JP6090665B2 - Sediment improvement and fertilizer and its usage - Google Patents

Sediment improvement and fertilizer and its usage Download PDF

Info

Publication number
JP6090665B2
JP6090665B2 JP2013085278A JP2013085278A JP6090665B2 JP 6090665 B2 JP6090665 B2 JP 6090665B2 JP 2013085278 A JP2013085278 A JP 2013085278A JP 2013085278 A JP2013085278 A JP 2013085278A JP 6090665 B2 JP6090665 B2 JP 6090665B2
Authority
JP
Japan
Prior art keywords
iron
improving
chelating agent
bottom sediment
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013085278A
Other languages
Japanese (ja)
Other versions
JP2014205808A (en
Inventor
民次 山本
民次 山本
祥平 高橋
祥平 高橋
義孝 河尻
義孝 河尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2013085278A priority Critical patent/JP6090665B2/en
Publication of JP2014205808A publication Critical patent/JP2014205808A/en
Application granted granted Critical
Publication of JP6090665B2 publication Critical patent/JP6090665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Fertilizers (AREA)
  • Cultivation Of Seaweed (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、底質改善・施肥材及びその利用方法に関する。   The present invention relates to a bottom quality improving / fertilizing material and a method of using the same.

閉鎖性水域では水の交換が悪いため、陸域負荷の影響を強く受け、有機物含有量の高い底泥が堆積し、還元的な状態になりやすい。このような還元的な環境では、硫化水素の発生を促す。硫化水素は生物に対して猛毒であり、これによって生物生息数が減少し、ほぼ無生物になる場合もある。底泥中の硫化水素を抑えて良好な底質環境を取り戻し、生物の生息を復活させることは、生物多様性や生物生産性を高める観点から極めて重要である。   Since water exchange is poor in closed water areas, it is strongly affected by land loads, and sediment with high organic matter content accumulates and tends to be reduced. In such a reducing environment, the generation of hydrogen sulfide is promoted. Hydrogen sulfide is extremely toxic to living organisms, which reduces the number of living organisms and can be nearly inanimate. It is extremely important from the viewpoint of enhancing biodiversity and bioproductivity to reduce the hydrogen sulfide in the bottom mud and restore the good sediment environment and restore the living organisms.

底質を改善する手法として、耕耘、曝気、浚渫、覆砂など、土木的手法が実施されてきた。しかし、これらの手法では、汚濁物質の拡散、浚渫後の汚泥の処理などの副次的な問題や、高コストであるなどの問題がある。   Civil engineering methods such as tillage, aeration, dredging and sand cover have been implemented as methods for improving sediment quality. However, these methods have secondary problems such as the diffusion of pollutants and the treatment of sludge after dredging, and problems such as high costs.

有機物含量の高い底質中で発生する硫化水素の低減には、鉄鋼スラグ(例えば、特許文献1、2)や石炭灰造粒物(例えば、特許文献3、4)等が効果的であることが知られており、前者は鉄による酸化還元、後者はマンガンによる酸化還元が作用することがわかっている。   Steel slag (for example, Patent Documents 1 and 2), coal ash granulated material (for example, Patent Documents 3 and 4), etc. are effective in reducing hydrogen sulfide generated in sediment with a high organic matter content. It is known that the former is redoxed by iron, and the latter is redoxed by manganese.

また、水質が貧栄養な場合の施肥材として、鉄を溶出させるものがあり、例えば、鉄、炭、及び、焼酎滓或いは柑橘類の滓を含有し、鉄と炭との接触により鉄イオンを溶出し、鉄イオンと焼酎滓或いは柑橘類の滓に含まれるキレート剤により鉄キレートを発生させる鉄キレート発生材が知られている(特許文献5)。   In addition, there are fertilizers that elute iron as a fertilizer when the water quality is poor nutrition. For example, it contains iron, charcoal, and shochu or citrus koji, and iron ions are eluted by contact with iron and charcoal. And the iron chelate generating material which generates an iron chelate by the chelating agent contained in iron ion and shochu or citrus koji is known (Patent Document 5).

特開2009−291668号公報JP 2009-291668 A 特開2005−320230号公報JP-A-2005-320230 特開2012−22373号公報JP 2012-22373 A 特開2008−121263号公報JP 2008-121263 A 特開2010−242075号公報JP 2010-242075 A

特許文献5の鉄キレート発生材では、鉄イオンの溶出量は十分とはいえず、未だ改善の余地がある。また、焼酎滓或いは柑橘類の滓を含有しており、これは有機物含有量を増加させることにもなり、還元的な状態を悪化させるおそれがある。   In the iron chelate generating material of Patent Document 5, the elution amount of iron ions is not sufficient, and there is still room for improvement. In addition, it contains shochu or citrus koji, which increases the organic matter content and may deteriorate the reducing state.

本発明は上記事項に鑑みてなされたものであり、その目的とするところは、有機物含有量を増大させることなく、鉄イオン、亜鉛イオンを多く溶出させるとともに、窒素、リン及び珪素を溶出させ得る底質改善・施肥材及びその利用方法を提供することにある。   The present invention has been made in view of the above matters, and its object is to elute a large amount of iron ions and zinc ions and to elute nitrogen, phosphorus and silicon without increasing the organic content. It is to provide a bottom quality improvement and fertilizer and its usage.

本発明の第一の態様に係る底質改善・施肥材は、
石炭灰と鉄とキレート剤とを含有し、
前記石炭灰と前記鉄との配合比が重量比で3:7〜7:3であり、
前記キレート剤がクエン酸であり、
水中で鉄イオン及び亜鉛イオンを溶出して、前記キレート剤とで鉄キレート及び亜鉛キレートを形成するとともに、窒素、リン及び珪素を溶出する、
ことを特徴とする。
Sediment improvement / fertilizer according to the first aspect of the present invention,
Contains coal ash, iron and chelating agent,
The mixing ratio of the coal ash and the iron is 3: 7 to 7: 3 by weight,
The chelating agent is citric acid;
Eluting iron ions and zinc ions in water, forming iron chelate and zinc chelate with the chelating agent, and eluting nitrogen, phosphorus and silicon,
It is characterized by that.

また、前記クエン酸を3重量%以上7重量%含有することが好ましい。   The citric acid is preferably contained in an amount of 3 to 7% by weight.

本発明の第二の態様に係る底質改善方法は、
石炭灰と鉄とキレート剤とを含有し、水中で鉄イオン及び亜鉛イオンを溶出して、前記キレート剤とで鉄キレート及び亜鉛キレートを形成するとともに、窒素、リン及び珪素を溶出する底質改善・施肥材を閉鎖水域に施工し、
前記底質改善・施肥材から金属イオンを溶出させ、前記金属イオンを錯体として溶存させ、
前記金属イオンと底泥で生じる硫化水素との反応により金属硫化物を形成させて硫化水素濃度を低減させる、
ことを特徴とする。
また、前記石炭灰と前記鉄との配合比が重量比で3:7〜7:3である前記底質改善・施肥材を用いることが好ましい。
また、前記キレート剤がクエン酸である前記底質改善・施肥材を用いることが好ましい。
また、前記クエン酸を3重量%以上7重量%含有する前記底質改善・施肥材を用いることが好ましい。
The bottom sediment improvement method according to the second aspect of the present invention,
Contains coal ash, iron and chelating agent, elutes iron ions and zinc ions in water, forms iron chelate and zinc chelate with the chelating agent, and improves bottom sediment to elute nitrogen, phosphorus and silicon・ Construct fertilizer in closed water area,
The metal ions are eluted from the bottom material improving and fertilizer, the metal ions are dissolved as a complex,
Reducing the hydrogen sulfide concentration by forming a metal sulfide by the reaction between the metal ions and hydrogen sulfide generated in the bottom mud,
It is characterized by that.
Moreover, it is preferable to use the said bottom sediment improving and fertilizing material whose compounding ratio of the said coal ash and the said iron is 3: 7-7: 3 by weight ratio.
In addition, it is preferable to use the bottom sediment improving / fertilizing material in which the chelating agent is citric acid.
Moreover, it is preferable to use the bottom material improving / fertilizing material containing 3% by weight or more of the citric acid.

本発明の第三の態様に係る水生生物の養殖方法は、
石炭灰と鉄とキレート剤とを含有し、水中で鉄イオン及び亜鉛イオンを溶出して、前記キレート剤とで鉄キレート及び亜鉛キレートを形成するとともに、窒素、リン及び珪素を溶出する底質改善・施肥材を貝類或いは藻類の養殖水域に配置し、
前記底質改善・施肥材から金属イオンを溶出させて前記金属イオンを錯体として溶存させるとともに、窒素、リン及び珪素を溶出させて、これらを前記貝類或いは前記藻類に直接的或いは間接的に摂取させて前記貝類或いは前記藻類の成長を促進させる、
ことを特徴とする。
また、前記石炭灰と前記鉄との配合比が重量比で3:7〜7:3である前記底質改善・施肥材を用いることが好ましい。
また、前記キレート剤がクエン酸である前記底質改善・施肥材を用いることが好ましい。
また、前記クエン酸を3重量%以上7重量%含有する前記底質改善・施肥材を用いることが好ましい。
The aquatic organism cultivation method according to the third aspect of the present invention comprises:
Contains coal ash, iron and chelating agent, elutes iron ions and zinc ions in water, forms iron chelate and zinc chelate with the chelating agent, and improves bottom sediment to elute nitrogen, phosphorus and silicon・ Place fertilizer in shellfish or algae culture waters,
The metal ions are eluted from the sediment improvement / fertilizer to dissolve the metal ions as a complex, and nitrogen, phosphorus, and silicon are eluted, and these are taken directly or indirectly by the shellfish or the algae. Promote the growth of the shellfish or the algae,
It is characterized by that.
Moreover, it is preferable to use the said bottom sediment improving and fertilizing material whose compounding ratio of the said coal ash and the said iron is 3: 7-7: 3 by weight ratio.
In addition, it is preferable to use the bottom sediment improving / fertilizing material in which the chelating agent is citric acid.
Moreover, it is preferable to use the bottom material improving / fertilizing material containing 3% by weight or more of the citric acid.

本発明に係る底質改善・施肥材では、金属イオンの溶出量が高く、生じた金属イオンがキレート剤と錯体を形成し溶存する。溶存する金属イオンは、閉鎖性水域において、硫化水素と反応して金属硫化物を形成することで、硫化水素濃度を低減させる。これにより、閉鎖性水域の還元的な環境を酸化的環境に改善させ得る。また、底質改善・施肥材は、無機の窒素、リン、珪素を溶出するが、有機物含有量を高めることがなく、還元的な環境を悪化させるおそれもない。   In the sediment improvement / fertilizer according to the present invention, the elution amount of metal ions is high, and the generated metal ions form a complex with the chelating agent and dissolve. The dissolved metal ions react with hydrogen sulfide to form metal sulfides in a closed water area, thereby reducing the hydrogen sulfide concentration. Thereby, the reducing environment of a closed water area can be improved to an oxidative environment. Further, the bottom sediment improving / fertilizing material elutes inorganic nitrogen, phosphorus, and silicon, but does not increase the organic content and does not deteriorate the reducing environment.

実験1におけるサンプル1〜3の硫化水素濃度を示すグラフである。3 is a graph showing hydrogen sulfide concentrations of Samples 1 to 3 in Experiment 1. 実験1におけるサンプル4〜6の硫化水素濃度を示すグラフである。6 is a graph showing the hydrogen sulfide concentration of Samples 4 to 6 in Experiment 1. 実験1におけるサンプル1〜3のFe濃度を示すグラフである。6 is a graph showing Fe concentrations of Samples 1 to 3 in Experiment 1. 実験1におけるサンプル1〜3のMn濃度を示すグラフである。4 is a graph showing Mn concentrations of Samples 1 to 3 in Experiment 1. 実験1におけるサンプル1〜3のZn濃度を示すグラフである。4 is a graph showing Zn concentrations of Samples 1 to 3 in Experiment 1. 実験1におけるサンプル4〜6のFe濃度を示すグラフである。6 is a graph showing Fe concentrations of Samples 4 to 6 in Experiment 1. 実験1におけるサンプル4〜6のMn濃度を示すグラフである。6 is a graph showing Mn concentrations of Samples 4 to 6 in Experiment 1. 実験1におけるサンプル4〜6のZn濃度を示すグラフである。6 is a graph showing Zn concentrations of Samples 4 to 6 in Experiment 1. 実験2におけるサンプル11〜16のFe濃度を示すグラフである。6 is a graph showing Fe concentrations of Samples 11 to 16 in Experiment 2. 実験3におけるサンプル21〜23の硫化水素濃度を示すグラフである。10 is a graph showing hydrogen sulfide concentrations of samples 21 to 23 in Experiment 3. FIG. 実験3におけるサンプル21〜23のFe濃度を示すグラフである。10 is a graph showing Fe concentrations of Samples 21 to 23 in Experiment 3. 実験3におけるサンプル21〜23のZn濃度を示すグラフである。10 is a graph showing Zn concentrations of Samples 21 to 23 in Experiment 3. 実験3におけるサンプル21〜23のMn濃度を示すグラフである。10 is a graph showing Mn concentrations of Samples 21 to 23 in Experiment 3. 実験4におけるサンプル31〜37の硫化水素濃度を示すグラフである。7 is a graph showing hydrogen sulfide concentrations of samples 31 to 37 in Experiment 4. 実験4におけるサンプル31〜37のFe濃度を示すグラフである。It is a graph which shows Fe concentration of samples 31-37 in experiment 4. FIG. 実験4におけるサンプル31〜37のZn濃度を示すグラフである。It is a graph which shows the Zn density | concentration of the samples 31-37 in the experiment 4. FIG. 実験4におけるサンプル31〜37のMn濃度を示すグラフである。It is a graph which shows Mn density | concentration of the samples 31-37 in the experiment 4. FIG. 実験4におけるサンプル31〜37のNO+NO濃度を示すグラフである。Is a graph showing the NO 3 + NO 2 concentration of the sample 31 to 37 in the experiment 4. 実験4におけるサンプル31〜37のNO濃度を示すグラフである。7 is a graph showing NO 2 concentrations of samples 31 to 37 in Experiment 4. 実験4におけるサンプル31〜37のNH濃度を示すグラフである。10 is a graph showing NH 4 concentrations of Samples 31 to 37 in Experiment 4. 実験4におけるサンプル31〜37のPO濃度を示すグラフである。10 is a graph showing PO 4 concentrations of samples 31 to 37 in Experiment 4. 実験4におけるサンプル31〜37のSiO濃度を示すグラフである。Is a graph showing a SiO 2 concentration of the sample 31 to 37 in the experiment 4. 実験5における硫化水素濃度を示すグラフである。10 is a graph showing the hydrogen sulfide concentration in Experiment 5. 実験5におけるFe濃度を示すグラフである。10 is a graph showing the Fe concentration in Experiment 5. 実験5におけるZn濃度を示すグラフである。10 is a graph showing Zn concentration in Experiment 5. 実験5におけるMn濃度を示すグラフである。10 is a graph showing the Mn concentration in Experiment 5.

(底質改善・施肥材)
本実施の形態に係る底質改善・施肥材は、石炭灰と鉄とキレート剤を含有する。底質改善・施肥材は、水中にて鉄から鉄イオンを、石炭灰から亜鉛イオンを溶出し、これらがキレート剤と錯体を形成するので、鉄及び亜鉛をイオン状態で溶存させ得る。また、石炭灰からは、窒素、リン、珪素を溶出させる。
(Bottom quality improvement and fertilizer)
The sediment improvement / fertilizer according to the present embodiment contains coal ash, iron, and a chelating agent. The bottom sediment improving / fertilizing material elutes iron ions from iron and zinc ions from coal ash in water and forms a complex with a chelating agent, so that iron and zinc can be dissolved in an ionic state. Further, nitrogen, phosphorus and silicon are eluted from the coal ash.

石炭灰は、石炭を燃焼する際に生じる灰である。石炭灰は、一般に、シリカ(SiO)、アルミナ(Al)を主成分とし、その他、亜鉛やマンガン等を微量成分として含んでいる。石炭灰は、石炭を原料に発電を行っている火力発電所で生じるものをそのまま用いればよい。火力発電所で生じる石炭灰は、ガス流れにより飛散するほどの球状の微粒子であり、そのままの状態で好適に用いられ得る。 Coal ash is ash generated when coal is burned. Coal ash generally contains silica (SiO 2 ) and alumina (Al 2 O 3 ) as main components, and also contains zinc, manganese, and the like as trace components. What is necessary is just to use what is produced in the thermal power plant which is generating electricity using coal as a raw material for coal ash. Coal ash generated in a thermal power plant is spherical fine particles that are scattered by a gas flow, and can be suitably used as it is.

鉄は、屑鉄などが用いられ、不純物が10重量%以下、好ましくは5重量%以下、より好ましくは99重量%以下のほぼ純粋な鉄であることが好ましい。鉄は、粉末状であることが好ましい。   As the iron, scrap iron or the like is used, and it is preferable to use substantially pure iron with impurities of 10% by weight or less, preferably 5% by weight or less, more preferably 99% by weight or less. Iron is preferably in powder form.

キレート剤は、鉄からの鉄イオンの溶出、並びに、石炭灰からの亜鉛イオンの溶出を促進させる。また、生じた鉄イオン及び亜鉛イオンと錯体を形成し、鉄キレート及び亜鉛キレートを形成する。このため、溶出した各金属イオンをそれぞれイオン状態で水中に溶存させることができる。キレート剤として、上記機能を果たし得るものであれば特に限定されず、一例としてクエン酸が挙げられる。   The chelating agent promotes the elution of iron ions from iron as well as the elution of zinc ions from coal ash. Moreover, it forms a complex with the generated iron ion and zinc ion to form an iron chelate and a zinc chelate. For this reason, each eluted metal ion can be dissolved in water in an ionic state. The chelating agent is not particularly limited as long as it can fulfill the above function, and citric acid is an example.

上述した底質改善・施肥材は、鉄粉と石炭灰とキレート剤を混合し、所定の形状に成形することで得られる。底質改善・施肥材は、球形状、多角形状、ブリケット形状等、どのような形状であってもよい。成形は、種々の公知の手法を用いることができ、例えば、原料を回転ドラムに入れ、水等の液体を加えつつ、所定の大きさに造粒する方法が挙げられる。   The above-mentioned bottom material improving / fertilizing material is obtained by mixing iron powder, coal ash, and a chelating agent and molding the mixture into a predetermined shape. The bottom quality improving / fertilizing material may have any shape such as a spherical shape, a polygonal shape, and a briquette shape. Various known methods can be used for the molding, and examples thereof include a method in which a raw material is put in a rotating drum and granulated to a predetermined size while adding a liquid such as water.

鉄と石炭灰の配合割合は、重量比で3:7〜7:3が好ましく、4:6〜6:4であることがより好ましい。   The weight ratio of iron and coal ash is preferably 3: 7 to 7: 3, and more preferably 4: 6 to 6: 4.

キレート剤の配合割合は、鉄及び石炭灰の総量に対して、3重量%以上であることが好ましい。なお、キレート剤の配合割合を増加すれば、各金属イオンの溶出量が増加する一方で、成型される底質改善・施肥材が脆くなりやすい。このため、金属イオンの溶出量及び底質改善・施肥材の成型性、並びに、形状維持性の観点から、底質改善・施肥材がキレート剤を3重量%以上7重量%以下含有していることがより好ましい。   The mixing ratio of the chelating agent is preferably 3% by weight or more with respect to the total amount of iron and coal ash. In addition, if the blending ratio of the chelating agent is increased, the amount of each metal ion eluted increases, while the bottom sediment improvement / fertilizer to be molded tends to become brittle. For this reason, from the viewpoints of metal ion elution, bottom sediment improvement / fertilizer formability, and shape maintenance, the bottom sediment improvement / fertilizer contains a chelating agent in an amount of 3 wt% to 7 wt%. It is more preferable.

また、底質改善・施肥材では、上述した鉄及び亜鉛に加え、マンガン、窒素、リン、シリカなども溶出する。これらは、石炭灰から溶出される。   In addition to the above-described iron and zinc, manganese, nitrogen, phosphorus, silica and the like are also eluted in the bottom sediment improving / fertilizing material. These are eluted from the coal ash.

(底質改善方法)
本実施の底質改善方法は、上述した底質改善・施肥材を閉鎖性水域の底泥に施工することにより行われる。底質改善・施肥材の施工は、海や湖沼にそのまま散布すればよく、干潟等では、底泥に鋤き込んでもよい。
(Sediment improvement method)
The bottom sediment improvement method of the present embodiment is performed by applying the above-described bottom sediment improvement / fertilizer to the bottom mud of the closed water area. For the improvement of bottom sediment and fertilizer, it can be applied to the sea or lake as it is, and in tidal flats, it may be poured into the bottom mud.

ここで、閉鎖性水域とは、地理的要因で水の流出入の機会が乏しい環境におかれている内湾、入り江、干潟等の海やダム湖、池、堀等の湖沼をいう。閉鎖性水域の底泥は有機物の堆積が顕著であり、微生物等による有機物の酸化的分解によって溶存酸素が消費されるため、底泥は還元的な環境になりやすい。還元的な環境下では、硫酸還元菌によって硫酸イオンが還元され、硫化水素が発生する。硫化水素は水中で酸化され、青潮や貧酸素水塊の発生などにより、底質及び水質悪化を招く。   Here, the closed water area means a sea such as an inner bay, a bay, a tidal flat, or a lake such as a dam lake, a pond, a moat, etc., which are in an environment where there are few opportunities for water inflow and outflow due to geographical factors. The bottom mud in a closed water area has a remarkable accumulation of organic matter, and dissolved oxygen is consumed by oxidative decomposition of the organic matter by microorganisms and the like, so the bottom mud tends to be a reducing environment. Under a reducing environment, sulfate ions are reduced by sulfate-reducing bacteria, and hydrogen sulfide is generated. Hydrogen sulfide is oxidized in water, causing bottom sediment and water quality deterioration due to generation of blue tide and anoxic water mass.

また、硫化水素は生物への毒性が強い。閉鎖性水域では、微細藻類、ベントス、魚類などの様々な生物が生息し、それらの食物連鎖によって物質が循環し、生態系が形成されている。しかし、この食物連鎖が毒性の強い硫化水素によって破壊され、生物多様性や漁業生産性の低下につながる。   Hydrogen sulfide is highly toxic to living organisms. In closed waters, various organisms such as microalgae, bentos and fish live, and materials are circulated through their food chain to form an ecosystem. However, this food chain is destroyed by highly toxic hydrogen sulfide, leading to a decline in biodiversity and fishery productivity.

このような閉鎖性水域の底泥に底質改善・施肥材を介在させることで、底質改善・施肥材から溶出した鉄イオン等の金属イオンが錯体としてイオン状態のまま溶存する。この金属イオンが底泥中及び水中の硫化水素と反応し、硫化鉄(FeS)や硫化亜鉛(ZnS)等の金属硫化物となる。これにより、底泥中、水中の硫化水素濃度が低減し、還元的な環境が改善され、底質及び水質悪化を改善することができる。   By interposing the sediment improvement / fertilizer material in the bottom mud of such closed water areas, metal ions such as iron ions eluted from the sediment improvement / fertilizer material are dissolved in an ionic state as a complex. This metal ion reacts with hydrogen sulfide in the bottom mud and water to form metal sulfides such as iron sulfide (FeS) and zinc sulfide (ZnS). As a result, the concentration of hydrogen sulfide in the water in the bottom mud is reduced, the reducing environment is improved, and the bottom sediment and water quality deterioration can be improved.

更には、底質改善・施肥材から、栄養素として窒素、リン、珪素を適度に溶出するので、水中の生態系の健全性回復に寄与する。   In addition, nitrogen, phosphorus, and silicon are appropriately eluted as nutrients from the bottom sediment improvement and fertilizer, contributing to the restoration of the health of the underwater ecosystem.

(水生生物の養殖方法)
本実施の形態に係る水生生物の養殖方法は、貝類或いは藻類の養殖を行う水域に底質改善・施肥材を施工する。底質改善・施肥材の施工は、養殖を行う水域に散布することや、網状の袋に入れて配置することなど、種々の方法で行い得る。
(Aquaculture method)
In the aquatic organism cultivation method according to the present embodiment, bottom sediment improvement / fertilizer is applied to a water area where shellfish or algae are cultured. Bottom sediment improvement and fertilizer application can be performed by various methods such as spraying in the aquaculture area or placing them in a net-like bag.

鉄や亜鉛、或いは窒素、リン等は、貝類や藻類の成長に欠かせない必須栄養源である。底質改善・施肥材は上述したように、各種金属イオン等を溶出し、錯体としてイオン状態で水中に溶存させることができるので、これらを貝類、藻類が直接的或いは間接的に体内へ取り込むことができる。これにより、貝類、藻類の成長を促進させることができる。貝類として、牡蠣やアサリ、シジミ等が挙げられる。また、藻類として、海苔、昆布等の有用藻類(食用藻類)及び貝類の餌となる微細藻類が挙げられる。   Iron, zinc, nitrogen, phosphorus, etc. are essential nutrient sources essential for the growth of shellfish and algae. As mentioned above, the bottom sediment improvement and fertilizer can elute various metal ions, etc., and can be dissolved in water as a complex in an ionic state, so these are taken directly into the body by shellfish and algae. Can do. Thereby, the growth of shellfish and algae can be promoted. Examples of shellfish include oysters, clams and swordfish. Examples of algae include useful algae (edible algae) such as seaweed and kelp, and microalgae that serve as food for shellfish.

また、牡蠣やアサリ、シジミ等の貝類では、健康成分として身肉中の亜鉛含有量が高いことが特徴である。亜鉛は、ヒトにとって不可欠であるとともに、摂取し難い栄養素である。亜鉛含有量の高い貝類を生産できれば、それだけ亜鉛の摂取量を高められる。   In addition, shellfish such as oysters, clams and swordfish are characterized by a high zinc content in the meat as a health ingredient. Zinc is an essential nutrient for humans and difficult to take. If shellfish with a high zinc content can be produced, the intake of zinc can be increased accordingly.

亜鉛は水中では金属塩となり、このままでは貝類に取り込まれない。しかしながら、上述した底質改善・施肥材では、亜鉛イオンが溶出し、亜鉛イオンはキレート剤により錯体として溶存する。これにより、貝類が亜鉛イオンを直接摂取、或いは、亜鉛イオンを摂取した植物プランクトンの摂食による間接的摂取により、貝類の身肉中に取り込まれ得るので、貝類の商品価値を高めることができる。   Zinc becomes a metal salt in water and cannot be taken up by shellfish. However, in the above-mentioned bottom material improving / fertilizing material, zinc ions are eluted, and zinc ions are dissolved as a complex by the chelating agent. Thereby, since shellfish can be taken in into the flesh of shellfish by ingestion directly by intake of zinc ion or ingestion of phytoplankton which ingested zinc ion, the commercial value of shellfish can be raised.

以下、実施例に基づき、底質改善・施肥材について更に説明する。   Hereinafter, based on Examples, the bottom sediment improvement / fertilizer will be further described.

(供試材料)
石炭灰は、(株)エネルギア・エコ・マテリア製であり、粒子径は50μm以下のものを用いた。用いた石炭灰の成分組成を表1に示す。
(Test material)
Coal ash was manufactured by Energia Eco Materia Co., Ltd., and a particle size of 50 μm or less was used. Table 1 shows the composition of the coal ash used.

鉄鋼スラグは日新製鋼(株)呉製鉄所製の粒子径が5mm以下のものを用いた。用いた鉄鋼スラグの成分組成を表2に示す。   As the steel slag, a particle having a particle diameter of 5 mm or less manufactured by Nisshin Steel Kure Works was used. Table 2 shows the composition of the steel slag used.

鉄粉は日の丸産業(株)製で、Fe含有量が99%、粒子径が60μmのものを用いた。炭素は粒径1mm以下の高純度ピッチコークスを用いた。クエン酸は和光純薬(株)製(食品添加物、結晶状)を用いた。   The iron powder manufactured by Hinomaru Sangyo Co., Ltd. was used with an Fe content of 99% and a particle size of 60 μm. As the carbon, high-purity pitch coke having a particle diameter of 1 mm or less was used. Citric acid was manufactured by Wako Pure Chemical Industries, Ltd. (food additive, crystalline).

(サンプルの製造)
以下の各実験においてそれぞれに記す配合割合で原料を混合し、ドラム式造粒機に入れ、造粒機を回転させながら少しずつ水を加えて造粒し、直径1cm程度の球状のサンプルを作製して用いた。
(Sample production)
In each of the following experiments, the raw materials are mixed at the blending ratios described below, put into a drum granulator, and granulated by adding water little by little while rotating the granulator to produce a spherical sample with a diameter of about 1 cm. Used.

(実験1)
鉄粉と鉄鋼スラグによる鉄イオンの溶出量及び硫化水素の低減効果について検証した。
(Experiment 1)
The amount of iron ions eluted by iron powder and steel slag and the reduction effect of hydrogen sulfide were verified.

本実験で用いたサンプル1〜6の原料の配合割合を表3に示す。   Table 3 shows the mixing ratio of the raw materials of Samples 1 to 6 used in this experiment.

(硫化水素溶液の調製)
ビーカーに超純水(Milli−Q水)を1L入れ、窒素で空気をパージし、溶存酸素濃度を0.1mg/L以下にした。これにNaS・9HO(試薬特級,ナカライテスク社製)を0,50,100mg−S/lとなるよう添加し、更にpHの緩衝剤として1M Tris−HCl(分子生物学用,和光純薬製)を30ml加えてpHを8.3±0.1に調節し、硫化水素溶液を調製した。以下、それぞれH2S0、H2S50、H2S100と記す。
(Preparation of hydrogen sulfide solution)
1 L of ultrapure water (Milli-Q water) was put into a beaker, and the air was purged with nitrogen so that the dissolved oxygen concentration was 0.1 mg / L or less. To this was added Na 2 S · 9H 2 O (special reagent grade, manufactured by Nacalai Tesque) to a concentration of 0, 50, 100 mg-S / l, and 1M Tris-HCl (for molecular biology, as a pH buffering agent). 30 ml of Wako Pure Chemical Industries, Ltd.) was added to adjust the pH to 8.3 ± 0.1 to prepare a hydrogen sulfide solution. Hereinafter, they are referred to as H2S0, H2S50, and H2S100, respectively.

ガスクロマトグラフィー用ガラス製バイアル瓶(150ml,マルエム社製)に、サンプルを0.2g加えた後、硫化水素溶液を100ml入れ、瓶内の気相を窒素ガスで置換してゴム栓およびアルミ金具で密閉した。その後、MAGIC VAC(アズワン株式会社,20×30cm,ポリアミド・ナイロン/ポリエチレン製)にバイアル瓶を入れて密封し、25℃,40rpmの条件で7日間振とうした。   After adding 0.2 g of sample to a glass vial for gas chromatography (150 ml, manufactured by Maruemu), put 100 ml of hydrogen sulfide solution, replace the gas phase in the bottle with nitrogen gas, rubber stopper and aluminum fittings And sealed. Thereafter, the vial was placed in MAGIC VAC (As One Co., Ltd., 20 × 30 cm, made of polyamide, nylon / polyethylene), sealed, and shaken for 7 days at 25 ° C. and 40 rpm.

7日後に硫化水素溶液中の硫化水素濃度を北川式検知管(光明理化学工業社製,200SA,2−1000ppm用)で測定した。   Seven days later, the concentration of hydrogen sulfide in the hydrogen sulfide solution was measured with a Kitagawa detector tube (manufactured by Komyo Chemical Co., Ltd., for 200 SA, 2-1000 ppm).

更に、7日後のそれぞれの硫化水素溶液を0.45μmシリンジフィルター(MERCK MILLIPORE社,Millex−HN,ナイロン製)でろ過したろ液について、Inductively Coupled Plasma Atomic Emission Spectroscopy(ICP−AES)分析装置(Perkin−Elmer社製、Optima7300DV)により、溶出したFe、Mn、Znの各濃度を測定した。   Further, an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) analyzer (ICP-AES) analyzer was used for the filtrate obtained by filtering each hydrogen sulfide solution after 7 days with a 0.45 μm syringe filter (MERCK MILLIPORE, Millex-HN, nylon). -Elmer Co., Optima 7300 DV) was used to measure each concentration of eluted Fe, Mn, and Zn.

図1にサンプル1〜3を加えた硫化水素溶液中の硫化水素濃度の測定結果を、図2にサンプル4〜6を加えた硫化水素溶液中の硫化水素濃度の測定結果をそれぞれに示す。また、サンプル1〜3を加えた硫化水素溶液中のFe、Mn、Znの濃度をそれぞれ図3、図4、図5に示す。また、サンプル4〜6を加えた硫化水素溶液中のFe、Mn、Znの濃度をそれぞれ図6、図7、図8に示す。なお、各サンプルについて、それぞれ同じ実験を3回行っており、図1〜図8のシンボルが平均値、エラーバーが標準偏差を表している。また、後述の実験2〜実験5についても同様である。   FIG. 1 shows the measurement result of the hydrogen sulfide concentration in the hydrogen sulfide solution to which samples 1 to 3 are added, and FIG. 2 shows the measurement result of the hydrogen sulfide concentration in the hydrogen sulfide solution to which samples 4 to 6 are added. Moreover, the density | concentration of Fe, Mn, and Zn in the hydrogen sulfide solution which added the samples 1-3 is shown in FIG.3, FIG.4, FIG.5, respectively. Moreover, the density | concentration of Fe, Mn, and Zn in the hydrogen sulfide solution which added samples 4-6 is shown in FIG.6, FIG.7, FIG.8, respectively. Note that the same experiment was performed three times for each sample, the symbols in FIGS. 1 to 8 represent the average value, and the error bar represents the standard deviation. The same applies to Experiments 2 to 5 described later.

鉄鋼スラグを含有するサンプル1〜3でも、硫化水素はある程度減少しているが、鉄を含有するサンプル4〜6では、H2S50、H2S100のいずれについても、硫化水素はほぼ消失した。   In Samples 1 to 3 containing steel slag, hydrogen sulfide was reduced to some extent, but in Samples 4 to 6 containing iron, hydrogen sulfide was almost lost in both H2S50 and H2S100.

鉄の溶出量は、鉄粉を含有するサンプル4〜6では鉄鋼スラグを含有するサンプル1〜3に比べていずれも多い。また、他のZn、Mn、Mgについても、サンプル4〜6の方がサンプル1〜3よりも溶出量が多い。これらは鉄粉に含まれていない成分であるため、石炭灰から溶出しており、石炭灰と鉄との相性により、溶出量が高まったものと考えられる。   The amount of iron elution is larger in Samples 4 to 6 containing iron powder than in Samples 1 to 3 containing steel slag. Moreover, about other Zn, Mn, and Mg, the elution amount of the samples 4-6 is larger than the samples 1-3. Since these are components not contained in the iron powder, they are eluted from the coal ash, and it is considered that the amount of elution increased due to the compatibility between the coal ash and iron.

これらの結果から、石炭灰と鉄を組み合わせることが鉄鋼スラグと組み合わせることよりも適切であることがわかった。   From these results, it was found that combining coal ash and iron is more appropriate than combining steel slag.

(実験2)
金属イオンの溶出促進の補助剤として、クエン酸、炭素を用い、その影響について検証した。本実験で用いたサンプル11〜16の原料の配合割合を表4に示す。
(Experiment 2)
Citric acid and carbon were used as auxiliary agents for promoting the elution of metal ions, and their effects were verified. Table 4 shows the mixing ratio of the raw materials of Samples 11 to 16 used in this experiment.

サンプル11〜16、硫化水素溶液H2S0を用いて実験1と同様に実験を行った。そして、実験1と同様に硫化水素溶液中のFe濃度を測定した。Fe濃度の測定結果を図9に示す。   Experiments were performed in the same manner as Experiment 1 using Samples 11 to 16 and the hydrogen sulfide solution H2SO. Then, as in Experiment 1, the Fe concentration in the hydrogen sulfide solution was measured. The measurement result of Fe concentration is shown in FIG.

炭素を含有するサンプル12、13では、炭素を含有しないサンプル11に比べて鉄の溶出が促進されたものの、鉄の溶出量は炭素を30重量%添加してもわずか3.6%程度の増加に留まった。   In the samples 12 and 13 containing carbon, the elution of iron was promoted compared to the sample 11 containing no carbon, but the iron elution amount increased by only 3.6% even when 30% by weight of carbon was added. Stayed in.

一方、クエン酸を添加した場合、0.1重量%添加したサンプル14では、サンプル11に比べ、鉄の溶出量が10%程度増加しており、1.0重量%添加したサンプル16では、鉄の溶出量が28%程度増加した。この結果から、クエン酸は炭素よりも鉄の溶出を促進させることがわかった。   On the other hand, in the case of adding citric acid, in the sample 14 added with 0.1% by weight, the elution amount of iron increased by about 10% compared to the sample 11, and in the sample 16 added with 1.0% by weight, the iron Increased by about 28%. From this result, it was found that citric acid promotes elution of iron rather than carbon.

(実験3)
鉄粉と石炭灰の配合割合による影響について検証した。本実験で用いたサンプル21〜23の原料の配合割合を表5に示す。
(Experiment 3)
The effect of the mixing ratio of iron powder and coal ash was verified. Table 5 shows the mixing ratio of the raw materials of Samples 21 to 23 used in this experiment.

サンプル21〜23をそれぞれ用い、実験1と同様に実験を行った。そして、実験1と同様に、硫化水素溶液中の硫化水素濃度、並びに、Fe、Zn及びMn濃度を測定した。硫化水素溶液中の硫化水素濃度、並びに、Fe、Zn及びMn濃度の測定結果を図10、図11、図12、図13にそれぞれ示す。   Experiments were performed in the same manner as Experiment 1 using Samples 21 to 23, respectively. Then, as in Experiment 1, the hydrogen sulfide concentration and the Fe, Zn, and Mn concentrations in the hydrogen sulfide solution were measured. The measurement results of the hydrogen sulfide concentration and the Fe, Zn, and Mn concentrations in the hydrogen sulfide solution are shown in FIGS. 10, 11, 12, and 13, respectively.

H2S100の試験区においては、サンプル21、22では硫化水素濃度は50ppm程度の減少、サンプル23では30ppm程度の減少が見られたが、H2S50の試験区においては、いずれのサンプルについても70〜80ppm程度の減少であった。   In the test plot of H2S100, in samples 21 and 22, the hydrogen sulfide concentration decreased by about 50 ppm, and in sample 23, a decrease of about 30 ppm was observed, but in the test plot of H2S50, about 70 to 80 ppm for all samples. Decrease.

また、Feの溶出量は石炭灰を多く含有するサンプル23で最大であり、5ppmほどの溶出が見られた。また、Zn、Mnについても、Feと同様に石炭灰を多く含有するサンプル23で多く溶出していた。   Moreover, the amount of Fe elution was maximum in Sample 23 containing a large amount of coal ash, and about 5 ppm was observed. Further, Zn and Mn were also eluted in a large amount in the sample 23 containing a large amount of coal ash as in the case of Fe.

これらの結果から、石炭灰と鉄粉の配合比率は、3:7〜7:3であればいずれでも硫化水素の低減効果が得られる。なお、石炭灰を多く含有するサンプル23では、崩れがみられたことや、Mn、Znの溶出量からすると、石炭灰:鉄粉の配合比率は4:6〜6:4が好ましいと考えられる。   From these results, the reduction ratio of hydrogen sulfide can be obtained at any ratio of coal ash and iron powder in the range of 3: 7 to 7: 3. In addition, in the sample 23 containing much coal ash, it is thought that the blending ratio of coal ash: iron powder is preferably 4: 6 to 6: 4 from the fact that collapse was observed and the elution amounts of Mn and Zn. .

(実験4)
続いて、クエン酸の配合割合による影響について検証した。本実験で用いたサンプル31〜37の原料の配合割合を表6に示す。
(Experiment 4)
Then, it verified about the influence by the mixture ratio of a citric acid. Table 6 shows the mixing ratio of the raw materials of Samples 31 to 37 used in this experiment.

サンプル31〜37を用い、実験1と同様にして実験を行った。そして、実験1と同様に硫化水素濃度、並びに、Fe、Zn及びMn濃度を測定した。更に、H2S0を用いて行ったものについては、NO+NO−N、NO−N、NH−N、PO−P、SiO−Siをオートアナライザー(SWAAT,BLTEC社製)で測定し、それぞれCu−Cd還元法、ナフチルエチレンジアミン法、インドフェノール法、モリブデンブルー法、モリブデンブルー法で分析した。 Experiments were performed in the same manner as Experiment 1 using Samples 31 to 37. Then, as in Experiment 1, the hydrogen sulfide concentration and the Fe, Zn, and Mn concentrations were measured. Furthermore, for those conducted with H2S0 is determined NO 3 + NO 2 -N, NO 2 -N, NH 4 -N, PO 4 -P, the SiO 2 -Si auto analyzer (SWAAT, manufactured BLTEC Co.) Then, analysis was performed by Cu-Cd reduction method, naphthylethylenediamine method, indophenol method, molybdenum blue method, and molybdenum blue method, respectively.

硫化水素濃度、並びに、Fe、Zn及びMn濃度の測定結果を図14、図15、図16、図17にそれぞれ示す。また、NO+NO−N、NO−N、NH−N、PO−P、SiO−Siのそれぞれの濃度の測定結果を図18、図19、図20、図21、図22に示す。 The measurement results of the hydrogen sulfide concentration and the Fe, Zn, and Mn concentrations are shown in FIGS. 14, 15, 16, and 17, respectively. Further, the measurement results of the respective concentrations of NO 3 + NO 2 —N, NO 2 —N, NH 4 —N, PO 4 —P, and SiO 2 —Si are shown in FIG. 18, FIG. 19, FIG. 20, FIG. Shown in

図14から、全てのサンプルで硫化水素低減傾向が見られ、クエン酸の含有量が多いほど硫化水素の低減効果が高いことがわかる。また、図15〜図17から、Fe、Zn、Mnの溶出量についても、クエン酸の含有量が多いほど増加していることがわかる。なお、MnはH2S0、H2S50、H2S100の各試験区において、濃度に大きな差がなく、また、Fe、Znについては、H2S0における濃度とH2S50、H2S100における濃度との差が大きかったことから、硫化水素の低減はFe、Znの溶出による効果が大きいものと考えられる。なお、このことは、図11〜図13でも示されている。   FIG. 14 shows that all samples show a tendency to reduce hydrogen sulfide, and that the higher the citric acid content, the higher the effect of reducing hydrogen sulfide. 15 to 17, it can be seen that the elution amounts of Fe, Zn, and Mn increase as the citric acid content increases. Note that Mn has no significant difference in concentration in each of the test groups of H2S0, H2S50, and H2S100, and that of Fe and Zn has a large difference between the concentration in H2S0 and the concentration in H2S50 and H2S100. It is considered that the reduction of the effect of elution of Fe and Zn is large. This is also shown in FIGS.

また、H2S50試験区において、クエン酸を3重量%以上含有するサンプル34〜37で硫化水素濃度はほぼ0になっていたことから、底質改善・施肥材はクエン酸を3重量%以上含有していることが好ましい。また、クエン酸を10重量%含有するサンプル37は脆く崩れやすかったことから、底質改善・施肥材の成形性及び形状維持性の観点から、底質改善・施肥材のクエン酸含有量が7重量%以下であることが好ましいと考えられる。   In the H2S50 test area, samples 34 to 37 containing citric acid in an amount of 3% by weight or more had a hydrogen sulfide concentration of approximately 0, so that the bottom sediment improving / fertilizing material contained citric acid in an amount of 3% by weight or more. It is preferable. Further, since the sample 37 containing 10% by weight of citric acid was brittle and easily collapsed, the citric acid content of the bottom improvement / fertilizer was 7 from the viewpoint of bottom sediment improvement / formability of the fertilizer and shape maintenance. It is considered that it is preferable to be not more than% by weight.

また、図18〜図22から、N、P、Siの溶出量についても、クエン酸の含有量が多いほど増加している。N、P、Siは生態系の栄養素として機能する一方で、有機物負荷の原因にもつながることから、富栄養化した底質では多く溶出させない方がよいと考えられる。しかしながら、多く溶出したNHでも10数μモルであり、富栄養化を促進するほどの濃度ではない。また、クエン酸を10重量%含有するサンプル37において、溶出したN、P、Si、Feのモル濃度比をとると、20:0.8:16:1であり、レッドフィールド比と比較すると、Feが1000倍過剰であり、その他の元素はほぼ同じである。なお、レッドフィールド比とは、微細藻類の成長に最適な元素比を表すもので、生物体中の物質比率と環境水中の物質比率がほぼ同じで、生産と分解に係る物質のバランスに過不足がない状態を示す元素比の概念である。このように、N、P、Siの溶出量はレッドフィールド比と同様であるため、富栄養化した底質を更に悪化させるおそれもないと考えられるとともに、Fe等を多量に溶出させて硫化水素を低減させつつ、且つ、適度にN、P、Siを溶出させて栄養素を供給できることから水中における生態系の健全性回復のために好適であると言える。 From FIG. 18 to FIG. 22, the elution amounts of N, P, and Si also increase as the citric acid content increases. N, P, and Si function as ecosystem nutrients, but also cause organic load, so it is better not to elute them in eutrophic sediments. However, even a large amount of NH 4 eluted is a few tens of moles, which is not a concentration that promotes eutrophication. Further, in the sample 37 containing 10% by weight of citric acid, the molar concentration ratio of eluted N, P, Si, Fe is 20: 0.8: 16: 1, and compared with the red field ratio, Fe is 1000 times excess, and other elements are almost the same. The red field ratio is the optimal elemental ratio for the growth of microalgae. The substance ratio in the organism and the substance ratio in the environmental water are almost the same, and the balance of substances related to production and decomposition is too short or large. It is a concept of the element ratio indicating a state where there is no. Thus, since the elution amounts of N, P, and Si are the same as the red field ratio, it is considered that there is no possibility of further worsening the eutrophic bottom sediment, and a large amount of Fe and the like are eluted to generate hydrogen sulfide. It can be said that it is suitable for the restoration of the health of the ecosystem in the water because it can supply nutrients by appropriately eluting N, P and Si while reducing the amount of water.

(実験5)
実験4におけるサンプル34(鉄粉:48.5重量%、石炭灰:48.5重量%、クエン酸:3重量%)を用い、海水での効果について検証した。
(Experiment 5)
Sample 34 in Experiment 4 (iron powder: 48.5% by weight, coal ash: 48.5% by weight, citric acid: 3% by weight) was used to verify the effect on seawater.

超純水1Lに人工海水粉末(レッドシーソルト,レッドシーソルト社)を33g入れて、33psuの人工海水を調製した。更に、Nガスを吹き込んで空気をパージし、溶存酸素濃度を0.1mg/l以下にした。これにNaS・9HOを0、50、100mg−S/lとなるよう添加し、硫化水素溶液を調製した。この硫化水素溶液をそれぞれSa−H2S0、Sa−H2S50、Sa−H2S100と記す。 33 g of artificial seawater powder (Red Sea Salt, Red Sea Salt) was added to 1 L of ultrapure water to prepare 33 psu artificial seawater. Further, N 2 gas was blown in to purge the air, and the dissolved oxygen concentration was reduced to 0.1 mg / l or less. To this was added Na 2 S · 9H 2 O to 0, 50, 100 mg-S / l to prepare a hydrogen sulfide solution. This hydrogen sulfide solution is referred to as Sa-H2S0, Sa-H2S50, and Sa-H2S100, respectively.

150mlバイアル瓶に上記の硫化水素溶液を100ml入れた。これにサンプル34を0.2g静かに加えた後、ゴム栓およびアルミ金具で密閉した。MAGIC VACに150mlバイアル瓶を入れ、密封用パックで密封し、25℃、40rpmで7日間振とうした後、硫化水素濃度を検知管で測定した。更に、0.45μmシリンジフィルターでろ過したろ液についてFe、Zn、Mnの各濃度をICP−AESで測定した。   100 ml of the above hydrogen sulfide solution was placed in a 150 ml vial. After 0.2 g of sample 34 was gently added thereto, it was sealed with a rubber stopper and an aluminum fitting. A 150 ml vial was placed in the MAGIC VAC, sealed with a sealing pack, shaken at 25 ° C. and 40 rpm for 7 days, and then the hydrogen sulfide concentration was measured with a detector tube. Furthermore, each density | concentration of Fe, Zn, and Mn was measured by ICP-AES about the filtrate filtered with the 0.45 micrometer syringe filter.

図23に硫化水素溶液中の硫化水素濃度の測定結果を示す。また、Fe、Zn、Mn濃度を図24〜図26にそれぞれに示す。   FIG. 23 shows the measurement result of the hydrogen sulfide concentration in the hydrogen sulfide solution. The Fe, Zn, and Mn concentrations are shown in FIGS.

実験4において超純水で調製したH2S0、H2S50、H2S100で行った場合に比べると、Fe、Zn、Mnの溶出は減少し、硫化水素の低減効果は若干劣る結果となったが、海水中においても硫化水素の低減効果を発揮することを確認した。   Compared to the case of H2S0, H2S50, and H2S100 prepared with ultrapure water in Experiment 4, the elution of Fe, Zn, and Mn decreased, and the effect of reducing hydrogen sulfide was slightly inferior. Has also been confirmed to exert the effect of reducing hydrogen sulfide.

本発明に係る底質改善・施肥材は、水中にて、鉄イオン等の金属イオンの溶出量が多く、金属イオンを錯体としてイオン状態のまま溶存させることができる。金属イオンは硫化水素と反応して金属硫化物を形成するので、閉鎖水域等にて硫化水素濃度を低減することができる。このため、閉鎖性水域における還元的な環境の改善に利用可能である。   The bottom improvement / fertilizer according to the present invention has a large amount of elution of metal ions such as iron ions in water, and can be dissolved in an ionic state as a complex of metal ions. Since metal ions react with hydrogen sulfide to form metal sulfide, the concentration of hydrogen sulfide can be reduced in a closed water area or the like. For this reason, it can be used to improve the reducing environment in closed waters.

Claims (10)

石炭灰と鉄とキレート剤とを含有し、
前記石炭灰と前記鉄との配合比が重量比で3:7〜7:3であり、
前記キレート剤がクエン酸であり、
水中で鉄イオン及び亜鉛イオンを溶出して、前記キレート剤とで鉄キレート及び亜鉛キレートを形成するとともに、窒素、リン及び珪素を溶出する、
ことを特徴とする底質改善・施肥材。
Contains coal ash, iron and chelating agent,
The mixing ratio of the coal ash and the iron is 3: 7 to 7: 3 by weight,
The chelating agent is citric acid;
Eluting iron ions and zinc ions in water, forming iron chelate and zinc chelate with the chelating agent, and eluting nitrogen, phosphorus and silicon,
Bottom sediment improvement and fertilizer.
前記クエン酸を3重量%以上7重量%含有する、
ことを特徴とする請求項に記載の底質改善・施肥材。
Containing 3 wt% or more and 7 wt% of the citric acid,
The bottom quality improving / fertilizing material according to claim 1 .
石炭灰と鉄とキレート剤とを含有し、水中で鉄イオン及び亜鉛イオンを溶出して、前記キレート剤とで鉄キレート及び亜鉛キレートを形成するとともに、窒素、リン及び珪素を溶出する底質改善・施肥材を閉鎖水域に施工し、
前記底質改善・施肥材から金属イオンを溶出させ、前記金属イオンを錯体として溶存させ、
前記金属イオンと底泥で生じる硫化水素との反応により金属硫化物を形成させて硫化水素濃度を低減させる、
ことを特徴とする底質改善方法。
Contains coal ash, iron and chelating agent, elutes iron ions and zinc ions in water, forms iron chelate and zinc chelate with the chelating agent, and improves bottom sediment to elute nitrogen, phosphorus and silicon・ Construct fertilizer in closed water area,
The metal ions are eluted from the bottom material improving and fertilizer, the metal ions are dissolved as a complex,
Reducing the hydrogen sulfide concentration by forming a metal sulfide by the reaction between the metal ions and hydrogen sulfide generated in the bottom mud,
The bottom quality improvement method characterized by this.
前記石炭灰と前記鉄との配合比が重量比で3:7〜7:3である前記底質改善・施肥材を用いる、Using the bottom sediment improving / fertilizing material in which the mixing ratio of the coal ash and the iron is 3: 7 to 7: 3 by weight,
ことを特徴とする請求項3に記載の底質改善方法。The method for improving bottom sediment according to claim 3.
前記キレート剤がクエン酸である前記底質改善・施肥材を用いる、Using the bottom sediment improving / fertilizing material, wherein the chelating agent is citric acid,
ことを特徴とする請求項3又は4に記載の底質改善方法。The method for improving bottom sediment according to claim 3 or 4, wherein:
前記クエン酸を3重量%以上7重量%含有する前記底質改善・施肥材を用いる、Using the bottom sediment improving / fertilizing material containing 3% by weight or more of the citric acid,
ことを特徴とする請求項5に記載の底質改善方法。The method for improving bottom sediment according to claim 5.
石炭灰と鉄とキレート剤とを含有し、水中で鉄イオン及び亜鉛イオンを溶出して、前記キレート剤とで鉄キレート及び亜鉛キレートを形成するとともに、窒素、リン及び珪素を溶出する底質改善・施肥材を貝類或いは藻類の養殖水域に配置し、
前記底質改善・施肥材から金属イオンを溶出させて前記金属イオンを錯体として溶存させるとともに、窒素、リン及び珪素を溶出させて、これらを前記貝類或いは前記藻類に直接的或いは間接的に摂取させて前記貝類或いは前記藻類の成長を促進させる、
ことを特徴とする水生生物の養殖方法。
Contains coal ash, iron and chelating agent, elutes iron ions and zinc ions in water, forms iron chelate and zinc chelate with the chelating agent, and improves bottom sediment to elute nitrogen, phosphorus and silicon・ Place fertilizer in shellfish or algae culture waters,
The metal ions are eluted from the sediment improvement / fertilizer to dissolve the metal ions as a complex, and nitrogen, phosphorus, and silicon are eluted, and these are taken directly or indirectly by the shellfish or the algae. Promote the growth of the shellfish or the algae,
An aquatic culture method characterized by the above.
前記石炭灰と前記鉄との配合比が重量比で3:7〜7:3である前記底質改善・施肥材を用いる、Using the bottom sediment improving / fertilizing material in which the mixing ratio of the coal ash and the iron is 3: 7 to 7: 3 by weight,
ことを特徴とする請求項7に記載の水生生物の養殖方法。The method for culturing aquatic organisms according to claim 7.
前記キレート剤がクエン酸である前記底質改善・施肥材を用いる、Using the bottom sediment improving / fertilizing material, wherein the chelating agent is citric acid,
ことを特徴とする請求項7又は8に記載の水生生物の養殖方法。The method for culturing aquatic organisms according to claim 7 or 8.
前記クエン酸を3重量%以上7重量%含有する前記底質改善・施肥材を用いる、Using the bottom sediment improving / fertilizing material containing 3% by weight or more of the citric acid,
ことを特徴とする請求項9に記載の水生生物の養殖方法。The method for culturing aquatic organisms according to claim 9.
JP2013085278A 2013-04-15 2013-04-15 Sediment improvement and fertilizer and its usage Active JP6090665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085278A JP6090665B2 (en) 2013-04-15 2013-04-15 Sediment improvement and fertilizer and its usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085278A JP6090665B2 (en) 2013-04-15 2013-04-15 Sediment improvement and fertilizer and its usage

Publications (2)

Publication Number Publication Date
JP2014205808A JP2014205808A (en) 2014-10-30
JP6090665B2 true JP6090665B2 (en) 2017-03-08

Family

ID=52119638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085278A Active JP6090665B2 (en) 2013-04-15 2013-04-15 Sediment improvement and fertilizer and its usage

Country Status (1)

Country Link
JP (1) JP6090665B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6793286B2 (en) * 2016-03-07 2020-12-02 国立大学法人広島大学 Growth promotion material for herbivorous bivalve molluscs and growth promotion method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146275A (en) * 2003-10-24 2005-06-09 Growth Factor:Kk Agent for improving, solidifying, and stabilizing soil and its quality
JP4403095B2 (en) * 2004-04-09 2010-01-20 新日本製鐵株式会社 Water environment conservation materials and methods of use
JP4710036B2 (en) * 2009-03-17 2011-06-29 国立大学法人広島大学 Iron chelate generating material and method of using the same
JP2012223733A (en) * 2011-04-21 2012-11-15 Hiroshima Univ Method for improving ambient water quality

Also Published As

Publication number Publication date
JP2014205808A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
US7585898B2 (en) Composition for growth of diatom algae
Fan et al. Application of zeolite/hydrous zirconia composite as a novel sediment capping material to immobilize phosphorus
CN103436519B (en) Composite microbial preparation for watershed bioremediation as well as preparation method and application thereof
JP4710036B2 (en) Iron chelate generating material and method of using the same
JP5855704B2 (en) Bag-shaped microbial preparation carrying sulfur bacteria and environmental purification method using the same
WO2014038596A1 (en) Method for producing iron fulvate material containing soluble silica
JP2004187675A (en) Liquid containing diatom, diatom and method for cultivating the diatom
Bloch et al. Cyanobacteria mediated toxic metal removal as complementary and alternative wastewater treatment strategy
JP2012223733A (en) Method for improving ambient water quality
JP6090665B2 (en) Sediment improvement and fertilizer and its usage
JP6376493B2 (en) Aquatic organism growth methods
Ramesh et al. Nitrogen assessment in Indian coastal systems
JP2012075970A (en) Method for preventing eutrophication
CN108101170A (en) A kind of water purification pulvis and its preparation process for being used to kill Euglena
JP2013215184A (en) Civil engineering material for use in marine area
JP6891844B2 (en) Phosphorus supply materials for water bodies and their manufacturing methods
Bulu et al. Ecological Impacts of Oxyanion in Aqua Systems
Chamoli et al. Ammonia, nitrite transformations and their fixation by different biological and chemical agents
Dabwan et al. Application of solidified sea bottom sediments into environmental bioremediation materials
JP2013245118A (en) Concrete block for cleaning water environment
Zinnert et al. Positive and negative impacts of flue gas desulfurization (FGD) gypsum on water quality
Saha et al. Harmful effects of different classes of heavy metals in our beautiful environment
Stoermer et al. Synergistic effects of phosphorus and heavy metal loadings on Great Lakes phytoplankton
Yonei et al. Water quality improvement effect from the installation of special-glaze-applied ceramics: Benten Pond, Ichikawa, Chiba, Japan
JP2013000625A (en) Water purifying agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170126

R150 Certificate of patent or registration of utility model

Ref document number: 6090665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250