JP2014004740A - Method for manufacturing base isolation plug - Google Patents
Method for manufacturing base isolation plug Download PDFInfo
- Publication number
- JP2014004740A JP2014004740A JP2012141444A JP2012141444A JP2014004740A JP 2014004740 A JP2014004740 A JP 2014004740A JP 2012141444 A JP2012141444 A JP 2012141444A JP 2012141444 A JP2012141444 A JP 2012141444A JP 2014004740 A JP2014004740 A JP 2014004740A
- Authority
- JP
- Japan
- Prior art keywords
- pusher
- seismic isolation
- powder material
- isolation plug
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Springs (AREA)
Abstract
Description
本発明は、免震装置の支承等として使用される免震構造体用の免震プラグの製造方法に関するものである。 The present invention relates to a method for manufacturing a seismic isolation plug for a seismic isolation structure used as a support for a seismic isolation device.
従来、ゴム等の粘弾性的性質を有する軟質板と鋼板等の硬質板とを交互に積層した免震構造体が、免震装置の支承等として使用されている。そして、このような免震構造体の中には、例えば、軟質板と硬質板とからなる積層体の中心に中空部を形成し、そして該中空部の内部に、均一組成となるように成形したプラグを圧入したものがある。 2. Description of the Related Art Conventionally, seismic isolation structures in which soft plates having viscoelastic properties such as rubber and hard plates such as steel plates are alternately stacked have been used as bearings for seismic isolation devices. In such a seismic isolation structure, for example, a hollow portion is formed at the center of a laminate composed of a soft plate and a hard plate, and the hollow portion is molded so as to have a uniform composition. Some plugs are pressed.
ここで、軟質板と硬質板とからなる積層体に圧入される上記プラグは、地震の発生に伴って積層体がせん断変形する際に塑性変形することで、振動のエネルギーを吸収する。そして、該プラグとしては、全体が鉛からなるプラグが用いられることが多かった。しかしながら、鉛は、環境負荷が大きく、また廃棄時等に要するコストが大きい。そのため、近年では、鉛の代替材料を用いて、十分な減衰性能、変位追従性等を有する免震プラグを開発することが試みられている。 Here, the plug that is press-fitted into the laminate composed of the soft plate and the hard plate absorbs vibration energy by plastic deformation when the laminate undergoes shear deformation in response to the occurrence of an earthquake. As the plug, a plug made entirely of lead is often used. However, lead has a large environmental load and a high cost for disposal. Therefore, in recent years, an attempt has been made to develop a seismic isolation plug having sufficient damping performance, displacement followability, etc., using a lead substitute material.
具体的には、鉛の代替材料を用いた免震プラグとして、ゴム等の塑性流動材と、金属粉体等の硬質充填材とを含有する粉体材料を加圧成形してなる免震プラグが提案されている(例えば、特許文献1参照)。 Specifically, as a seismic isolation plug using an alternative material for lead, a seismic isolation plug formed by pressure molding a powder material containing a plastic fluid material such as rubber and a hard filler such as metal powder. Has been proposed (see, for example, Patent Document 1).
ここで、塑性流動材と硬質充填材とを含有する粉体材料を加圧成形して免震プラグを製造する際には、通常、金型内に投入した粉体材料を、加圧方向に直交する平面を加圧面として有する平面プッシャーで加圧して免震プラグを製造する。しかし、塑性流動材を含む粉体材料は流動性が低いため、平面プッシャーのみを用いて免震プラグを製造した場合、加圧成形時に金型内で粉体材料が十分に流動せず、粉体材料中に混入している空気が十分に抜けずに免震プラグの空気含有率が高くなり、所望の減衰性能や変位追従性等を得ることができないことがある。 Here, when manufacturing a seismic isolation plug by pressing a powder material containing a plastic fluid and a hard filler, the powder material put into the mold is usually placed in the pressing direction. A seismic isolation plug is manufactured by applying pressure with a plane pusher having an orthogonal plane as a pressing surface. However, since powder materials including plastic fluid materials have low fluidity, when a seismic isolation plug is manufactured using only a flat pusher, the powder material does not flow sufficiently in the mold at the time of pressure molding. In some cases, air mixed in the body material does not sufficiently escape and the air content of the seismic isolation plug increases, so that desired damping performance, displacement followability, and the like cannot be obtained.
そこで、加圧成形時に金型内で粉体材料を強制的に流動させて粉体材料中に混入した空気を抜き、空気含有率が低くて所望の減衰性能や変位追従性等を得ることができる免震プラグを製造する方法として、金型内に投入した粉体材料を、粉体材料を加圧する度に粉体材料の受圧面の形状が異なる形状に変化するようにプッシャーで複数回加圧して免震プラグを製造する方法が提案されている(例えば、特許文献2参照)。具体的には、加圧方向に対して傾斜した平面よりなる加圧面を有する斜断円柱形プッシャーを用いて粉体材料を複数回加圧し、免震プラグを製造する方法であって、各加圧の間に斜断円柱形プッシャーを中心軸線周りに180°ずつ回転させることで、粉体材料を加圧する度に粉体材料の受圧面の形状が異なる形状に変化するようにした免震プラグの製造方法が提案されている。なお、「斜断円柱形」とは、円柱を軸線方向に対して斜めに切断した形状である。
そして、この免震プラグの製造方法によれば、各加圧の間に斜断円柱形プッシャーを180°回転させ、粉体材料の受圧面の形状が異なる形状に変化するようにしているので、金型内で粉体材料の流動が促されて粉体材料中の空気が抜け、低空気含有率の免震プラグを得ることができる。
Therefore, it is possible to forcibly flow the powder material in the mold during pressure molding to remove the air mixed in the powder material, and to obtain the desired damping performance and displacement followability with a low air content. As a method of manufacturing a seismic isolation plug that can be used, the powder material put into the mold is applied multiple times with a pusher so that the shape of the pressure receiving surface of the powder material changes to a different shape each time the powder material is pressed. A method of manufacturing a seismic isolation plug by pressing has been proposed (see, for example, Patent Document 2). Specifically, it is a method for producing a seismic isolation plug by pressurizing a powder material a plurality of times using a slanted cylindrical pusher having a pressurizing surface composed of a plane inclined with respect to the pressurizing direction. By rotating the oblique cylindrical pusher by 180 ° around the central axis during the pressure, the seismic isolation plug is designed to change the shape of the pressure receiving surface of the powder material to a different shape each time the powder material is pressurized. The manufacturing method of this is proposed. The “obliquely cut cylinder” is a shape obtained by cutting a cylinder obliquely with respect to the axial direction.
And according to the manufacturing method of this seismic isolation plug, the oblique cylindrical pusher is rotated 180 ° between each pressurization, so that the shape of the pressure receiving surface of the powder material changes to a different shape. The flow of the powder material is promoted in the mold, and the air in the powder material is released, so that a seismic isolation plug having a low air content can be obtained.
しかし、プッシャーは質量が大きく、プッシャーを回転させる作業は煩雑で時間を要する。そのため、各加圧の間にプッシャーを回転させ、加圧を行う度に粉体材料の受圧面の形状を変化させる上記従来の免震プラグの製造方法では、所望の空気含有率の免震プラグを得るまでに長い時間を要し、免震プラグを効率的に製造することができないという問題があった。
なお、プッシャーを回転させず、プッシャーの代わりに金型を回転させることにより、加圧を行う度に粉体材料の受圧面の形状を変化させることも可能であるが、金型を回転させる作業も煩雑で時間を要するため、金型を回転させたとしても、免震プラグを効率的に製造することはできなかった。
However, the pusher has a large mass, and the operation of rotating the pusher is complicated and requires time. Therefore, in the conventional method of manufacturing a seismic isolation plug that rotates the pusher between each pressurization and changes the shape of the pressure-receiving surface of the powder material each time the pressurization is performed, the seismic isolation plug having a desired air content is used. It took a long time to obtain the above, and there was a problem that the seismic isolation plug could not be manufactured efficiently.
It is possible to change the shape of the pressure-receiving surface of the powder material each time pressure is applied by rotating the mold instead of the pusher without rotating the pusher. However, even if the mold is rotated, the seismic isolation plug cannot be efficiently manufactured.
そこで、本発明は、空気含有率の低い免震プラグを効率的に製造することができる免震プラグの製造方法を提供することを目的とする。 Then, an object of this invention is to provide the manufacturing method of the seismic isolation plug which can manufacture efficiently the seismic isolation plug with a low air content rate.
本発明者は、空気含有率の低い免震プラグを少ないプッシャー回転回数(または金型回転回数)で効率的に製造することを目的として、鋭意検討を行った。そして、本発明者は、プッシャーを用いて金型内の粉体材料を加圧した後、プッシャー(または金型)を回転して粉体材料を再度加圧する前に、未回転のプッシャーおよび金型で粉体材料を再加圧することにより、加圧の度にプッシャーまたは金型を回転させる方法で製造した免震プラグと同等の空気含有率を有する免震プラグを、該方法よりも少ないプッシャー回転回数(または金型回転回数)で効率的に製造し得ることを見出し、本発明を完成させた。 The present inventor has intensively studied for the purpose of efficiently producing a seismic isolation plug having a low air content with a small number of pusher rotations (or mold rotations). The inventor then pressurizes the powder material in the mold using the pusher, and then rotates the pusher (or mold) and pressurizes the powder material again before pressing the powder material in the mold again. By repressurizing the powder material with a mold, a seismic isolation plug having an air content equivalent to that of a seismic isolation plug manufactured by a method of rotating a pusher or a mold each time pressure is applied is less than that of the method. The present invention has been completed by finding that it can be efficiently produced by the number of rotations (or the number of mold rotations).
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の免震プラグの製造方法は、塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震構造体用の免震プラグを製造する方法であって、金型内に充填された粉体材料の少なくとも一方側を、プッシャー中心軸線に関して非完全回転対称の加圧面を有する非完全回転対称プッシャーを用いて加圧する第1加圧工程と、前記第1加圧工程で加圧された粉体材料の、前記非完全回転対称プッシャーを用いて加圧された側を、前記非完全回転対称プッシャーおよび前記金型を回転させることなく、前記非完全回転対称プッシャーを用いて1回以上加圧する第1再加圧工程と、前記第1再加圧工程で加圧された粉体材料の、前記非完全回転対称プッシャーを用いて加圧された側を、前記金型に対して相対的に回転させた前記非完全回転対称プッシャーを用いて加圧し、前記粉体材料の前記非完全回転対称プッシャーを用いて加圧された側の受圧面の形状を、前記第1再加圧工程後の形状とは異なる形状に変化させる第2加圧工程と、前記第2加圧工程で加圧された粉体材料の、前記非完全回転対称プッシャーを用いて加圧された側を、前記非完全回転対称プッシャーおよび前記金型を回転させることなく、前記非完全回転対称プッシャーを用いて1回以上加圧する第2再加圧工程とを含むことを特徴とする。このように、非完全回転対称プッシャーを使用し、第2加圧工程において粉体材料の受圧面の形状を第1再加圧工程後の形状とは異なる形状に変化させれば、金型内で粉体材料を強制的に流動させて粉体材料中に混入した空気を抜き、空気含有率の低い免震プラグを製造することができる。また、第2加圧工程において非完全回転対称プッシャーを金型に対して相対回転させて粉体材料を加圧し、受圧面の形状を変化させつつ免震プラグを製造する際に、第1再加圧工程および第2再加圧工程を設ければ、加圧の度にプッシャーまたは金型を回転させる方法で製造した免震プラグと同等の空気含有率を有する免震プラグを、該方法よりも少ない回転回数で製造することができる。即ち、金型に対してプッシャーを相対回転させる回数を低減しつつ、加圧の度にプッシャーまたは金型を回転させる方法で製造した免震プラグと同等の空気含有率を有する免震プラグを製造することができる。更に、非完全回転対称プッシャーおよび金型を回転させることなく用いる第1再加圧工程および第2再加圧工程は、プッシャーや金型を回転させる作業と比べて非常に短い時間で実施することができる。従って、上記製造方法によれば、空気含有率の低い免震プラグを効率的に製造することができる。 That is, the present invention aims to advantageously solve the above-mentioned problems, and the method for manufacturing a seismic isolation plug according to the present invention includes a powder material containing a plastic fluid and a hard filler in a mold. A method of manufacturing a seismic isolation plug for a seismic isolation structure by press molding with a pressure surface that is non-completely rotationally symmetric with respect to the pusher center axis on at least one side of the powder material filled in the mold A first pressurizing step of pressurizing using a non-complete rotationally symmetric pusher, and a side of the powder material pressed in the first pressurizing step that is pressed using the non-completely rotationally symmetric pusher. The first re-pressurization step of pressurizing at least once using the non-complete rotation symmetric pusher and the first re-pressurization step without rotating the non-complete rotation symmetric pusher and the mold. Of the non-fully rotationally symmetric powder The pressure side is pressed with the incomplete rotationally symmetric pusher rotated relative to the mold, and the powder material is applied with the incompletely rotationally symmetric pusher. A second pressure step for changing the shape of the pressure-receiving surface on the pressed side to a shape different from the shape after the first re-pressurization step; and the powder material pressed in the second pressure step The second pressure is applied to the side pressurized using the non-perfect rotational symmetry pusher one or more times using the non-perfect rotational symmetry pusher without rotating the non-perfect rotational symmetry pusher and the mold. And a pressurizing step. In this way, if the shape of the pressure-receiving surface of the powder material is changed to a shape different from the shape after the first re-pressurization step in the second pressurization step using the non-complete rotationally symmetric pusher, Thus, the powder material can be forced to flow and air mixed in the powder material can be removed to manufacture a seismic isolation plug having a low air content. In addition, when the seismic isolation plug is manufactured while changing the shape of the pressure receiving surface by rotating the incomplete rotationally symmetric pusher relative to the mold to pressurize the powder material in the second pressurizing step, By providing a pressurization step and a second repressurization step, a seismic isolation plug having an air content equal to that of a seismic isolation plug manufactured by a method of rotating a pusher or a mold each time pressurization is obtained from the method. Can be manufactured with a small number of rotations. That is, it manufactures a seismic isolation plug having an air content equivalent to that of a seismic isolation plug manufactured by a method of rotating the pusher or the mold every pressurization while reducing the number of times the pusher is rotated relative to the mold. can do. Furthermore, the first re-pressurization step and the second re-pressurization step that are used without rotating the non-perfect rotation symmetrical pusher and the mold should be performed in a very short time compared to the operation of rotating the pusher and the mold. Can do. Therefore, according to the said manufacturing method, a seismic isolation plug with a low air content rate can be manufactured efficiently.
なお、本発明において、「プッシャー中心軸線」とは、プッシャーの中心を通って加圧方向と平行に延びる線を指す。ここで、「加圧方向」とは、金型内の粉体材料をプッシャーで加圧する際にプッシャーが進行する方向を指す。
また、本発明において、「完全回転対称」とは、通常の意味における回転対称とは異なり、回転対象(本発明では、加圧面)を所定の軸(本発明では、プッシャー中心軸線)に関して0〜360°のいかなる角度で回転させても、回転前の形と回転後の形とが重なることを意味する。そして、本発明において、「非完全回転対称の加圧面」とは、加圧面がプッシャー中心軸線に関して完全回転対称ではないことを指す。即ち、加圧面が、加圧面をプッシャー中心軸線周りに360°回転させて初めて回転前の加圧面の形と重なる形状(非回転対称形状)であるか、加圧面をプッシャー中心軸線周りに(360/n)°[但し、nは2以上の整数]回転させて初めて回転前の加圧面の形と重なる形状であることを指す。因みに、完全回転対称な形としては、特に限定されることなく、円柱形や円錐形などを挙げることができる。
更に、本発明において、「プッシャーおよび金型を回転させることなく用いる」とは、金型に対してプッシャーを挿抜する際に不可避的に発生し得る回転をも排除するという限定的な意味ではなく、粉体材料の加圧後に加圧方向とは反対方向に移動させたプッシャーや、プッシャーを移動させた後の金型をそのまま用いることを指す。
また、本発明において、「金型に対して相対的に回転させたプッシャー」とは、プッシャー中心軸線周りにプッシャーを回転させる操作と、金型中心軸線周りに金型を回転させる操作との少なくとも一方を行うことにより、金型に対して相対回転させたプッシャーを指す。なお、「金型中心軸線」とは、金型の中心を通り、プッシャーが挿抜される方向と平行に延びる線を指す。
In the present invention, the “pusher central axis” refers to a line that passes through the center of the pusher and extends in parallel with the pressing direction. Here, the “pressing direction” refers to the direction in which the pusher advances when the powder material in the mold is pressed by the pusher.
In the present invention, “complete rotational symmetry” is different from rotational symmetry in a normal sense, and the object to be rotated (pressure surface in the present invention) is 0 to 0 with respect to a predetermined axis (in the present invention, the pusher central axis). This means that the shape before the rotation and the shape after the rotation overlap even if the rotation is performed at any angle of 360 °. In the present invention, the “incompletely rotationally symmetric pressing surface” means that the pressing surface is not completely rotationally symmetric with respect to the pusher center axis. That is, the pressure surface has a shape (non-rotationally symmetric shape) that overlaps with the shape of the pressure surface before rotation only after the pressure surface is rotated 360 ° around the pusher center axis, or the pressure surface is rotated around the pusher center axis (360 / N) ° [where n is an integer of 2 or more] indicates that the shape does not overlap with the shape of the pressure surface before rotation. Incidentally, the complete rotationally symmetric shape is not particularly limited, and examples thereof include a cylindrical shape and a conical shape.
Furthermore, in the present invention, “using the pusher and the mold without rotating” does not mean that the rotation that can inevitably occur when the pusher is inserted into and removed from the mold is excluded. It means that the pusher moved in the direction opposite to the pressurizing direction after pressing the powder material or the mold after moving the pusher is used as it is.
Further, in the present invention, “the pusher rotated relative to the mold” means at least an operation of rotating the pusher around the pusher central axis and an operation of rotating the mold around the mold central axis. By performing one, the pusher is rotated relative to the mold. The “mold center axis” refers to a line that passes through the center of the mold and extends in parallel with the direction in which the pusher is inserted and removed.
ここで、本発明の免震プラグの製造方法は、前記非完全回転対称プッシャーとして、加圧方向最後端よりも加圧方向側に位置する頂辺で交差する二つの平面を加圧面として有する楔形プッシャー、および、加圧方向最先端よりも加圧方向とは反対の方向に位置する底辺で交差する二つの平面を加圧面として有する楔溝形プッシャーの少なくとも一方を用いることが好ましい。楔形プッシャーと楔溝形プッシャーとの少なくとも一方を非完全回転対称プッシャーとして用いれば、金型内で粉体材料を更に大きく流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。 Here, the manufacturing method of the seismic isolation plug according to the present invention is a wedge shape having, as the pressing surface, two planes intersecting at the apex located on the pressure direction side with respect to the pressure direction rearmost end as the incomplete rotationally symmetrical pusher. It is preferable to use at least one of a pusher and a wedge groove type pusher having, as pressing surfaces, two planes intersecting at the bottom side located in the direction opposite to the pressing direction rather than the foremost pressing direction. If at least one of the wedge-shaped pusher and the wedge groove-shaped pusher is used as a non-complete rotationally symmetric pusher, the powder material can be made to flow more greatly in the mold, and the air mixed in the powder material can be sufficiently removed. This is because the air content of the seismic isolation plug can be further reduced.
また、本発明の免震プラグの製造方法は、前記第1再加圧工程および前記第2再加圧工程における加圧回数を2回以上5回以下とすることが好ましい。加圧回数を2回以上とすれば、免震プラグの空気含有率を更に低減することができるからである。また、加圧回数を6回以上とした場合、加圧回数の増加に伴う免震プラグの空気含有率の低減効果が少なくなる一方、免震プラグの製造に必要な時間が増加するからである。
なお、本発明において、第1再加圧工程の加圧回数と、第2再加圧工程の加圧回数とは、同一であってもよいし、互いに異なっていてもよい。
Moreover, it is preferable that the manufacturing method of the seismic isolation plug of this invention sets the frequency | count of pressurization in the said 1st repressurization process and the said 2nd repressurization process as 2 times or more and 5 times or less. It is because the air content rate of a seismic isolation plug can further be reduced if the frequency | count of pressurization shall be 2 times or more. In addition, when the number of pressurizations is set to 6 times or more, the effect of reducing the air content of the seismic isolation plug with the increase in the number of pressurizations decreases, while the time required for manufacturing the seismic isolation plug increases. .
In the present invention, the number of pressurizations in the first repressurization step and the number of pressurizations in the second repressurization step may be the same or different from each other.
そして、本発明の免震プラグの製造方法は、前記第2再加圧工程で加圧された粉体材料を、加圧方向に直交する平面を加圧面として有する平面プッシャーを用いて加圧して免震プラグとすることが好ましい。第2再加圧工程後に平面プッシャーを用いて粉体材料を加圧し、免震プラグを製造すれば、非完全回転対称プッシャーを回転させる回数を1回として、免震プラグを効率的に製造することができるからである。 And the manufacturing method of the seismic isolation plug of this invention pressurizes the powder material pressurized by the said 2nd repressurization process using the plane pusher which has a plane orthogonal to a pressurization direction as a pressurization surface. A seismic isolation plug is preferred. If the powder material is pressurized using a flat pusher after the second re-pressurizing step and the seismic isolation plug is manufactured, the seismic isolation plug is efficiently manufactured by setting the number of rotations of the incomplete rotationally symmetrical pusher as one time. Because it can.
本発明の免震プラグの製造方法によれば、空気含有率の低い免震プラグを効率的に製造することができる。 According to the method for manufacturing a base isolation plug of the present invention, a base isolation plug having a low air content can be efficiently manufactured.
以下、図面を参照して本発明の実施の形態を詳細に説明する。ここで、本発明の免震プラグの製造方法は、プッシャーを用いて金型内の粉体材料を加圧した後、プッシャーおよび/または金型を回転して粉体材料を再度加圧する前に、未回転のプッシャーおよび金型で粉体材料を再加圧することを特徴とする。
そして、本発明の免震プラグの製造方法を用いて製造された免震プラグは、免震装置の支承等として使用される免震構造体に用いられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, in the method for manufacturing the seismic isolation plug of the present invention, after the powder material in the mold is pressed using the pusher, before the powder material is pressed again by rotating the pusher and / or the mold. The powder material is re-pressurized with a non-rotating pusher and a mold.
And the seismic isolation plug manufactured using the manufacturing method of the seismic isolation plug of this invention is used for the seismic isolation structure used as a support etc. of a seismic isolation apparatus.
具体的には、本発明の製造方法を用いて製造された免震プラグは、例えば図2(a)に上面図を示し、図2(b)に図2(a)のI―I線に沿う断面図を示すような、略ドーナツ盤状の弾性を有する軟質板51と剛性を有する硬質板52とを交互に積層してなり、積層方向(鉛直方向)に伸びる円柱状の中空部53を有する積層体54と、積層体54の両端(上端および下端)に固定された略ドーナツ盤状のフランジ板56および円盤状の封止板55よりなる2枚のフランジと、積層体54の外周面を覆うゴム製の被覆材57とを具える免震構造体50の中空部53に圧入されて用いられる。そして、積層体54の中空部53に免震プラグ20を圧入してなる免震構造体50は、例えば地盤と構造物との間に取り付けられて用いられる。
Specifically, the seismic isolation plug manufactured by using the manufacturing method of the present invention shows, for example, a top view in FIG. 2 (a) and a line II in FIG. 2 (a) in FIG. 2 (b). As shown in a sectional view along the line, a cylindrical plate-like
ここで、本発明の製造方法の一例は、塑性流動材および硬質充填材を含有する粉体材料が充填される金型と、金型内の粉体材料の加圧に用いられる複数のプッシャーと、粉体材料の加圧に使用するプッシャーを交換するプッシャー交換機構と、プッシャーをプッシャー中心軸線周りに回転するプッシャー回転機構とを備える免震プラグの製造装置を用いて、例えば後述のようにして実施することができる。なお、免震プラグの製造装置は、プッシャー回転機構に替えて、或いは、加えて、金型を金型中心軸線周りに回転する金型回転機構を備えていてもよい。 Here, an example of the production method of the present invention includes a mold filled with a powder material containing a plastic fluid material and a hard filler, and a plurality of pushers used to press the powder material in the mold. Using a seismic isolation plug manufacturing apparatus including a pusher exchange mechanism for exchanging a pusher used for pressurizing a powder material and a pusher rotation mechanism for rotating the pusher about the pusher central axis, for example, as described below Can be implemented. The seismic isolation plug manufacturing apparatus may include a mold rotating mechanism that rotates the mold around the mold center axis instead of or in addition to the pusher rotating mechanism.
なお、免震プラグの製造装置のプッシャー交換機構は、使用する順に並列配置した複数のプッシャーに沿って金型を移動させることにより使用するプッシャーを交換し得るようにした機構であっても良いし、位置を固定した金型に対して使用する順に並列配置した複数のプッシャーを移動させることにより使用するプッシャーを交換し得るようにした機構であっても良い。更に、プッシャー回転機構は、プッシャー中心軸線に関してプッシャーを回転させることが可能であれば、任意の機構とすることができる。また、金型回転機構は、金型中心軸線に関して金型を回転させることが可能であれば、任意の機構とすることができる。 The pusher replacement mechanism of the seismic isolation plug manufacturing apparatus may be a mechanism that allows replacement of the pusher to be used by moving the mold along a plurality of pushers arranged in parallel in the order of use. The mechanism may be such that the pushers to be used can be replaced by moving a plurality of pushers arranged in parallel in the order of use with respect to the mold having a fixed position. Furthermore, the pusher rotation mechanism can be any mechanism as long as the pusher can be rotated about the pusher center axis. The mold rotation mechanism can be any mechanism as long as the mold can be rotated with respect to the mold center axis.
また、免震プラグの製造に用いられる粉体材料を構成する塑性流動材としては、特に限定されることなく、例えば、天然ゴム、ポリブタジエンゴム、アクリルゴム、シリコンゴム、ポリウレタン、ウレタン系エラストマーなどのエストラマー成分と、ロジン樹脂、フェノール樹脂などの樹脂と、カーボンブラック、シリカなどの補強性充填材と、フタル酸、マレイン酸、クエン酸などの可塑剤と、ヒマシ油、アマニ油、ナタネ油などの軟化剤とを含む混合物が挙げられる。また、硬質充填材としては、特に限定されることなく、例えば、銅粉、ステンレス鋼粉、ジルコニウム粉、タングステン粉、青銅粉、アルミニウム粉、ニッケル粉、モリブデン粉、チタン粉、鉄粉などの金属粉体や金属化合物が挙げられる。そして、これら塑性流動材および硬質充填材の組成等は、免震プラグに求められる性能に応じて適宜変更することができる。 Further, the plastic fluid material constituting the powder material used for manufacturing the seismic isolation plug is not particularly limited, and examples thereof include natural rubber, polybutadiene rubber, acrylic rubber, silicon rubber, polyurethane, and urethane-based elastomer. Estramer components, resins such as rosin resin and phenol resin, reinforcing fillers such as carbon black and silica, plasticizers such as phthalic acid, maleic acid and citric acid, and castor oil, linseed oil, rapeseed oil, etc. The mixture containing a softener is mentioned. Further, the hard filler is not particularly limited, for example, metal such as copper powder, stainless steel powder, zirconium powder, tungsten powder, bronze powder, aluminum powder, nickel powder, molybdenum powder, titanium powder, iron powder, etc. Examples thereof include powders and metal compounds. The composition of the plastic fluid material and the hard filler can be appropriately changed according to the performance required for the seismic isolation plug.
本発明の免震プラグの製造方法の一例では、図1(a)〜(l)に示す工程に従い、非完全回転対称プッシャーとしての楔形プッシャー3および楔溝形プッシャー4と、平面プッシャー5とを所定の順序・組合せで用いて、金型内の粉体材料を加圧成形して免震プラグを製造する。なお、粉体材料を加圧成形する際の圧力は、所望の免震プラグの性能等に応じて適宜設定することができる。
In an example of the manufacturing method of the seismic isolation plug of this invention, according to the process shown to Fig.1 (a)-(l), the wedge type pusher 3 and the wedge
ここで、楔形プッシャー3は、粉体材料を加圧する側の先端部の正面図を図3(a)に、側面図を図3(b)に、平面図を図3(c)にそれぞれ示すように、加圧方向最後端33a,33bよりも加圧方向側(図3(a),(b)では上側)に突出して位置する頂辺31で交差する二つの平面32a,32bを加圧面として有するプッシャーである。即ち、楔形プッシャー3では、加圧面の加圧方向最後端33a,33bに対し、加圧面の中央部(加圧方向最後端33a,33bのプッシャー径方向内側に位置する部分)が加圧方向に突出している。
そして、楔形プッシャー3の先端部では、頂辺31に直交する断面が、加圧方向に凸のV字形をしており、頂辺31の延在方向および加圧方向の双方に直交する方向(図3(a)では左右方向)の楔形プッシャー3の幅が、頂辺31に向かって漸減している。
なお、楔形プッシャー3では、二つの平面32a,32bは、交差角度βで交差している。
Here, the wedge-shaped pusher 3 is shown in FIG. 3A, a side view in FIG. 3B, and a plan view in FIG. In this way, the two
And in the front-end | tip part of the wedge-shaped pusher 3, the cross section orthogonal to the
In the wedge-shaped pusher 3, the two
因みに、図3に示す楔形プッシャー3では、金型に対して楔形プッシャー3を真っ直ぐに挿入し易くする観点から頂辺31を平面視で楔形プッシャー3の中央に位置させているが、本発明の免震プラグの製造方法では、平面視における頂辺31の位置が中央からオフセットした楔形プッシャーを用いても良い。また、図3に示す楔形プッシャー3では、頂辺31が加圧方向に直交しているが、本発明の免震プラグの製造方法では、頂辺が加圧方向に対して傾斜した楔形プッシャーを用いても良い。 Incidentally, in the wedge-shaped pusher 3 shown in FIG. 3, the apex 31 is positioned at the center of the wedge-shaped pusher 3 in plan view from the viewpoint of facilitating the straight insertion of the wedge-shaped pusher 3 into the mold. In the manufacturing method of the seismic isolation plug, a wedge-shaped pusher in which the position of the apex 31 in plan view is offset from the center may be used. In the wedge-shaped pusher 3 shown in FIG. 3, the apex 31 is orthogonal to the pressurizing direction. However, in the seismic isolation plug manufacturing method of the present invention, a wedge-shaped pusher whose apex is inclined with respect to the pressurizing direction is used. It may be used.
楔溝形プッシャー4は、粉体材料を加圧する側の先端部の正面図を図4(a)に、側面図を図4(b)に、平面図を図4(c)にそれぞれ示すように、加圧方向最先端43a,43bよりも加圧方向(図4(a),(b)では上方)とは反対方向に窪んで位置する底辺41(換言すれば、楔溝形プッシャー4の加圧方向最先端43a,43bよりも加圧方向後方(図4(a),(b)では下方)に位置する底辺41)で交差する二つの平面42a,42bを加圧面として有するプッシャーである。即ち、楔溝形プッシャー4の先端部には、底辺41に直交する断面の形状がV字形の溝が形成されている。
そして、楔溝形プッシャー4の先端部では、底辺41に直交する断面が、加圧方向とは反対の方向に凸のV字形をしており、底辺41の延在方向および加圧方向の双方に直交する方向(図4(a)では左右方向)の平面42a,42b間の距離が、底辺41に向かって漸減している。
なお、楔溝形プッシャー4では、二つの平面42a,42bは、交差角度αで交差している。
The wedge-
At the tip of the wedge groove-shaped
In the wedge
因みに、図4に示す楔溝形プッシャー4では、楔溝形プッシャー4の形状を楔形プッシャー3の形状に対応させる観点から底辺41を平面視で楔溝形プッシャー4の中央に位置させているが、本発明の免震プラグの製造方法では、平面視における底辺41の位置が中央からオフセットした楔溝形プッシャーを用いても良い。また、図4に示す楔溝形プッシャー4では、底辺41が加圧方向に直交しているが、本発明の免震プラグの製造方法では、底辺が加圧方向に対して傾斜した楔溝形プッシャーを用いても良い。
Incidentally, in the wedge
ここで、上述した楔形プッシャー3および楔溝形プッシャー4は、加圧面(平面32a,32bおよび平面42a,42b)がプッシャー中心軸線に関して2回対称の回転対称形状である。即ち、楔形プッシャー3の加圧面および楔溝形プッシャー4の加圧面は、プッシャー中心軸線周りに180°(=(360/2)°)回転させて初めて回転前の加圧面の形と重なる形状である。従って、楔形プッシャー3および楔溝形プッシャー4は、プッシャー中心軸線に関して非完全回転対称の加圧面を有する非完全回転対称プッシャーである。
Here, the wedge-shaped pusher 3 and the wedge groove-shaped
平面プッシャー5は、加圧方向に直交する平面を加圧面として有するプッシャーである。なお、平面プッシャー5の平面の形状は、粉体材料が充填される金型の中空部の加圧方向に直交する断面の形状と略等しい形状である。 The plane pusher 5 is a pusher having a plane orthogonal to the pressing direction as a pressing surface. The flat shape of the flat pusher 5 is substantially the same as the cross-sectional shape perpendicular to the pressing direction of the hollow portion of the mold filled with the powder material.
そして、図1(a)〜(l)に製造工程を示す本発明の免震プラグの製造方法の一例では、まず、図1(a)〜(h)に示すように、円筒状の金型1の内部に投入した粉体材料2を、加圧方向に対向させた一対の楔形プッシャー3および楔溝形プッシャー4で両側から挟んで加圧する。
And in an example of the manufacturing method of the seismic isolation plug of this invention which shows a manufacturing process to Fig.1 (a)-(l), as shown to Fig.1 (a)-(h), a cylindrical metal mold | die is shown first. The
具体的には、最初に、図1(a)に示すように、金型1内に充填した粉体材料2の一方側(図1では上側)から楔形プッシャー3を金型1内に挿入すると共に、粉体材料2の他方側(図1では下側)から楔溝形プッシャー4を金型1内に挿入し、粉体材料2を、加圧方向に対向させた楔形プッシャー3および楔溝形プッシャー4で両側から挟んで加圧する。そして、図1(b)に示すように、楔形プッシャー3および楔溝形プッシャー4を金型1から抜き取る(第1加圧工程)。
Specifically, first, as shown in FIG. 1A, a wedge-shaped pusher 3 is inserted into the mold 1 from one side (upper side in FIG. 1) of the
次に、図1(c)に示すように、楔形プッシャー3および楔溝形プッシャー4、並びに、金型1を回転させることなく、第1加圧工程で加圧した粉体材料2を、加圧方向に対向させた楔形プッシャー3および楔溝形プッシャー4で両側から挟んで1回加圧する。即ち、金型内の粉体材料2を、金型1から抜き取った楔形プッシャー3および楔溝形プッシャー4をそのまま用いて直ぐに再加圧する。その後、図1(d)に示すように、楔形プッシャー3および楔溝形プッシャー4を金型1から抜き取る(第1再加圧工程)。なお、第1再加圧工程では、任意に、金型1から抜き取った楔形プッシャー3および楔溝形プッシャー4をそのまま用いて粉体材料2を直ぐに再加圧する操作を、更に1回以上繰り返す。即ち、第1再加圧工程では、図1(c)〜(d)に示す操作を合計で1回以上繰り返す。
Next, as shown in FIG. 1 (c), the wedge-shaped pusher 3, the wedge groove-shaped
その後、図1(e)に示すように、楔形プッシャー3および楔溝形プッシャー4を例えば90°回転させ、90°回転させた楔形プッシャー3および楔溝形プッシャー4で粉体材料2を両側から挟んで再び加圧する。そして、図1(d)〜(f)に示すように、粉体材料2の受圧面の形状を、第1再加圧工程後の形状とは異なる形状に変化させる。その後、図1(f)に示すように、楔形プッシャー3および楔溝形プッシャー4を金型1から抜き取る(第2加圧工程)。
Thereafter, as shown in FIG. 1 (e), the wedge-shaped pusher 3 and the wedge groove-shaped
次に、図1(g)に示すように、楔形プッシャー3および楔溝形プッシャー4、並びに、金型1を回転させることなく、第2加圧工程で加圧した粉体材料2を、加圧方向に対向させた楔形プッシャー3および楔溝形プッシャー4で両側から挟んで1回加圧する。即ち、金型内の粉体材料2を、金型1から抜き取った楔形プッシャー3および楔溝形プッシャー4をそのまま用いて直ぐに再加圧する。その後、図1(h)に示すように、楔形プッシャー3および楔溝形プッシャー4を金型1から抜き取る(第2再加圧工程)。なお、第2再加圧工程では、任意に、金型1から抜き取った楔形プッシャー3および楔溝形プッシャー4をそのまま用いて粉体材料2を直ぐに再加圧する操作を、更に1回以上繰り返す。即ち、第2再加圧工程では、図1(g)〜(h)に示す操作を合計で1回以上繰り返す。
Next, as shown in FIG. 1 (g), the wedge-shaped pusher 3, the wedge groove-shaped
最後に、この一例の免震プラグの製造方法では、図1(i)〜(l)に示すように、楔形プッシャー3および楔溝形プッシャー4を用いて加圧された粉体材料2を、加圧方向に対向させた一対の平面プッシャー5,5で両側から挟んで加圧する。具体的には、まず、図1(i)に示すように、粉体材料2の両側から平面プッシャー5,5を金型1内に挿入して粉体材料2を加圧する。次に、図1(j)に示すように、二つの平面プッシャー5,5を金型1から抜き取る。その後、任意に、図1(k)〜(l)に示すように、粉体材料2の両側から平面プッシャー5,5を金型1内に挿入して粉体材料2を加圧し、二つの平面プッシャー5,5を金型1から抜き取る操作を更に1回繰り返す。そして、加圧成形された粉体材料2よりなる免震プラグ20を金型1から取り外す。
Finally, in the manufacturing method of the seismic isolation plug of this example, as shown in FIGS. 1 (i) to 1 (l), the
そして、この一例の免震プラグの製造方法によれば、非完全回転対称プッシャーである楔形プッシャー3および楔溝形プッシャー4を使用しているので、第2加圧工程において、粉体材料2の受圧面の形状を第1再加圧工程後の形状とは異なる形状に変化させることができる。従って、この一例の免震プラグの製造方法によれば、第2加圧工程において、粉体材料2の受圧面の形状変化を伴いつつ金型1内で粉体材料2を強制的に流動させ、粉体材料中に混入した空気を抜いて、空気含有率の低い免震プラグを製造することができる。
なお、金型内で粉体材料が強く流動させられることにより粉体材料内の空気が抜けて免震プラグの空気含有率が低くなるのは、粉体材料の流動により粉体材料内の硬質充填材同士が密に配置されるためであると推察される。
And according to the manufacturing method of the seismic isolation plug of this example, since the wedge-shaped pusher 3 and the wedge groove-shaped
Note that the air content in the powder material is reduced due to the strong flow of the powder material in the mold, and the air content of the seismic isolation plug is lowered. This is presumably because the fillers are densely arranged.
ここで、第2加圧工程において楔形プッシャー3および楔溝形プッシャー4をプッシャー中心軸線周りに回転させる角度は、頂辺31および底辺41の延在方向を変え、粉体材料2の受圧面の形状を変化させることができれば(即ち、180°の整数倍以外であれば)任意の角度とすることができる。しかし、金型1内で粉体材料2を隅々まで均等に流動させる観点からは、楔形プッシャー3および楔溝形プッシャー4をプッシャー中心軸線周りに回転させる角度は、90°とすることが好ましい。
なお、本発明の免震プラグの製造方法では、非完全回転対称プッシャー(楔形プッシャーおよび楔溝形プッシャー)を回転させることなく、内部に粉体材料を充填した金型を金型中心軸線周りに回転させることにより、金型に対して非完全回転対称プッシャーを相対的に回転させてもよい。また、本発明の免震プラグの製造方法では、非完全回転対称プッシャー(楔形プッシャーおよび楔溝形プッシャー)および内部に粉体材料を充填した金型の双方を回転させることにより、金型に対して非完全回転対称プッシャーを相対的に回転させてもよい。
Here, the angle at which the wedge-shaped pusher 3 and the wedge groove-shaped
In the seismic isolation plug manufacturing method of the present invention, the mold filled with the powder material is rotated around the mold center axis without rotating the non-complete rotationally symmetric pusher (wedge shaped pusher and wedge groove shaped pusher). By rotating, the non-perfect rotationally symmetrical pusher may be rotated relative to the mold. In the seismic isolation plug manufacturing method of the present invention, both the non-completely rotationally symmetric pusher (wedge shaped pusher and wedge groove shaped pusher) and the mold filled with the powder material are rotated to the mold. The non-completely rotationally symmetric pusher may be rotated relatively.
また、この一例の免震プラグの製造方法では、第1加圧工程後の第1再加圧工程および第2加圧工程後の第2再加圧工程において、楔形プッシャー3および楔溝形プッシャー4、並びに、金型1を回転させることなく、粉体材料2を再加圧している。従って、加圧の度にプッシャーまたは金型を回転させ、粉体材料を加圧する度に粉体材料の受圧面の形状を変化させる場合と比較し、少ない回転回数で空気含有率の低い免震プラグを製造することができる。即ち、金型1に対して楔形プッシャー3および楔溝形プッシャー4を相対回転させる回数を低減させつつ、加圧の度にプッシャーまたは金型を回転させる方法で製造した免震プラグと同等の空気含有率を有する免震プラグを製造することができる。
なお、楔形プッシャー3および楔溝形プッシャー4、並びに、金型1を回転させることなく用いる第1再加圧工程および第2再加圧工程は、プッシャーや金型を回転させる作業と比べて非常に短い時間で実施することができる。従って、この一例の免震プラグの製造方法では、第1再加圧工程および第2再加圧工程において粉体材料の再加圧を複数回行ったとしても、加圧の度にプッシャーまたは金型を回転させる方法で製造した免震プラグと同等の空気含有率の免震プラグを、該方法よりも短い時間で効率的に製造することができる。即ち、プッシャーや金型を回転させる作業は煩雑で時間を要するため、プッシャーや金型の回転回数を低減することができれば、第1再加圧工程および第2再加圧工程を設けたとしても、免震プラグの製造時間を短縮して免震プラグを効率的に製造することができる。
In this example of the method for manufacturing a seismic isolation plug, the wedge-shaped pusher 3 and the wedge groove-shaped pusher are used in the first re-pressurization step after the first pressurization step and the second re-pressurization step after the second pressurization step. 4 and the
Note that the wedge-shaped pusher 3 and the wedge-
ここで、第1再加圧工程および第2再加圧工程を設けることにより少ない回転回数で空気含有率の低い免震プラグを製造することができる理由は、明らかではないが、第1再加圧工程および第2再加圧工程を実施すれば、第1加圧工程や第2加圧工程の後、プッシャーを金型内から引き抜く際に粉体材料が膨張するのを抑制し、粉体材料の空気含有率が増加するのを抑制することができるからであると推察される。即ち、本発明者の研究によれば、プッシャーを金型内から引き抜き、粉体材料に加えられていた圧力を取り除く(除圧する)と、除圧に伴って粉体材料が膨張し、粉体材料の空気含有率が増加するが、除圧直後に再加圧を行えば、粉体材料の膨張を抑制し、粉体材料の空気含有率が増加するのを抑制することができると推察される。 Here, it is not clear why the seismic isolation plug having a low air content can be manufactured with a small number of rotations by providing the first repressurization step and the second repressurization step. If the pressure step and the second repressurization step are performed, the powder material is prevented from expanding when the pusher is pulled out from the mold after the first pressurization step or the second pressurization step. It is assumed that it is possible to suppress an increase in the air content of the material. That is, according to the inventor's research, when the pusher is pulled out from the mold and the pressure applied to the powder material is removed (depressurized), the powder material expands with the depressurization, and the powder Although the air content of the material increases, it is speculated that if repressurization is performed immediately after depressurization, the expansion of the powder material can be suppressed and the increase in the air content of the powder material can be suppressed. The
なお、本発明の免震プラグの製造方法では、粉体材料の膨張を十分に抑制し、空気含有率の低い免震プラグを得るという観点からは、第1再加圧工程および第2再加圧工程における加圧回数(再加圧回数)を、2回以上とすることが好ましい。また、空気含有率の低い免震プラグを短い時間で効率的に製造するという観点からは、第1再加圧工程および第2再加圧工程における加圧回数(再加圧回数)は、5回以下とすることが好ましく、4回以下とすることが更に好ましい。加圧回数を6回以上にすると、加圧回数の増加に伴う免震プラグの空気含有率の低減効果が少なくなる一方、免震プラグの製造に必要な時間が増加するからである。 In addition, in the manufacturing method of the seismic isolation plug of the present invention, from the viewpoint of sufficiently suppressing the expansion of the powder material and obtaining the seismic isolation plug having a low air content, the first repressurization step and the second reheating step are performed. The number of pressurizations (repressurization times) in the pressurizing step is preferably 2 or more. Further, from the viewpoint of efficiently producing a seismic isolation plug having a low air content in a short time, the number of pressurizations (repressurization times) in the first repressurization step and the second repressurization step is 5 The number of times is preferably less than or equal to the number of times, and more preferably less than or equal to four times. This is because if the number of pressurizations is set to 6 or more, the effect of reducing the air content of the seismic isolation plug accompanying an increase in the number of pressurizations decreases, while the time required for manufacturing the seismic isolation plug increases.
また、この一例の免震プラグの製造方法では、楔形プッシャー3および楔溝形プッシャー4で粉体材料2を挟み込んで加圧しているので、金型1内で粉体材料2を強制的に流動させ、粉体材料2内の空気を十分に抜くことができる。
なお、粉体材料2を楔溝形プッシャー4の加圧面の加圧方向後端側(底辺41側)まで十分に流動させる観点からは、加圧時に、楔形プッシャー3の頂辺31の延在方向と楔溝形プッシャー4の底辺41の延在方向とを一致させることが好ましい。しかし、本発明の免震プラグの製造方法では、頂辺31の延在方向と底辺41の延在方向とを異ならせた状態で粉体材料2を加圧しても良い。
また、粉体材料2を楔溝形プッシャー4の加圧面の加圧方向後端側(底辺41側)まで十分に流動させ、粉体材料2から空気を十分に抜く観点からは、楔溝形プッシャー4の二つの平面42a,42bの交差角度αは、楔形プッシャー3の二つの平面32a,32bの交差角度βよりも大きいことが好ましい。更に、交差角度αは、鈍角であることが好ましい。
In this example of the method for manufacturing a seismic isolation plug, the
From the viewpoint of sufficiently allowing the
Further, from the viewpoint of sufficiently flowing the
更に、この一例の免震プラグの製造方法では、第2再加圧工程後に平面プッシャー5を用いて粉体材料2を加圧し、免震プラグ20を製造しているので、楔形プッシャーおよび楔溝形プッシャーを回転させる回数を1回として、免震プラグを効率的に製造することができる。
なお、本発明の免震プラグの製造方法では、平面プッシャーで粉体材料を加圧する回数は任意の回数とすることができるが、製造された免震プラグの空気含有率を低減しつつ、免震プラグの端面の平坦性を向上させる観点からは、平面プッシャーで粉体材料を加圧する回数は複数回とすることが好ましい。なお、免震プラグの端面の平坦性を向上させる観点からは、平面プッシャーで粉体材料を加圧する回数は、第1加圧工程の加圧回数と第1再加圧工程の加圧回数との合計、および、第2加圧工程の加圧回数と第2再加圧工程の加圧回数との合計と等しいことが好ましい。
Furthermore, in the manufacturing method of the seismic isolation plug of this example, the
In the method for manufacturing a seismic isolation plug according to the present invention, the number of times the powder material is pressed by the flat pusher can be set to any number, but the air content rate of the manufactured seismic isolation plug is reduced and reduced. From the viewpoint of improving the flatness of the end face of the seismic plug, the number of times of pressing the powder material with the flat pusher is preferably a plurality of times. From the viewpoint of improving the flatness of the end face of the seismic isolation plug, the number of times of pressing the powder material with the flat pusher is the number of pressurizations in the first pressurization step and the number of pressurizations in the first repressurization step. And the total of the number of pressurizations in the second pressurization step and the number of pressurizations in the second repressurization step are preferably equal.
以上、図面を参照して本発明の実施形態を説明したが、本発明の免震プラグの製造方法は上述した一例に限定されることは無く、本発明の免震プラグの製造方法には適宜変更を加えることができる。 As mentioned above, although embodiment of this invention was described with reference to drawings, the manufacturing method of the seismic isolation plug of this invention is not limited to the example mentioned above, The manufacturing method of the seismic isolation plug of this invention is suitably used. You can make changes.
具体的には、本発明の免震プラグの製造方法では、粉体材料をプッシャーで両側から加圧しなくても良く、例えば一端が閉止された有底円筒状の金型に充填した粉体材料を一方側から非完全回転対称プッシャーで加圧して免震プラグを製造しても良い。 Specifically, in the seismic isolation plug manufacturing method of the present invention, it is not necessary to press the powder material from both sides with a pusher. For example, the powder material filled in a bottomed cylindrical mold with one end closed. The seismic isolation plug may be manufactured by applying pressure from one side with a non-complete rotationally symmetrical pusher.
また、本発明の免震プラグの製造方法では、非完全回転対称プッシャーとして、図5(a),(b)示すプッシャーを用いてもよい。
ここで、図5(a)に正面図を示すプッシャー7は、加圧方向に対して傾斜した平面よりなる加圧面71を有する斜断円柱形プッシャーである。そして、この斜断円柱形プッシャー7は、円柱を軸線方向に対して斜めに切断した形状を有し、斜断円柱形プッシャー7の加圧面71は、加圧面をプッシャー中心軸線周りに360°回転させて初めて回転前の加圧面の形と重なる形状(非回転対称形状)である。
また、図5(b)に正面図を示すプッシャー8は、加圧方向に対して階段状に突出した平面よりなる加圧面81を有する階段形プッシャーである。そして、この階段形プッシャー8の加圧面81は、加圧面をプッシャー中心軸線周りに360°回転させて初めて回転前の加圧面の形と重なる形状(非回転対称形状)である。
Moreover, in the manufacturing method of the seismic isolation plug of this invention, you may use the pusher shown to Fig.5 (a), (b) as an incomplete rotation symmetrical pusher.
Here, the
Moreover, the
また、本発明の免震プラグの製造方法では、粉体材料を、同一形状の非完全回転対称プッシャーで挟み込んで加圧してもよい。具体的には、本発明の免震プラグの製造方法では、特に限定されることなく、2つの楔形プッシャーで粉体材料を挟み込んで加圧してもよいし、2つの楔溝形プッシャーで粉体材料を挟み込んで加圧してもよい。
更に、本発明の免震プラグの製造方法では、粉体材料の一方側のみを非完全回転対称プッシャーで加圧し、粉体材料の他方側は任意の形状のプッシャーを用いて加圧してもよい。そして、粉体材料の他方側を任意の形状プッシャーで加圧する場合には、該任意の形状のプッシャーは、少なくとも第1再加圧工程および第2再加圧工程では、プッシャー中心軸線周りに回転させることなく用いる。
また、本発明の免震プラグの製造方法では、第2再加圧工程後に、粉体材料の、非完全回転対称プッシャーを用いて加圧された側を、金型に対して相対的に回転させた非完全回転対称プッシャーを用いて加圧し、粉体材料の非完全回転対称プッシャーを用いて加圧された側の受圧面の形状を、加圧前の形状とは異なる形状に変化させる追加の加圧工程と、追加の加圧工程で加圧された粉体材料の、非完全回転対称プッシャーを用いて加圧された側を、非完全回転対称プッシャーおよび金型を回転させることなく、非完全回転対称プッシャーを用いて1回以上加圧する追加の再加圧工程とを順次繰り返して行い、免震プラグの空気含有率を所望の値まで低下させてもよい。
更に、本発明の免震プラグの製造方法では、最後に平面プッシャーを用いることなく、切断等の手段を用いて免震プラグの端面を平坦化してもよい。
Moreover, in the manufacturing method of the seismic isolation plug of this invention, you may insert and press a powder material with the non-perfect rotation symmetrical pusher of the same shape. Specifically, in the manufacturing method of the seismic isolation plug of the present invention, the powder material may be sandwiched and pressed by two wedge-shaped pushers without being particularly limited, or the powder may be pressed by two wedge-groove pushers. The material may be sandwiched and pressurized.
Furthermore, in the seismic isolation plug manufacturing method of the present invention, only one side of the powder material may be pressurized with a non-complete rotationally symmetrical pusher, and the other side of the powder material may be pressurized with a pusher of any shape. . When the other side of the powder material is pressurized with an arbitrary shape pusher, the arbitrary shape pusher rotates around the pusher central axis at least in the first repressurization step and the second repressurization step. Use without letting go.
Moreover, in the manufacturing method of the seismic isolation plug of this invention, after the 2nd re-pressurization process, the side pressurized using the incomplete rotation symmetrical pusher of powder material is rotated relatively with respect to a metal mold | die. Added to change the shape of the pressure-receiving surface on the pressure side using a non-complete rotationally symmetric pusher, and to the shape different from the shape before pressurization Without rotating the non-perfect rotational symmetry pusher and the mold, the side of the powder material pressurized in the additional pressure step and the side pressurized using the non-perfect rotational symmetry pusher An additional repressurization step of pressurizing at least once using a non-complete rotationally symmetric pusher may be sequentially repeated to reduce the air content of the seismic isolation plug to a desired value.
Furthermore, in the seismic isolation plug manufacturing method of the present invention, the end face of the seismic isolation plug may be flattened by using means such as cutting without using a flat pusher.
以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.
(実施例1)
表1に示す組成を有する塑性流動材および硬質充填材を含む粉体材料を使用し、表2に示す手順に従って、内径16cmの円筒状の金型内で免震プラグを製造した。
具体的には、図1に示す免震プラグの製造方法と同様の手順で、楔形プッシャーおよび楔溝形プッシャーを用いて第1加圧工程、第1再加圧工程、第2加圧工程、第2再加圧工程を実施した。その後、加圧された粉体材料を平面プッシャーで2回加圧して免震プラグを製造した。
そして、得られた免震プラグについて、空気含有率を以下の方法で求めた。また、免震プラグの製造に要した時間(サイクルタイム)Tを測定し、従来例1の免震プラグの製造に要した時間(サイクルタイム)T0に対するサイクルタイム比(T/T0)を求めた。結果を表2および図6に示す。
Example 1
A seismic isolation plug was manufactured in a cylindrical mold having an inner diameter of 16 cm according to the procedure shown in Table 2 using a powder material containing a plastic fluid material and a hard filler having the composition shown in Table 1.
Specifically, in the same procedure as the manufacturing method of the seismic isolation plug shown in FIG. 1, the first pressurizing step, the first repressurizing step, the second pressurizing step using the wedge-shaped pusher and the wedge groove-shaped pusher, A second repressurization step was performed. Thereafter, the pressed powder material was pressed twice with a flat pusher to produce a seismic isolation plug.
And about the obtained seismic isolation plug, the air content rate was calculated | required with the following method. Further, the time (cycle time) T required for manufacturing the seismic isolation plug is measured, and the cycle time ratio (T / T 0 ) to the time (cycle time) T 0 required for manufacturing the base isolation plug of Conventional Example 1 is calculated. Asked. The results are shown in Table 2 and FIG.
*1 不定形粉末、平均粒径40μm
*2 天然ゴムと合成ゴムのブレンド
* 1 Amorphous powder, average particle size 40μm
* 2 Blend of natural rubber and synthetic rubber
<空気含有率>
免震プラグの製造に使用した粉体材料の理論比重(ρA)と免震プラグの実比重(ρB)とを求めた。そして、免震プラグの製造に使用した粉体材料の理論比重(ρA)と免震プラグの実比重(ρB)との差(ρA−ρB)を免震プラグの製造に使用した粉体材料の理論比重(ρA)で除した値を百分率で表して空気含有率ε(={(ρA−ρB)/ρA}×100%)とした。なお、免震プラグの実比重は、下記式(1)を用いて算出した。また、免震プラグの製造に使用した粉体材料の理論比重(ρA)を算出したところ、5.204g/cm3であった。
ρB=WB/VB=WB/(AB×hav) ・・・(1)
ここで、式(1)中、WBは免震プラグの質量、VBは免震プラグの体積、ABは免震プラグの断面積、havは免震プラグの平均高さである。なお、ABは、免震プラグ径の平均値davを用いて算出することができ(AB=(dav/2)2×π)、免震プラグの平均径davは、免震プラグの両端面(上面および下面)のそれぞれにおいて互いに直交する2方向にノギスで測定した免震プラグ径の平均値である。また、havは、免震プラグの端面の外周4箇所においてノギスで測定した免震プラグの高さの平均値である。
<Air content>
The theoretical specific gravity (ρ A ) of the powder material used for manufacturing the base isolation plug and the actual specific gravity (ρ B ) of the base isolation plug were determined. Then, the difference (ρ A −ρ B ) between the theoretical specific gravity (ρ A ) of the powder material used for manufacturing the base isolation plug and the actual specific gravity (ρ B ) of the base isolation plug was used for manufacturing the base isolation plug. The value obtained by dividing the powder material by the theoretical specific gravity (ρ A ) was expressed as a percentage to obtain an air content ε (= {(ρ A −ρ B ) / ρ A } × 100%). The actual specific gravity of the seismic isolation plug was calculated using the following formula (1). Moreover, it was 5.204 g / cm < 3 > when the theoretical specific gravity ((rho) A ) of the powder material used for manufacture of a seismic isolation plug was computed.
ρ B = W B / V B = W B / (A B × h av ) (1)
Here, in the formula (1), W B is the mass of the seismic isolation plugs, V B is the volume of seismic isolation plug, A B is the cross-sectional area of the seismic isolation plug, the h av is the average height of the seismic isolation plug. Incidentally, A B is seismic isolation plug diameter of the mean value d av can be calculated using (A B = (d av / 2) 2 × π), the average diameter d av seismic isolation plug seismic isolation It is the average value of the seismic isolation plug diameter measured by calipers in two directions orthogonal to each other on both end surfaces (upper surface and lower surface) of the plug. Further, h av is an average value of the height of the seismic isolation plug measured with a caliper at four locations on the outer periphery of the end face of the seismic isolation plug.
(実施例2〜6)
第1再加圧工程の加圧回数、第2再加圧工程の加圧回数および平面プッシャーを用いた加圧回数を表2に示すように変更した以外は、実施例1と同様にして免震プラグを製造した。
そして、得られた免震プラグについて、空気含有率およびサイクルタイム比(T/T0)を実施例1と同様の方法で求めた。結果を表2および図6に示す。
(Examples 2 to 6)
Except that the number of pressurizations in the first repressurization step, the number of pressurizations in the second repressurization step and the number of pressurizations using a flat pusher were changed as shown in Table 2, they were exempted in the same manner as in Example 1. A seismic plug was manufactured.
Then, the seismic isolation plug obtained was determined air content and cycle time ratio (T / T 0) in the same manner as in Example 1. The results are shown in Table 2 and FIG.
(実施例7〜8)
第2再加圧工程の後、追加の加圧工程および追加の再加圧工程を順次2回繰り返し、第1再加圧工程の加圧回数、第2再加圧工程の加圧回数、追加の加圧工程の加圧回数、追加の再加圧工程の加圧回数および平面プッシャーを用いた加圧回数を表2に示すようにした以外は、実施例1と同様にして免震プラグを製造した。
そして、得られた免震プラグについて、空気含有率およびサイクルタイム比(T/T0)を実施例1と同様の方法で求めた。結果を表2および図6に示す。
(Examples 7 to 8)
After the second repressurization step, the additional pressurization step and the additional repressurization step are sequentially repeated twice, and the number of pressurizations in the first repressurization step, the number of pressurizations in the second repressurization step, and addition The seismic isolation plug was mounted in the same manner as in Example 1 except that the number of pressurizations in the pressurization step, the number of pressurizations in the additional repressurization step, and the number of pressurizations using a flat pusher were as shown in Table 2. Manufactured.
Then, the seismic isolation plug obtained was determined air content and cycle time ratio (T / T 0) in the same manner as in Example 1. The results are shown in Table 2 and FIG.
(従来例1〜2)
表1に示す組成を有する塑性流動材および硬質充填材を含む粉体材料を使用し、表2に示す手順に従って、内径16cmの円筒状の金型内で免震プラグを製造した。
具体的には、楔形プッシャーおよび楔溝形プッシャーで粉体材料を両側から挟み込んで複数回加圧した。なお、各加圧の間には、楔形プッシャーおよび楔溝形プッシャーをプッシャー中心軸線周りに90°回転させ、加圧を行う度に粉体材料の受圧面の形状を変化させた(即ち、再加圧工程を行わなかった)。また、加圧回数は、表2に示す回数とした。その後、加圧された粉体材料を平面プッシャーで1回加圧して免震プラグを製造した。
そして、得られた免震プラグについて、空気含有率およびサイクルタイム比(T/T0)を実施例1と同様の方法で求めた。結果を表2および図6に示す。
(Conventional examples 1 and 2)
A seismic isolation plug was manufactured in a cylindrical mold having an inner diameter of 16 cm according to the procedure shown in Table 2 using a powder material containing a plastic fluid material and a hard filler having the composition shown in Table 1.
Specifically, the powder material was sandwiched from both sides with a wedge-shaped pusher and a wedge groove-shaped pusher, and pressurized several times. In addition, during each pressurization, the wedge-shaped pusher and the wedge groove-shaped pusher were rotated 90 ° around the central axis of the pusher, and the shape of the pressure-receiving surface of the powder material was changed each time the pressurization was performed (that is, re-applying No pressurization step was performed). The number of pressurizations was as shown in Table 2. Thereafter, the pressed powder material was pressed once with a flat pusher to produce a seismic isolation plug.
Then, the seismic isolation plug obtained was determined air content and cycle time ratio (T / T 0) in the same manner as in Example 1. The results are shown in Table 2 and FIG.
表2および図6より、実施例1〜8の製造方法では、従来例1〜2の製造方法に比べ、同等の空気含有率を有する免震プラグを短時間で製造し得ることが分かる。特に、表2および図6より、実施例2〜5の製造方法では、サイクルタイムを大幅に削減しつつ、低空気含有率の免震プラグを効率的に製造し得ることが分かる。 From Table 2 and FIG. 6, it can be seen that in the manufacturing methods of Examples 1 to 8, the seismic isolation plug having the same air content can be manufactured in a short time as compared with the manufacturing methods of Conventional Examples 1 and 2. In particular, it can be seen from Table 2 and FIG. 6 that the manufacturing methods of Examples 2 to 5 can efficiently manufacture a seismic isolation plug with a low air content while greatly reducing cycle time.
(実施例9〜13)
平面プッシャーを用いた加圧回数を表3に示すように変更した以外は、実施例2〜6と同様にして免震プラグを製造した。
そして、得られた免震プラグについて、空気含有率およびサイクルタイム比(T/T0)を実施例1と同様の方法で求めた。結果を表3に示す。
また、得られた免震プラグについて、端面を目視で観察し、端面の平坦性を評価した。結果を表3に示す。なお、評価結果は、「○」が、端面に窪みや欠けが無く平坦性が良好であることを示し、「△」が、端面に窪みや欠けはあるが著しいものではないことを示す。
(Examples 9 to 13)
Except for changing the number of pressurizations using a flat pusher as shown in Table 3, seismic isolation plugs were produced in the same manner as in Examples 2-6.
Then, the seismic isolation plug obtained was determined air content and cycle time ratio (T / T 0) in the same manner as in Example 1. The results are shown in Table 3.
Moreover, about the obtained seismic isolation plug, the end surface was observed visually and the flatness of the end surface was evaluated. The results are shown in Table 3. The evaluation results indicate that “◯” indicates that the end face has no dents or chips and that the flatness is good, and “Δ” indicates that the end faces have dents or chips but are not significant.
表2〜3より、実施例9〜13の製造方法では、従来例1〜2の製造方法に比べ、同等の空気含有率を有する免震プラグを短時間で製造し得ることが分かる。また、表3より、実施例9〜12の製造方法では、サイクルタイムを大幅に削減しつつ、低空気含有率の免震プラグを効率的に製造し得ることが分かる。更に、表3より、平面プッシャーでの加圧回数を、第1加圧工程の加圧回数と第1再加圧工程の加圧回数との合計、および、第2加圧工程の加圧回数と第2再加圧工程の加圧回数との合計よりも少なくすると、端面の平坦性が低下することが分かる。なお、実施例2〜6で得られた免震プラグは、端面に窪みや欠けが無く、平坦性が良好であった。 From Tables 2-3, it turns out that the seismic isolation plug which has an equivalent air content rate can be manufactured in a short time by the manufacturing method of Examples 9-13 compared with the manufacturing method of the prior art examples 1-2. Moreover, it can be seen from Table 3 that the manufacturing methods of Examples 9 to 12 can efficiently manufacture a seismic isolation plug having a low air content while greatly reducing cycle time. Furthermore, from Table 3, the number of pressurizations by the flat pusher is the sum of the number of pressurizations in the first pressurization step and the number of pressurizations in the first repressurization step, and the number of pressurizations in the second pressurization step. It can be seen that the flatness of the end face is lowered when the total number of pressures and the number of pressurizations in the second repressurization step are less. In addition, the seismic isolation plugs obtained in Examples 2 to 6 had no dents or chips on the end surfaces, and had good flatness.
本発明の免震プラグの製造方法によれば、空気含有率の低い免震プラグを効率的に製造することができる。 According to the method for manufacturing a base isolation plug of the present invention, a base isolation plug having a low air content can be efficiently manufactured.
1 金型
2 粉体材料
3 楔形プッシャー
4 楔溝形プッシャー
5 平面プッシャー
7 斜断円柱形プッシャー
8 階段形プッシャー
20 免震プラグ
31 頂辺
32a,32b 平面(加圧面)
33a,33b 加圧方向最後端
41 底辺
42a,42b 平面(加圧面)
43a,43b 加圧方向最先端
50 免震構造体
51 軟質板
52 硬質板
53 中空部
54 積層体
55 封止板
56 フランジ板
57 被覆材
61 金型
71 加圧面
81 加圧面
1
33a, 33b Pressure direction
43a, 43b Pressure direction most advanced 50
Claims (4)
金型内に充填された粉体材料の少なくとも一方側を、プッシャー中心軸線に関して非完全回転対称の加圧面を有する非完全回転対称プッシャーを用いて加圧する第1加圧工程と、
前記第1加圧工程で加圧された粉体材料の、前記非完全回転対称プッシャーを用いて加圧された側を、前記非完全回転対称プッシャーおよび前記金型を回転させることなく、前記非完全回転対称プッシャーを用いて1回以上加圧する第1再加圧工程と、
前記第1再加圧工程で加圧された粉体材料の、前記非完全回転対称プッシャーを用いて加圧された側を、前記金型に対して相対的に回転させた前記非完全回転対称プッシャーを用いて加圧し、前記粉体材料の前記非完全回転対称プッシャーを用いて加圧された側の受圧面の形状を、前記第1再加圧工程後の形状とは異なる形状に変化させる第2加圧工程と、
前記第2加圧工程で加圧された粉体材料の、前記非完全回転対称プッシャーを用いて加圧された側を、前記非完全回転対称プッシャーおよび前記金型を回転させることなく、前記非完全回転対称プッシャーを用いて1回以上加圧する第2再加圧工程と、
を含むことを特徴とする、免震プラグの製造方法。 A method of manufacturing a seismic isolation plug for a seismic isolation structure by pressing a powder material containing a plastic fluid and a hard filler in a mold,
A first pressurizing step of pressurizing at least one side of the powder material filled in the mold using a non-complete rotationally symmetric pusher having a non-complete rotationally symmetric presser with respect to the pusher central axis;
Without rotating the non-perfect rotationally symmetrical pusher and the mold, the non-perfect rotationally symmetrical pusher is used to rotate the non-perfect rotationally symmetrical pusher of the powder material pressurized in the first pressurizing step. A first re-pressurizing step of pressurizing at least once using a fully rotationally symmetric pusher;
The non-perfect rotational symmetry in which the side of the powder material pressurized in the first re-pressurizing step is rotated relative to the mold on the side pressurized using the non-perfect rotational symmetry pusher. Pressure is applied using a pusher, and the shape of the pressure-receiving surface on the side pressed using the non-complete rotationally symmetric pusher of the powder material is changed to a shape different from the shape after the first re-pressurization step. A second pressurizing step;
Without rotating the non-perfect rotational symmetry pusher and the mold, the non-perfect rotational symmetry pusher is used to rotate the non-perfect rotational symmetry pusher of the powder material pressurized in the second pressurizing step. A second re-pressurizing step of pressurizing at least once using a fully rotationally symmetric pusher;
The manufacturing method of the seismic isolation plug characterized by including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012141444A JP5977599B2 (en) | 2012-06-22 | 2012-06-22 | Manufacturing method of seismic isolation plug |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012141444A JP5977599B2 (en) | 2012-06-22 | 2012-06-22 | Manufacturing method of seismic isolation plug |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014004740A true JP2014004740A (en) | 2014-01-16 |
JP5977599B2 JP5977599B2 (en) | 2016-08-24 |
Family
ID=50102934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012141444A Expired - Fee Related JP5977599B2 (en) | 2012-06-22 | 2012-06-22 | Manufacturing method of seismic isolation plug |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5977599B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60250920A (en) * | 1984-05-28 | 1985-12-11 | Mitsui Petrochem Ind Ltd | Preparation of thick molded piece |
JP2004504184A (en) * | 2000-07-25 | 2004-02-12 | セーコー マネージメント アクティエボラーグ ユーベー | Method for producing multilayer body by merging and multilayer body produced thereby |
JP2010253850A (en) * | 2009-04-27 | 2010-11-11 | Bridgestone Corp | Method and device for manufacturing quake-isolation plug for quake-isolation device |
JP2010253851A (en) * | 2009-04-27 | 2010-11-11 | Bridgestone Corp | Method of manufacturing base isolation plug for base isolation device, and device therefor |
-
2012
- 2012-06-22 JP JP2012141444A patent/JP5977599B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60250920A (en) * | 1984-05-28 | 1985-12-11 | Mitsui Petrochem Ind Ltd | Preparation of thick molded piece |
JP2004504184A (en) * | 2000-07-25 | 2004-02-12 | セーコー マネージメント アクティエボラーグ ユーベー | Method for producing multilayer body by merging and multilayer body produced thereby |
JP2010253850A (en) * | 2009-04-27 | 2010-11-11 | Bridgestone Corp | Method and device for manufacturing quake-isolation plug for quake-isolation device |
JP2010253851A (en) * | 2009-04-27 | 2010-11-11 | Bridgestone Corp | Method of manufacturing base isolation plug for base isolation device, and device therefor |
Also Published As
Publication number | Publication date |
---|---|
JP5977599B2 (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6652318B2 (en) | Method and apparatus for manufacturing cutting inserts | |
US9711280B2 (en) | Method for preparing rare earth sintered magnet | |
KR20140034299A (en) | A separation disc for a centrifugal separator and a method for manufacturing the separation disc | |
CN102683242A (en) | Rotary lamination apparatus | |
JP2022070970A (en) | Tool set having displacement compensation | |
JP5977599B2 (en) | Manufacturing method of seismic isolation plug | |
JP5404161B2 (en) | Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor | |
JP5345888B2 (en) | Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor | |
JP5628651B2 (en) | Seismic isolation plug manufacturing method and manufacturing apparatus | |
JP6023477B2 (en) | Seismic isolation plug manufacturing method and manufacturing apparatus | |
JP5250467B2 (en) | Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor | |
CN109226746A (en) | A kind of high length-diameter ratio bar compacting tool set | |
JP6857049B2 (en) | Bathing agent | |
JP5862927B2 (en) | Green compact mold equipment for curved plate parts | |
JP7074783B2 (en) | How to use flat plates, pressure tools, and flat plates | |
JP2010221679A (en) | Method and device for manufacturing quake-absorbing plug for quake-absorbing device | |
CN207522413U (en) | For the automatic ration filler device of ceramic grinding body manufacturing machine mold | |
JP5590816B2 (en) | Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor | |
CN102653120B (en) | Manufacture method for shock insulation plug, shock insulation plug, and manufacture device for shock insulation plug | |
CN109812234A (en) | C-type air spider and its production method | |
JP5442464B2 (en) | Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor | |
JP7327799B2 (en) | Manufacturing method of cylindrical sintered member | |
CN104802363A (en) | Composite disc spring as well as production mould and production method thereof | |
CN202129717U (en) | Lower fixture disc limiting mechanism of capsule die polishing fixture | |
CN202129715U (en) | Fixture plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150407 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160722 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5977599 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |