JP2014008050A - Aquatic environment restoration material - Google Patents

Aquatic environment restoration material Download PDF

Info

Publication number
JP2014008050A
JP2014008050A JP2012149210A JP2012149210A JP2014008050A JP 2014008050 A JP2014008050 A JP 2014008050A JP 2012149210 A JP2012149210 A JP 2012149210A JP 2012149210 A JP2012149210 A JP 2012149210A JP 2014008050 A JP2014008050 A JP 2014008050A
Authority
JP
Japan
Prior art keywords
silicic acid
hydrosphere
slag
restoration material
tetrameric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012149210A
Other languages
Japanese (ja)
Other versions
JP6019827B2 (en
Inventor
Michihiro Aimoto
道宏 相本
Yoshio Takahashi
美穂 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012149210A priority Critical patent/JP6019827B2/en
Publication of JP2014008050A publication Critical patent/JP2014008050A/en
Application granted granted Critical
Publication of JP6019827B2 publication Critical patent/JP6019827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material, when a silicic acid having high availability for diatoms is eluted as a nutrient salt for the diatoms, capable of efficiently supplying an ocean with the silicic acid in a use of an inorganic oxide material of a silicic system such as a slag for a hydrosphere.SOLUTION: An aquatic environment restoration material causes multiple silicic acids in a chemical state, which is useful for the diatoms, to elute into the hydrosphere by carbonating the surface of the inorganic oxide material of the silicic system such as a slag or making it coexist with carbonate.

Description

本発明は、スラグなどケイ酸系の無機酸化物を用いた、海洋や河川、湖沼などの水圏環境を改善する材料に関する。   The present invention relates to a material that improves an aquatic environment such as oceans, rivers, and lakes using silicate-based inorganic oxides such as slag.

植物プランクトンのうち、代表的な藻類であるケイ藻類は、海洋や河川、湖沼などの水圏における主要な一次生産者である。その大きさは数μm〜数十μmほどであるが、例えば湖水1ml中にはおおよそ数百から数百万の藻類の細胞が含まれており、動物プランクトンや小型魚類のエサとして重要である。藻類の体はさまざまな元素から成り立っており、これらの元素の大部分を水中から無機態の形で取り込む。藻類が栄養分として多く要求する元素は、二酸化炭素、無機態窒素、リン酸であるが、ケイ藻類にはこれらに加えケイ酸も重要な栄養源である。   Among the phytoplanktons, diatoms, which are representative algae, are major primary producers in the hydrosphere such as oceans, rivers and lakes. The size is about several μm to several tens of μm. For example, 1 ml of lake water contains about several hundred to several million algae cells, and is important as food for zooplankton and small fish. The body of algae is made up of various elements, and most of these elements are taken up from water in an inorganic form. The elements that algae require as nutrients are carbon dioxide, inorganic nitrogen, and phosphoric acid. In addition to these, silicic acid is an important nutrient source for diatoms.

一般に、沿岸海域の海水中に含まれるケイ酸の多くは河川から供給されていると考えられるが、深層海水からの供給や、黄砂などの陸域に起因する大気中微粒子も寄与していると言われている。また、非特許文献1によれば、河川水中のケイ酸は、ほとんど岩石の化学的風化作用により供給されるとしている。水中のケイ酸は溶存態(イオン状、分子状、コロイド状)または懸濁態(鉱物粒子や生物体内に含まれた状態)で存在し、一般に地下水に多く、表流水として流下するに従って減少する傾向がある。また、海域の富栄養化に関しては、ケイ酸はケイ藻類の主成分であるため、その濃度は藻類の消長を推定する指標になるとされる。すなわち、水中のケイ酸が欠乏するとケイ藻類が減少し、結果として水圏生物全体に影響を及ぼす。   In general, most of the silicic acid contained in coastal seawater is thought to be supplied from rivers, but supply from deep seawater and atmospheric fine particles from the land such as yellow sand also contribute. It is said. According to Non-Patent Document 1, silicic acid in river water is almost supplied by chemical weathering of rocks. Silicic acid in water exists in dissolved form (ionic, molecular, colloidal) or suspended (contained in mineral particles and organisms), and is generally abundant in groundwater and decreases as it flows down as surface water. Tend. Regarding eutrophication in the sea area, silicic acid is the main component of diatoms, and its concentration is considered to be an index for estimating the algae fate. In other words, when there is a deficiency of silicic acid in the water, diatoms are reduced, and as a result, the entire aquatic organism is affected.

ケイ酸は、河川水中に200〜300μmol/Lの濃度で存在しているが、海水表面に供給されるときには10μmol/Lまで低下することが知られている。また、河川水中のケイ酸の溶存化学状態は、イオン状であるよりも、重合してポリマー状であることが多いとされている。そのため、Si(OH)構造やSi(OH) 構造のようにSiOとHOの組み合わせによって表現されるさまざまな分子の構造を考える必要がある。一方、近年の分析技術の進歩により、水中でのケイ酸の溶存化学形態を知ることができるようになった。その結果、海水でのケイ酸の減少は、単なる希釈だけではなく、河川におけるケイ酸の溶存化学状態と海水中のケイ酸の溶存化学状態が異なることが判ってきた(非特許文献2)。また、非特許文献2から、ケイ藻類の栄養源となるケイ酸化学種に選択性があり、ケイ藻類がその生育のために体内に取り込んで利用できるケイ酸の溶存化学形態は限られるものであることが判ってきた。より具体的には、直鎖状4量体ケイ酸(分子量329)や2量体ケイ酸(分子量173)がケイ藻類に有功に摂取される。対して、環状4量体ケイ酸(分子量311)やケイ酸化学種にアルカリ、アルカリ土類イオンが結合した場合には、ケイ藻類の栄養源にはなりにくいことが判っている。 Silicic acid is present in river water at a concentration of 200 to 300 μmol / L, but is known to decrease to 10 μmol / L when supplied to the seawater surface. In addition, the dissolved chemical state of silicic acid in river water is often polymerized and polymerized rather than ionic. Therefore, it is necessary to consider various molecular structures expressed by combinations of SiO 2 and H 2 O, such as Si (OH) 3 O structure and Si 2 (OH) 5 O 2 structure. On the other hand, recent advances in analytical technology have made it possible to know the dissolved chemical form of silicic acid in water. As a result, it has been found that the decrease in silicic acid in seawater is not only a simple dilution, but the dissolved chemical state of silicic acid in rivers differs from the dissolved chemical state of silicic acid in seawater (Non-Patent Document 2). Further, from Non-Patent Document 2, there is selectivity for the silicate chemical species that serve as a nutrient source for diatoms, and the dissolved chemical form of silicate that diatoms can take into the body and use for growth is limited. I know that there is. More specifically, linear tetrameric silicic acid (molecular weight 329) and dimeric silicic acid (molecular weight 173) are successfully ingested by diatoms. On the other hand, it is known that when alkali or alkaline earth ions are bound to cyclic tetrameric silicic acid (molecular weight 311) or silicic acid chemical species, it is difficult to become a nutrient source for diatoms.

ここで、セメント系及び又は石灰系と、水や生物系溶液の混合物や被覆物を、炭酸ガスの雰囲気下等で高圧養生したり、炭酸水を含浸させたりする等で炭酸化させ、藻場造成に活用する方法がある(特許文献1,2)。貧栄養海域に供給するための施肥材料として利用されるものであるが、水圏へのケイ酸の供給方法の最適化については何ら言及されていない。   Here, a mixture or coating of cement-based and / or lime-based and water or biological solution is carbonized by high-pressure curing in a carbon dioxide atmosphere or impregnated with carbonated water, etc. There is a method used for creation (Patent Documents 1 and 2). Although it is used as a fertilizer material to supply the oligotrophic sea area, there is no mention of optimization of the method of supplying silicic acid to the hydrosphere.

また、特許文献3〜5,7,9には、水中にケイ酸塩イオン放出源として高炉水砕スラグを海域に沈設する方法が提案されているが、非特許文献3によれば、高炉水砕スラグのように急冷された無機酸化物材料中のケイ酸は鎖状に連結したネットワーク構造を有しており、これらがランダムに切断されて溶出しているであろうことを考慮すると、ケイ酸の溶出化学状態が制御できるとは考えにくい。一方、特許文献6,10にも同様にケイ酸塩イオン放出源として高炉水砕スラグを沈設する方法が記載されているが、粒子の表面に炭酸カルシウム皮膜を形成させることを特徴としているものの、これは、アルカリ分やイオウ分の過剰な溶出抑制のためのものであり、ケイ酸の選択的溶出のためではない。   Further, Patent Documents 3 to 5, 7, and 9 propose a method in which blast furnace granulated slag is submerged in water as a silicate ion release source in water. In view of the fact that silicic acid in a rapidly cooled inorganic oxide material, such as crushed slag, has a network structure linked in a chain, and these will be randomly cut and eluted. It is unlikely that the acid elution chemistry can be controlled. On the other hand, Patent Documents 6 and 10 also describe a method of depositing granulated blast furnace slag as a silicate ion release source, although it is characterized by forming a calcium carbonate film on the surface of the particles, This is for suppressing excessive elution of alkali and sulfur, and not for selective elution of silicic acid.

特許文献8は、水圏への肥料溶出体として、リン、窒素、ケイ酸、鉄、フミン質等を極少量ずつ長期間にわたって供給するように、ケイ砂、消化汚泥、水産加工廃水汚泥、木くずなどの肥料を原料として作られたレンガ、もしくは粒状固形物を設置する方法に関するものである。ここで供給されるケイ酸はケイ砂や消化汚泥などからのケイ酸の供給を想定しているが、ケイ酸の化学状態に基づく生物利用性などは評価されていない。同様に、特許文献11は、人工ゼオライトなどの多孔質粉粒体からのケイ酸の供給を想定しているが、ケイ酸の化学状態は評価されていない。   Patent Document 8 discloses silica sand, digested sludge, fishery processing wastewater sludge, wood waste, etc. so as to supply phosphorus, nitrogen, silicic acid, iron, humic substances, etc. over a long period of time as a fertilizer eluent to the hydrosphere. It is related with the method of installing the brick made from the fertilizer of this, or a granular solid. Although the silicic acid supplied here assumes the supply of silicic acid from silica sand or digested sludge, bioavailability based on the chemical state of silicic acid has not been evaluated. Similarly, Patent Document 11 assumes supply of silicic acid from a porous granular material such as artificial zeolite, but the chemical state of silicic acid is not evaluated.

特開2000−157094号公報JP 2000-157094 A 特開2000−157095号公報JP 2000-157095 A 特開2002−176877号公報JP 2002-176877 A 特開2002−238401号公報JP 2002-238401 A 特開2003−158946号公報JP 2003-158946 A 特開2004−000104号公報JP 2004-000104 A 特開2004−024204号公報JP 2004-024204 A 特開2004−159610号公報JP 2004-159610 A 特開2004−236545号公報JP 2004-236545 A 特開2004−236546号公報JP 2004-236546 A 特開2005−341887号公報JP 2005-341887 A

鹿園直建, Journal of Geography, 111 55-65 (2002).Shikazoen, Journal of Geography, 111 55-65 (2002). Miho Tanaka, Kazuya Takahashi, Tatsuya Urabe, Tomohiro Oikawa, Masao Nemoto and Hideki Nagashima, Rapid Communications in Mass Spectrometry, 23, 698-704 (2009).Miho Tanaka, Kazuya Takahashi, Tatsuya Urabe, Tomohiro Oikawa, Masao Nemoto and Hideki Nagashima, Rapid Communications in Mass Spectrometry, 23, 698-704 (2009). 金橋康二, 下田景士, 齋藤公児, 鉄と鋼, 95, 321-330 (2009).Kanahashi Koji, Shimoda Keiji, Saito Kimiko, Iron and Steel, 95, 321-330 (2009).

本発明では、ケイ酸源となることを期待して水圏に投入されるスラグなどケイ酸系の無機酸化物材料に関し、表面を炭酸化させるなどの処理を施すことにより、水圏適用時に炭酸イオンを共存させることで、従来のケイ酸源よりもより効率よく生物利用性の高いケイ酸を水圏に供給できる材料を提供することを目的とする。   The present invention relates to a silicic acid-based inorganic oxide material such as slag that is put into the hydrosphere in the hope of becoming a silicic acid source. The object is to provide a material that can supply silicic acid with higher bioavailability to the hydrosphere more efficiently than the conventional silicic acid source.

本発明者らは、研究の結果、スラグなどケイ酸系の無機酸化物材料からの溶出ケイ酸が、どの様な化学状態で溶存しているかという情報を、溶出濃度だけでなく化学状態という切り口から明らかにすることにより、より適切な材料の提供方法を見出した。本発明では、溶出する栄養塩成分を分析するための分析方法として、従来の元素濃度分析に加え、高速原子衝撃質量分析法(Fast Atom Bombardment Mass Spectrometry:FAB−MS)を選択した。FAB−MS法は、分析対象とする物質をグリセリンのような粘性の大きいマトリクスに溶解させてターゲット上に塗布し、これに大きなエネルギーの一次粒子ビームを照射してイオン化する方法である。スラグなどケイ酸系の無機酸化物材料から溶出するケイ酸を分子レベルで解析し、その水圏における役割を評価することにより、その分子レベルのケイ酸の生物選択性と水圏において有用に利用するために炭酸イオンの共存が重要であることを、理論的かつ実験的に確かめた。以上の知見に基づき、本発明を完成した。   As a result of research, the present inventors have found that the information on the dissolved chemical state of silicic acid from silicate-based inorganic oxide materials such as slag is not only the dissolved concentration but also the chemical state. As a result, the present inventors have found a method for providing a more appropriate material. In the present invention, fast atom bombardment mass spectrometry (FAB-MS) was selected in addition to the conventional element concentration analysis as an analysis method for analyzing the eluted nutrient components. The FAB-MS method is a method in which a substance to be analyzed is dissolved in a highly viscous matrix such as glycerin, applied on a target, and irradiated with a primary particle beam with high energy to be ionized. To analyze silicic acid eluted from silicic acid-based inorganic oxide materials such as slag at the molecular level and evaluate its role in the hydrosphere, so that it can be used effectively in the bioselectivity of the silicic acid at the molecular level and in the hydrosphere. Theoretically and experimentally, it was confirmed that the coexistence of carbonate ions was important. Based on the above findings, the present invention has been completed.

本発明は、以下に記載するとおりのものである。   The present invention is as described below.

(1)水圏で用いる材料において、生物が利用する直鎖状4量体ケイ酸を海水中に溶出させ海洋に供給する水圏修復材料であって、表面を炭酸化させたスラグからなることを特徴とする水圏修復材料。   (1) A hydrosphere restoration material that elutes linear tetrameric silicic acid used by living organisms into seawater and supplies it to the ocean, and is made of slag whose surface is carbonated. Hydrosphere restoration material.

(2)水圏で用いる材料において、生物が利用する直鎖状4量体ケイ酸を海水中に溶出させ海洋に供給する水圏修復材料であって、スラグと炭酸基を含む塩の混合物からなることを特徴とする水圏修復材料。   (2) A hydrosphere restoration material that elutes linear tetrameric silicic acid used by living organisms into seawater and supplies it to the ocean, and is composed of a mixture of slag and carbonate-containing salts. Hydrosphere restoration material characterized by.

(3)前記炭酸化は、前記スラグの表面のカルシウム分を炭酸ガスと化学反応させて炭酸化させたことを特徴とする(1)に記載の水圏修復材料。   (3) The hydrosphere restoration material according to (1), wherein the carbonation is performed by chemically reacting a calcium content on the surface of the slag with carbon dioxide gas.

(4)前記直鎖状4量体ケイ酸の海水中への溶出モル濃度は、環状4量体ケイ酸の海水中への溶出モル濃度に比べて2倍以上であることを特徴とする(1)〜(3)のいずれか1項に記載の水圏修復材料。   (4) The elution molar concentration of the linear tetrameric silicic acid in seawater is at least twice the molar elution molar concentration of the cyclic tetrameric silicic acid in seawater ( The hydrosphere restoration material according to any one of 1) to (3).

(5)前記スラグは、鉄鋼スラグであることを特徴とする(1)〜(4)のいずれか1項に記載の水圏修復材料。   (5) The hydrosphere restoration material according to any one of (1) to (4), wherein the slag is steel slag.

(6)前記スラグは、溶融スラグであることを特徴とする(1)〜(4)のいずれか1項に記載の水圏修復材料。   (6) The hydrosphere restoration material according to any one of (1) to (4), wherein the slag is molten slag.

(7)前記鉄鋼スラグは、高炉徐冷スラグ、高炉水砕スラグ、製鋼スラグ、電気炉スラグのうちの1種以上であることを特徴とする(5)に記載の水圏修復材料。   (7) The hydrosphere restoration material according to (5), wherein the steel slag is at least one of blast furnace slow-cooled slag, blast furnace granulated slag, steelmaking slag, and electric furnace slag.

(8)水圏において、藻礁または漁礁となることを特徴とする(1)〜(7)のいずれか1項に記載の水圏修復材料。   (8) The hydrosphere restoration material according to any one of (1) to (7), wherein the hydrosphere restoration material is an algae reef or a fishing reef in the hydrosphere.

本発明は、スラグなどケイ酸系の無機酸化物材料から溶出するケイ酸の化学種を明らかにし、ケイ藻類にとってより有用な化学状態のケイ酸を供給できる材料について検討した結果、スラグなどケイ酸系の無機酸化物材料に炭酸イオンを共存させることで溶出するケイ酸の化学状態を生物利用性の高いものに制御することを可能とした。従って、本発明をケイ酸欠乏により一次生産者ともいうべきケイ藻類が減少し生産性の低下した水圏に適用すれば、生産性の向上が期待できる。   The present invention clarified the chemical species of silicic acid eluted from silicic acid-based inorganic oxide materials such as slag, and as a result of examining materials that can supply silicic acid in a more useful chemical state for diatoms, By making carbonate ions coexist in inorganic oxide materials, it is possible to control the chemical state of silicic acid to be highly bioavailable. Therefore, if the present invention is applied to a hydrosphere in which diatoms, which should be called primary producers, are reduced due to silicic acid deficiency and productivity is lowered, productivity can be expected.

また、本技術は、地球温暖化ガスである炭酸ガスを炭酸化して固定し、水圏で炭酸イオンとして供給するため、温暖化ガスの削減の途が拓かれることになり、さらに、水圏に供給された炭酸イオンは、光合成植物により生物固定され、バイオエタノールなどとして再生エネルギー化できることも期待できる。   In addition, carbon dioxide, which is a global warming gas, is carbonized and fixed and supplied as carbonate ions in the hydrosphere. This technology opens up the way to reduce greenhouse gases and is further supplied to the hydrosphere. The carbonate ions can be expected to be bio-immobilized by photosynthetic plants and regenerated as bioethanol.

本発明の実施形態である水圏環境修復材料の一例を示す図The figure which shows an example of the hydrosphere environmental restoration material which is embodiment of this invention 炭酸イオンが共存しない水中のケイ酸の化学状態を示す質量スペクトル(分子量300−350)Mass spectrum (molecular weight 300-350) showing the chemical state of silicic acid in water in the absence of carbonate ions 炭酸イオンが共存した水中のケイ酸の化学状態を示す質量スペクトル(分子量300−350)Mass spectrum showing the chemical state of silicic acid in water in the presence of carbonate ions (molecular weight 300-350) 実施例の海水中のケイ酸の化学状態を示す質量スペクトル(分子量300−350)Mass spectrum (molecular weight 300-350) showing the chemical state of silicic acid in sea water of the examples 比較例の海水中のケイ酸の化学状態を示す質量スペクトル(分子量300−350)Mass spectrum (molecular weight 300-350) showing the chemical state of silicic acid in sea water of comparative example

以下に本発明を詳細に説明する。本発明の目的、特徴、優秀性及びその有する観点は、以下の記載より当業者にとっては明白であろう。しかし、以下の記載及び具体的な実施例等の記載を含めた本件明細書の記載は本発明の好ましい態様を示すものであり、説明のためにのみ示されているものであることを理解されたい。本明細書に開示した本発明の意図及び範囲内で、種々の変化及び/又は改変(あるいは修飾)をなすことは、以下の記載及び本明細書のその他の部分からの知識により、当業者には容易に明らかであろう。本明細書で引用されている全ての特許文献及び参考文献は、説明の目的で引用されているもので、それらは本明細書の一部としてその内容はここに含めて解釈されるべきものである。   The present invention is described in detail below. The objects, features, excellence and viewpoints of the present invention will be apparent to those skilled in the art from the following description. However, it is understood that the description of the present specification, including the following description and the description of specific examples, etc., shows a preferred embodiment of the present invention and is shown only for explanation. I want. Various changes and / or modifications (or modifications) within the spirit and scope of the present invention disclosed herein will occur to those skilled in the art based on the following description and knowledge from other parts of the present specification. Will be readily apparent. All patent documents and references cited herein are cited for illustrative purposes and are not to be construed as a part of this specification. is there.

本発明は、生物利用性の高いケイ酸を効率的に海洋に溶出させ、供給するスラグなどケイ酸系の無機酸化物材料である水圏環境修復材料を提供する。   The present invention provides an aquatic environment remediation material that is a silicic acid-based inorganic oxide material such as slag that efficiently elutes and supplies highly bioavailable silicic acid to the ocean.

本発明らは、スラグなどケイ酸系の無機酸化物材料の、海洋や河川、湖沼などの水圏環境の改善において、無機酸化物材料を炭酸化することにより炭酸イオンと共存させ、ケイ藻類が利用しやすい化学状態のケイ酸を溶出する材料の創出を検討した。まず、本発明者らは、炭酸イオンの共存がスラグなどケイ酸系の無機酸化物材料からのケイ酸の溶出特性にどのような影響を及ぼすかを確かめた。一例として、無機酸化物材料として、鉄鋼スラグのうち製鋼スラグを用いた。製鋼スラグに、湿雰囲気で24時間炭酸ガスを吹付け、表面を炭酸化させたものと、処理を施さない製鋼スラグとを用いて、炭酸イオンを共存させたものと共存させないものとにおけるケイ酸の溶出特性を検証した。   In the improvement of hydrosphere environments such as oceans, rivers, and lakes, silicic acid-based inorganic oxide materials such as slag are used by diatoms to coexist with carbonate ions by carbonizing the inorganic oxide material. The creation of a material that elutes silicic acid in a chemical state that is easy to perform was investigated. First, the present inventors confirmed how coexistence of carbonate ions affects the elution characteristics of silicic acid from silicate-based inorganic oxide materials such as slag. As an example, steelmaking slag was used among the steel slag as the inorganic oxide material. Silicic acid in steelmaking slag with carbon dioxide sprayed in a humid atmosphere for 24 hours to carbonize the surface, and steelmaking slag that has not been treated with and without coexisting carbonate ions The elution characteristics of were verified.

表面を炭酸化させた製鋼スラグは、全体で約4mass%、表面では、厚さ0〜2.5mmの部分に約20mass%の炭酸カルシウムが生成しており、粒子全体に炭酸基が分布しているものも見られる図1に示す構造であった。炭酸基の存在形態としては、炭酸カルシウムや、炭酸マグネシウムなどの炭酸基を含む塩である炭酸塩があり、水圏環境修復材料として用いるには、徐々に水圏に溶解して炭酸イオンを供給できるものである必要がある。炭酸塩のほかにも、炭酸水素ナトリウムなどの重炭酸塩、塩基性炭酸マグネシウムなどの塩基性炭酸塩など、炭酸基を含む塩を別途材料に添加しても良い。また、材料として製鋼スラグを用いたが、これに限定されるものではなく、高炉徐冷スラグ、高炉水砕スラグ、電気炉スラグ、溶融スラグ、酸化物焼結体など、炭酸化した際に炭酸カルシウムや炭酸マグネシウムのような、炭酸基を表面に保持し、水圏で炭酸イオンを共存させるように、水圏に適用した際に徐々に炭酸イオンを放出する構造を形成する材料であれば、使用することができる。   The steelmaking slag with carbonized surface has a total of about 4 mass%, and on the surface, about 20 mass% of calcium carbonate is generated in the thickness of 0 to 2.5 mm, and carbonate groups are distributed throughout the particles. It was the structure shown in FIG. The carbonate group exists in the form of carbonate, which is a salt containing a carbonate group such as calcium carbonate or magnesium carbonate, and can be gradually dissolved in the hydrosphere to supply carbonate ions for use as an aquatic environment restoration material. Need to be. In addition to the carbonate, a salt containing a carbonate group such as a bicarbonate such as sodium hydrogen carbonate or a basic carbonate such as basic magnesium carbonate may be added to the material. Moreover, although steelmaking slag was used as the material, it is not limited to this. Use any material that forms a structure that gradually releases carbonate ions when applied to the hydrosphere, such as calcium and magnesium carbonate, so that the carbonate group is retained on the surface and carbonate ions coexist in the hydrosphere. be able to.

検討に供した水は、比抵抗18.2MΩの純水を使用した。全ケイ酸の溶出量測定には、JIS K 0102に定められた方法を適用した。ガラス容器内にスラグを入れ、固液比1:10の割合で純水を添加し、密栓した上で200回/分の振とうを行い、所定時間における液相へのケイ酸溶出量(Si濃度換算)の測定とFAB−MS法によるケイ酸の化学状態の測定を行った。なお、上記の溶出実験では、実験途中では溶液が透明であったのに、数時間から数日で水中の溶存酸素と製鋼スラグに含有される鉄が化合して赤褐色の水酸化鉄が析出した。そこで、水酸化鉄を十分沈殿させた後に、上澄み液のpHおよびケイ酸濃度を測定した。結果を表1に示す。なお、ケイ酸は水酸化鉄と共に沈殿していないことを確認した。表1には、溶出条件(実験に供した無機酸化物材料の質量と添加した純水の容積、および振とう時間)と、その際の水溶液のpH、および水溶液中のケイ酸濃度(Si換算)が示されている。   The water used for the examination was pure water having a specific resistance of 18.2 MΩ. The method defined in JIS K 0102 was applied to measure the total elution amount of silicic acid. Slag is put in a glass container, pure water is added at a ratio of solid / liquid ratio of 1:10, and after sealing, it is shaken 200 times / minute, and the amount of silicic acid eluted into the liquid phase (Si (Concentration conversion) and the chemical state of silicic acid were measured by the FAB-MS method. In the above elution experiment, the solution was transparent in the middle of the experiment, but dissolved oxygen in water and iron contained in the steelmaking slag combined in a few hours to several days, and reddish brown iron hydroxide precipitated. . Therefore, after sufficiently precipitating iron hydroxide, the pH and silicic acid concentration of the supernatant were measured. The results are shown in Table 1. It was confirmed that silicic acid was not precipitated together with iron hydroxide. Table 1 shows the elution conditions (the mass of the inorganic oxide material used in the experiment, the volume of pure water added, and the shaking time), the pH of the aqueous solution at that time, and the concentration of silicic acid in the aqueous solution (in terms of Si) )It is shown.

Figure 2014008050
Figure 2014008050

表面を炭酸化させた材料からのケイ酸の溶出量は、炭酸化させていない材料に比し約50〜100倍以上であった。一般的には、pHが高い方がケイ酸の溶解は促進され、炭酸化させていない材料を用いた方が溶液のpHが高い傾向にあったが、実際にはケイ酸の濃度は高くならなかった。すなわちスラグなどケイ酸系の無機酸化物材料からのケイ酸の溶出は、溶液のpHよりも水溶液中に炭酸イオンが共存しているかどうかの方が重要であることが判った。言い換えれば、材料の表面に炭酸化処理をすることで、ケイ酸の溶出を促進していることが判った。これは、炭酸イオンが溶液中に共存することによる効果であると考えられる。   The elution amount of silicic acid from the material carbonated on the surface was about 50 to 100 times or more compared with the material not carbonated. In general, dissolution of silicic acid is promoted at a higher pH, and the pH of the solution tended to be higher when a non-carbonated material was used. However, the concentration of silicic acid actually increased. There wasn't. That is, it was found that elution of silicic acid from silicic acid-based inorganic oxide materials such as slag is more important than whether the carbonate ions coexist in the aqueous solution rather than the pH of the solution. In other words, it was found that elution of silicic acid was promoted by carbonating the surface of the material. This is considered to be an effect due to the coexistence of carbonate ions in the solution.

CaCO→Ca2++CO 2− ・・・<式1>
CO 2−+HO→HCO 2−+OH ・・・<式2>
CaCO 3 → Ca 2+ + CO 3 2− <Formula 1>
CO 3 2- + H 2 O → HCO 3 2- + OH - ··· < formula 2>

式1および式2は、海水や炭酸カルシウムが溶解した水溶液中のpHが8〜10のアルカリ環境下で生じる反応であり、材料中のケイ素の溶解にこのOHが使用されるので、水溶液中に溶存するケイ酸の濃度が高くなると推察できる。ケイ酸の溶解において、この反応については、硫酸イオンでも同様の効果が得られると推測されるが、水圏に多量の硫酸を供給することは環境管理上好ましくないため、炭酸イオンが適当であると考えられる。 Equations 1 and 2 are reactions that occur in an alkaline environment having a pH of 8 to 10 in an aqueous solution in which seawater or calcium carbonate is dissolved, and since this OH is used for dissolving silicon in the material, It can be inferred that the concentration of silicic acid dissolved in the solution increases. In the dissolution of silicic acid, it is speculated that the same effect can be obtained with sulfate ion, but it is not preferable to supply a large amount of sulfuric acid to the hydrosphere in terms of environmental management, so that carbonate ion is appropriate. Conceivable.

次に、それぞれの材料から溶出したケイ酸の生物利用性について検討する。振とう時間は、24時間以上経つと、ケイ酸の溶出がほぼ飽和し、5日経ってもその溶出量に変化が認められなかった。したがって、24時間がこの実験条件におけるケイ酸の溶出に必要な時間と考え、この溶液中のケイ酸の化学状態の分析をFAB−MS法で行った。FAB−MS法は、定量分析を行なうことは難しいが、同一試料の質量スペクトルの強度比から、どのような化学状態のケイ酸が多く溶存しているかを知ることが出来る。FAB−MSには、JMS-700(日本電子株式会社製)を使用した。FAB−MSの測定条件として、マトリクスにはグリセリンを使用し、ビームはXeを1mAで発振させ、負イオンモードで測定した。   Next, the bioavailability of silicic acid eluted from each material will be examined. When the shaking time was over 24 hours, the elution of silicic acid was almost saturated, and no change was observed in the amount of elution even after 5 days. Therefore, 24 hours was considered as the time required for elution of silicic acid under these experimental conditions, and the chemical state of silicic acid in this solution was analyzed by the FAB-MS method. Although it is difficult to perform a quantitative analysis in the FAB-MS method, it is possible to know what chemical state of a large amount of silicic acid is dissolved from the intensity ratio of mass spectra of the same sample. For FAB-MS, JMS-700 (manufactured by JEOL Ltd.) was used. As measurement conditions for FAB-MS, glycerin was used as a matrix, and Xe was oscillated at 1 mA and the beam was measured in a negative ion mode.

ケイ酸の場合は、環状4量体ケイ酸(分子量311)と直鎖状4量体ケイ酸(分子量329))では、直鎖状4量体ケイ酸の方はケイ藻類の栄養源となりやすい。そのため、表1に示した溶出条件のうち、24時間振とうした溶液について、炭酸イオンが共存していないものと炭酸イオンが共存したものの溶液をFAB−MS法を用いて分析した。炭酸イオンが共存しない水中のケイ酸の化学状態を示す質量スペクトルを図2に、炭酸イオンが共存した水中のケイ酸の化学状態を示す質量スペクトルを図3に示す。環状4量体ケイ酸(分子量311)と直鎖状4量体ケイ酸(分子量329)の相対強度比を評価するため、両者の相対強度比を確認した。環状4量体ケイ酸と直鎖状4量体ケイ酸について、両者の質量スペクトルの相対強度比と両者の存在比は比例する。炭酸イオンが共存しない無機酸化物材料で、直鎖状4量体ケイ酸/環状4量体ケイ酸=1.4であるのに対し、炭酸イオンが共存する無機酸化物材料で、直鎖状4量体ケイ酸/環状4量体ケイ酸=2.0であり、両者の比としてはわずかに炭酸イオンが共存する場合の方が生物利用性の高いケイ酸を水圏に供給できることが分かった。ただし、最終的に溶出して水圏に供給できるケイ酸の総量は炭酸イオンが共存する無機酸化物材料の方がはるかに多く、したがって、供給できる直鎖状4量体ケイ酸量も多いことが推定される。なお、2量体ケイ酸(分子量173)もケイ藻類の栄養源となることが判っているが、近傍に強度を比較できるピークが存在しないため評価の対象から外した。
以上のことから、材料の水圏への適用において、炭酸イオンの共存する状態で溶出したケイ酸は、炭酸イオンが共存しない場合よりも溶出量がはるかに高く、かつケイ藻類の栄養源となり易い水圏環境修復材料となることを実証した。
In the case of silicic acid, in the case of cyclic tetrameric silicic acid (molecular weight 311) and linear tetrameric silicic acid (molecular weight 329), linear tetrameric silicic acid is more likely to be a nutrient source for diatoms. . Therefore, among the elution conditions shown in Table 1, for the solution shaken for 24 hours, the solution in which carbonate ions did not coexist and the solution in which carbonate ions coexisted was analyzed using the FAB-MS method. FIG. 2 shows a mass spectrum showing the chemical state of silicic acid in water where carbonate ions do not coexist, and FIG. 3 shows a mass spectrum showing the chemical state of silicic acid in water where carbonate ions coexist. In order to evaluate the relative intensity ratio between the cyclic tetramer silicic acid (molecular weight 311) and the linear tetramer silicic acid (molecular weight 329), the relative intensity ratio between them was confirmed. For cyclic tetrameric silicic acid and linear tetrameric silicic acid, the relative intensity ratio of both mass spectra and the abundance ratio of both are proportional. Inorganic oxide material in which carbonate ions do not coexist and linear tetramer silicic acid / cyclic tetramer silicic acid = 1.4, whereas in inorganic oxide material in which carbonate ions coexist, linear oxide It was found that tetrameric silicic acid / cyclic tetrameric silicic acid = 2.0, and that the ratio of the two can provide more bioavailable silicic acid to the hydrosphere when carbonate ions coexist slightly. . However, the total amount of silicic acid that can finally be eluted and supplied to the hydrosphere is much larger for inorganic oxide materials in which carbonate ions coexist, and therefore the amount of linear tetrameric silicic acid that can be supplied may be larger. Presumed. Although dimer silicic acid (molecular weight 173) is known to be a nutrient source for diatoms, it was excluded from the evaluation because there was no peak that could be compared in strength.
From the above, in application of the material to the hydrosphere, silicic acid eluted in the presence of carbonate ions is much higher than that in the absence of carbonate ions, and is a hydrosphere that is likely to be a nutrient source for diatoms. It proved to be an environmental restoration material.

また、材料を水圏に設置するにあたっては、材料からケイ酸が水圏に供給できればどのような形でもよいが、藻礁や漁礁などとしての機能を有する形状とすれば、ケイ酸溶出源としてだけでなく水圏により良い効果を付加することができ、有用である。   In addition, when the material is installed in the hydrosphere, any shape can be used as long as silicic acid can be supplied from the material to the hydrosphere, but if it has a shape that functions as an algae reef or fishing reef, it can be used only as a silicic acid elution source. It is useful because it can add a better effect to the hydrosphere.

以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限したりすることを表すものではない。本発明では、本明細書の思想に基づく様々な実施形態が可能であることは理解されるべきである。全ての実施例は、他に詳細に記載するもの以外は、標準的な技術を用いて実施したもの、又は実施することのできるものであり、これは当業者にとり周知で慣用的なものである。   The present invention will be described in detail with reference to the following examples, which are provided merely for the purpose of illustrating the present invention and for reference to specific embodiments thereof. These exemplifications are for explaining specific specific embodiments of the present invention, but are not intended to limit or limit the scope of the invention disclosed in the present application. In the present invention, it should be understood that various embodiments based on the idea of the present specification are possible. All examples were performed or can be performed using standard techniques, except as otherwise described in detail, and are well known and routine to those skilled in the art. .

実施例として、有用藻類が生着、成長しない結果、水底が石灰藻で覆われる「磯焼け」現象が問題となった実海域で実験を行った。製鋼スラグを25mm以下に粉砕し、常温、湿潤雰囲気でCOガスを吹き込み、8時間回転撹拌処理を行うことで図1のように炭酸化したものをヤシガラ製の袋に1袋当たり約200kgずつ充填し、1実験区当たり39袋(3×13)、合計約8tを準備し、海岸の汀線部において、幅1m、長さ26m、深さ0.8mの側溝を掘り埋設した。埋設後、約3年が経過した時点で水質調査を実施した。埋設前は、石灰藻に覆われ海底一面が真っ白な磯焼け状態であったが、水質調査当時は、実施例海域全般に渡ってホソメコンブを主体とした海藻類の繁茂が広り、藻場が再生しつつある状況であった。 As an example, an experiment was conducted in an actual sea area where the problem of “burning fire” in which the bottom of the water was covered with lime algae as a result of the engraftment and growth of useful algae. Steelmaking slag is pulverized to 25 mm or less, CO 2 gas is blown in a normal temperature and humid atmosphere, and carbonized as shown in FIG. 1 by rotating and stirring for 8 hours in a coconut bag, about 200 kg per bag. Filled and prepared 39 bags (3 × 13) per experimental section, about 8t in total, and dug a side ditch with a width of 1m, a length of 26m, and a depth of 0.8m in the coastal shoreline. A water quality survey was conducted when approximately 3 years had passed since the burial. Before the burial, it was covered with lime algae, and the entire ocean floor was burnt down. It was a situation that was being regenerated.

この海域から採取した海水中のケイ酸濃度を測定すると、ケイ素換算で62.7μmol/Lであった。また、ケイ酸の化学状態に関しFAB−MS法により分析したところ、生物利用性の低い環状4量体ケイ酸(分子量311)と生物利用性の高い直鎖状4量体ケイ酸(分子量329)の両方のピークが認められたが、直鎖状4量体ケイ酸(分子量329)の方がより高いピーク強度を示した(図4)。ピーク強度比は、直鎖状4量体ケイ酸/環状4量体ケイ酸=2.1であった。
〔比較例〕
When the silicic acid concentration in the seawater collected from this sea area was measured, it was 62.7 μmol / L in terms of silicon. Moreover, when the chemical state of silicic acid was analyzed by the FAB-MS method, cyclic tetrameric silicic acid having a low bioavailability (molecular weight 311) and linear tetrameric silicic acid having a high bioavailability (molecular weight 329). Both of these peaks were observed, but linear tetrameric silicic acid (molecular weight 329) showed higher peak intensity (FIG. 4). The peak intensity ratio was linear tetrameric silicic acid / cyclic tetrameric silicic acid = 2.1.
[Comparative example]

実施例の海域から約100m程度離れており、水圏環境が良く似た海域を比較例として調査した。水質調査当時は、実施例海域よりも有意に海藻類の生育が低調な状況であった。   A sea area that is about 100 m away from the sea area of the example and has a similar hydrosphere environment was investigated as a comparative example. At the time of the water quality survey, the growth of seaweeds was significantly slower than in the sea area of the examples.

実施例と同様に海水を採取し、まず海水中のケイ酸濃度を測定すると、ケイ素換算で32.6μmol/Lと実施例に比較して低値を示した。これは、実施例と異なり、ケイ酸源となる炭酸化鉄鋼スラグが設置されていないためと想定された。また、ケイ酸の化学状態に関しFAB−MS法により分析したところ、生物利用性の高い直鎖状4量体ケイ酸(分子量329)のピークに比べ、生物利用性の低い環状4量体ケイ酸(分子量311)のピークの方が高かった(図5)。ピーク強度比は、直鎖状4量体ケイ酸/環状4量体ケイ酸=0.42であり、ピーク強度比が2.1であった実施例の方が、より高濃度かつ生物利用性の高いケイ酸を水圏に供給できていることが分かった。   When seawater was sampled in the same manner as in the example and the silicic acid concentration in the seawater was first measured, it was 32.6 μmol / L in terms of silicon, indicating a low value compared to the example. This was assumed to be because the carbonated steel slag used as a silicic acid source was not installed unlike the Example. In addition, when the chemical state of silicic acid was analyzed by the FAB-MS method, cyclic tetrameric silicic acid having low bioavailability compared to the peak of linear tetramer silicic acid (molecular weight 329) having high bioavailability. The peak of (molecular weight 311) was higher (FIG. 5). The peak intensity ratio was linear tetramer silicic acid / cyclic tetramer silicic acid = 0.42, and the example in which the peak intensity ratio was 2.1 was higher in concentration and bioavailability. It was found that high silicic acid could be supplied to the hydrosphere.

本発明で、例えば貧栄養な水圏のための施肥材料として、生物利用効率の高いケイ酸をより選択的に供給でき、漁業などの生産性を向上させることが期待できる。また、材料に鉄鋼スラグを用い、鉄鋼製造プロセスにおいて発生する炭酸ガスを用いて炭酸化した場合、より安価に材料を供給できるため、工業的にも有用である。また、本発明は、前述の説明及び実施例に特に記載した以外も、実行できることは明らかである。上述の教示に鑑みて、本発明の多くの改変及び変形が可能であり、従ってそれらも本件添付の請求の範囲の範囲内のものである。   In the present invention, for example, silicic acid having a high bioavailability can be supplied more selectively as a fertilizing material for an oligotrophic hydrosphere, and it can be expected to improve productivity in fisheries and the like. In addition, when steel slag is used as a material and carbonation is performed using carbon dioxide generated in the steel manufacturing process, the material can be supplied at a lower cost, which is industrially useful. It will be apparent that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Many modifications and variations of the present invention are possible in light of the above teachings, and thus are within the scope of the claims appended hereto.

Claims (8)

水圏で用いる材料において、生物が利用する直鎖状4量体ケイ酸を海水中に溶出させ海洋に供給する水圏修復材料であって、表面を炭酸化させたスラグからなることを特徴とする水圏修復材料。   Hydrosphere restoration material, which is a material used in the hydrosphere and elutes linear tetrameric silicic acid used by living organisms into seawater and supplies it to the ocean, and consists of slag whose surface is carbonated. Restoration material. 水圏で用いる材料において、生物が利用する直鎖状4量体ケイ酸を海水中に溶出させ海洋に供給する水圏修復材料であって、スラグと炭酸基を含む塩の混合物からなることを特徴とする水圏修復材料。   A hydrosphere remediation material that is used in the hydrosphere to elute linear tetrameric silicic acid used by living organisms into seawater and supply it to the ocean, and is characterized by comprising a mixture of slag and carbonate-containing salts. Hydrosphere restoration material. 前記炭酸化は、前記スラグの表面のカルシウム分を炭酸ガスと化学反応させて炭酸化させたことを特徴とする請求項1に記載の水圏修復材料。   2. The hydrosphere restoration material according to claim 1, wherein the carbonation is performed by chemically reacting a calcium content on a surface of the slag with a carbon dioxide gas. 3. 前記直鎖状4量体ケイ酸の海水中への溶出モル濃度は、環状4量体ケイ酸の海水中への溶出モル濃度に比べて2倍以上であることを特徴とする請求項1〜3のいずれか1項に記載の水圏修復材料。   The elution molar concentration of the linear tetrameric silicic acid in seawater is at least twice the molar elution molar concentration of cyclic tetrameric silicic acid in seawater. 4. The hydrosphere restoration material according to any one of 3 above. 前記スラグは、鉄鋼スラグであることを特徴とする請求項1〜4のいずれか1項に記載の水圏修復材料。   The hydrosphere restoration material according to claim 1, wherein the slag is steel slag. 前記スラグは、溶融スラグであることを特徴とする請求項1〜4のいずれか1項に記載の水圏修復材料。   The hydrosphere restoration material according to any one of claims 1 to 4, wherein the slag is a molten slag. 前記鉄鋼スラグは、高炉徐冷スラグ、高炉水砕スラグ、製鋼スラグ、電気炉スラグのうちの1種以上であることを特徴とする請求項5に記載の水圏修復材料。   The hydrosphere restoration material according to claim 5, wherein the steel slag is one or more of blast furnace slow cooling slag, blast furnace granulated slag, steelmaking slag, and electric furnace slag. 水圏において、藻礁または漁礁となることを特徴とする請求項1〜7のいずれか1項に記載の水圏修復材料。   The hydrosphere restoration material according to any one of claims 1 to 7, wherein the hydrosphere restoration material is an algae reef or a fishing reef in the hydrosphere.
JP2012149210A 2012-07-03 2012-07-03 Hydrosphere environmental restoration material, hydrosphere environmental restoration method using the same, and evaluation method of the same Active JP6019827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149210A JP6019827B2 (en) 2012-07-03 2012-07-03 Hydrosphere environmental restoration material, hydrosphere environmental restoration method using the same, and evaluation method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149210A JP6019827B2 (en) 2012-07-03 2012-07-03 Hydrosphere environmental restoration material, hydrosphere environmental restoration method using the same, and evaluation method of the same

Publications (2)

Publication Number Publication Date
JP2014008050A true JP2014008050A (en) 2014-01-20
JP6019827B2 JP6019827B2 (en) 2016-11-02

Family

ID=50105296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149210A Active JP6019827B2 (en) 2012-07-03 2012-07-03 Hydrosphere environmental restoration material, hydrosphere environmental restoration method using the same, and evaluation method of the same

Country Status (1)

Country Link
JP (1) JP6019827B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261330A (en) * 1989-03-31 1990-10-24 Ishigaki Kiko Kk Method for forming seaweed bed and its material
JP2000157095A (en) * 1998-11-27 2000-06-13 Nkk Corp Creation or improvement of alga bank
JP2000157094A (en) * 1998-11-27 2000-06-13 Nkk Corp Stone material for sinking and disposing in water and its production
JP2001251987A (en) * 2000-03-13 2001-09-18 Nkk Corp Material to be sunk in water and method for producing the same
JP2002176877A (en) * 2000-12-14 2002-06-25 Nkk Corp Block to be installed under water
JP2002238401A (en) * 2000-12-14 2002-08-27 Nkk Corp Method for improving underwater environment
JP2003158946A (en) * 2001-09-11 2003-06-03 Nkk Corp Method for improving underwater or waterside environment
JP2004000104A (en) * 2001-09-11 2004-01-08 Kokan Kogyo Kk Method for improving underwater or environmental water shore
JP2004024204A (en) * 2002-06-28 2004-01-29 Jfe Steel Kk Method for improving environment in water or on beach and environment improving material
JP2004159610A (en) * 2002-11-15 2004-06-10 Mitsuru Takasaki Sea weed growing reef and method for forming sea weed bed
JP2004236545A (en) * 2003-02-04 2004-08-26 Jfe Steel Kk Method for improving environment in water or on water beach
JP2004236546A (en) * 2003-02-04 2004-08-26 Jfe Steel Kk Method for improving environment in water or on water beach
JP2005245341A (en) * 2004-03-05 2005-09-15 Jfe Steel Kk Eco-system-constructing type sea structure
JP2005341887A (en) * 2004-06-03 2005-12-15 Akio Henmi Concrete structure
JP2009002155A (en) * 2008-09-02 2009-01-08 Jfe Steel Kk Structure arranged on revetment and revetment structure

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261330A (en) * 1989-03-31 1990-10-24 Ishigaki Kiko Kk Method for forming seaweed bed and its material
JP2000157095A (en) * 1998-11-27 2000-06-13 Nkk Corp Creation or improvement of alga bank
JP2000157094A (en) * 1998-11-27 2000-06-13 Nkk Corp Stone material for sinking and disposing in water and its production
JP2001251987A (en) * 2000-03-13 2001-09-18 Nkk Corp Material to be sunk in water and method for producing the same
JP2002176877A (en) * 2000-12-14 2002-06-25 Nkk Corp Block to be installed under water
JP2002238401A (en) * 2000-12-14 2002-08-27 Nkk Corp Method for improving underwater environment
JP2003158946A (en) * 2001-09-11 2003-06-03 Nkk Corp Method for improving underwater or waterside environment
JP2004000104A (en) * 2001-09-11 2004-01-08 Kokan Kogyo Kk Method for improving underwater or environmental water shore
JP2004024204A (en) * 2002-06-28 2004-01-29 Jfe Steel Kk Method for improving environment in water or on beach and environment improving material
JP2004159610A (en) * 2002-11-15 2004-06-10 Mitsuru Takasaki Sea weed growing reef and method for forming sea weed bed
JP2004236545A (en) * 2003-02-04 2004-08-26 Jfe Steel Kk Method for improving environment in water or on water beach
JP2004236546A (en) * 2003-02-04 2004-08-26 Jfe Steel Kk Method for improving environment in water or on water beach
JP2005245341A (en) * 2004-03-05 2005-09-15 Jfe Steel Kk Eco-system-constructing type sea structure
JP2005341887A (en) * 2004-06-03 2005-12-15 Akio Henmi Concrete structure
JP2009002155A (en) * 2008-09-02 2009-01-08 Jfe Steel Kk Structure arranged on revetment and revetment structure

Also Published As

Publication number Publication date
JP6019827B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP2005320230A (en) Environmental preservation material for water area and its using method
CN106903132B (en) A kind of method of cationic heavy metal contaminants in stable environment medium
CN101269998B (en) Application of carbonatation revolving furnace steel scoria in accelerating carbonic anhydride absorption of ocean
Zhuang et al. Potential capture and conversion of CO2 from oceanwater through mineral carbonation
KR20170087798A (en) method for producing the agent for improving water and sediment by the shell
JP2012223733A (en) Method for improving ambient water quality
JP4945742B2 (en) Bottom quality improving material and bottom quality improving method using the same
Hayashi et al. Decrease of sulfide in enclosed coastal sea by using steelmaking slag
Han et al. Mineral formation during bacterial sulfate reduction in the presence of different electron donors and carbon sources
JP6019827B2 (en) Hydrosphere environmental restoration material, hydrosphere environmental restoration method using the same, and evaluation method of the same
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
JP2007075716A (en) Method for sinking carbonated/solidified body in water
KR101908972B1 (en) Red tide and green algae removal agent for water purification and method for manufacturing thereof
Kremer Entrapment and transformation of post-bloom radiolarians in cyanobacterial mats as a factor enhancing the formation of black cherts in the Early Silurian sea
US6802805B2 (en) Method for recombining soil
JP5921022B2 (en) Phytoplankton, seaweed and / or seaweed breeding aggregate and cement composition cured body using the same
JP6891844B2 (en) Phosphorus supply materials for water bodies and their manufacturing methods
Xiong et al. ADSORPTIVE REMOVAL OF PHOSPHATE FROM AQUEOUS SOLUTIONS BY WASTE SNAIL AND CLAM SHELLS.
Rasheed Nutrient Fluxes from sediments of the northern Gulf of Aqaba under various anthropogenic activities
JP6090665B2 (en) Sediment improvement and fertilizer and its usage
Moirana Remediation of soils contaminated with fluoride using seaweed-derived materials: case of slopes of mount Meru
Tebo Manganese cycling in the oceans
JP2013245118A (en) Concrete block for cleaning water environment
Ali et al. Performance of passive systems for mine drainage treatment at high salinity and low temperature
JP2000212564A (en) Sea bottom soil-improving material and improvement of sea bottom soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R151 Written notification of patent or utility model registration

Ref document number: 6019827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350