular time intervals, time measuring means for measuring the ultrasonic propagation time between the first and second vibrators, and measurement by the time measuring means Calculating the flow velocity of the fluid to be measured from the difference in propagation time between the ultrasonic propagation time from the first vibrator to the second vibrator and the ultrasonic propagation time from the second vibrator to the first vibrator; A flow rate calculation means for calculating an instantaneous flow rate value from the flow velocity, a temperature measurement means for measuring the temperature of the fluid to be measured, a flow rate value Q0 calculated by the flow rate calculation means in a state where the fluid to be measured is not flowing, and the temperature measurement Calculate the correlation of the temperature measured by the means, Interval correction means for extending the time interval of repeated ultrasonic transmission between the transducers performed by the repetition means when the flow rate value Q0 periodically fluctuates with a change in degree. As a result, the next transmission signal can be output after the reverberation of self-vibration and self-noise that had caused changes in ultrasonic reception has subsided. Even if flow rate fluctuations due to self-vibration or self-noise occur, it can be automatically corrected, enabling more accurate ultrasonic measurement.

第2の発明は、特に、第1の発明において、前記計時手段は、周囲温度によって周期が変化するカウンタを用いた構成とし、前記温度計測手段は、前記カウンタの周期から被計測流体の温度を算出する構成としたことにより、温度が変化した場合の周波数の増減によって被計測流体の温度を演算して、ゼロ流量の状態の瞬時流量値が温度によって周期的に変動しているか判断するとしたものであり、温度計などの温度測定装置を別付けすることなく温度測定することができ、被計測流体の温度が変化し超音波振動子の自己振動や自己ノイズによる流量値変動が発生しても自動で補正可能で、より高精度な超音波計測ができる。   In a second aspect of the invention, in particular, in the first aspect of the invention, the time measuring means uses a counter whose period changes according to the ambient temperature, and the temperature measuring means determines the temperature of the fluid to be measured from the period of the counter. With the calculation configuration, the temperature of the fluid to be measured is calculated by increasing or decreasing the frequency when the temperature changes, and it is determined whether the instantaneous flow rate value in the zero flow rate state varies periodically with temperature. It is possible to measure temperature without attaching a temperature measuring device such as a thermometer, even if the temperature of the fluid to be measured changes and the flow rate value fluctuations occur due to self-vibration or self-noise of the ultrasonic vibrator. It can be corrected automatically, and more accurate ultrasonic measurement can be performed.

第3の発明は、特に、第1の発明の発明において、前記温度計測手段は、被計測流体が流れていない状態で前記計時手段が測定した超音波伝搬時間から被計測流体の温度を算出することにより、温度が変化した場合の伝搬時間の増減によって外気温度や被計測流体の温度を演算して、ゼロ流量の状態の瞬時流量値が温度によって周期的に変動しているか判断するとしたものであり、温度計などの温度測定装置を別付けすることなく温度測定することができ、被計測流体の温度が変化し超音波振動子の自己振動や自己ノイズによる流量
値変動が発生しても自動で補正可能で、より高精度な超音波計測ができる。
In a third aspect of the invention, in particular, in the first aspect of the invention, the temperature measuring means calculates the temperature of the fluid to be measured from the ultrasonic propagation time measured by the time measuring means in a state where the fluid to be measured is not flowing. By calculating the outside air temperature and the temperature of the fluid to be measured by increasing or decreasing the propagation time when the temperature changes, it is determined whether the instantaneous flow rate value in the zero flow state fluctuates periodically depending on the temperature. Yes, it can measure temperature without attaching a temperature measuring device such as a thermometer, and even if the temperature of the fluid to be measured changes and the flow rate fluctuations due to self-vibration or self-noise of the ultrasonic transducer occur Correction can be performed with a more accurate ultrasonic measurement.

第4の発明は、特に、第1〜3のいずれか1つの発明において、前記インターバル補正手段は、被計測流体が流れていない状態で前記流量演算手段によって算出された流量値Q0と前記温度計測手段によって計測された被計測流体の温度を時系列に比較し、温度変化に伴って流量値Q0が周期的に変動していない場合に前記繰り返し手段が行っている振動子間相互の超音波伝達の繰り返し時間間隔を短縮する構成としたことにより、超音波送受信の繰り返し合計時間が短縮でき制御回路部の動作時間が短くできることから消費電流を抑えながらより高精度な超音波計測ができる。   In a fourth aspect of the present invention, in particular, in any one of the first to third aspects, the interval correction unit is configured to measure the flow rate value Q0 calculated by the flow rate calculation unit and the temperature measurement in a state where the fluid to be measured is not flowing. The temperature of the fluid to be measured measured by the means is compared in time series, and when the flow rate value Q0 does not fluctuate periodically according to the temperature change, the ultrasonic transmission between the transducers performed by the repetitive means is performed. By adopting a configuration that shortens the repetition time interval, it is possible to shorten the total repetition time of ultrasonic transmission / reception and shorten the operation time of the control circuit unit. Therefore, more accurate ultrasonic measurement can be performed while suppressing current consumption.

以下、本発明の実施の形態における超音波振動子の搭載構成について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, a mounting configuration of an ultrasonic transducer according to an embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における超音波計測装置を示すものである。
(Embodiment 1)
FIG. 1 shows an ultrasonic measurement apparatus according to Embodiment 1 of the present invention.

図1において、被計測流体が流れる流体管路3の途中に超音波を送受信する第1振動子1と第2振動子2が流れ方向に距離を置いて配置されており、切替手段8によって第1振動子1と第2振動子2の送受信が切り替えられる。   In FIG. 1, a first vibrator 1 and a second vibrator 2 that transmit and receive ultrasonic waves are arranged in the middle of a fluid conduit 3 through which a fluid to be measured flows, and are arranged at a distance in the flow direction. Transmission / reception of the first vibrator 1 and the second vibrator 2 is switched.

そして、まず、切替手段8によって、第1振動子1を発信側、第2振動子2を受信側として選択し、発信手段4は第1振動子1への発信出力を行い、受信手段5は第1振動子から発信された超音波信号を受信した第2振動子2の信号を受信し、計時手段6で第1振動子1から第2振動子2までの時間を超音波の伝搬時間として測定する。   First, the switching means 8 selects the first vibrator 1 as a transmission side and the second vibrator 2 as a reception side, the transmission means 4 performs a transmission output to the first vibrator 1, and the reception means 5 The signal of the second vibrator 2 that has received the ultrasonic signal transmitted from the first vibrator is received, and the time from the first vibrator 1 to the second vibrator 2 is set as the ultrasonic propagation time by the time measuring means 6. taking measurement.

繰り返し手段7は発信手段4から発信されてから規定の時間遅延をして、再度、発信手段4から発信するよう命令をし、再度、発信手段4から出力されると切替手段8によって第1振動子1と第2振動子2の送受信を切り替えて第2振動子2から超音波信号を発信し、第1振動子1で超音波信号を受信し、この発信を前述のように繰り返す。   The repeater 7 delays for a specified time after being transmitted from the transmitter 4, instructs again to transmit from the transmitter 4, and when it is output again from the transmitter 4, the first vibration is generated by the switching unit 8. The transmission / reception of the child 1 and the second vibrator 2 is switched to transmit an ultrasonic signal from the second vibrator 2, the ultrasonic signal is received by the first vibrator 1, and this transmission is repeated as described above.

流量演算手段9は計時手段6にて測定した第1振動子1を送信側に設定して計時した超音波伝搬時間と第2振動子2を送信側に設定して計時した超音波伝搬時間の伝搬時間差から被計測流体の流速を算出し流速から被計測流体の瞬時流量値を算出する。   The flow rate calculation means 9 sets the ultrasonic propagation time measured by setting the first vibrator 1 measured on the transmission means 6 on the transmission side and the ultrasonic propagation time measured by setting the second vibrator 2 on the transmission side. The flow velocity of the fluid to be measured is calculated from the propagation time difference, and the instantaneous flow rate value of the fluid to be measured is calculated from the flow velocity.

また、温度計測手段10は流体管路3内に取り付けられた温度センサーとし、インターバル補正手段11は被計測流体の流れていないときに流量演算手段9が算出した流量値Q0(以下、ゼロ流量値と称す)と温度計測手段10の測定した温度を比較し、温度に伴って流量値が周期的に変動している場合に、繰り返し手段7に対して発信と発信の時間遅延を延長するよう命令する。   Further, the temperature measuring means 10 is a temperature sensor attached in the fluid conduit 3, and the interval correcting means 11 is a flow rate value Q0 (hereinafter, zero flow rate value) calculated by the flow rate calculating means 9 when the fluid to be measured is not flowing. And the temperature measured by the temperature measuring means 10 are compared, and if the flow rate value periodically fluctuates with the temperature, the repeater 7 is instructed to extend the transmission and the transmission time delay. To do.

以上のように構成された超音波計測装置について、以下その動作、作用を説明する。   The operation and action of the ultrasonic measuring apparatus configured as described above will be described below.

まず、第1振動子1から1回目の送信信号を出力するため、発信手段4から切替手段8に出力し切替手段8にて第1振動子1へ信号伝達される。第1振動子1から出力された超音波信号は第2振動子2で1回目の受信を行い切替手段8と通して受信手段5へ信号伝達される。   First, in order to output the first transmission signal from the first vibrator 1, the signal is transmitted from the transmission means 4 to the switching means 8 and transmitted to the first vibrator 1 by the switching means 8. The ultrasonic signal output from the first vibrator 1 is received by the second vibrator 2 for the first time and is transmitted to the receiving means 5 through the switching means 8.

その後、繰り返し手段7を通って計時手段6にて第1振動子1の送信から第2振動子2の受信までの時間である上流側から下流側への超音波伝搬時間を測定する。1回目の受信にて繰り返し手段7は2回目の送信までの遅延を規定時間カウントし規定時間になれば発
信手段4へ2回目の送信をするよう出力する。2回目は第2振動子2から第1振動子1へ下流側から超音波を発信するため切替手段8は第2振動子2へ送信信号を伝達する。
Thereafter, the ultrasonic propagation time from the upstream side to the downstream side, which is the time from the transmission of the first transducer 1 to the reception of the second transducer 2, is measured by the timing unit 6 through the repeating unit 7. At the first reception, the repeater 7 counts the delay until the second transmission for a specified time, and outputs the second transmission to the transmitter 4 when the specified time is reached. In the second time, the switching means 8 transmits a transmission signal to the second transducer 2 in order to transmit ultrasonic waves from the second transducer 2 to the first transducer 1 from the downstream side.

このようにして超音波送受信を規定時間の遅延をもって繰り返すことにより流体管路3の上流からの超音波伝搬時間と下流からの超音波伝搬時間を測定している。   In this manner, ultrasonic transmission / reception is repeated with a predetermined time delay to measure the ultrasonic propagation time from the upstream side of the fluid conduit 3 and the ultrasonic propagation time from the downstream side.

次に、計時手段6で計測した上流からの超音波伝搬時間と下流からの超音波伝搬時間の差から超音波が伝達された瞬間の流量値を流量演算手段9で算出する。   Next, the flow rate calculation means 9 calculates the flow rate value at the moment when the ultrasonic waves are transmitted from the difference between the ultrasonic propagation time from the upstream and the ultrasonic propagation time measured by the time measuring means 6.

そして、流量演算手段9で継続的に計測している瞬時流量値が自己ノイズなどで誤差が発生しているかを検証するため、まず温度計測手段10の流体管路内に取り付けられた温度センサーで被計測流体の温度を測定し、同時期に被計測流体をバルブ(図示せず)等で遮断し流量がゼロの状態で流量演算手段9にてゼロ流量値を計測する。   Then, in order to verify whether the instantaneous flow rate value continuously measured by the flow rate calculation means 9 has an error due to self noise or the like, first, a temperature sensor attached in the fluid conduit of the temperature measurement means 10 is used. The temperature of the fluid to be measured is measured, and at the same time, the fluid to be measured is shut off by a valve (not shown) or the like, and the zero flow rate value is measured by the flow rate calculation means 9 when the flow rate is zero.

インターバル補正手段11では、前述のようにして計測された温度とゼロ流量値を、絶対温度に対するゼロ流量値を比較していき温度変化に伴って規則性のある流量値変化がみられるかどうかを判断し、流量値変化がある場合はノイズの影響を受けていると判断して繰り返し手段7に対して現状設定されている遅延時間より更に時間を延長した設定をするよう命令され、次回の超音波発信の間隔が延長される。   In the interval correction means 11, the temperature measured as described above and the zero flow rate value are compared with the zero flow rate value with respect to the absolute temperature, and it is determined whether or not a regular flow rate value change is observed with the temperature change. If there is a change in the flow rate value, it is determined that it is affected by noise, and the repeater 7 is instructed to set the time further extended than the currently set delay time. The interval of sound wave transmission is extended.

以上のように、本実施の形態においては温度計測手段10にて被計測流体の温度を測定しインターバル補正手段11で絶対温度に対する流量値変化がある場合はノイズの影響を受けていると判断して超音波発信の間隔が延長されることにより、自己ノイズなどの影響を受けずにノイズが減衰してから次の超音波発信が可能となり受信信号のノイズ干渉を低減することができ、外気温度や被計測流体の温度が変化しても自動で補正可能で、より高精度な超音波計測ができる。   As described above, in the present embodiment, the temperature of the fluid to be measured is measured by the temperature measuring means 10, and if there is a change in the flow rate value with respect to the absolute temperature by the interval correcting means 11, it is determined that it is affected by noise. By extending the interval of ultrasonic transmission, the next ultrasonic transmission can be performed after the noise is attenuated without being affected by self-noise, etc., and noise interference of the received signal can be reduced. Even if the temperature of the fluid to be measured changes, it can be automatically corrected, and more accurate ultrasonic measurement can be performed.

(実施の形態2)
図2は、本発明の実施の形態2における超音波計測装置を示すものである。
(Embodiment 2)
FIG. 2 shows an ultrasonic measurement apparatus according to Embodiment 2 of the present invention.

図2において、被計測流体が流れる流体管路3の途中に超音波を送受信する第1振動子1と第2振動子2が流れ方向に距離を置いて配置されており、切替手段8によって第1振動子1と第2振動子2の送受信が切り替えられる。   In FIG. 2, a first vibrator 1 and a second vibrator 2 that transmit and receive ultrasonic waves are arranged in the middle of a fluid conduit 3 through which a fluid to be measured flows. Transmission / reception of the first vibrator 1 and the second vibrator 2 is switched.

そして、まず、切替手段8によって、第1振動子1を発信側、第2振動子2を受信側として選択し、発信手段4は第1振動子1への発信出力を行い、受信手段5は第1振動子から発信された超音波信号を受信した第2振動子2の信号を受信し、計時手段6は一定周波数で時間を計測できるカウンタ12によって第1振動子1から第2振動子2までの時間を超音波の伝搬時間として測定する。   First, the switching means 8 selects the first vibrator 1 as a transmission side and the second vibrator 2 as a reception side, the transmission means 4 performs a transmission output to the first vibrator 1, and the reception means 5 The signal from the second vibrator 2 that has received the ultrasonic signal transmitted from the first vibrator is received, and the time measuring means 6 uses the counter 12 that can measure the time at a constant frequency, from the first vibrator 1 to the second vibrator 2. Is measured as the ultrasonic propagation time.

繰り返し手段7は発信手段4から発信されてから規定の時間遅延をして再度、発信手段4から発信するよう命令をし、再度、発信手段4から出力されると切替手段8によって第1振動子1と第2振動子2の送受信を切り替えて第2振動子2から超音波信号を発信し、第1振動子1で超音波信号を受信し、この発信を前述のように繰り返す。   The repeater 7 gives a command to send again from the transmitter 4 after a predetermined time delay from the transmitter 4, and when it is output from the transmitter 4 again, the switching unit 8 causes the first vibrator The transmission / reception of the first vibrator 2 and the second vibrator 2 is switched to transmit an ultrasonic signal from the second vibrator 2, the ultrasonic signal is received by the first vibrator 1, and this transmission is repeated as described above.

流量演算手段9は計時手段6にて測定した第1振動子1を送信側に設定して計時した超音波伝搬時間と第2振動子2を送信側に設定して計時した超音波伝搬時間の伝搬時間差から被計測流体の流速を算出し流速から被計測流体の瞬時流量値を算出する。   The flow rate calculation means 9 sets the ultrasonic propagation time measured by setting the first vibrator 1 measured on the transmission means 6 on the transmission side and the ultrasonic propagation time measured by setting the second vibrator 2 on the transmission side. The flow velocity of the fluid to be measured is calculated from the propagation time difference, and the instantaneous flow rate value of the fluid to be measured is calculated from the flow velocity.

また、温度計測手段10はカウンタ12の温度によって周波数が一定量変化する特性を
利用して周波数からそのときの被計測流体の温度を換算し、インターバル補正手段11は流量演算手段が算出した流体の流れていないときのゼロ流量値と温度計測手段10の測定した温度を比較し温度に伴って流量値が周期的に変動している場合に、繰り返し手段7に対して発信と発信の時間遅延を延長するよう命令する。
Further, the temperature measuring means 10 converts the temperature of the fluid to be measured at that time from the frequency by using the characteristic that the frequency changes by a certain amount depending on the temperature of the counter 12, and the interval correcting means 11 calculates the flow of the fluid calculated by the flow rate calculating means. When the zero flow rate value when not flowing and the temperature measured by the temperature measuring means 10 are compared, and the flow value fluctuates periodically with the temperature, the transmission and transmission time delays are given to the repeating means 7. Order to extend.

以上のように構成された超音波計測装置について、以下その動作、作用を説明する。   The operation and action of the ultrasonic measuring apparatus configured as described above will be described below.

まず、第1振動子1から1回目の送信信号を出力するため、発信手段4から切替手段8に出力し切替手段8にて第1振動子1へ信号伝達される。第1振動子1から出力された超音波信号は第2振動子2で1回目の受信を行い切替手段8と通して受信手段5へ信号伝達される。   First, in order to output the first transmission signal from the first vibrator 1, the signal is transmitted from the transmission means 4 to the switching means 8 and transmitted to the first vibrator 1 by the switching means 8. The ultrasonic signal output from the first vibrator 1 is received by the second vibrator 2 for the first time and is transmitted to the receiving means 5 through the switching means 8.

その後、繰り返し手段7を通って計時手段6のカウンタ12によって第1振動子1の送信から第2振動子2の受信までの時間を一定周波数の周期を計測していき上流側から下流側への超音波伝搬時間を測定する。1回目の受信にて繰り返し手段7は2回目の送信までの遅延を規定時間カウントし規定時間になれば発信手段4へ2回目の送信をするよう出力する。2回目は第2振動子2から第1振動子1へ下流側から超音波を発信するため切替手段8は第2振動子2へ送信信号を伝達する。   After that, the time from the transmission of the first vibrator 1 to the reception of the second vibrator 2 is measured by the counter 12 of the time measuring means 6 through the repeating means 7 and the period of a constant frequency is measured, and from the upstream side to the downstream side. Measure the ultrasonic propagation time. At the first reception, the repeater 7 counts the delay until the second transmission for a specified time, and outputs the second transmission to the transmitter 4 when the specified time is reached. In the second time, the switching means 8 transmits a transmission signal to the second transducer 2 in order to transmit ultrasonic waves from the second transducer 2 to the first transducer 1 from the downstream side.

このようにして超音波送受信を規定時間の遅延をもって繰り返すことにより流体管路3の上流からの超音波伝搬時間と下流からの超音波伝搬時間を測定している。   In this manner, ultrasonic transmission / reception is repeated with a predetermined time delay to measure the ultrasonic propagation time from the upstream side of the fluid conduit 3 and the ultrasonic propagation time from the downstream side.

次に、計時手段6で計測した上流からの超音波伝搬時間と下流からの超音波伝搬時間の差から超音波が伝達された瞬間の流量値を流量演算手段9で算出する。   Next, the flow rate calculation means 9 calculates the flow rate value at the moment when the ultrasonic waves are transmitted from the difference between the ultrasonic propagation time from the upstream and the ultrasonic propagation time measured by the time measuring means 6.

そして、流量演算手段9で継続的に計測している瞬時流量値が自己ノイズなどで誤差が発生しているか検証するため、まず温度計測手段10がカウンタ12の周波数を測定し、この周波数は温度によって一定量の周波数変化が起こるため周波数からその被計測流体の温度を推測することができる。これによって被計測流体の温度を測定し、同時期に被計測流体をバルブ(図示せず)等で遮断し流量値ゼロの状態で流量演算手段9にてゼロ流量値を計測する。   Then, in order to verify whether the instantaneous flow rate value continuously measured by the flow rate calculation means 9 has an error due to self-noise, the temperature measurement means 10 first measures the frequency of the counter 12, and this frequency is the temperature. Because of this, a certain amount of frequency change occurs, so that the temperature of the fluid to be measured can be estimated from the frequency. Thus, the temperature of the fluid to be measured is measured, and at the same time, the fluid to be measured is shut off by a valve (not shown) or the like, and the zero flow value is measured by the flow rate calculation means 9 in a state where the flow rate value is zero.

インターバル補正手段11では、前述のようにして計測された温度とゼロ流量値をインターバル補正手段11では、絶対温度に対するゼロ流量値を比較していき温度変化に伴って規則性のある流量値変化がみられるかどうかを判断し、流量値変化がある場合はノイズの影響を受けていると判断して繰り返し手段7に対して現状設定されている遅延時間より更に時間を延長した設定をするよう命令され、次回の超音波発信の間隔が延長される。   The interval correction unit 11 compares the temperature measured as described above with the zero flow rate value, and the interval correction unit 11 compares the zero flow rate value with respect to the absolute temperature, and the change in the flow rate value with regularity is changed with the temperature change. If there is a change in the flow rate value, it is determined that it is affected by noise, and the repeater 7 is instructed to set the time further longer than the currently set delay time. The interval of the next ultrasonic transmission is extended.

以上のように、本実施の形態においては温度計測手段10にて被計測流体の温度を測定しインターバル補正手段11で絶対温度に対する流量値変化がある場合はノイズの影響を受けていると判断して超音波発信の間隔が延長されることにより、自己ノイズなどの影響を受けずにノイズが減衰してから次の超音波発信が可能となり受信信号のノイズ干渉を低減することができ、外気温度や被計測流体の温度が変化しても自動で補正可能で、より高精度な超音波計測ができる。   As described above, in the present embodiment, the temperature of the fluid to be measured is measured by the temperature measuring means 10, and if there is a change in the flow rate value with respect to the absolute temperature by the interval correcting means 11, it is determined that it is affected by noise. By extending the interval of ultrasonic transmission, the next ultrasonic transmission can be performed after the noise is attenuated without being affected by self-noise, etc., and noise interference of the received signal can be reduced. Even if the temperature of the fluid to be measured changes, it can be automatically corrected, and more accurate ultrasonic measurement can be performed.

(実施の形態3)
図3は、本発明の実施の形態3における超音波計測装置を示すものである。
(Embodiment 3)
FIG. 3 shows an ultrasonic measurement apparatus according to Embodiment 3 of the present invention.

図3において、被計測流体が流れる流体管路3の途中に超音波を送受信する第1振動子1と第2振動子2が流れ方向に距離を置いて配置されており、切替手段8によって第1振
動子1と第2振動子2の送受信が切り替えられる。
In FIG. 3, a first vibrator 1 and a second vibrator 2 that transmit and receive ultrasonic waves are arranged in the middle of a fluid conduit 3 through which a fluid to be measured flows. Transmission / reception of the first vibrator 1 and the second vibrator 2 is switched.

そして、まず、切替手段8によって、第1振動子1を発信側、第2振動子2を受信側として選択し、発信手段4は第1振動子1への発信出力を行い、受信手段5は第1振動子から発信された超音波信号を受信した第2振動子2の信号を受信し、計時手段6は第1振動子1から第2振動子2までの時間を超音波の伝搬時間として測定する。   First, the switching means 8 selects the first vibrator 1 as a transmission side and the second vibrator 2 as a reception side, the transmission means 4 performs a transmission output to the first vibrator 1, and the reception means 5 The signal of the second vibrator 2 that has received the ultrasonic signal transmitted from the first vibrator is received, and the time measuring means 6 uses the time from the first vibrator 1 to the second vibrator 2 as the propagation time of the ultrasonic wave. taking measurement.

繰り返し手段7は発信手段4から発信されてから規定の時間遅延をして再度、発信手段4から発信するよう命令をし、再度、発信手段4から出力されると切替手段8によって第1振動子1と第2振動子2の送受信を切り替えて第2振動子2から超音波信号を発信し、第1振動子1で超音波信号を受信し、この発信を前述のように繰り返す。   The repeater 7 gives a command to send again from the transmitter 4 after a predetermined time delay from the transmitter 4, and when it is output from the transmitter 4 again, the switching unit 8 causes the first vibrator The transmission / reception of the first vibrator 2 and the second vibrator 2 is switched to transmit an ultrasonic signal from the second vibrator 2, the ultrasonic signal is received by the first vibrator 1, and this transmission is repeated as described above.

流量演算手段9は計時手段6にて測定した第1振動子1を送信側に設定して計時した超音波伝搬時間と第2振動子2を送信側に設定して計時した超音波伝搬時間の伝搬時間差から被計測流体の流速を算出し流速から被計測流体の瞬時流量値を算出する。   The flow rate calculation means 9 sets the ultrasonic propagation time measured by setting the first vibrator 1 measured on the transmission means 6 on the transmission side and the ultrasonic propagation time measured by setting the second vibrator 2 on the transmission side. The flow velocity of the fluid to be measured is calculated from the propagation time difference, and the instantaneous flow rate value of the fluid to be measured is calculated from the flow velocity.

また、温度計測手段10は計時手段6が計測した伝搬時間の温度特性からそのときの被計測流体の温度を換算し、インターバル補正手段11は流量演算手段が算出した流体の流れていないときのゼロ流量値と温度計測手段10の測定した温度を比較していき温度に伴って流量値が周期的に変動している場合に、繰り返し手段7に対して発信と発信の時間遅延を延長するよう命令する。   Further, the temperature measuring means 10 converts the temperature of the fluid to be measured at that time from the temperature characteristic of the propagation time measured by the time measuring means 6, and the interval correcting means 11 is zero when the fluid does not flow calculated by the flow rate calculating means. The flow rate value is compared with the temperature measured by the temperature measuring means 10, and when the flow value fluctuates periodically with the temperature, the repeater 7 is instructed to extend the transmission and transmission time delay. To do.

以上のように構成された超音波計測装置について、以下その動作、作用を説明する。   The operation and action of the ultrasonic measuring apparatus configured as described above will be described below.

まず、第1振動子1から1回目の送信信号を出力するため、発信手段4から切替手段8に出力し切替手段8にて第1振動子1へ信号伝達される。第1振動子1から出力された超音波信号は第2振動子2で1回目の受信を行い切替手段8と通して受信手段5へ信号伝達される。   First, in order to output the first transmission signal from the first vibrator 1, the signal is transmitted from the transmission means 4 to the switching means 8 and transmitted to the first vibrator 1 by the switching means 8. The ultrasonic signal output from the first vibrator 1 is received by the second vibrator 2 for the first time and is transmitted to the receiving means 5 through the switching means 8.

その後、繰り返し手段7を通って計時手段6にて第1振動子1の送信から第2振動子2の受信までの時間である上流側から下流側への超音波伝搬時間を測定する。1回目の受信にて繰り返し手段7は2回目の送信までの遅延を規定時間カウントし規定時間になれば発信手段4へ2回目の送信をするよう出力する。2回目は第2振動子2から第1振動子1へ下流側から超音波を発信するため切替手段8は第2振動子2へ送信信号を伝達する。   Thereafter, the ultrasonic propagation time from the upstream side to the downstream side, which is the time from the transmission of the first transducer 1 to the reception of the second transducer 2, is measured by the timing unit 6 through the repeating unit 7. At the first reception, the repeater 7 counts the delay until the second transmission for a specified time, and outputs the second transmission to the transmitter 4 when the specified time is reached. In the second time, the switching means 8 transmits a transmission signal to the second transducer 2 in order to transmit ultrasonic waves from the second transducer 2 to the first transducer 1 from the downstream side.

このようにして超音波送受信を規定時間の遅延をもって繰り返すことにより流体管路3の上流からの超音波伝搬時間と下流からの超音波伝搬時間を測定している。   In this manner, ultrasonic transmission / reception is repeated with a predetermined time delay to measure the ultrasonic propagation time from the upstream side of the fluid conduit 3 and the ultrasonic propagation time from the downstream side.

次に、計時手段6で計測した上流からの超音波伝搬時間と下流からの超音波伝搬時間の差から超音波が伝達された瞬間の流量値を流量演算手段9で算出する。   Next, the flow rate calculation means 9 calculates the flow rate value at the moment when the ultrasonic waves are transmitted from the difference between the ultrasonic propagation time from the upstream and the ultrasonic propagation time measured by the time measuring means 6.

そして、流量演算手段9で継続的に計測している瞬時流量値が自己ノイズなどで誤差が発生しているか検証するため、まず被計測流体をバルブ(図示せず)等で遮断し流量値ゼロの状態で流量演算手段9にてゼロ流量値を計測していく。温度計測手段10が計時手段6の測定した伝搬時間で、この伝搬時間は温度によって一定量の変化が起こるため被計測流体の温度を推測することができる。これによって被計測流体の温度を測定し、同時期に被計測流体をゼロ流量値を計測していく。   In order to verify whether the instantaneous flow rate value continuously measured by the flow rate calculation means 9 has an error due to self-noise or the like, first, the fluid to be measured is shut off by a valve (not shown) or the like, and the flow rate value is zero. In this state, the flow rate calculation means 9 measures the zero flow rate value. The propagation time measured by the time measuring means 6 by the temperature measuring means 10, and this propagation time changes by a certain amount depending on the temperature, so that the temperature of the fluid to be measured can be estimated. As a result, the temperature of the fluid to be measured is measured, and the zero flow rate value of the fluid to be measured is measured at the same time.

インターバル補正手段11では、前述のようにして計測された温度とゼロ流量値をインターバル補正手段11では、絶対温度に対するゼロ流量値を比較していき温度変化に伴っ
て規則性のある流量値変化がみられるかどうかを判断し、流量値変化がある場合はノイズの影響を受けていると判断して繰り返し手段7に対して現状設定されている遅延時間より更に時間を延長した設定をするよう命令され、次回の超音波発信の間隔が延長される。
The interval correction unit 11 compares the temperature measured as described above with the zero flow rate value, and the interval correction unit 11 compares the zero flow rate value with respect to the absolute temperature, and the change in the flow rate value with regularity is changed with the temperature change. If there is a change in the flow rate value, it is determined that it is affected by noise, and the repeater 7 is instructed to set the time further longer than the currently set delay time. The interval of the next ultrasonic transmission is extended.

以上のように、本実施の形態においては温度計測手段10にて被計測流体の温度を測定しインターバル補正手段11で絶対温度に対する流量値変化がある場合はノイズの影響を受けていると判断して超音波発信の間隔が延長されることにより、自己ノイズなどの影響を受けずにノイズが減衰してから次の超音波発信が可能となり受信信号のノイズ干渉を低減することができ、外気温度や被計測流体の温度が変化しても自動で補正可能で、より高精度な超音波計測ができる。   As described above, in the present embodiment, the temperature of the fluid to be measured is measured by the temperature measuring means 10, and if there is a change in the flow rate value with respect to the absolute temperature by the interval correcting means 11, it is determined that it is affected by noise. By extending the interval of ultrasonic transmission, the next ultrasonic transmission can be performed after the noise is attenuated without being affected by self-noise, etc., and noise interference of the received signal can be reduced. Even if the temperature of the fluid to be measured changes, it can be automatically corrected, and more accurate ultrasonic measurement can be performed.

(実施の形態4)
図4は、本発明の実施の形態1における超音波計測装置を示すものである。
(Embodiment 4)
FIG. 4 shows an ultrasonic measurement apparatus according to Embodiment 1 of the present invention.

図4において、被計測流体が流れる流体管路3の途中に超音波を送受信する第1振動子1と受信する第2振動子2が流れ方向に距離を置いて配置されており、切替手段8によって第1振動子1と第2振動子2の送受信が切り替えられる。   In FIG. 4, a first vibrator 1 that transmits and receives ultrasonic waves and a second vibrator 2 that receives ultrasonic waves are arranged in the middle of a fluid conduit 3 through which a fluid to be measured flows, and is arranged at a distance in the flow direction. Thus, transmission / reception of the first vibrator 1 and the second vibrator 2 is switched.

そして、まず、切替手段8によって、第1振動子1を発信側、第2振動子2を受信側として選択し、発信手段4は第1振動子1への発信出力を行い、受信手段5は第1振動子から発信された超音波信号を受信した第2振動子2の信号を受信し、計時手段6で第1振動子1から第2振動子2までの時間を超音波の伝搬時間として測定する。   First, the switching means 8 selects the first vibrator 1 as a transmission side and the second vibrator 2 as a reception side, the transmission means 4 performs a transmission output to the first vibrator 1, and the reception means 5 The signal of the second vibrator 2 that has received the ultrasonic signal transmitted from the first vibrator is received, and the time from the first vibrator 1 to the second vibrator 2 is set as the ultrasonic propagation time by the time measuring means 6. taking measurement.

繰り返し手段7は発信手段4から発信されてから規定の時間遅延をして再度、発信手段4から発信するよう命令をし、再度、発信手段4から出力されると切替手段8によって第1振動子1と第2振動子2の送受信を切り替えて第2振動子2から超音波信号を発信し、第1振動子1で超音波信号を受信し、この発信を前述のように繰り返す。   The repeater 7 gives a command to send again from the transmitter 4 after a predetermined time delay from the transmitter 4, and when it is output from the transmitter 4 again, the switching unit 8 causes the first vibrator The transmission / reception of the first vibrator 2 and the second vibrator 2 is switched to transmit an ultrasonic signal from the second vibrator 2, the ultrasonic signal is received by the first vibrator 1, and this transmission is repeated as described above.

流量演算手段9は計時手段6にて測定した第1振動子1を送信側に設定して計時した超音波伝搬時間と第2振動子2を送信側に設定して計時した超音波伝搬時間の伝搬時間差から被計測流体の流速を算出し流速から被計測流体の瞬時流量値を算出する。   The flow rate calculation means 9 sets the ultrasonic propagation time measured by setting the first vibrator 1 measured on the transmission means 6 on the transmission side and the ultrasonic propagation time measured by setting the second vibrator 2 on the transmission side. The flow velocity of the fluid to be measured is calculated from the propagation time difference, and the instantaneous flow rate value of the fluid to be measured is calculated from the flow velocity.

また、温度計測手段10は流体管路3内に取り付けられた温度センサーとし、インターバル補正手段11は流量演算手段が算出した流体の流れていないときのゼロ流量値と温度計測手段10の測定した温度を比較していき温度に伴って流量値が周期的に変動しているか否かを判定し、繰り返し手段7に対して発信と発信の時間遅延を延長または短縮するよう命令する。この一連の制御を制御回路部13が行っている。   The temperature measuring means 10 is a temperature sensor attached in the fluid conduit 3, and the interval correcting means 11 is the zero flow rate value calculated when the flow rate calculating means is not flowing and the temperature measured by the temperature measuring means 10. Are compared to determine whether or not the flow value fluctuates periodically with temperature, and the repeater 7 is instructed to extend or shorten the time delay between transmission and transmission. The control circuit unit 13 performs this series of controls.

以上のように構成された超音波計測装置について、以下その動作、作用を説明する。   The operation and action of the ultrasonic measuring apparatus configured as described above will be described below.

まず、第1振動子1から1回目の送信信号を出力するため、発信手段4から切替手段8に出力し切替手段8にて第1振動子1へ信号伝達される。第1振動子1から出力された超音波信号は第2振動子2で1回目の受信を行い切替手段8と通して受信手段5へ信号伝達される。   First, in order to output the first transmission signal from the first vibrator 1, the signal is transmitted from the transmission means 4 to the switching means 8 and transmitted to the first vibrator 1 by the switching means 8. The ultrasonic signal output from the first vibrator 1 is received by the second vibrator 2 for the first time and is transmitted to the receiving means 5 through the switching means 8.

その後、繰り返し手段7を通って計時手段6にて第1振動子1の送信から第2振動子2の受信までの時間である上流側から下流側への超音波伝搬時間を測定する。1回目の受信にて繰り返し手段7は2回目の送信までの遅延を規定時間カウントし規定時間になれば発信手段4へ2回目の送信をするよう出力する。2回目は第2振動子2から第1振動子1へ下流側から超音波を発信するため切替手段8は第2振動子2へ送信信号を伝達する。   Thereafter, the ultrasonic propagation time from the upstream side to the downstream side, which is the time from the transmission of the first transducer 1 to the reception of the second transducer 2, is measured by the timing unit 6 through the repeating unit 7. At the first reception, the repeater 7 counts the delay until the second transmission for a specified time, and outputs the second transmission to the transmitter 4 when the specified time is reached. In the second time, the switching means 8 transmits a transmission signal to the second transducer 2 in order to transmit ultrasonic waves from the second transducer 2 to the first transducer 1 from the downstream side.

このようにして超音波送受信を規定時間の遅延をもって繰り返すことにより流体管路3の上流からの超音波伝搬時間と下流からの超音波伝搬時間を測定している。   In this manner, ultrasonic transmission / reception is repeated with a predetermined time delay to measure the ultrasonic propagation time from the upstream side of the fluid conduit 3 and the ultrasonic propagation time from the downstream side.

次に、計時手段6で計測した上流からの超音波伝搬時間と下流からの超音波伝搬時間の差から超音波が伝達された瞬間の流量値を流量演算手段9で算出する。   Next, the flow rate calculation means 9 calculates the flow rate value at the moment when the ultrasonic waves are transmitted from the difference between the ultrasonic propagation time from the upstream and the ultrasonic propagation time measured by the time measuring means 6.

そして、流量演算手段9で継続的に計測している瞬時流量値が自己ノイズなどで誤差が発生しているか検証するため、まず温度計測手段10の流体管路内に取り付けられた温度センサーで被計測流体の温度を測定し、同時期に被計測流体をバルブ(図示せず)等で遮断し流量値ゼロの状態で流量演算手段9にてゼロ流量値を計測していく。   Then, in order to verify whether the instantaneous flow rate value continuously measured by the flow rate calculation means 9 has an error due to self-noise or the like, first, a temperature sensor attached in the fluid conduit of the temperature measurement means 10 is used. The temperature of the measurement fluid is measured, and at the same time, the fluid to be measured is shut off by a valve (not shown) or the like, and the zero flow rate value is measured by the flow rate calculation means 9 in a state where the flow rate value is zero.

インターバル補正手段11では、前述のようにして計測された温度とゼロ流量値をインターバル補正手段11では、絶対温度に対するゼロ流量値を比較していき温度変化に伴って規則性のある流量値変化がみられるかどうかを判断し、流量値変化がある場合はノイズの影響を受けていると判断して繰り返し手段7に対して現状設定されている遅延時間より更に時間を延長した設定をするよう命令され、次回の超音波発信の間隔が延長される。しかしながら流量変化がなかった場合はノイズの影響が無いと判断し繰り返し遅延時間を短縮するよう命令する。   The interval correction unit 11 compares the temperature measured as described above with the zero flow rate value, and the interval correction unit 11 compares the zero flow rate value with respect to the absolute temperature, and the change in the flow rate value with regularity is changed with the temperature change. If there is a change in the flow rate value, it is determined that it is affected by noise, and the repeater 7 is instructed to set the time further longer than the currently set delay time. The interval of the next ultrasonic transmission is extended. However, if there is no change in flow rate, it is determined that there is no influence of noise, and an instruction is given to repeatedly reduce the delay time.

以上のように、本実施の形態においては温度計測手段10にて被計測流体の温度を測定しインターバル補正手段11で絶対温度に対する流量値変化がある場合はノイズの影響を受けていると判断して超音波発信の間隔が延長されるが、自己ノイズなどの影響が無くなった場合は繰り返し遅延時間が短縮され、制御回路部13の制御時間を短くすることができることから、消費電力の低減が可能となる。これにより外気温度や被計測流体の温度が変化しても自動で補正可能で、より高精度な超音波計測ができ、さらにノイズの影響が少なくなれば消費電力低減の制御に自動で切替可能である。   As described above, in the present embodiment, the temperature of the fluid to be measured is measured by the temperature measuring means 10, and if there is a change in the flow rate value with respect to the absolute temperature by the interval correcting means 11, it is determined that it is affected by noise. The interval of ultrasonic transmission is extended, but when the influence of self-noise, etc. disappears, the delay time is repeatedly shortened and the control time of the control circuit unit 13 can be shortened, so that power consumption can be reduced. It becomes. As a result, even if the outside air temperature or the temperature of the fluid to be measured changes, it can be automatically corrected, more accurate ultrasonic measurement can be performed, and if the influence of noise is reduced, it can be automatically switched to power consumption reduction control. is there.

以上のように、本発明にかかる超音波計測装置は、計測装置として信頼性が高く高精度であることから、ガスメーターや水道メーターなどの高信頼性が要求される流体計測装置等の用途にも適用できる。   As described above, since the ultrasonic measurement device according to the present invention is highly reliable and highly accurate as a measurement device, it can be used in applications such as fluid measurement devices that require high reliability such as gas meters and water meters. Applicable.

1 第1振動子
2 第2振動子
3 流体管路
4 発信手段
5 受信手段
6 計時手段
7 繰り返し手段
8 切替手段
9 流量演算手段
10 温度計測手段
11 インターバル補正手段
12 カウンタ
13 制御回路部
DESCRIPTION OF SYMBOLS 1 1st vibrator | oscillator 2 2nd vibrator | oscillator 3 Fluid pipe line 4 Transmitting means 5 Receiving means 6 Time measuring means 7 Repeating means 8 Switching means 9 Flow rate calculating means 10 Temperature measuring means 11 Interval correction means 12 Counter 13 Control circuit part

Claims (4)

被計測流体が流れる流体管路に設けられ超音波を送受信する第1振動子及び第2振動子と、
前記第1、第2振動子の送受信の切替手段と、
前記第1、第2振動子間相互の超音波伝達を一定時間間隔で複数回行う繰り返し手段と、前記第1、第2振動子間の超音波伝搬時間を測定する計時手段と、
前記計時手段によって測定された前記第1振動子から前記第2振動子への超音波伝搬時間と第2振動子から前記第1振動子への超音波伝搬時間の伝搬時間差から被計測流体の流速を算出し、該流速から瞬時流量値を演算する流量演算手段と、
被計測流体の温度を測定する温度計測手段と、
被計測流体が流れていない状態で前記流量演算手段によって算出された流量値Q0と前記温度計測手段によって計測された温度の相関を演算し、温度変化に伴って前記流量値Q0が周期的に変動していた場合に前記繰り返し手段が行っている振動子間相互の超音波伝達の繰り返しの時間間隔を延長するインターバル補正手段と、を備えた超音波計測装置。
A first vibrator and a second vibrator, which are provided in a fluid conduit through which a fluid to be measured flows and transmit / receive ultrasonic waves;
A transmission / reception switching means for the first and second vibrators;
Repetitive means for performing ultrasonic transmission between the first and second vibrators a plurality of times at regular time intervals; and time measuring means for measuring ultrasonic propagation time between the first and second vibrators;
The flow velocity of the fluid to be measured is calculated from the difference in propagation time between the ultrasonic wave propagation time from the first vibrator to the second vibrator and the ultrasonic wave propagation time from the second vibrator to the first vibrator measured by the time measuring means. And a flow rate calculation means for calculating an instantaneous flow rate value from the flow velocity,
Temperature measuring means for measuring the temperature of the fluid to be measured;
The flow rate value Q0 calculated by the flow rate calculation means and the temperature measured by the temperature measurement means are calculated in a state where the fluid to be measured is not flowing, and the flow rate value Q0 periodically varies with a temperature change. And an interval correction unit for extending a time interval of repetition of ultrasonic transmission between the transducers performed by the repetition unit.
前記計時手段は、周囲温度によって周期が変化するカウンタを用いた構成とし、
前記温度計測手段は、前記カウンタの周期から被計測流体の温度を算出する構成とした請求項1に記載の超音波計測装置。
The time measuring means has a configuration using a counter whose period changes according to the ambient temperature,
The ultrasonic measurement apparatus according to claim 1, wherein the temperature measurement unit is configured to calculate a temperature of a fluid to be measured from a cycle of the counter.
前記温度計測手段は、被計測流体が流れていない状態で前記計時手段が測定した超音波伝搬時間から被計測流体の温度を算出するとした請求項1記載の超音波計測装置。 The ultrasonic measurement apparatus according to claim 1, wherein the temperature measuring unit calculates the temperature of the fluid to be measured from the ultrasonic propagation time measured by the time measuring unit in a state where the fluid to be measured is not flowing. 前記インターバル補正手段は、被計測流体が流れていない状態で前記流量演算手段によって算出された流量値Q0と前記温度計測手段によって計測された被計測流体の温度を時系列に比較し、温度変化に伴って流量値Q0が周期的に変動していない場合に前記繰り返し手段が行っている振動子間相互の超音波伝達の繰り返し時間間隔を短縮する構成とした請求項1〜3のいずれか1項に記載の超音波計測装置。 The interval correction means compares the flow rate value Q0 calculated by the flow rate calculation means with the temperature of the fluid to be measured measured by the temperature measurement means in a time series in a state where the fluid to be measured is not flowing, and changes the temperature. Accordingly, when the flow rate value Q0 does not fluctuate periodically, the repetition time interval of the ultrasonic transmission between the transducers performed by the repetition unit is shortened. The ultrasonic measurement apparatus described in 1.
JP2012151082A 2012-07-05 2012-07-05 Ultrasonic measuring device Active JP5990770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012151082A JP5990770B2 (en) 2012-07-05 2012-07-05 Ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151082A JP5990770B2 (en) 2012-07-05 2012-07-05 Ultrasonic measuring device

Publications (2)

Publication Number Publication Date
JP2014013206A true JP2014013206A (en) 2014-01-23
JP5990770B2 JP5990770B2 (en) 2016-09-14

Family

ID=50108957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151082A Active JP5990770B2 (en) 2012-07-05 2012-07-05 Ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JP5990770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190083313A (en) * 2018-01-03 2019-07-11 (주)씨엠엔텍 Intelligent flow measurement method and intelligent pressure measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389899A (en) * 1979-10-30 1983-06-28 Gerhard Krause Apparatus for measuring the speed of flow of flowable media
US4417481A (en) * 1980-05-02 1983-11-29 Erwin Sick Gmbh Optik-Elektronik Apparatus for measuring the speed of flow of a flowable medium by determining the transit time of sound waves therein
JPH08128875A (en) * 1994-11-02 1996-05-21 Matsushita Electric Ind Co Ltd Flow rate measuring instrument
JPH10239126A (en) * 1997-02-26 1998-09-11 Matsushita Electric Ind Co Ltd Flowmeter
JP2000298047A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Ultrasonic flow meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389899A (en) * 1979-10-30 1983-06-28 Gerhard Krause Apparatus for measuring the speed of flow of flowable media
US4417481A (en) * 1980-05-02 1983-11-29 Erwin Sick Gmbh Optik-Elektronik Apparatus for measuring the speed of flow of a flowable medium by determining the transit time of sound waves therein
JPH08128875A (en) * 1994-11-02 1996-05-21 Matsushita Electric Ind Co Ltd Flow rate measuring instrument
JPH10239126A (en) * 1997-02-26 1998-09-11 Matsushita Electric Ind Co Ltd Flowmeter
JP2000298047A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Ultrasonic flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190083313A (en) * 2018-01-03 2019-07-11 (주)씨엠엔텍 Intelligent flow measurement method and intelligent pressure measurement method
KR102042564B1 (en) 2018-01-03 2019-11-08 (주)씨엠엔텍 Intelligent flow measurement method and intelligent pressure measurement method

Also Published As

Publication number Publication date
JP5990770B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
US9638557B2 (en) Ultrasonic flowmeter having an arithmetic operation unit for calculating propagation time correction value
JP2011158470A (en) Ultrasonic flowmeter
WO2013172028A1 (en) Flow rate measurement device
WO2011055532A1 (en) Ultrasonic flowmeter
JP2011145289A (en) Flow rate measuring device
JP4561088B2 (en) Ultrasonic flow meter
JP5990770B2 (en) Ultrasonic measuring device
JP2006343292A (en) Ultrasonic flowmeter
JP2018136276A (en) Ultrasonic flowmeter
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP4797515B2 (en) Ultrasonic flow measuring device
JP4650574B2 (en) Ultrasonic flow meter
JP7246021B2 (en) ultrasonic flow meter
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP2013238563A (en) Flow rate measuring device
JP6064160B2 (en) Flow measuring device
JP7320776B2 (en) ultrasonic flow meter
JP7203352B2 (en) ultrasonic flow meter
JP3945530B2 (en) Flow measuring device
JP2012107874A (en) Ultrasonic flowmeter
JP5092414B2 (en) Flow velocity or flow rate measuring device
JP5092413B2 (en) Flow velocity or flow rate measuring device
JP6767628B2 (en) Flow measuring device
WO2012157261A1 (en) Ultrasonic flow meter
JP6354327B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R151 Written notification of patent or utility model registration

Ref document number: 5990770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151