JP2007075716A - Method for sinking carbonated/solidified body in water - Google Patents

Method for sinking carbonated/solidified body in water Download PDF

Info

Publication number
JP2007075716A
JP2007075716A JP2005266135A JP2005266135A JP2007075716A JP 2007075716 A JP2007075716 A JP 2007075716A JP 2005266135 A JP2005266135 A JP 2005266135A JP 2005266135 A JP2005266135 A JP 2005266135A JP 2007075716 A JP2007075716 A JP 2007075716A
Authority
JP
Japan
Prior art keywords
water
acid
carbonated
solidified body
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005266135A
Other languages
Japanese (ja)
Inventor
Satoru Shimizu
悟 清水
Hisami Arai
久美 新井
Tatsuto Takahashi
達人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005266135A priority Critical patent/JP2007075716A/en
Publication of JP2007075716A publication Critical patent/JP2007075716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To effectively elute an effective component such as iron and silica from the carbonated/solidified body, which is obtained by solidifying an uncarbonated calcium-containing raw material by a carbonation reaction, when the carbonated/solidified body is sunk in the water. <P>SOLUTION: A microbe for producing an acid in the water is stuck to the carbonated/solidified body and the microbe-stuck carbonated/solidified body is sunk in the water. The effective component of the carbonated/solidified body is dissolved by a very small quantity of the acid to be produced by the microbe stuck to the carbonated/solidified body and eluted effectively into the water. Since the effective component is eluted little by little over a long period of time by the acid to be produced by the microbe, the supply of the effective component to the water is continued over a long period of time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、未炭酸化Ca含有原料を炭酸化反応で固結させて得られた炭酸固化体を水中に沈設するための方法に関する。   The present invention relates to a method for precipitating a carbonized solid obtained by solidifying an uncarbonated Ca-containing raw material by a carbonation reaction in water.

鉄鋼製造プロセスで発生するスラグの利材化方法の一つとして、粉粒状のスラグをこれに含まれる未炭酸化Ca(CaO及び/又はCa(OH))を利用して炭酸固化させることにより、ブロック化された炭酸固化体(石材)を得る方法が知られている(例えば、特許文献1,2)。この方法では、例えば、水分を添加した粉粒状のスラグを型枠に充填し、このスラグ充填層に炭酸ガス含有ガスを吹き込むことによってスラグに含まれる未炭酸化Caに炭酸化反応を生じさせ、この炭酸化反応で生成した炭酸カルシウムを主たるバインダーとしてスラグ充填層を固結させ、ブロック化された炭酸固化体を得るものである。このようにして得られた炭酸固化体を、特許文献1では藻礁用や魚礁用などの海中沈設用材料として、また、特許文献2では河川等の淡水系水域沈設用材料として、それぞれ利用するものである。 As one of the methods for making slag generated in the steel manufacturing process, carbonaceous solidified slag in granular form using uncarbonated Ca (CaO and / or Ca (OH) 2 ) contained therein A method of obtaining a carbonated solidified body (stone) is known (for example, Patent Documents 1 and 2). In this method, for example, powdery slag to which moisture is added is filled into a mold, and a carbonation reaction is caused to uncarbonated Ca contained in the slag by blowing a carbon dioxide-containing gas into the slag filling layer, The slag filling layer is consolidated using calcium carbonate produced by this carbonation reaction as a main binder to obtain a blocked carbonated solidified body. The carbonic acid solidified body thus obtained is used as a material for underwater sedimentation for algal reefs and fish reefs in Patent Document 1 and as a material for sedimentation of freshwater bodies such as rivers in Patent Document 2, respectively. Is.

特許第3175694号公報Japanese Patent No. 3175694 特許第3175710号公報Japanese Patent No. 3175710

上記炭酸固化体の製造技術は、スラグやその他のCaO含有廃材を原料として利用できるため、資源のリサイクル化という観点から非常に有用なものである。また、製造された炭酸固化体を水中沈設用材料として利用した場合、海藻類の生育や水中生物の棲息に好ましい環境を提供するという面で、コンクリート製品に較べて優れた性能を有することが判っている。   The carbonic acid solidified body production technology is very useful from the viewpoint of resource recycling because slag and other CaO-containing waste materials can be used as raw materials. In addition, when the carbonated solid produced is used as a material for submerging in water, it is found that it has superior performance compared to concrete products in terms of providing a favorable environment for seaweed growth and aquatic life. ing.

特許文献1,2には、鉄源や可溶性シリカ源(未炭酸化Ca含有原料に元々含まれているもの又は添加材として添加されたもの)が含まれる原料で製造された炭酸化固化体を水中に沈設した場合には、炭酸固化体内部の鉄源や可溶性シリカ源から鉄分やシリカ(珪酸)が水中に溶出し、この溶出成分(有効成分)が海藻類などの水中生物の栄養源となって、それらの生育に有効に作用することが示されている。   Patent Documents 1 and 2 include a carbonated solid body produced from a raw material containing an iron source and a soluble silica source (one originally contained in an uncarbonated Ca-containing raw material or added as an additive). When submerged in water, iron and silica (silicic acid) elute from the iron source and soluble silica source inside the carbonate solidified body, and this elution component (active ingredient) becomes a nutrient source for aquatic organisms such as seaweeds. It has been shown that it effectively acts on their growth.

しかしながら、鉄源や可溶性シリカ源などを含有する炭酸固化体を単に水中に沈設しただけでは、ある程度の鉄分やシリカの溶出はあるものの、その溶出量は限られたものとなる。
したがって本発明の目的は、このような従来技術の課題を解決し、炭酸固化体を水中に沈設した際に、鉄分やシリカなどの有効成分を効果的に溶出させることができる水中沈設方法を提供することにある。
However, if a carbonic acid solid body containing an iron source, a soluble silica source, or the like is simply deposited in water, the amount of elution is limited, although some iron and silica are eluted.
Therefore, the object of the present invention is to solve such problems of the prior art and provide an underwater settling method capable of effectively eluting active components such as iron and silica when the carbonated solid is set in water. There is to do.

本発明者らは、水中に沈設された炭酸固化体から有効成分(海藻類などの水中生物の栄養源となる鉄分、シリカなどの成分)を効果的に溶出させる方法に関して、酸の作用で有効成分の溶出性を高めるという着想に基づき、以下のような検討を行った。炭酸固化体は全体に無数の微細な貫通気孔(炭酸固化体内部に存在する微細気孔であって、連続した気孔の2つ以上の末端が炭酸固化体表面に開口している気孔)を有しており、一般にその貫通気孔率は20〜60%(体積率)程度にもなる。そして、この微細貫通気孔内には水などの液体を容易に浸透させることができ、しかも孔が微細であるため一度浸透した液体は表面張力の作用により炭酸固化体内部に保持される。そこでまず、酸の水溶液を炭酸固化体(貫通気孔)に含浸させ、その酸により有効成分の溶出性を高める方法について検討を行った。しかし、この方法は、炭酸固化体に酸を直接使用するため有効成分が急速に溶出し、長期間に亘る持続的な溶出効果が期待できないことが判明した。そこで本発明者らは、炭酸固化体中にあって微量の酸を長期間に亘って有効成分源(鉄源、可溶性シリカ源など)に作用させる手段として酸生成微生物(水中で酸を生成する微生物)を利用することを着想し、その有効性について調査した。その結果、硝化細菌などの酸生成微生物を炭酸固化体に付着させておくことにより、酸生成微生物が生成する微量の酸により有効成分が適度に溶出され、且つその溶出作用が長期間に亘って持続することが判った。   The present inventors are effective in the action of an acid with respect to a method for effectively eluting active components (iron, a component of nutrients for aquatic organisms such as seaweeds, silica, etc.) from a carbonate solidified in water. Based on the idea of increasing the elution of the components, the following studies were conducted. The carbonized solid body has countless fine through-holes (pores existing inside the carbonized solid body and having two or more continuous pores open to the surface of the carbonized solid body). In general, the through porosity is about 20 to 60% (volume ratio). And, liquids such as water can be easily permeated into the fine through-holes, and since the pores are fine, the liquid once permeated is held inside the solidified carbonate by the action of surface tension. Therefore, first, a method for increasing the elution of an active ingredient with the acid by impregnating a solidified carbonic acid product (through pores) with an aqueous acid solution was investigated. However, it has been found that since this method uses acid directly in the carbonated solid, the active ingredient is eluted rapidly, and a long-term elution effect cannot be expected. Therefore, the present inventors have produced acid-producing microorganisms (acids in water) as means for allowing a small amount of acid to act on an active ingredient source (iron source, soluble silica source, etc.) over a long period of time in a carbonated solid. The idea was to use microorganisms and investigated its effectiveness. As a result, by attaching acid-producing microorganisms such as nitrifying bacteria to the carbonic acid solidified body, the active ingredient is appropriately eluted by a small amount of acid generated by the acid-producing microorganisms, and the elution action is prolonged over a long period of time. It was found to last.

本発明はこのような知見に基づきなされたもので、その要旨は以下のとおりである。
[1]未炭酸化Ca含有原料を炭酸化反応で固結させて得られた炭酸固化体に、水中で酸を生成する微生物を付着させ、該炭酸固化体を水中に沈設することを特徴とする炭酸固化体の水中沈設方法。
[2]上記[1]の水中沈設方法において、炭酸固化体が鉄源又は/及び可溶性シリカ源を含有することを特徴とする炭酸固化体の水中沈設方法。
The present invention has been made based on such findings, and the gist thereof is as follows.
[1] A feature is that microorganisms that generate acid in water are attached to a carbonated solid obtained by solidifying an uncarbonated Ca-containing raw material by a carbonation reaction, and the carbonated solid is deposited in water. A method for submerging carbonic acid solidified bodies.
[2] The method for submerging a carbonated solid in water according to the above [1], wherein the carbonated solid contains an iron source and / or a soluble silica source.

[3]上記[1]又は[2]の水中沈設方法において、水中で酸を生成する微生物が、硝化細菌、硫黄酸化細菌の中から選ばれる1種以上であることを特徴とする炭酸固化体の水中沈設方法。
[4]上記[1]〜[3]のいずれかの水中沈設方法において、微生物を含む溶液を炭酸固化体に含浸させることにより、微生物を炭酸固化体に付着させることを特徴とする炭酸固化体の水中沈設方法。
[3] In the submerged method of [1] or [2] above, the solidified carbonic acid product is characterized in that the microorganism that produces acid in water is at least one selected from nitrifying bacteria and sulfur oxidizing bacteria. Submergence method.
[4] In the submerged method according to any one of [1] to [3], the carbonate solidified body is characterized in that the microorganism is adhered to the carbonized solidified body by impregnating the carbonated solid solution with the microorganism. Submergence method.

炭酸固化体に付着させた酸生成微生物が生成する微量の酸により、炭酸固化体の有効成分(鉄分やシリカなど)が溶解され、これらを水中に効果的に溶出させることができる。しかも、このような有効成分の溶出は、酸生成微生物が生成する酸により少しずつ且つ長期間に亘って生じるため、水中への有効成分の供給を長期間持続させることができる。   A small amount of acid generated by the acid-producing microorganisms attached to the carbonate solidified body dissolves the active ingredients (iron, silica, etc.) of the carbonate solidified body, and these can be effectively eluted in water. Moreover, since the elution of the active ingredient occurs little by little by the acid generated by the acid-producing microorganism over a long period of time, the supply of the active ingredient into water can be maintained for a long period.

本発明法では、粉粒状の未炭酸化Ca含有原料を炭酸化反応で固結させて得られた炭酸固化体に、水中で酸を生成する微生物(以下、“酸生成微生物”という)を付着させ、この炭酸固化体を水中に沈設する。炭酸固化体に付着させた酸生成微生物は、炭酸固化体の表面や内部で生存・繁殖し、酸を生成する。この酸により炭酸固化体中に含まれる鉄分やシリカなどの有効成分(鉄源や可溶性シリカ源などとして原料中に元々含まれているもの又は/及び添加材として添加されたもの)が適度に溶解され、水中に溶出する。ここで、酸生成微生物が生成する酸は微量であり、一方において、常に新たな酸が生成され続けるため、上記のような有効成分の溶出は少しずつ且つ長期間に亘って生じ、水中への有効成分の供給が長期間持続することになる。このように水中に溶出した鉄分やシリカなどの有効成分は、海藻類などの水中生物の栄養源となる。   In the method of the present invention, microorganisms that produce acid in water (hereinafter referred to as “acid-producing microorganisms”) are attached to the carbonated solid obtained by solidifying a powdery uncarbonated Ca-containing raw material by a carbonation reaction. This carbonic acid solidified body is submerged in water. The acid-producing microorganism attached to the carbonate solidified body survives and propagates on the surface and inside of the carbonized solidified substance to produce an acid. The acid effectively dissolves the active ingredients such as iron and silica contained in the carbonate solid (what was originally contained in the raw material as an iron source or soluble silica source or / and added as an additive). And elutes in water. Here, the amount of acid produced by the acid-producing microorganism is very small. On the other hand, since new acid is constantly generated, elution of the active ingredient as described above occurs little by little and over a long period of time. The supply of active ingredients will last for a long time. In this way, active ingredients such as iron and silica eluted in water serve as nutrient sources for aquatic organisms such as seaweeds.

炭酸固化体に付着させる酸生成微生物としては、例えば、硝化細菌(ニトロソモナス属、ニトロバクター属など)、硫黄酸化細菌(チオバチルス属など)などが挙げられる。
ここで、硝化細菌(亜硝酸菌、硝酸菌など)の場合は、以下のような反応(硝化作用)が生じて亜硝酸や硝酸が生成される。
[亜硝酸菌]
NH (:アンモニア)+3/2O→NO (:亜硝酸)+HO+2H
[硝酸菌]
NO (:亜硝酸)+1/2O→NO (:硝酸)
また、硫黄酸化細菌の場合には、以下のような反応が生じて硫酸が生成される。
+HO+O→SO 2−+2H
SO 2−+HO→SO 2−(:硫酸)+H
また、硝化細菌は、上記のようにアンモニアを亜硝酸、硝酸へと変換して生物にとって毒性の高いアンモニアを低毒化する作用があり、しかも、その働きにより生成した硝酸が海藻類の栄養源となる。
Examples of the acid-producing microorganism attached to the carbonate solidified body include nitrifying bacteria (Nitrosomonas genus, Nitrobacter genus, etc.), sulfur-oxidizing bacteria (thiobacillus genus, etc.), and the like.
Here, in the case of nitrifying bacteria (nitrite bacteria, nitrate bacteria, etc.), the following reaction (nitrification action) occurs to produce nitrous acid and nitric acid.
[Nitrite]
NH 4 + (: ammonia) + 3 / 2O 2 → NO 2 (: nitrite) + H 2 O + 2H
[Nitric acid bacteria]
NO 2 (: Nitrite) + 1 / 2O 2 → NO 3 (: Nitric acid)
In the case of sulfur-oxidizing bacteria, the following reaction occurs to produce sulfuric acid.
S 0 + H 2 O + O 2 → SO 3 2− + 2H +
SO 3 2− + H 2 O → SO 4 2− (: sulfuric acid) + H 2
Nitrifying bacteria, as described above, have the effect of converting ammonia into nitrous acid and nitric acid to reduce ammonia, which is highly toxic to living organisms, and the nitric acid produced by the action is a nutrient source for seaweeds. It becomes.

酸生成微生物を付着させる炭酸固化体は、その構成成分として、鉄源、可溶性シリカ源、リン、カリウムなどの有効成分(すなわち、海藻類などの水中生物の栄養源となる成分)を含有するものである。ここで、可溶性シリカ源の可溶性とは水に対する溶解性をいう。有効成分はスラグなどの原料(未炭酸化Ca含有原料)に元々含まれているものであってもよいし、添加材として別に添加したものであってもよい。その詳細については後に詳述する。   Carbonated solids to which acid-producing microorganisms are attached contain, as their constituents, active ingredients such as iron sources, soluble silica sources, phosphorus and potassium (that is, ingredients that serve as nutrient sources for aquatic organisms such as seaweeds). It is. Here, the solubility of the soluble silica source refers to solubility in water. The active ingredient may be originally contained in a raw material (uncarbonated Ca-containing raw material) such as slag, or may be added separately as an additive. Details thereof will be described later.

さきに述べたように、炭酸固化体は全体に無数の微細な貫通気孔を有しているが、この微細貫通気孔内には水を容易に浸透させることができ、しかも、炭酸固化体表面や微細貫通気孔内部の水のpHは8〜9程度の中性域であり、コンクリートのように高pH化することはない。したがって、炭酸固化体の表面や微細貫通気孔内部は、硝化細菌などの酸生成微生物の棲息環境として非常に好適なものである。   As described above, the carbonic acid solidified body has innumerable fine through pores as a whole, but water can easily penetrate into the fine through pores, and the surface of the carbonic acid solidified body and The pH of the water inside the fine through-holes is a neutral region of about 8 to 9, and does not increase as high as concrete. Therefore, the surface of the carbonate solidified body and the inside of the fine through pores are very suitable as a habitat environment for acid-producing microorganisms such as nitrifying bacteria.

酸生成微生物を炭酸固化体に付着させる方法は任意であるが、酸生成微生物を含んだ溶液(通常、水溶液)を炭酸固化体に含浸させる方法が最も簡便である。一般に微生物は集合体を形成しやすいが、例えば、酸生成微生物が含まれる溶液(好ましくは、酸生成微生物が高濃度に含まれる溶液)に炭酸固化体を浸漬する方法、或いは酸生成微生物が含まれる溶液(好ましくは、酸生成微生物が高濃度に含まれる溶液)を炭酸固化体に散布する方法を採れば、溶液は微細貫通気孔内に速やかに吸収されるので、酸生成微生物を炭酸固化体に容易に付着(含浸)させることができる。また、溶液をゲル化するなどして、溶液に適当な粘性を与えてもよい。溶液に粘性を与えるには、例えば、デンプン等の多糖類、ゼラチンや寒天等のゲル化剤等を用いることができる。   The method for adhering the acid-producing microorganism to the carbonic acid solidified body is arbitrary, but the method of impregnating the carbonic acid solidified body with a solution (usually an aqueous solution) containing the acid-producing microorganism is the simplest. In general, microorganisms tend to form aggregates. For example, a method of immersing a solidified carbonate in a solution containing acid-producing microorganisms (preferably a solution containing acid-producing microorganisms in a high concentration), or acid-producing microorganisms are included. If the solution (preferably a solution containing acid-producing microorganisms in a high concentration) is applied to the carbonated solid, the solution is quickly absorbed into the fine through-pores. Can be easily adhered (impregnated). Further, the solution may be given a suitable viscosity by, for example, gelling the solution. In order to give viscosity to the solution, for example, polysaccharides such as starch, gelling agents such as gelatin and agar can be used.

さらに、酸生成微生物をゲル状の高分子体(例えば、デンプン、ゼラチン、寒天等)に混合し、これを炭酸固化体の表面に擦り込む方法を採ってもよい。特に、酸生成微生物が硝化細菌の場合には、硝化細菌は増殖速度が遅いため、炭酸固化体に十分に付着(繁殖)させるのに時間を要するので、この方法が有効である。
なお、酸生成微生物の生存率を高めるため、炭酸固化体に酸生成微生物を付着させる作業は水中沈設の直前に行うか、若しくは酸生成微生物を付着させた炭酸固化体を水中に沈設するまで保湿することが好ましい。
Further, a method may be employed in which acid-producing microorganisms are mixed with a gel-like polymer (eg, starch, gelatin, agar, etc.) and rubbed on the surface of the carbonated solid. In particular, when the acid-producing microorganism is a nitrifying bacterium, since the nitrifying bacterium has a slow growth rate, it takes time to sufficiently attach (reproduce) to the carbonate solidified body, so this method is effective.
In order to increase the survival rate of acid-producing microorganisms, the work of attaching acid-producing microorganisms to the carbonate solidified body is performed immediately before submerging in water, or moisturizing until the carbonized solid body with acid-producing microorganisms adhered is submerged in water. It is preferable to do.

炭酸固化体に酸生成微生物を含む溶液を含浸させるに当たっては、炭酸化処理したままの炭酸固化体に溶液を含浸させてもよいが、炭酸化処理したままの炭酸固化体内部には相当程度の水分(炭酸化処理に必要な水)が含まれているため、多量の溶液を炭酸固化体内部に十分に含浸させるには、炭酸固化体を乾燥処理してその内部の水分の一部又は実質的な全部を蒸発させた後、溶液を含浸させることが望ましい。炭酸固化体の乾燥処理は、雨水などの水がかからないような場所に適当な期間放置して自然乾燥させる方法でもよいし、加熱等により強制的に乾燥させる方法でもよい。   When impregnating the carbonated solid with the solution containing the acid-producing microorganism, the carbonated solid as it is may be impregnated with the solution, but a considerable amount of carbonic acid solidified inside the carbonized solidified is contained inside. Since water (water necessary for carbonation treatment) is contained, in order to sufficiently impregnate a large amount of solution inside the carbonized solidified body, the carbonized solidified body is dried and a part of or a substantial amount of water inside It is desirable to evaporate all of the water and then impregnate the solution. The carbonic acid solidified body may be dried by allowing it to stand for a suitable period of time in a place where it is not exposed to rain water or the like, and to dry it naturally by heating, or a method of forcibly drying it by heating or the like.

炭酸固化体には、上述した酸生成微生物以外に、栄養塩を含む溶液を含浸させることができる。栄養塩としては、例えば、リン酸塩、硫化物(例えば、硫化鉄など)、窒素化合物などが挙げられる。
炭酸固化体に栄養塩を含む溶液を含浸させる方法としては、炭酸固化体を溶液中に浸漬する方法、溶液を炭酸固化体に散布する方法など適宜な方法を採ることができる。
In addition to the acid-producing microorganisms described above, the carbonate solidified body can be impregnated with a solution containing a nutrient salt. Examples of nutrient salts include phosphates, sulfides (eg, iron sulfide), nitrogen compounds, and the like.
As a method for impregnating the carbonated solid with a solution containing a nutrient, an appropriate method such as a method of immersing the carbonated solid in the solution or a method of spraying the solution onto the carbonated solid can be employed.

本発明では、以上のようにして酸生成微生物を付着させた炭酸固化体を、海藻着生材(基盤)、水質・底質浄化材、漁礁材、築磯用材などとして水中に沈設(設置)するものであり、これにより、さきに述べたように炭酸固化体から有効成分が長期間に亘って効果的に溶出することになる。
なお、炭酸固化体を沈設する水域は、海水域、淡水域(河川、湖沼などを含む)、汽水域を問わない。
In the present invention, the carbonate solidified body to which the acid-producing microorganisms are attached as described above is submerged (installed) in the sea as a seaweed aggregating material (base), water / sediment purification material, fishing reef material, construction material, etc. As a result, the active ingredient is effectively eluted from the carbonated solid body over a long period of time as described above.
In addition, the water area in which the carbonate solidified body is set may be a seawater area, a freshwater area (including rivers, lakes, etc.), and a brackish water area.

炭酸固化体を得る方法は従来公知の方法でよく、水分を含んだ未炭酸化Ca含有原料に炭酸ガス存在下で炭酸化反応を生じさせることにより、未炭酸化Ca含有原料を固結させて炭酸固化体とする。一般には、型枠内に適度な水分を含んだ未炭酸化Ca含有原料を充填して原料充填層を形成し、この原料充填層内に炭酸ガス含有ガスを吹き込むことにより、原料充填層を炭酸反応により固化させ、炭酸固化体を得る。   The method for obtaining the carbonate solidified body may be a conventionally known method. By causing a carbonation reaction in the presence of carbon dioxide gas to an uncarbonated Ca-containing raw material containing moisture, the uncarbonated Ca-containing raw material is consolidated. Carbonated solid. In general, a raw material filling layer is formed by filling an uncarbonated Ca-containing raw material containing appropriate moisture in a mold, and a carbon dioxide-containing gas is blown into the raw material filling layer so that the raw material filling layer is carbonated. Solidify by reaction to obtain a solidified carbonate.

以下、炭酸固化体の好ましい製造条件について説明する。
未炭酸化Ca含有原料中に含まれる未炭酸化Ca、すなわちCaO及び/又はCa(OH)は、少なくとも固体粒子の組成の一部として含まれるものであればよく、したがって、鉱物としてのCaO、Ca(OH)の他に、2CaO・SiO、3CaO・SiO、ガラスなどのように組成の一部として固体粒子中に存在するものも含まれる。
Hereinafter, preferable production conditions for the carbonated solid will be described.
The uncarbonated Ca contained in the uncarbonated Ca-containing raw material, that is, CaO and / or Ca (OH) 2 suffices to be contained at least as a part of the composition of the solid particles, and therefore CaO as a mineral. In addition to Ca (OH) 2 , 2CaO · SiO 2 , 3CaO · SiO 2 , glass, and the like that are present in solid particles as part of the composition are also included.

未炭酸化Ca含有原料としては、上記のように少なくとも組成の一部として未炭酸化Caを含むものであれば特に制限はないが、未炭酸化Caの含有率が高く、しかも資源のリサイクルを図ることができるという点で、鉄鋼製造プロセスで発生するスラグ、コンクリート(例えば、廃コンクリート)などが特に好ましい。一般に、鉄鋼製造プロセスで発生するスラグのCaO濃度は約13〜55mass%、また、コンクリート(例えば、廃コンクリート)のCaO濃度は約5〜15mass%(セメント中のCaO濃度:50〜60mass%)であり、また、これらは入手も容易であるため、未炭酸化Ca含有原料として極めて好適な素材であるといえる。したがって、未炭酸化Ca含有原料の少なくとも一部が、また特に望ましくは主たる原料がスラグ及び/又はコンクリートであることが好ましい。   The uncarbonated Ca-containing raw material is not particularly limited as long as it contains uncarbonated Ca as at least a part of the composition as described above, but the content of uncarbonated Ca is high, and recycling of resources is also possible. Slag, concrete (for example, waste concrete) and the like generated in the steel manufacturing process are particularly preferable in that they can be achieved. Generally, the CaO concentration of slag generated in the steel manufacturing process is about 13 to 55 mass%, and the CaO concentration of concrete (for example, waste concrete) is about 5 to 15 mass% (CaO concentration in cement: 50 to 60 mass%). In addition, since these are easily available, it can be said that they are extremely suitable materials as uncarbonated Ca-containing raw materials. Therefore, it is preferable that at least a part of the uncarbonated Ca-containing raw material, and particularly preferably, the main raw material is slag and / or concrete.

鉄鋼製造プロセスで発生するスラグとしては、高炉徐冷スラグ、高炉水砕スラグなどの高炉系スラグ、予備処理、転炉、鋳造などの工程で発生する脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグなどの製鋼系スラグ、鉱石還元スラグ、電気炉スラグなどを挙げることができるが、これらに限定されるものではなく、また、2種以上のスラグを混合して用いることもできる。
また、鉄鋼製造プロセスで発生するスラグには相当量の鉄分(粒鉄などの鉄分)が含まれているが、スラグとしてはこの鉄分(地金)の回収処理を経たものを用いてもよい。
Slag generated in the steel manufacturing process includes blast furnace slag, blast furnace granulated slag, blast furnace slag, decarburization slag, dephosphorization slag, desulfurization slag, Examples include steel slag such as silica slag and cast slag, ore reduction slag, and electric furnace slag. However, the present invention is not limited to these, and a mixture of two or more slags can also be used. .
Moreover, although a considerable amount of iron content (iron content such as granular iron) is included in the slag generated in the steel manufacturing process, the slag may be used after the recovery of this iron content (bullion).

また、コンクリートとしては、例えば、建築物や土木構造物の取壊しなどにより生じた廃コンクリートなどを用いることができる。
また、未炭酸化Ca含有材としては、上記のスラグやコンクリート以外に、モルタル、ガラス、アルミナセメント、CaO含有耐火物などが挙げられ、これらの1種以上を単独でまたは混合して、或いはスラグ及び/又はコンクリートと混合して使用することもできる。
これらの材料は必要に応じて細粒状に破砕処理され、原料として用いられる。
Moreover, as concrete, the waste concrete etc. which were produced by the demolition of a building or a civil engineering structure etc. can be used, for example.
Examples of the non-carbonated Ca-containing material include mortar, glass, alumina cement, CaO-containing refractories, etc., in addition to the above slag and concrete, and one or more of these may be used alone or in combination, or slag And / or mixed with concrete.
These materials are crushed into fine particles as necessary and used as raw materials.

未炭酸化Ca含有原料は、その全量が未炭酸化Caを含む固体粒子である必要はない。すなわち、未炭酸化Ca含有原料に含まれる未炭酸化Caの炭酸化によって炭酸固化体のバインダーとして十分な量のCaCOが生成されるのであれば、未炭酸化Ca含有原料に未炭酸化Caを含まない固体粒子が含まれていてもよい。
一般に、スラグなどには鉄源、可溶性シリカ源などの有効成分が含まれているが、添加材として、鉄源や可溶性シリカ源などの有効成分源となる固体粒子を配合してもよい。添加材としては、例えば、可溶性シリカ源(フライアッシュ、クリンカーアッシュなど)、鉄源(金属鉄、酸化鉄など)、リン源、カリウム源などが挙げられる。また、これら以外にも任意の成分(粒子)を適量、すなわち炭酸固化体の強度低下などを招かない限度で含むことができる。
The uncarbonated Ca-containing raw material does not need to be solid particles whose entire amount contains uncarbonated Ca. That is, if the carbonation of the uncarbonated Ca contained in the uncarbonated Ca-containing raw material produces a sufficient amount of CaCO 3 as a binder for the solidified carbonic acid, the uncarbonated Ca-containing raw material is uncoated Solid particles not containing may be contained.
In general, slag and the like contain active ingredients such as an iron source and a soluble silica source, but solid particles that serve as an active ingredient source such as an iron source and a soluble silica source may be blended as an additive. Examples of the additive include soluble silica sources (such as fly ash and clinker ash), iron sources (such as metallic iron and iron oxide), phosphorus sources, and potassium sources. In addition to these, an arbitrary component (particle) can be contained in an appropriate amount, that is, as long as the strength of the carbonated solid is not reduced.

未炭酸化Ca含有原料の粒度にも特別な制限はないが、COとの接触面積を確保して反応性を高めるためには、ある程度粒度が細かい方が好ましい。また、未炭酸化Ca含有原料の粒度が大き過ぎると、原料粒子内部に炭酸化しきれないCaが残存するため、製造された炭酸固化体中の原料粒子が膨張崩壊し、亀裂などの原因となる場合もある。以上の観点から、未炭酸化Ca含有原料は実質的に(すなわち、不可避的に含まれる粒度の大きい固体粒子を除き)10mm以下、より望ましくは5mm以下、特に望ましくは3mm以下の粒度のものが好ましい。 There is no particular restriction on the particle size of the uncarbonated Ca-containing raw material, but it is preferable that the particle size is fine to some extent in order to secure the contact area with CO 2 and increase the reactivity. In addition, when the particle size of the uncarbonated Ca-containing raw material is too large, Ca that cannot be carbonated remains inside the raw material particles, so that the raw material particles in the produced carbonized solidified body expand and collapse, causing cracks and the like. In some cases. In view of the above, the uncarbonated Ca-containing raw material has a particle size of substantially 10 mm or less, more desirably 5 mm or less, and particularly desirably 3 mm or less, substantially (that is, excluding inevitably contained solid particles having a large particle size). preferable.

未炭酸化Ca含有原料に炭酸化反応を生じさせるために使用される炭酸ガス又は炭酸ガス含有ガスとしては、例えば、一貫製鉄所内で排出される石灰焼成工場排ガス(通常、CO:25%前後)や加熱炉排ガス(通常、CO:6.5%前後)などが好適であるが、これらに限定されるものではない。また、ガス中のCO濃度が低すぎると処理効率が低下するという問題を生じるが、それ以外の問題は格別ない。したがって、CO濃度は特に限定しないが、効率的な処理を行うには3%以上のCO濃度とすることが好ましい。 Examples of the carbon dioxide gas or carbon dioxide-containing gas used for causing a carbonation reaction in an uncarbonated Ca-containing raw material include, for example, exhaust gas from a lime burning factory (usually around CO 2 : 25%) discharged in an integrated steelworks ) and the furnace exhaust gas (normally, CO 2: Although 6.5% before and after) and the like are preferred, but the invention is not limited thereto. In addition, if the CO 2 concentration in the gas is too low, there arises a problem that the processing efficiency is lowered, but other problems are not exceptional. Therefore, the CO 2 concentration is not particularly limited, but it is preferable to set the CO 2 concentration to 3% or more for efficient treatment.

また、炭酸ガスの供給量にも特別な制限はないが、一般的な目安としては0.004〜0.5m/min・t(原料ton)程度のガス供給量が確保できればよい。また、ガス供給時間(炭酸化処理時間)にも特別な制約はないが、目安としては炭酸ガスの供給量が未炭酸化Ca含有原料の重量の3%以上となる時点、すなわち、ガス量に換算すると原料1t当たり15m以上、好ましくは200m以上の炭酸ガスが供給されるまでガス供給を行うことが好ましい。 Moreover, there is no special restriction | limiting in the supply amount of a carbon dioxide gas, However, As a general guideline, the gas supply amount of about 0.004-0.5m < 3 > / min * t (raw material ton) should just be ensured. Moreover, there is no special restriction on the gas supply time (carbonation treatment time), but as a guideline, when the supply amount of carbon dioxide gas becomes 3% or more of the weight of the uncarbonated Ca-containing raw material, that is, the gas amount Convert to the raw material 1t per 15 m 3 or more, preferably it is preferable to carry out the gas supply to 200 meters 3 or more carbon dioxide is supplied.

供給される炭酸ガス又は炭酸ガス含有ガスは常温でよいが、ガスが常温よりも高温であればそれだけ反応性が高まるため有利である。但し、ガスの温度が過剰に高いと混合原料の水分を乾燥させたり、或いはCaCOがCaOとCOに分解してしまうため、高温ガスを用いる場合でもこのような分解を生じない程度の温度のガスを用いる必要がある。
また、炭酸ガス又は炭酸ガス含有ガスは原料の乾燥を防ぐために加湿した状態で混合原料に供給されることが好ましい。このため混合原料にガスを供給するに当たっては、炭酸ガス又は炭酸ガス含有ガスを一旦水中に吹き込んで加湿又はHOを飽和させた後、原料に供給することが好ましく、これにより混合原料の乾燥を防止して炭酸化反応を促進させることができる。
The supplied carbon dioxide gas or carbon dioxide-containing gas may be at room temperature. However, if the gas is at a temperature higher than room temperature, the reactivity increases accordingly, which is advantageous. However, if the temperature of the gas is excessively high, moisture of the mixed raw material is dried or CaCO 3 is decomposed into CaO and CO 2 , so that such decomposition does not occur even when a high temperature gas is used. It is necessary to use this gas.
Further, the carbon dioxide gas or the carbon dioxide-containing gas is preferably supplied to the mixed raw material in a humidified state in order to prevent the raw material from being dried. For this reason, when supplying gas to the mixed raw material, it is preferable to supply carbon dioxide gas or carbon dioxide-containing gas into water once to humidify or saturate H 2 O, and then supply the raw material, thereby drying the mixed raw material. Can be prevented to promote the carbonation reaction.

未炭酸化Ca含有原料が炭酸ガスと接触して炭酸化反応により固結するには、先に述べたように水分(原料粒子の表面付着水)が必要であり、このため必要に応じて原料に水分を添加する。通常、原料の含水率は3〜12%、好ましくは5〜10%程度とするのが適当である。
また、炭酸固化体は、未炭酸化Ca含有原料の予成形体を炭酸ガス雰囲気内に置き、炭酸ガスを予成形体外面から内部に浸透させるようにして製造することもできる。この場合には、未炭酸化Ca含有原料を圧縮成形などによって予成形し、この予成形されたものを炭酸ガス雰囲気内に置いて炭酸固化させる。
In order for the uncarbonated Ca-containing raw material to come into contact with carbon dioxide and solidify by the carbonation reaction, as described above, water (water adhering to the surface of the raw material particles) is necessary. Add water. Usually, the water content of the raw material is 3 to 12%, preferably about 5 to 10%.
The carbonate solidified body can also be produced by placing a preformed body of an uncarbonated Ca-containing raw material in a carbon dioxide gas atmosphere and allowing carbon dioxide gas to permeate into the interior from the outer surface of the preformed body. In this case, an uncarbonated Ca-containing raw material is preformed by compression molding or the like, and the preformed material is placed in a carbon dioxide atmosphere to be solidified by carbonation.

炭酸固化体の形状は任意であり、立方体や長方体形状のほかに、例えば断面形状が円形、楕円形、三角形、四角形以上の多角形、星形など、或いは全体形状が球形状、楕球形、四面体以上の多面体形、円錐体形、柱状形、テトラポット形など、任意の形状とすることができる。また、型枠などを用いて製造された炭酸固化体を適当な大きさに破砕したものでもよい。   The shape of the carbonate solidified body is arbitrary, in addition to the cube or rectangular shape, for example, the cross-sectional shape is a circle, ellipse, triangle, quadrilateral or more, star shape, etc., or the overall shape is spherical, elliptical A tetrahedron or more polyhedron shape, a cone shape, a columnar shape, a tetrapot shape, or the like can be used. Further, a solidified carbonic acid product produced using a mold or the like may be crushed to an appropriate size.

(イ)試験条件
(1) 試験体として、製鋼スラグの炭酸固化体(発明例)、ゼオライト(比較例1)、成形物なし(比較例2)の3種類を使用した。炭酸固化体(発明例)とゼオライト(比較例1)については、硝化細菌の入った水溶液中に通気しながら1週間浸漬処理した。成形物なし(比較例2)については、硝化細菌の水溶液をそのまま使用した。
(2) 浸漬処理後の試験体(但し、比較例2では硝化細菌の水溶液)50mL(体積)を容積1Lのビーカーに移した。
(3) 溶存酸素量6mg/Lとした500mlのアンモニア水溶液(500mg/L)を上記(2)のビーカーに加え、25℃定温下で硝化試験を行った。
(B) Test conditions
(1) Three types of test bodies were used: carbonized solidified steel slag (invention example), zeolite (comparative example 1), and no molded product (comparative example 2). The carbonate solid (invention example) and zeolite (comparative example 1) were immersed for 1 week while aerated in an aqueous solution containing nitrifying bacteria. In the case of no molding (Comparative Example 2), an aqueous solution of nitrifying bacteria was used as it was.
(2) 50 mL (volume) of the test specimen after immersion treatment (however, in Comparative Example 2 an aqueous solution of nitrifying bacteria) was transferred to a 1 L beaker.
(3) A 500 ml aqueous ammonia solution (500 mg / L) having a dissolved oxygen amount of 6 mg / L was added to the beaker of (2) above, and a nitrification test was performed at a constant temperature of 25 ° C.

(4)循環中のアンモニア水溶液中のアンモニア濃度と硝酸濃度の経時変化を計測し、各試験体の硝化反応に対する効果を評価した。
(5) アンモニア濃度はインドフェノール法で測定し、硝酸濃度は高速イオンクロマトグラフィー(HPLC)法で測定した。
(ロ)試験結果
試験結果を図1に示す。これによれば、炭酸固化体を用いた場合(発明例)の硝化反応が最も速く、炭酸固化体中で硝化細菌の増殖が進んでいることが判る。
(4) The changes over time in the ammonia concentration and nitric acid concentration in the circulating aqueous ammonia solution were measured, and the effect of each specimen on the nitrification reaction was evaluated.
(5) The ammonia concentration was measured by the indophenol method, and the nitric acid concentration was measured by the high performance ion chromatography (HPLC) method.
(B) Test results The test results are shown in FIG. According to this, it can be seen that the nitrification reaction is the fastest when the carbonated solid is used (invention example), and the growth of nitrifying bacteria is progressing in the carbonated solid.

実施例1におけるアンモニア水溶液中のアンモニア濃度と硝酸濃度の経時変化を示すグラフThe graph which shows the time-dependent change of the ammonia concentration and nitric acid concentration in the aqueous ammonia solution in Example 1

Claims (4)

未炭酸化Ca含有原料を炭酸化反応で固結させて得られた炭酸固化体に、水中で酸を生成する微生物を付着させ、該炭酸固化体を水中に沈設することを特徴とする炭酸固化体の水中沈設方法。   Carbonation solidification characterized by adhering microorganisms that generate acid in water to a solidified carbonate obtained by solidifying an uncarbonated Ca-containing raw material by a carbonation reaction, and depositing the carbonate solidified in water How the body is submerged. 炭酸固化体が鉄源又は/及び可溶性シリカ源を含有することを特徴とする請求項1に記載の炭酸固化体の水中沈設方法。   The method for submerging a carbonated solid in water according to claim 1, wherein the carbonated solid contains an iron source and / or a soluble silica source. 水中で酸を生成する微生物が、硝化細菌、硫黄酸化細菌の中から選ばれる1種以上であることを特徴とする請求項1又は2に記載の炭酸固化体の水中沈設方法。   3. The method according to claim 1 or 2, wherein the microorganism that produces acid in water is at least one selected from nitrifying bacteria and sulfur oxidizing bacteria. 微生物を含む溶液を炭酸固化体に含浸させることにより、微生物を炭酸固化体に付着させることを特徴とする請求項1〜3のいずれかに記載の炭酸固化体の水中沈設方法。
The method for depositing a carbonated solid in water according to any one of claims 1 to 3, wherein the microorganism is adhered to the carbonated solid by impregnating the carbonated solution with a solution containing microorganisms.
JP2005266135A 2005-09-14 2005-09-14 Method for sinking carbonated/solidified body in water Pending JP2007075716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266135A JP2007075716A (en) 2005-09-14 2005-09-14 Method for sinking carbonated/solidified body in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266135A JP2007075716A (en) 2005-09-14 2005-09-14 Method for sinking carbonated/solidified body in water

Publications (1)

Publication Number Publication Date
JP2007075716A true JP2007075716A (en) 2007-03-29

Family

ID=37936543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266135A Pending JP2007075716A (en) 2005-09-14 2005-09-14 Method for sinking carbonated/solidified body in water

Country Status (1)

Country Link
JP (1) JP2007075716A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105676A (en) * 2005-10-14 2007-04-26 Nippon Steel Corp Method for improving quality of water by utilizing steel slag
WO2011099185A1 (en) * 2010-02-15 2011-08-18 Jfeミネラル株式会社 Iron ion supply material, method for manufacturing iron ion supply material, and method for supplying iron ion
JP2011160801A (en) * 2011-01-24 2011-08-25 Jfe Mineral Co Ltd Iron ion feeding material, method for producing the same, and method for feeding iron ion
JP2011200829A (en) * 2010-03-26 2011-10-13 Fuso Kensetsu Kogyo Kk Raw water purifying method and apparatus of the same
CN114620832A (en) * 2022-04-15 2022-06-14 合肥工业大学 Sulfur-based autotrophic microbial denitrification material and preparation and application methods thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105676A (en) * 2005-10-14 2007-04-26 Nippon Steel Corp Method for improving quality of water by utilizing steel slag
WO2011099185A1 (en) * 2010-02-15 2011-08-18 Jfeミネラル株式会社 Iron ion supply material, method for manufacturing iron ion supply material, and method for supplying iron ion
JP2011160764A (en) * 2010-02-15 2011-08-25 Jfe Mineral Co Ltd Iron ion feeding material, method for producing the same, and method for feeding iron ion
KR101496531B1 (en) * 2010-02-15 2015-03-04 제이에프이미네라르 가부시키가이샤 Iron ion supply material, method for manufacturing iron ion supply material, and method for supplying iron ion
JP2011200829A (en) * 2010-03-26 2011-10-13 Fuso Kensetsu Kogyo Kk Raw water purifying method and apparatus of the same
JP2011160801A (en) * 2011-01-24 2011-08-25 Jfe Mineral Co Ltd Iron ion feeding material, method for producing the same, and method for feeding iron ion
CN114620832A (en) * 2022-04-15 2022-06-14 合肥工业大学 Sulfur-based autotrophic microbial denitrification material and preparation and application methods thereof

Similar Documents

Publication Publication Date Title
JP4403095B2 (en) Water environment conservation materials and methods of use
JP4729120B1 (en) Iron ion supply material, manufacturing method thereof, and iron ion supply method
US4539121A (en) Bay mud stabilization
JP2007075716A (en) Method for sinking carbonated/solidified body in water
JP2006045048A (en) Solidified body of steel-making slag and method for producing the same
KR100836661B1 (en) Porous media for autotrophic denitrification using sulfur
KR101438380B1 (en) Concrete block for purifying water
KR100845521B1 (en) Media of constructed wetland for the treatment of municipal wastewater and preparation methods thereof
KR100732732B1 (en) Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
JP2007054732A (en) Sewage treatment material and its production method
JP4474690B2 (en) Porous stone for water purification and water purification method
JP5180328B2 (en) Iron ion supply material, manufacturing method thereof, and iron ion supply method
JP5135552B2 (en) Method for producing steelmaking slag for water injection
WO2001019180A1 (en) Seaweed field forming material and its block
CN111072139A (en) Preparation method of sulfur autotrophic denitrification biological brick and biological brick prepared by same
KR101067962B1 (en) The artificial reef and its manufacturing method
JP4337217B2 (en) Submerged material and its manufacturing method
JP2003047974A (en) Underwater dephosphorizing agent composition and method for removing phosphor from water by using the same
JP2015101528A (en) Material for civil engineering, and manufacturing method thereof
JP7364350B2 (en) Sediment improvement method
JP2000212564A (en) Sea bottom soil-improving material and improvement of sea bottom soil
JP2005204655A (en) Method for producing carbonated solidified material to be sunk and settled in water
JP2007075715A (en) Method for cleaning bottom sediment
JP2008030974A (en) Carbonated solid