JP6376493B2 - Aquatic organism growth methods - Google Patents

Aquatic organism growth methods Download PDF

Info

Publication number
JP6376493B2
JP6376493B2 JP2014113751A JP2014113751A JP6376493B2 JP 6376493 B2 JP6376493 B2 JP 6376493B2 JP 2014113751 A JP2014113751 A JP 2014113751A JP 2014113751 A JP2014113751 A JP 2014113751A JP 6376493 B2 JP6376493 B2 JP 6376493B2
Authority
JP
Japan
Prior art keywords
iron
sample
experiment
fertilizer
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014113751A
Other languages
Japanese (ja)
Other versions
JP2015226511A (en
Inventor
民次 山本
民次 山本
義孝 河尻
義孝 河尻
忠志 清田
忠志 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2014113751A priority Critical patent/JP6376493B2/en
Publication of JP2015226511A publication Critical patent/JP2015226511A/en
Application granted granted Critical
Publication of JP6376493B2 publication Critical patent/JP6376493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Seaweed (AREA)
  • Farming Of Fish And Shellfish (AREA)

Description

本発明は、水生生物の増殖方法に関する。   The present invention relates to a method for growing aquatic organisms.

閉鎖性水域では水の交換が悪いため、陸域負荷の影響を強く受け、有機物含有量の高い底泥が堆積し、還元的な状態になりやすい。このような還元的な環境では、硫化水素の発生を促す。硫化水素は生物に対して猛毒であり、これによって生物生息数が減少し、ほぼ無生物になる場合もある。底泥中の硫化水素を抑えて良好な底質環境を取り戻し、生物の生息を復活させることは、生物多様性や生物生産性を高める観点から極めて重要である。   Since water exchange is poor in closed water areas, it is strongly affected by land loads, and sediment with high organic matter content accumulates and tends to be reduced. In such a reducing environment, the generation of hydrogen sulfide is promoted. Hydrogen sulfide is extremely toxic to living organisms, which reduces the number of living organisms and can be nearly inanimate. It is extremely important from the viewpoint of enhancing biodiversity and bioproductivity to reduce the hydrogen sulfide in the bottom mud and restore the good sediment environment and restore the living organisms.

底質を改善する手法として、耕耘、曝気、浚渫、覆砂など、土木的手法が実施されてきた。しかし、これらの手法では、汚濁物質の拡散、浚渫後の汚泥の処理などの副次的な問題や、高コストであるなどの問題がある。   Civil engineering methods such as tillage, aeration, dredging and sand cover have been implemented as methods for improving sediment quality. However, these methods have secondary problems such as the diffusion of pollutants and the treatment of sludge after dredging, and problems such as high costs.

有機物含量の高い底質中で発生する硫化水素の低減には、鉄鋼スラグ(例えば、特許文献1、2)や石炭灰造粒物(例えば、特許文献3、4)等が効果的であることが知られており、前者は鉄による酸化還元、後者はマンガンによる酸化還元が作用することがわかっている。   Steel slag (for example, Patent Documents 1 and 2), coal ash granulated material (for example, Patent Documents 3 and 4), etc. are effective in reducing hydrogen sulfide generated in sediment with a high organic matter content. It is known that the former is redoxed by iron, and the latter is redoxed by manganese.

また、水質が貧栄養な場合の施肥材として、鉄を溶出させるものがあり、例えば、鉄、炭、及び、焼酎滓或いは柑橘類の滓を含有し、鉄と炭との接触により鉄イオンを溶出し、鉄イオンと焼酎滓或いは柑橘類の滓に含まれるキレート物質により鉄キレートを発生させる鉄キレート発生材が知られている(特許文献5)。   In addition, there are fertilizers that elute iron as a fertilizer when the water quality is poor nutrition. For example, it contains iron, charcoal, and shochu or citrus koji, and iron ions are eluted by contact with iron and charcoal. In addition, an iron chelate generating material that generates iron chelate with a chelate substance contained in iron ions and shochu or citrus koji is known (Patent Document 5).

特開2009−291668号公報JP 2009-291668 A 特開2005−320230号公報JP-A-2005-320230 特開2012−22373号公報JP 2012-22373 A 特開2008−121263号公報JP 2008-121263 A 特開2010−242075号公報JP 2010-242075 A

特許文献5の鉄キレート発生材では、鉄イオンの溶出量は十分とはいえず、未だ改善の余地がある。また、焼酎滓或いは柑橘類の滓を含有しており、これら自体が有機物であり、これらの添加が有機物含有量を増加させることにもなり、還元的な状態を更に悪化させるおそれがある。   In the iron chelate generating material of Patent Document 5, the elution amount of iron ions is not sufficient, and there is still room for improvement. Moreover, it contains shochu or citrus koji, and these are organic substances themselves, and their addition increases the organic substance content, which may further deteriorate the reducing state.

本発明は上記事項に鑑みてなされたものであり、その目的とするところは、有機物含有量の増大による還元的な状態悪化を招くことなく、水生生物の生育促進可能な環境を整え、水生生物の増殖させる方法を提供することにある。   The present invention has been made in view of the above-mentioned matters, and the object of the present invention is to prepare an environment capable of promoting the growth of aquatic organisms without causing deterioration of the reductive state due to an increase in the content of organic matter. The object is to provide a method of growing the above.

本発明に係る水生生物の増殖方法は、
石炭灰と鉄とキレート剤とを含有し、前記石炭灰と前記鉄との配合比が重量比で3:7〜7:3である施肥材を貝類又は藻類の増殖水域に配置し、
前記貝類或いは前記藻類の生育を促進させる、
ことを特徴とする。
The aquatic organism propagation method according to the present invention comprises:
A fertilizer containing coal ash, iron and a chelating agent , wherein the blending ratio of the coal ash and the iron is 3: 7 to 7: 3 in a weight ratio, is placed in a shellfish or algae breeding water area,
Promote the growth of the shellfish or the algae,
It is characterized by that.

また、前記キレート剤がクエン酸である前記施肥材を用いることが望ましい。   Moreover, it is desirable to use the fertilizer in which the chelating agent is citric acid.

また、前記クエン酸を3重量%以上7重量%以下含有する前記施肥材を用いることが望ましい。   Moreover, it is desirable to use the fertilizer containing 3% by weight or more and 7% by weight or less of the citric acid.

また、水中で鉄イオン、マンガンイオン及び亜鉛イオンを溶出して、前記キレート剤とで鉄キレート、マンガンキレート及び亜鉛キレートを形成するとともに、窒素、リン及び珪素を溶出する前記施肥材を用い、
前記施肥材から金属イオンを錯体として溶存させるとともに、窒素、リン及び珪素を溶出させて、これらを前記貝類或いは前記藻類に直接的或いは間接的に摂取させることが望ましい。
Also, eluting iron ions, manganese ions and zinc ions in water, forming iron chelate, manganese chelate and zinc chelate with the chelating agent, and using the fertilizer to elute nitrogen, phosphorus and silicon,
It is desirable to dissolve metal ions as a complex from the fertilizer and to elute nitrogen, phosphorus, and silicon so that the shellfish or the algae ingest them directly or indirectly.

また、前記貝類としてアサリ又は牡蠣の生育を促進させてもよい。   Moreover, you may promote the growth of clams or oysters as the shellfish.

本発明に係る水生生物の増殖方法では、金属イオンの溶出量が高く、生じた金属イオンがキレート剤と錯体を形成し溶存する施肥材を貝類又は藻類の増殖水域に配置する。有機物含有量の増大による還元的な状態悪化を招くことなく、水生生物の生育を促進させることができる。   In the method for aquatic organism propagation according to the present invention, a fertilizer in which the amount of elution of metal ions is high and the generated metal ions form a complex with a chelating agent and dissolved therein is placed in the breeding water area of shellfish or algae. The growth of aquatic organisms can be promoted without incurring a reductive deterioration due to an increase in organic matter content.

実験1におけるサンプル1〜3の硫化水素濃度を示すグラフである。3 is a graph showing hydrogen sulfide concentrations of Samples 1 to 3 in Experiment 1. 実験1におけるサンプル4〜6の硫化水素濃度を示すグラフである。6 is a graph showing the hydrogen sulfide concentration of Samples 4 to 6 in Experiment 1. 実験1におけるサンプル1〜3のFe濃度を示すグラフである。6 is a graph showing Fe concentrations of Samples 1 to 3 in Experiment 1. 実験1におけるサンプル1〜3のMn濃度を示すグラフである。4 is a graph showing Mn concentrations of Samples 1 to 3 in Experiment 1. 実験1におけるサンプル1〜3のZn濃度を示すグラフである。4 is a graph showing Zn concentrations of Samples 1 to 3 in Experiment 1. 実験1におけるサンプル4〜6のFe濃度を示すグラフである。6 is a graph showing Fe concentrations of Samples 4 to 6 in Experiment 1. 実験1におけるサンプル4〜6のMn濃度を示すグラフである。6 is a graph showing Mn concentrations of Samples 4 to 6 in Experiment 1. 実験1におけるサンプル4〜6のZn濃度を示すグラフである。6 is a graph showing Zn concentrations of Samples 4 to 6 in Experiment 1. 実験2におけるサンプル11〜16のFe濃度を示すグラフである。6 is a graph showing Fe concentrations of Samples 11 to 16 in Experiment 2. 実験3におけるサンプル21〜23の硫化水素濃度を示すグラフである。10 is a graph showing hydrogen sulfide concentrations of samples 21 to 23 in Experiment 3. FIG. 実験3におけるサンプル21〜23のFe濃度を示すグラフである。10 is a graph showing Fe concentrations of Samples 21 to 23 in Experiment 3. 実験3におけるサンプル21〜23のZn濃度を示すグラフである。10 is a graph showing Zn concentrations of Samples 21 to 23 in Experiment 3. 実験3におけるサンプル21〜23のMn濃度を示すグラフである。10 is a graph showing Mn concentrations of Samples 21 to 23 in Experiment 3. 実験4におけるサンプル31〜37の硫化水素濃度を示すグラフである。7 is a graph showing hydrogen sulfide concentrations of samples 31 to 37 in Experiment 4. 実験4におけるサンプル31〜37のFe濃度を示すグラフである。It is a graph which shows Fe concentration of samples 31-37 in experiment 4. FIG. 実験4におけるサンプル31〜37のZn濃度を示すグラフである。It is a graph which shows the Zn density | concentration of the samples 31-37 in the experiment 4. FIG. 実験4におけるサンプル31〜37のMn濃度を示すグラフである。It is a graph which shows Mn density | concentration of the samples 31-37 in the experiment 4. FIG. 実験4におけるサンプル31〜37のNO+NO濃度を示すグラフである。Is a graph showing the NO 3 + NO 2 concentration of the sample 31 to 37 in the experiment 4. 実験4におけるサンプル31〜37のNO濃度を示すグラフである。7 is a graph showing NO 2 concentrations of samples 31 to 37 in Experiment 4. 実験4におけるサンプル31〜37のNH濃度を示すグラフである。10 is a graph showing NH 4 concentrations of Samples 31 to 37 in Experiment 4. 実験4におけるサンプル31〜37のPO濃度を示すグラフである。10 is a graph showing PO 4 concentrations of samples 31 to 37 in Experiment 4. 実験4におけるサンプル31〜37のSiO濃度を示すグラフである。Is a graph showing a SiO 2 concentration of the sample 31 to 37 in the experiment 4. 実験5における硫化水素濃度を示すグラフである。10 is a graph showing the hydrogen sulfide concentration in Experiment 5. 実験5におけるFe濃度を示すグラフである。10 is a graph showing the Fe concentration in Experiment 5. 実験5におけるZn濃度を示すグラフである。10 is a graph showing Zn concentration in Experiment 5. 実験5におけるMn濃度を示すグラフである。10 is a graph showing the Mn concentration in Experiment 5. S.costatumの増殖試験の結果を示すグラフである。S. It is a graph which shows the result of the proliferation test of costatum. N.pellucidaの増殖試験の結果を示すグラフである。N. It is a graph which shows the result of the proliferation test of Pellucida. アサリの採取結果を示すグラフである。It is a graph which shows the collection result of a clam. POC、AVSの結果を示すグラフである。It is a graph which shows the result of POC and AVS. 図31(A)、(B)はカキ筏へのサンプル34の設置状況を説明する図である。31 (A) and 31 (B) are diagrams illustrating the installation status of the sample 34 on the oyster bowl. 300g添加区、100g添加区及び対照区の位置を説明する図である。It is a figure explaining the position of a 300g addition group, a 100g addition group, and a control group.

本実施の形態に係る水生生物の増殖方法は、後述する施肥材を貝類又は藻類の増殖水域に配置することで行う。施肥材の配置は、増殖を行う水域に散布することや、網状の袋に入れて配置することのほか、増殖水域の底泥にすき込むなど、種々の方法で行い得る。   The aquatic organism propagation method according to the present embodiment is performed by arranging a fertilizer described later in a breeding water area of shellfish or algae. The arrangement of the fertilizer can be carried out by various methods such as spraying in the water area where breeding is carried out, placing the fertilizer in a net-like bag, and inserting into the bottom mud of the breeding water area.

用いる施肥材は、石炭灰と鉄とキレート剤とを含有し、水中で鉄イオン、マンガンイオン及び亜鉛イオンをキレート状態で高濃度で溶出させる。また、石炭灰からは窒素、リン及び珪素が溶出する。施肥材から金属イオンが溶出して金属イオンを錯体として溶存させるとともに、窒素、リン及び珪素を溶出させる。鉄やマンガン、亜鉛、或いは窒素、リン等は、貝類や藻類の成長に欠かせない必須栄養源である。   The fertilizer used contains coal ash, iron and a chelating agent, and elutes iron ions, manganese ions and zinc ions in water in a chelate state at a high concentration. Also, nitrogen, phosphorus and silicon are eluted from the coal ash. Metal ions are eluted from the fertilizer to dissolve the metal ions as a complex, and nitrogen, phosphorus and silicon are eluted. Iron, manganese, zinc, nitrogen, phosphorus, and the like are essential nutrient sources essential for the growth of shellfish and algae.

施肥材は上述したように、各種金属イオン等を溶出し、錯体としてイオン状態で水中に溶存させることができるので、これらを貝類、藻類が直接的或いは間接的に体内へ取り込むことができる。これにより、貝類、藻類の生育を促進させることができる。貝類として、牡蠣やアサリ、シジミ等が挙げられる。また、藻類として、海苔、若布、昆布等の有用藻類(食用藻類)及び貝類の餌となる浮遊微細藻類および付着微細藻類が挙げられる。   As described above, since the fertilizer can elute various metal ions and can be dissolved in water as a complex in an ionic state, these can be directly or indirectly taken up by shellfish and algae. Thereby, growth of shellfish and algae can be promoted. Examples of shellfish include oysters, clams and swordfish. Examples of algae include useful algae (edible algae) such as seaweed, young cloth, and kelp, and floating microalgae and attached microalgae that serve as food for shellfish.

また、牡蠣やアサリ、シジミ等の貝類では、健康成分として身肉中の亜鉛含有量が高いことが特徴である。亜鉛は、ヒトにとって不可欠であるとともに、摂取し難い栄養素である。亜鉛含有量の高い貝類を生産できれば、それだけヒトによる亜鉛の摂取量を高められる。亜鉛は水中では金属塩となり、このままでは貝類に取り込まれない。しかしながら、上述した施肥材では、亜鉛イオンが溶出し、亜鉛イオンはキレート剤により錯体として溶存する。これにより、貝類が亜鉛イオンを直接摂取、或いは、亜鉛イオンを摂取した植物プランクトンの摂食による間接的摂取により、貝類の身肉中に取り込まれ得るので、貝類の商品価値を高めることができる。   In addition, shellfish such as oysters, clams and swordfish are characterized by a high zinc content in the meat as a health ingredient. Zinc is an essential nutrient for humans and difficult to take. If shellfish with high zinc content can be produced, zinc intake by humans can be increased accordingly. Zinc becomes a metal salt in water and cannot be taken up by shellfish. However, in the fertilizer described above, zinc ions are eluted, and zinc ions are dissolved as a complex by the chelating agent. Thereby, since shellfish can be taken in into the flesh of shellfish by ingestion directly by intake of zinc ion or ingestion of phytoplankton which ingested zinc ion, the commercial value of shellfish can be raised.

用いる施肥材は、石炭灰、鉄、キレート剤から得られる。石炭灰は、石炭を燃焼する際に生じる灰である。石炭灰は、一般に、シリカ(SiO)、アルミナ(Al)を主成分とし、その他、亜鉛やマンガン等を微量成分として含んでいる。石炭灰は、石炭を原料に発電を行っている火力発電所で生じるものをそのまま用いればよい。火力発電所で生じる石炭灰は、ガス流れにより飛散するほどの球状の微粒子であり、そのままの状態で好適に用いられ得る。また、火力発電所で生じる石炭灰は、排ガスを脱硝する際にアンモニア水を霧状にして吹きかけるため、窒素分を含む。 The fertilizer used is obtained from coal ash, iron and chelating agents. Coal ash is ash generated when coal is burned. Coal ash generally contains silica (SiO 2 ) and alumina (Al 2 O 3 ) as main components, and also contains zinc, manganese, and the like as trace components. What is necessary is just to use what is produced in the thermal power plant which is generating electricity using coal as a raw material for coal ash. Coal ash generated in a thermal power plant is spherical fine particles that are scattered by a gas flow, and can be suitably used as it is. In addition, the coal ash generated in the thermal power plant contains nitrogen content because ammonia water is sprayed in the form of a mist when denitrating exhaust gas.

鉄は、屑鉄などが用いられ、不純物が10重量%以下、好ましくは5重量%以下、より好ましくは99重量%以下のほぼ純粋な鉄であることが好ましい。鉄は、粉末状であることが好ましい。   As the iron, scrap iron or the like is used, and it is preferable to use substantially pure iron with impurities of 10% by weight or less, preferably 5% by weight or less, more preferably 99% by weight or less. Iron is preferably in powder form.

キレート剤は、鉄からの鉄イオンの溶出、並びに、石炭灰からのマンガンイオン及び亜鉛イオンの溶出を促進させる。また、生じた鉄イオン、マンガンイオン及び亜鉛イオンと錯体を形成し、鉄キレート、マンガンキレート及び亜鉛キレートを形成する。このため、溶出した各金属イオンをそれぞれイオン状態で水中に溶存させることができる。キレート剤として、上記機能を果たし得るものであれば特に限定されず、一例としてクエン酸が挙げられる。   The chelating agent promotes elution of iron ions from iron and elution of manganese ions and zinc ions from coal ash. Moreover, it forms a complex with the generated iron ion, manganese ion, and zinc ion to form iron chelate, manganese chelate, and zinc chelate. For this reason, each eluted metal ion can be dissolved in water in an ionic state. The chelating agent is not particularly limited as long as it can fulfill the above function, and citric acid is an example.

上述した施肥材は、鉄粉と石炭灰とキレート剤を混合し、所定の形状に成形することで得られる。施肥材は、球形状、多角形状、ブリケット形状等、どのような形状であってもよい。成形は、種々の公知の手法を用いることができ、例えば、原料を回転ドラムに入れ、水等の液体を加えつつ、所定の大きさに造粒する方法が挙げられる。   The fertilizer mentioned above is obtained by mixing iron powder, coal ash, and a chelating agent and molding the mixture into a predetermined shape. The fertilizer may have any shape such as a spherical shape, a polygonal shape, a briquette shape, or the like. Various known methods can be used for the molding, and examples thereof include a method in which a raw material is put in a rotating drum and granulated to a predetermined size while adding a liquid such as water.

鉄と石炭灰の配合割合は、重量比で3:7〜7:3が好ましく、4:6〜6:4であることがより好ましい。   The weight ratio of iron and coal ash is preferably 3: 7 to 7: 3, and more preferably 4: 6 to 6: 4.

キレート剤の配合割合は、鉄及び石炭灰の総量に対して、3重量%以上であることが好ましい。なお、キレート剤の配合割合を増加すれば、各金属イオンの溶出量が増加する一方で、成型される施肥材が脆くなりやすい。このため、金属イオンの溶出量及び施肥材の成型性、並びに、形状維持性の観点から、施肥材がキレート剤を3重量%以上7重量%以下含有していることがより好ましい。   The mixing ratio of the chelating agent is preferably 3% by weight or more with respect to the total amount of iron and coal ash. In addition, if the compounding ratio of the chelating agent is increased, the elution amount of each metal ion increases, while the fertilizer to be molded tends to become brittle. For this reason, it is more preferable that the fertilizer contains 3 wt% or more and 7 wt% or less of the chelating agent from the viewpoint of the elution amount of the metal ions, the moldability of the fertilizer, and the shape maintainability.

また、施肥材では、上述した鉄、マンガン及び亜鉛に加え、窒素、リン、シリカなども溶出する。これらは、石炭灰から溶出される。   Further, in the fertilizer, nitrogen, phosphorus, silica and the like are eluted in addition to the above-described iron, manganese and zinc. These are eluted from the coal ash.

以下、実施例に基づき、後述の水生生物の増殖実験に用いる施肥材について更に説明する。   Hereinafter, based on an Example, the fertilizer used for the proliferation experiment of the aquatic organism mentioned later is further demonstrated.

(供試材料)
石炭灰は、粒子径は50μm以下のものを用いた。用いた石炭灰の成分組成を表1に示す。
(Test material)
Coal ash having a particle size of 50 μm or less was used. Table 1 shows the composition of the coal ash used.

鉄粉との比較のため、鉄鋼スラグを用いた。用いた鉄鋼スラグの成分組成を表2に示す。   Steel slag was used for comparison with iron powder. Table 2 shows the composition of the steel slag used.

鉄粉は日の丸産業(株)製で、Fe含有量が99%、粒子径が60μmのものを用いた。炭素は粒径1mm以下の高純度ピッチコークスを用いた。クエン酸は和光純薬(株)製(食品添加物、結晶状)を用いた。   The iron powder manufactured by Hinomaru Sangyo Co., Ltd. was used with an Fe content of 99% and a particle size of 60 μm. As the carbon, high-purity pitch coke having a particle diameter of 1 mm or less was used. Citric acid was manufactured by Wako Pure Chemical Industries, Ltd. (food additive, crystalline).

(サンプルの製造)
以下の各実験においてそれぞれに記す配合割合で原料を混合し、ドラム式造粒機に入れ、造粒機を回転させながら少しずつ水を加えて造粒し、直径1cm程度の球状のサンプルを作製して用いた。
(Sample production)
In each of the following experiments, the raw materials are mixed at the blending ratios described below, put into a drum granulator, and granulated by adding water little by little while rotating the granulator to produce a spherical sample with a diameter of about 1 cm. Used.

(実験1)
鉄粉と鉄鋼スラグによる鉄イオンの溶出量及び硫化水素の低減効果について検証した。
(Experiment 1)
The amount of iron ions eluted by iron powder and steel slag and the reduction effect of hydrogen sulfide were verified.

本実験で用いたサンプル1〜6の原料の配合割合を表3に示す。   Table 3 shows the mixing ratio of the raw materials of Samples 1 to 6 used in this experiment.

(硫化水素溶液の調製)
ビーカーに超純水(Milli−Q水)を1L入れ、窒素で空気をパージし、溶存酸素濃度を0.1mg/L以下にした。これにNaS・9HO(試薬特級,ナカライテスク社製)を0,50,100mg−S/lとなるよう添加し、更にpHの緩衝剤として1M Tris−HCl(分子生物学用,和光純薬製)を30ml加えてpHを8.3±0.1に調節し、硫化水素溶液を調製した。以下、それぞれH2S0、H2S50、H2S100と記す。
(Preparation of hydrogen sulfide solution)
1 L of ultrapure water (Milli-Q water) was put into a beaker, and the air was purged with nitrogen so that the dissolved oxygen concentration was 0.1 mg / L or less. To this was added Na 2 S · 9H 2 O (special reagent grade, manufactured by Nacalai Tesque) to a concentration of 0, 50, 100 mg-S / l, and 1M Tris-HCl (for molecular biology, as a pH buffering agent). 30 ml of Wako Pure Chemical Industries, Ltd.) was added to adjust the pH to 8.3 ± 0.1 to prepare a hydrogen sulfide solution. Hereinafter, they are referred to as H2S0, H2S50, and H2S100, respectively.

ガスクロマトグラフィー用ガラス製バイアル瓶(150ml,マルエム社製)に、サンプルを0.2g加えた後、硫化水素溶液を100ml入れ、瓶内の気相を窒素ガスで置換してゴム栓およびアルミ金具で密閉した。その後、MAGIC VAC(アズワン株式会社,20×30cm,ポリアミド・ナイロン/ポリエチレン製)にバイアル瓶を入れて密封し、25℃,40rpmの条件で7日間振とうした。   After adding 0.2 g of sample to a glass vial for gas chromatography (150 ml, manufactured by Maruemu), put 100 ml of hydrogen sulfide solution, replace the gas phase in the bottle with nitrogen gas, rubber stopper and aluminum fittings And sealed. Thereafter, the vial was placed in MAGIC VAC (As One Co., Ltd., 20 × 30 cm, made of polyamide, nylon / polyethylene), sealed, and shaken for 7 days at 25 ° C. and 40 rpm.

7日後に硫化水素溶液中の硫化水素濃度を北川式検知管(光明理化学工業社製,200SA,2−1000ppm用)で測定した。   Seven days later, the concentration of hydrogen sulfide in the hydrogen sulfide solution was measured with a Kitagawa detector tube (manufactured by Komyo Chemical Co., Ltd., for 200 SA, 2-1000 ppm).

更に、7日後のそれぞれの硫化水素溶液を0.45μmシリンジフィルター(MERCK MILLIPORE社,Millex−HN,ナイロン製)でろ過したろ液について、Inductively Coupled Plasma Atomic Emission Spectroscopy(ICP−AES)分析装置(Perkin−Elmer社製、Optima7300DV)により、溶出したFe、Mn、Znの各濃度を測定した。   Furthermore, an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) analyzer (ICP-AES) analyzer was used for the filtrate obtained by filtering each hydrogen sulfide solution after 7 days with a 0.45 μm syringe filter (MERCK MILLIPORE, Millex-HN, nylon). -Elmer Co., Optima 7300 DV) was used to measure each concentration of eluted Fe, Mn, and Zn.

図1にサンプル1〜3を加えた硫化水素溶液中の硫化水素濃度の測定結果を、図2にサンプル4〜6を加えた硫化水素溶液中の硫化水素濃度の測定結果をそれぞれに示す。また、サンプル1〜3を加えた硫化水素溶液中のFe、Mn、Znの濃度をそれぞれ図3、図4、図5に示す。また、サンプル4〜6を加えた硫化水素溶液中のFe、Mn、Znの濃度をそれぞれ図6、図7、図8に示す。なお、各サンプルについて、それぞれ同じ実験を3回行っており、図1〜図8のシンボルが平均値、エラーバーが標準偏差を表している。また、後述の実験2〜実験5についても同様である。   FIG. 1 shows the measurement result of the hydrogen sulfide concentration in the hydrogen sulfide solution to which samples 1 to 3 are added, and FIG. 2 shows the measurement result of the hydrogen sulfide concentration in the hydrogen sulfide solution to which samples 4 to 6 are added. Moreover, the density | concentration of Fe, Mn, and Zn in the hydrogen sulfide solution which added the samples 1-3 is shown in FIG.3, FIG.4, FIG.5, respectively. Moreover, the density | concentration of Fe, Mn, and Zn in the hydrogen sulfide solution which added samples 4-6 is shown in FIG.6, FIG.7, FIG.8, respectively. Note that the same experiment was performed three times for each sample, the symbols in FIGS. 1 to 8 represent the average value, and the error bar represents the standard deviation. The same applies to Experiments 2 to 5 described later.

鉄鋼スラグを含有するサンプル1〜3でも、硫化水素はある程度減少しているが、鉄を含有するサンプル4〜6では、H2S50、H2S100のいずれについても、硫化水素はほぼ消失した。   In Samples 1 to 3 containing steel slag, hydrogen sulfide was reduced to some extent, but in Samples 4 to 6 containing iron, hydrogen sulfide was almost lost in both H2S50 and H2S100.

鉄の溶出量は、鉄粉を含有するサンプル4〜6では鉄鋼スラグを含有するサンプル1〜3に比べていずれも多い。また、他のZn、Mnについても、サンプル4〜6の方がサンプル1〜3よりも溶出量が多い。これらは鉄粉に含まれていない成分であるため、石炭灰から溶出しており、石炭灰と鉄との相性により、溶出量が高まったものと考えられる。   The amount of iron elution is larger in Samples 4 to 6 containing iron powder than in Samples 1 to 3 containing steel slag. Moreover, about other Zn and Mn, the amount of elution of samples 4-6 is larger than samples 1-3. Since these are components not contained in the iron powder, they are eluted from the coal ash, and it is considered that the amount of elution increased due to the compatibility between the coal ash and iron.

これらの結果から、石炭灰と鉄を組み合わせることが鉄鋼スラグと組み合わせることよりも適切であることがわかった。   From these results, it was found that combining coal ash and iron is more appropriate than combining steel slag.

(実験2)
金属イオンの溶出促進の補助剤として、クエン酸、炭素を用い、その影響について検証した。本実験で用いたサンプル11〜16の原料の配合割合を表4に示す。
(Experiment 2)
Citric acid and carbon were used as auxiliary agents for promoting the elution of metal ions, and their effects were verified. Table 4 shows the mixing ratio of the raw materials of Samples 11 to 16 used in this experiment.

サンプル11〜16、硫化水素溶液H2S0を用いて実験1と同様に実験を行った。そして、実験1と同様に硫化水素溶液中のFe濃度を測定した。Fe濃度の測定結果を図9に示す。   Experiments were performed in the same manner as Experiment 1 using Samples 11 to 16 and the hydrogen sulfide solution H2SO. Then, as in Experiment 1, the Fe concentration in the hydrogen sulfide solution was measured. The measurement result of Fe concentration is shown in FIG.

炭素を含有するサンプル12、13では、炭素を含有しないサンプル11に比べて鉄の溶出が促進されたものの、鉄の溶出量は炭素を30重量%添加してもわずか3.6%程度の増加に留まった。   In the samples 12 and 13 containing carbon, the elution of iron was promoted compared to the sample 11 containing no carbon, but the iron elution amount increased by only 3.6% even when 30% by weight of carbon was added. Stayed in.

一方、クエン酸を添加した場合、0.1重量%添加したサンプル14では、サンプル11に比べ、鉄の溶出量が10%程度増加しており、1.0重量%添加したサンプル16では、鉄の溶出量が28%程度増加した。この結果から、鉄の溶出という点で、クエン酸は炭素よりも遙かに効果が高いことがわかった。   On the other hand, in the case of adding citric acid, in the sample 14 added with 0.1% by weight, the elution amount of iron is increased by about 10% compared to the sample 11, and in the sample 16 added with 1.0% by weight, the iron is dissolved. Increased by about 28%. From this result, it was found that citric acid was much more effective than carbon in terms of elution of iron.

(実験3)
鉄粉と石炭灰の配合割合による影響について検証した。本実験で用いたサンプル21〜23の原料の配合割合を表5に示す。
(Experiment 3)
The effect of the mixing ratio of iron powder and coal ash was verified. Table 5 shows the mixing ratio of the raw materials of Samples 21 to 23 used in this experiment.

サンプル21〜23をそれぞれ用い、実験1と同様に実験を行った。そして、実験1と同様に、硫化水素溶液中の硫化水素濃度、並びに、Fe、Zn及びMn濃度を測定した。硫化水素溶液中の硫化水素濃度、並びに、Fe、Zn及びMn濃度の測定結果を図10、図11、図12、図13にそれぞれ示す。   Experiments were performed in the same manner as Experiment 1 using Samples 21 to 23, respectively. Then, as in Experiment 1, the hydrogen sulfide concentration and the Fe, Zn, and Mn concentrations in the hydrogen sulfide solution were measured. The measurement results of the hydrogen sulfide concentration and the Fe, Zn, and Mn concentrations in the hydrogen sulfide solution are shown in FIGS. 10, 11, 12, and 13, respectively.

H2S100の試験区においては、サンプル21、22では硫化水素濃度は50ppm程度の減少、サンプル23では30ppm程度の減少が見られたが、H2S50の試験区においては、いずれのサンプルについても70〜80ppm程度の減少であった。   In the test plot of H2S100, in samples 21 and 22, the hydrogen sulfide concentration decreased by about 50 ppm, and in sample 23, a decrease of about 30 ppm was observed, but in the test plot of H2S50, about 70 to 80 ppm for all samples. Decrease.

また、Feの溶出量は石炭灰を多く含有するサンプル23で最大であり、5ppmほどの溶出が見られた。また、Zn、Mnについても、Feと同様に石炭灰を多く含有するサンプル23で多く溶出していた。   Moreover, the amount of Fe elution was maximum in Sample 23 containing a large amount of coal ash, and about 5 ppm was observed. Further, Zn and Mn were also eluted in a large amount in the sample 23 containing a large amount of coal ash as in the case of Fe.

これらの結果から、石炭灰と鉄粉の配合比率は、3:7〜7:3であればいずれでも硫化水素の低減効果が得られる。なお、石炭灰を多く含有するサンプル23では、崩れがみられたことや、Mn、Znの溶出量からすると、石炭灰:鉄粉の配合比率は4:6〜6:4が好ましいと考えられる。   From these results, the reduction ratio of hydrogen sulfide can be obtained at any ratio of coal ash and iron powder in the range of 3: 7 to 7: 3. In addition, in the sample 23 containing much coal ash, it is thought that the blending ratio of coal ash: iron powder is preferably 4: 6 to 6: 4 from the fact that collapse was observed and the elution amounts of Mn and Zn. .

(実験4)
続いて、クエン酸の配合割合による影響について検証した。本実験で用いたサンプル31〜37の原料の配合割合を表6に示す。
(Experiment 4)
Then, it verified about the influence by the mixture ratio of a citric acid. Table 6 shows the mixing ratio of the raw materials of Samples 31 to 37 used in this experiment.

サンプル31〜37を用い、実験1と同様にして実験を行った。そして、実験1と同様に硫化水素濃度、並びに、Fe、Zn及びMn濃度を測定した。更に、H2S0を用いて行ったものについては、NO+NO−N、NO−N、NH−N、PO−P、SiO−Siをオートアナライザー(SWAAT,BLTEC社製)で測定し、それぞれCu−Cd還元法、ナフチルエチレンジアミン法、インドフェノール法、モリブデンブルー法、モリブデンブルー法で分析した。 Experiments were performed in the same manner as Experiment 1 using Samples 31 to 37. Then, as in Experiment 1, the hydrogen sulfide concentration and the Fe, Zn, and Mn concentrations were measured. Furthermore, for those conducted with H2S0 is determined NO 3 + NO 2 -N, NO 2 -N, NH 4 -N, PO 4 -P, the SiO 2 -Si auto analyzer (SWAAT, manufactured BLTEC Co.) Then, analysis was performed by Cu-Cd reduction method, naphthylethylenediamine method, indophenol method, molybdenum blue method, and molybdenum blue method, respectively.

硫化水素濃度、並びに、Fe、Zn及びMn濃度の測定結果を図14、図15、図16、図17にそれぞれ示す。また、NO+NO−N、NO−N、NH−N、PO−P、SiO−Siのそれぞれの濃度の測定結果を図18、図19、図20、図21、図22に示す。 The measurement results of the hydrogen sulfide concentration and the Fe, Zn, and Mn concentrations are shown in FIGS. 14, 15, 16, and 17, respectively. Further, the measurement results of the respective concentrations of NO 3 + NO 2 —N, NO 2 —N, NH 4 —N, PO 4 —P, and SiO 2 —Si are shown in FIG. 18, FIG. 19, FIG. 20, FIG. Shown in

図14から、全てのサンプルで硫化水素低減傾向が見られ、クエン酸の含有量が多いほど硫化水素の低減効果が高いことがわかる。また、図15〜図17から、Fe、Zn、Mnの溶出量についても、クエン酸の含有量が多いほど増加していることがわかる。なお、MnはH2S0、H2S50、H2S100の各試験区において、濃度に大きな差がなく、また、Fe、Znについては、H2S0における濃度とH2S50、H2S100における濃度との差が大きかったことから、硫化水素の低減はFe、Znの溶出による効果が大きいものと考えられる。なお、このことは、図11〜図13でも示されている。   FIG. 14 shows that all samples show a tendency to reduce hydrogen sulfide, and that the higher the citric acid content, the higher the effect of reducing hydrogen sulfide. 15 to 17, it can be seen that the elution amounts of Fe, Zn, and Mn increase as the citric acid content increases. Note that Mn has no significant difference in concentration in each of the test groups of H2S0, H2S50, and H2S100, and that of Fe and Zn has a large difference between the concentration in H2S0 and the concentration in H2S50 and H2S100. It is considered that the reduction of the effect of elution of Fe and Zn is large. This is also shown in FIGS.

また、H2S50試験区において、クエン酸を3重量%以上含有するサンプル34〜37で硫化水素濃度はほぼ0になっていたことから、施肥材はクエン酸を3重量%以上含有していることが好ましい。また、クエン酸を10重量%含有するサンプル37は脆く崩れやすかったことから、施肥材の成形性及び形状維持性の観点から、施肥材のクエン酸含有量が7重量%以下であることが好ましいと考えられる。   Further, in the H2S50 test section, samples 34 to 37 containing citric acid at 3% by weight or more had a hydrogen sulfide concentration of almost 0, and therefore the fertilizer contains 3% by weight or more citric acid. preferable. Further, since the sample 37 containing 10% by weight of citric acid was brittle and easily collapsed, it is preferable that the content of citric acid in the fertilizer is 7% by weight or less from the viewpoint of formability and shape maintenance of the fertilizer. it is conceivable that.

また、図18〜図22から、N、P、Siの溶出量についても、クエン酸の含有量が多いほど増加している。N、P、Siは生態系の栄養素として機能する一方で、富栄養化した底質では有機物生産を助長することから、過度に溶出させない方がよいと考えられる。しかしながら、多く溶出したNHでも10数μモルであり、富栄養化を促進するほどの濃度ではない。また、クエン酸を10重量%含有するサンプル37において、溶出したN、P、Si、Feのモル濃度比をとると、20:0.8:16:1であり、レッドフィールド比と比較すると、Feが1000倍過剰であり、その他の元素はほぼ同等である。なお、レッドフィールド比とは、微細藻類の成長に最適な元素比を表すもので、生物体中の物質比率と環境水中の物質比率がほぼ同じで、生産と分解に係る物質のバランスに過不足がない状態を示す元素比の概念である。このように、N、P、Siの溶出量はレッドフィールド比と同様であるため、富栄養化した底質を更に悪化させるおそれもないと考えられるとともに、Fe等を多量に溶出させて硫化水素を低減させつつ、且つ、適度にN、P、Siを溶出させて栄養素を供給できることから水中における生態系の健全性回復のために好適であると言える。 From FIG. 18 to FIG. 22, the elution amounts of N, P, and Si also increase as the citric acid content increases. While N, P, and Si function as ecosystem nutrients, the eutrophic sediment promotes organic matter production, so it is better not to elute it excessively. However, even a large amount of NH 4 eluted is a few tens of moles, which is not a concentration that promotes eutrophication. Further, in the sample 37 containing 10% by weight of citric acid, the molar concentration ratio of eluted N, P, Si, Fe is 20: 0.8: 16: 1, and compared with the red field ratio, Fe is 1000 times excess and other elements are almost equivalent. The red field ratio is the optimal elemental ratio for the growth of microalgae. The substance ratio in the organism and the substance ratio in the environmental water are almost the same, and the balance of substances related to production and decomposition is too short or large. It is a concept of the element ratio indicating a state where there is no. Thus, since the elution amounts of N, P, and Si are the same as the red field ratio, it is considered that there is no possibility of further worsening the eutrophic bottom sediment, and a large amount of Fe and the like are eluted to generate hydrogen sulfide. It can be said that it is suitable for the restoration of the health of the ecosystem in the water because it can supply nutrients by appropriately eluting N, P and Si while reducing the amount of water.

(実験5)
実験4におけるサンプル34(鉄粉:48.5重量%、石炭灰:48.5重量%、クエン酸:3重量%)を用い、海水での効果について検証した。
(Experiment 5)
Sample 34 in Experiment 4 (iron powder: 48.5% by weight, coal ash: 48.5% by weight, citric acid: 3% by weight) was used to verify the effect on seawater.

超純水1Lに人工海水粉末(レッドシーソルト,レッドシーソルト社)を33g入れて、33psuの人工海水を調製した。更に、Nガスを吹き込んで空気をパージし、溶存酸素濃度を0.1mg/l以下にした。これにNaS・9HOを0、50、100mg−S/lとなるよう添加し、硫化水素溶液を調製した。この硫化水素溶液をそれぞれSa−H2S0、Sa−H2S50、Sa−H2S100と記す。 33 g of artificial seawater powder (Red Sea Salt, Red Sea Salt) was added to 1 L of ultrapure water to prepare 33 psu artificial seawater. Further, N 2 gas was blown in to purge the air, and the dissolved oxygen concentration was reduced to 0.1 mg / l or less. To this was added Na 2 S · 9H 2 O to 0, 50, 100 mg-S / l to prepare a hydrogen sulfide solution. This hydrogen sulfide solution is referred to as Sa-H2S0, Sa-H2S50, and Sa-H2S100, respectively.

150mlバイアル瓶に上記の硫化水素溶液を100ml入れた。これにサンプル34を0.2g静かに加えた後、ゴム栓およびアルミ金具で密閉した。MAGIC VACに150mlバイアル瓶を入れ、密封用パックで密封し、25℃、40rpmで7日間振とうした後、硫化水素濃度を検知管で測定した。更に、0.45μmシリンジフィルターでろ過したろ液についてFe、Zn、Mnの各濃度をICP−AESで測定した。   100 ml of the above hydrogen sulfide solution was placed in a 150 ml vial. After 0.2 g of sample 34 was gently added thereto, it was sealed with a rubber stopper and an aluminum fitting. A 150 ml vial was placed in the MAGIC VAC, sealed with a sealing pack, shaken at 25 ° C. and 40 rpm for 7 days, and then the hydrogen sulfide concentration was measured with a detector tube. Furthermore, each density | concentration of Fe, Zn, and Mn was measured by ICP-AES about the filtrate filtered with the 0.45 micrometer syringe filter.

図23に硫化水素溶液中の硫化水素濃度の測定結果を示す。また、Fe、Zn、Mn濃度を図24〜図26にそれぞれに示す。   FIG. 23 shows the measurement result of the hydrogen sulfide concentration in the hydrogen sulfide solution. The Fe, Zn, and Mn concentrations are shown in FIGS.

実験4において超純水で調製したH2S0、H2S50、H2S100で行った場合に比べると、Fe、Zn、Mnの溶出は減少し、硫化水素の低減効果は若干劣る結果となったが、海水中においても硫化水素の低減効果を発揮することを確認した。   Compared to the case of H2S0, H2S50, and H2S100 prepared with ultrapure water in Experiment 4, the elution of Fe, Zn, and Mn decreased, and the effect of reducing hydrogen sulfide was slightly inferior. Has also been confirmed to exert the effect of reducing hydrogen sulfide.

続いて、実験4におけるサンプル34(鉄粉:48.5重量%、石炭灰:48.5重量%、クエン酸:3重量%)を用い、各種水生生物の増殖試験を行った。   Subsequently, using the sample 34 in Experiment 4 (iron powder: 48.5% by weight, coal ash: 48.5% by weight, citric acid: 3% by weight), growth tests of various aquatic organisms were performed.

(微細藻類の増殖促進実験)
表層海水(2006年12月14日、山口県久賀沖で採取、GF/Cろ過済み)をもとにして作製した栄養塩強化培養液Guillard f/10(Tris−HCl規定量添加)に、微量金属混液(PS−II,Provasoli)およびビタミン混液を加え、Sterivex 0.02μmフィルターでろ過滅菌したものを基本培養液(Guillard f/2培養液)として用意した。
(Experiment for promoting the growth of microalgae)
A trace amount of nutrient-enriched culture solution Guillard f / 10 (Tris-HCl specified amount added) prepared based on surface seawater (December 14, 2006, collected off Kuga, Yamaguchi Prefecture, GF / C filtered) A mixed metal solution (PS-II, Provasoli) and a mixed vitamin solution, which was sterilized by filtration through a Sterivex 0.02 μm filter, was prepared as a basic culture solution (Guillard f / 2 culture solution).

これを培養用滅菌済みプラスチック容器(250mL,セルスター)に150mLずつ分取し、それぞれにサンプル34を1.5g(10g/L)を加えた。そして、下記のように藻類を添加し、培養した。   150 mL of this was dispensed into a sterilized plastic container for culture (250 mL, Cellstar), and 1.5 g (10 g / L) of sample 34 was added to each. Then, algae was added and cultured as described below.

用いた藻類は浮遊珪藻Skeletonema costatum及び付着珪藻Nitzschia pellucidaで、これらを初期濃度約10cells/Lで添加し、1日おきに7回(イニシャルを入れて8回)、フルオロイメージアナライザー(FLA−7000,富士フィルム社製)で蛍光強度を測定し、細胞増殖を観察した。 The algae used were the floating diatom Skeletonema costatum and the attached diatom Nitzschia pelucida, which were added at an initial concentration of about 10 3 cells / L, 7 times every other day (8 times including initials), and fluoro image analyzer (FLA- 7000, manufactured by Fuji Film Co., Ltd.), fluorescence intensity was measured, and cell proliferation was observed.

実験はそれぞれ3つずつ行い、それらを照明付き培養機に入れ、温度をS.costatumでは15℃、N.pellucidaでは20℃、光条件は両種とも200μmol m−2−1にして培養した(サンプル34添加区)。 Each experiment was performed in triplicate, placed in a lighted incubator, and the temperature was adjusted to S.P. costatum 15 ° C., N.C. Pelucida was cultured at 20 ° C. and light conditions for both species at 200 μmol m −2 s −1 (sample 34 added section).

また、サンプル34を添加しない以外、上記と同様にして藻類を培養した(対照区1:ポジティブ・コントロール)。   In addition, algae were cultured in the same manner as described above except that sample 34 was not added (control group 1: positive control).

また、f/2培養液に代えて、表層ろ過滅菌海水を用いるとともに、サンプル34を添加せずに、上記と同様にして藻類を培養した(対照区2:ネガティブ・コントロール)。   Further, in place of the f / 2 culture solution, surface filtration sterilized seawater was used, and algae were cultured in the same manner as described above without adding the sample 34 (control group 2: negative control).

S.costatumの増殖試験の結果を図27に、また、N.pellucidaの増殖試験の結果を図28に示す。   S. The results of the growth test of costatum are shown in FIG. The result of the proliferation test of Pellucida is shown in FIG.

浮遊珪藻S.costatumでは、すべての栄養塩類が十分に入っているf/2培地(対照区1)で最も増殖が良かったが、14日後にサンプル34添加区はf/2培地とほぼ同等の蛍光強度となった。   Floating diatom S. In Costatum, the growth was the best in the f / 2 medium (control group 1) containing enough nutrients, but after 14 days, the sample 34-added group had almost the same fluorescence intensity as the f / 2 medium. It was.

付着珪藻N.pellucidaでは、8日の時点ではf/2培地の増殖のほうが良かったが、14日後にはサンプル34添加区のほうが良好であった。このことは、f/2培地では栄養塩を使い果たされてしまうが、サンプル34から供給されるFeその他の栄養塩の供給が持続性に優れていると考えられる。S.costatumでも14日以降まで実験を続けていればN.pellucidaと同様の結果が得られていた可能性は高い。   Adherent diatom N. In Pellucida, the growth of the f / 2 medium was better at 8 days, but after 14 days, the sample 34 addition group was better. This means that the nutrient salt is exhausted in the f / 2 medium, but the supply of Fe and other nutrient salts supplied from the sample 34 is considered to be excellent in sustainability. S. If the experiment is continued until 14th or later, N. costum It is highly possible that the same results as with pelucida were obtained.

また、ろ過海水(対照区2)ではほとんど増殖しなかった、これは、用いたろ過海水中に栄養塩がほとんど無かったためであると考えられる。   Moreover, there was hardly any growth in the filtered seawater (control zone 2), which is probably because there was almost no nutrient salt in the used filtered seawater.

(アサリの増殖実験1)
2013年8月9日、広島県尾道市浦島観光干潟にて、10m×10mの区画にサンプル34を20kg(200g/m)鋤き込み、その上に食害防止網を被せた(サンプル34添加区)。
(Clam breeding experiment 1)
On August 9, 2013, 20 kg (200 g / m 2 ) of sample 34 was placed in a 10 m × 10 m section of Urashima Kanko Tidal Flat, Onomichi City, Hiroshima Prefecture, and a food damage prevention net was put on it (addition of sample 34) Ward).

また、34添加区に隣接する区域に、サンプル34を入れない以外、同様に鋤き込みを行い、食害防止網を設置した(対照区)。   In addition, except that the sample 34 was not put in an area adjacent to the 34 added area, the same scouring was performed and a food damage prevention net was installed (control area).

その後、2013年9月6日および2013年11月21日に、それぞれの区画内中央部にてアサリを採取し、アサリの個体数及びサイズを計測した。なお、2013年9月6日は、縦×横×深さ=1m×1m×0.2mの底泥中のアサリを採取し、2013年11月21日は、縦×横×深さ=0.25m×0.25m×0.25mの底泥中のアサリを採取した。   Thereafter, on September 6, 2013 and November 21, 2013, clams were collected at the center of each compartment, and the number and size of clams were measured. On September 6, 2013, we collected clams in the bottom mud of length x width x depth = 1 m x 1 m x 0.2 m, and on November 21, 2013, length x width x depth = 0. Clam in the bottom mud of .25m x 0.25m x 0.25m was collected.

また、アサリを採取した底泥を持ち帰り、酸揮発性硫化物(AVS)、有機態炭素(POC)を測定した。   Moreover, the bottom mud from which clams were collected was taken home, and acid volatile sulfides (AVS) and organic carbon (POC) were measured.

また、2013年11月21日に、それぞれの区画の底泥内間隙水中の金属濃度をICP−AESで測定した。   Moreover, on November 21, 2013, the metal concentration in the pore water in the bottom mud of each section was measured by ICP-AES.

2013年9月6日および2013年11月21日のアサリの採取結果を図29に示す。アサリのサイズに優位性はないものの、サンプル34添加区では、対照区に比べ、アサリの個体数が多いことがわかる。   The collection results of clams on September 6, 2013 and November 21, 2013 are shown in FIG. Although there is no advantage in the size of the clams, it can be seen that the number of clams in the group with the sample 34 added is larger than that in the control group.

また、POC、AVSの結果を図30に、Fe、Mn、Zn濃度を表7に示す。図30を見ると、サンプル34添加区では、対照区に比べ、増殖実験開始後の1ヶ月後では、AVSは少し高くなっているが、3ヶ月以上経過すると、POCが優位に高く、AVSが優位に低いことがわかる。また、表7を見ると、サンプル34添加区では、対照区に比べ、Fe,Mn濃度が高いことがわかる。サンプル34を底泥に漉き込むことで、底質中の硫化物量(AVS)が大きく減少し、餌(付着微細藻)の指標となるPOCが増加していることから、サンプル34添加区ではアサリの個体数が増加したと考えられる。   Further, FIG. 30 shows the results of POC and AVS, and Table 7 shows the concentrations of Fe, Mn and Zn. Referring to FIG. 30, in the group to which sample 34 was added, the AVS was slightly higher after one month after the start of the growth experiment, but after 3 months or more, the POC was significantly higher and the AVS was higher. You can see that it is significantly lower. Moreover, when Table 7 is seen, it turns out that the Fe and Mn density | concentration is high in the sample 34 addition group compared with the control group. By swallowing sample 34 into the bottom mud, the amount of sulfide (AVS) in the sediment is greatly reduced, and POC, which is an indicator of bait (adherent microalgae), is increased. It is thought that the number of individuals increased.

(アサリの増殖実験2)
2013年6月10日、広島県尾道市浦島えび干潟にて、10m×10mの区画にサンプル34を20kg(200g/m)鋤き込み、その上に食害防止網を被せた(サンプル34添加区)。
(Clam breeding experiment 2)
On June 10, 2013, 20 kg (200 g / m 2 ) of sample 34 was put in a 10 m × 10 m section at Urashima Ebi Tidal Flat, Onomichi City, Hiroshima Prefecture, and a food damage prevention net was put on it (addition of sample 34) Ward).

また、サンプル34添加区に隣接する区域に、サンプル34の鋤き込みを行わない以外、上記と同様に鋤きによる耕耘を行い、食害防止網を設置した(対照区)。   Further, except that the sample 34 was not sown in the area adjacent to the sample 34 added section, plowing was performed in the same manner as described above, and a food damage prevention net was installed (control group).

そして、設置3ヶ月後(2013年9月11日)に、それぞれの区画内3カ所において、縦×横×深さ=50cm×50cm×20cmの底泥中のアサリを採取し、アサリの個体数及び重量を計測した。それぞれの区画内3カ所において採取されたアサリの総個数及び総重量を表8に示す。   Three months after installation (September 11, 2013), the clams in the bottom mud of length x width x depth = 50 cm x 50 cm x 20 cm were collected at three locations in each section, and the number of clams And weighed. Table 8 shows the total number and weight of clams collected at three locations in each section.

表8を見ると、サンプル34添加区では、対照区に比べて、アサリ個体数で約9倍、重量で約43倍であり、個体数、重量ともに大幅に増加していた。   As shown in Table 8, in the group to which sample 34 was added, the number of clams was about 9 times and the weight was about 43 times that of the control group, and both the number of individuals and the weight were significantly increased.

(アサリの増殖実験3)
2013年7月8日、尾道市の尾道東部漁協山波支所付近の干潟にて、10m×10mの区画にサンプル34を20kg(200g/m)鋤き込み、その上に食害防止網を被せた(サンプル添加区)。
(Clam breeding experiment 3)
On July 8, 2013, 20 kg (200 g / m 2 ) of sample 34 was placed in a 10m x 10m section of a tidal flat near the Onomichi fishery cooperative mountain wave branch in Onomichi, and a food damage prevention net was placed on it. (Sample addition section).

また、サンプル34添加区に隣接する区域に、サンプル34の鋤き込みを行わない以外、上記と同様に食害防止網を設置した(対照区)。   In addition, an anti-corrosion net was installed in the area adjacent to the area where the sample 34 was added, except that the sample 34 was not stirred (control area).

そして、設置3ヶ月後(2013年9月11日)に、それぞれの区画内3カ所において、縦×横×深さ=50cm×50cm×20cmの底泥中のアサリを採取し、アサリの個体数及び重量を計測した。それぞれの区画内3カ所において採取されたアサリの総個数及び総重量を表9に示す。   Three months after installation (September 11, 2013), the clams in the bottom mud of length x width x depth = 50 cm x 50 cm x 20 cm were collected at three locations in each section, and the number of clams And weighed. Table 9 shows the total number and weight of clams collected at three locations in each section.

表9を見ると、サンプル34添加区では、対照区に比べて、アサリ個体数で約6倍、重量で約16倍であり、個体数、重量ともに大幅に増加していた。   As shown in Table 9, in the group to which sample 34 was added, the number of clams was about 6 times and the weight was about 16 times that of the control group, and both the number of individuals and the weight were significantly increased.

上記のアサリの増殖実験1〜3では、すべてサンプル34添加区でアサリの採取量、個体重量が増加していた。サンプル34を鋤き込むことによってアサリが生息する干潟の底質が改善されるとともに、アサリの餌となる付着珪藻が増加し、アサリの生存率の上昇によるものと考えられる。   In the above-mentioned clam breeding experiments 1 to 3, the amount of clams collected and the individual weight increased in the sample 34-added section. It is considered that the sample 34 is introduced to improve the bottom sediment of the tidal flat where the clams inhabit, and the attached diatoms that feed on the clams increase, leading to an increase in the survival rate of the clams.

(牡蠣の増殖実験)
広島県東広島市安芸津町風早地区のカキ筏を利用し、カキの増殖実験を行った。
(Oyster breeding experiment)
Using oyster mushrooms in the Kazahaya area of Akitsu-cho, Higashihiroshima City, Hiroshima Prefecture, we conducted oyster propagation experiments.

2013年7月に種付けしたカキが垂下されるカキ筏に、サンプル34を設置した。サンプル34は2013年8月22日に以下のように設置した。サンプル34を300g入れた袋を、図31(A)に示すように、15m×10mのカキ筏の15カ所に設置した。サンプル34を入れた袋は、図31(B)に示すように、2連がけで吊した。即ち、一つのカキ筏に9kg(300g/袋×2×15箇所)のサンプル34を設置した。これを300g添加区と記す。   A sample 34 was placed on an oyster bowl on which an oyster seeded in July 2013 was suspended. Sample 34 was installed on August 22, 2013 as follows. As shown in FIG. 31 (A), bags containing 300 g of the sample 34 were installed at 15 locations of 15 m × 10 m oyster baskets. As shown in FIG. 31B, the bag containing the sample 34 was hung in two pairs. That is, a sample 34 of 9 kg (300 g / bag × 2 × 15 locations) was placed in one oyster bowl. This is referred to as a 300 g added section.

また、袋にサンプル34を100g入れる以外、上記と同様に設置した。一つのカキ筏に設置したサンプル34は3kg(100g/袋×2×15)である。これを100g添加区と記す。また、サンプル34を設置しない対照区も設けた。それぞれの区画の位置を図32に示す。   Moreover, it installed similarly to the above except putting 100g of samples 34 in a bag. The sample 34 installed in one oyster basket is 3 kg (100 g / bag × 2 × 15). This is referred to as a 100 g added section. In addition, a control section in which the sample 34 was not installed was also provided. The position of each section is shown in FIG.

そして、2013年12月10日に、それぞれの区画についてそれぞれ3カ所でカキを採取し、殻を剥いたむき身の重量を計測した。その結果を表10に示す。なお、100g添加区及び300g添加区については、サンプル34を設置した箇所直近の垂下カキからカキを採取した。また、対照区については、カキ筏全体から無作為にカキを採取した。   On December 10, 2013, oysters were collected at three locations for each compartment, and the weight of the peeled shell was measured. The results are shown in Table 10. In addition, about 100 g addition area and 300 g addition area, the oyster was extract | collected from the drooping oyster near the location in which the sample 34 was installed. In the control group, oysters were randomly collected from the whole oyster mushroom.

カキ個体平均重量は、対照区12.6g、100g添加区13.3g、300g添加区14.0gであり、サンプル34の添加量が多いほど、カキ重量が大きいことがわかる。そして、対照区に対する100g添加区及び300g添加区の重量増加率は、それぞれ6%、11%であった。サンプル34から栄養分である鉄、窒素、リン、シリカ、マンガン、亜鉛などが溶出し、浮遊珪藻が増殖することで、これを餌としてカキが摂取して成長したものと考えられる。   The average weight of oysters is 12.6 g in the control group, 13.3 g in the group with 100 g added, and 14.0 g in the group with 300 g added. It can be seen that the oyster weight increases as the amount of sample 34 added increases. The weight increase rates of the 100 g added group and the 300 g added group with respect to the control group were 6% and 11%, respectively. It is considered that oysters ingested and grew as a result of proliferation of floating diatoms by elution of nutrients such as iron, nitrogen, phosphorus, silica, manganese, and zinc from sample 34.

本発明に係る水生生物の増殖方法では、貝類又は藻類の増殖水域に施肥材を配置することにより、鉄イオンを含むさまざまな栄養分が溶出するので、これらの水生生物の成長を促すことができる。   In the aquatic organism propagation method according to the present invention, by arranging a fertilizer in the breeding water area of shellfish or algae, various nutrients including iron ions are eluted, so that the growth of these aquatic organisms can be promoted.

Claims (5)

石炭灰と鉄とキレート剤とを含有し、前記石炭灰と前記鉄との配合比が重量比で3:7〜7:3である施肥材を貝類又は藻類の増殖水域に配置し、
前記貝類或いは前記藻類の生育を促進させる、
ことを特徴とする水生生物の増殖方法。
A fertilizer containing coal ash, iron and a chelating agent , wherein the blending ratio of the coal ash and the iron is 3: 7 to 7: 3 in a weight ratio, is placed in a shellfish or algae breeding water area,
Promote the growth of the shellfish or the algae,
An aquatic organism propagation method characterized by the above.
前記キレート剤がクエン酸である前記施肥材を用いる、
ことを特徴とする請求項1に記載の水生生物の増殖方法。
Using the fertilizer, wherein the chelating agent is citric acid,
The aquatic organism growth method according to claim 1 .
前記クエン酸を3重量%以上7重量%以下含有する前記施肥材を用いる、
ことを特徴とする請求項に記載の水生生物の増殖方法。
Using the fertilizer containing 3% by weight or more and 7% by weight or less of the citric acid,
The method for growing aquatic organisms according to claim 2 .
水中で鉄イオン、マンガンイオン及び亜鉛イオンを溶出して、前記キレート剤とで鉄キレート、マンガンキレート及び亜鉛キレートを形成するとともに、窒素、リン及び珪素を溶出する前記施肥材を用い、
前記施肥材から金属イオンを錯体として溶存させるとともに、窒素、リン及び珪素を溶出させて、これらを前記貝類或いは前記藻類に直接的或いは間接的に摂取させる、
ことを特徴とする請求項1乃至のいずれか一項に記載の水生生物の増殖方法。
Eluting iron ions, manganese ions and zinc ions in water, forming iron chelate, manganese chelate and zinc chelate with the chelating agent, using the fertilizer to elute nitrogen, phosphorus and silicon,
While dissolving metal ions from the fertilizer as a complex, eluting nitrogen, phosphorus and silicon, and ingesting them directly or indirectly to the shellfish or the algae,
The aquatic organism propagation method according to any one of claims 1 to 3 , wherein
前記貝類としてアサリ又は牡蠣の生育を促進させる、
ことを特徴とする請求項1乃至のいずれか一項に記載の水生生物の増殖方法。
Promote the growth of clams or oysters as the shellfish,
The aquatic organism growth method according to any one of claims 1 to 4 , wherein
JP2014113751A 2014-06-02 2014-06-02 Aquatic organism growth methods Active JP6376493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014113751A JP6376493B2 (en) 2014-06-02 2014-06-02 Aquatic organism growth methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014113751A JP6376493B2 (en) 2014-06-02 2014-06-02 Aquatic organism growth methods

Publications (2)

Publication Number Publication Date
JP2015226511A JP2015226511A (en) 2015-12-17
JP6376493B2 true JP6376493B2 (en) 2018-08-22

Family

ID=54884478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014113751A Active JP6376493B2 (en) 2014-06-02 2014-06-02 Aquatic organism growth methods

Country Status (1)

Country Link
JP (1) JP6376493B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6793286B2 (en) * 2016-03-07 2020-12-02 国立大学法人広島大学 Growth promotion material for herbivorous bivalve molluscs and growth promotion method
CN111903581A (en) * 2020-09-10 2020-11-10 张雪涛 Working pile for mussel pile insertion cultivation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199377A (en) * 1991-01-24 1993-04-06 Jtm Industries, Inc. Artificial reefs manufactured from coal combustion by-products
JP2577709B2 (en) * 1994-07-25 1997-02-05 玉 小笠原 Concrete structure with slow release of iron ions
US6258588B1 (en) * 2000-01-06 2001-07-10 Oregon State University Palmaria algal strains and methods for their use
JP2004159610A (en) * 2002-11-15 2004-06-10 Mitsuru Takasaki Sea weed growing reef and method for forming sea weed bed
JP4489043B2 (en) * 2003-07-02 2010-06-23 西松建設株式会社 Water area environmental conservation material and water area environmental conservation method
JP4729120B1 (en) * 2010-02-15 2011-07-20 Jfeミネラル株式会社 Iron ion supply material, manufacturing method thereof, and iron ion supply method

Also Published As

Publication number Publication date
JP2015226511A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
US20070275856A1 (en) Composition For Growth Of Diatom Algae
JP4710036B2 (en) Iron chelate generating material and method of using the same
CN103436519A (en) Composite microbial preparation for watershed bioremediation as well as preparation method and application thereof
JP3990336B2 (en) Diatom culture method
Amosu et al. Biofiltering and uptake of dissolved nutrients by Ulva armoricana (Chlorophyta) in a land-based aquaculture system
JP6376493B2 (en) Aquatic organism growth methods
JP5588069B2 (en) Medium for microalgae
Bloch et al. Cyanobacteria mediated toxic metal removal as complementary and alternative wastewater treatment strategy
JP4945742B2 (en) Bottom quality improving material and bottom quality improving method using the same
Isara et al. Hydroton-biofloc-based aquaponics (hydrotonflocponics): towards good water quality and macro-micro nutrient
JP6597055B2 (en) Method for growing brown algae and method for producing hydrated solid with brown algae
JP6090665B2 (en) Sediment improvement and fertilizer and its usage
JP2021050105A (en) Iron supply agent and method to grow living things
Singh et al. Nutritional studies of Chara corallina
JP2019149963A (en) Ferrous ion controlled release unglazing and manufacturing method thereof, and bivalve farming tool and aquatic environment maintenance method using the unglazing
JP6390349B2 (en) Shellfish culture method
TWI601708B (en) Quickly create organic fertilizer and feed mineral element additions
Bulu et al. Ecological Impacts of Oxyanion in Aqua Systems
Saha et al. Harmful effects of different classes of heavy metals in our beautiful environment
Sengupta et al. Role of Dominant Green and Red algae of Indian Sundarbans in Nutrient remediation process employing synthetic saline wastewater
KR20180029299A (en) Water Treatment Method For Removing Water-bloom and Red Tide Using Mineral with Rich Sulfur Amino Acids
Gutiérrez Barral Effect of increasing nutrient inputs on the taxonomic composition of prokaryote plankton from the Ría de Vigo and the adjacent shelf
JP2017163900A (en) Liquid bacterium
Hamid et al. Research on the effectiveness of an aquatic plant (Utricularia aurea) for fish preservation
JP2023176981A (en) Nutrient supply material using methane fermentation digested liquid and seashell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180713

R150 Certificate of patent or registration of utility model

Ref document number: 6376493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250