JP2010253851A - Method of manufacturing base isolation plug for base isolation device, and device therefor - Google Patents

Method of manufacturing base isolation plug for base isolation device, and device therefor Download PDF

Info

Publication number
JP2010253851A
JP2010253851A JP2009108332A JP2009108332A JP2010253851A JP 2010253851 A JP2010253851 A JP 2010253851A JP 2009108332 A JP2009108332 A JP 2009108332A JP 2009108332 A JP2009108332 A JP 2009108332A JP 2010253851 A JP2010253851 A JP 2010253851A
Authority
JP
Japan
Prior art keywords
stamper
seismic isolation
manufacturing
isolation plug
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009108332A
Other languages
Japanese (ja)
Other versions
JP5404161B2 (en
Inventor
Shigenobu Suzuki
重信 鈴木
宏典 ▲濱▼▲崎▼
Hironori Hamazaki
Hideaki Kato
秀章 加藤
Akiyuki Arai
章之 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009108332A priority Critical patent/JP5404161B2/en
Publication of JP2010253851A publication Critical patent/JP2010253851A/en
Application granted granted Critical
Publication of JP5404161B2 publication Critical patent/JP5404161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a base isolation plug capable of enhancing damping performance and displacement followability of a base isolation device, without using lead as a material, and a device for manufacturing the base isolation plug capable of carrying out the manufacturing method. <P>SOLUTION: This method of manufacturing the base isolation plug 6 press-molds a powder material 2 filled in a molding die 3, using a stamper 5, the press molding is carried out a plurality of times, and at least one of the plurality of times of press moldings is executed using the first stamper 5 having a pressing face 4 inclined with respect to an axial direction, in the method of manufacturing the base isolation plug 6. The base isolation plug 6 is manufactured using the manufacturing method. The manufacturing device is provided with the molding die 3 and the stamper 5 for carrying out the manufacturing method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、免震装置の減衰性能及び変位追従性を向上させ得る免震プラグを製造する方法、並びにかかる製造方法を実施するための製造装置に関する。   The present invention relates to a method for manufacturing a seismic isolation plug capable of improving the damping performance and displacement followability of a seismic isolation device, and a manufacturing apparatus for carrying out such a manufacturing method.

従来、ゴム等の粘弾性的性質を有する軟質板と鋼板等の硬質板とを交互に積層した免震構造体が、免震装置の支承等として使用されている。このような免震構造体の中には、例えば、軟質板と硬質板とからなる積層体の中心に中空部を形成し、該中空部の内部に免震プラグが圧入されたものがある。   2. Description of the Related Art Conventionally, seismic isolation structures in which soft plates having viscoelastic properties such as rubber and hard plates such as steel plates are alternately stacked have been used as bearings for seismic isolation devices. Among such seismic isolation structures, for example, there is a structure in which a hollow portion is formed at the center of a laminate made of a soft plate and a hard plate, and a seismic isolation plug is press-fitted into the hollow portion.

上記免震プラグとしては、全体が鉛からなるものが使用されることが多く、地震の発生に伴って積層体が剪断変形する際に、かかる免震プラグが塑性変形することで振動のエネルギーを吸収する。しかしながら、鉛は、環境負荷が大きく、また、廃却時等に要するコストが大きい。そのため、鉛の代替材料を用いても、充分な減衰性能、変位追従性等を有する免震プラグの開発が試みられている。   The seismic isolation plug is often made of lead as a whole, and when the laminated body undergoes shear deformation due to the occurrence of an earthquake, the seismic isolation plug plastically deforms to reduce vibration energy. Absorb. However, lead has a large environmental load and a high cost for disposal. Therefore, the development of a seismic isolation plug having sufficient damping performance, displacement followability and the like has been attempted even when a lead substitute material is used.

例えば、特許文献1には、鉛免震プラグに代えて、積層体の中空部に塑性流動材及び硬質充填材からなり、硬質充填材の隙間を塑性流動材で充填するようにした粉体材料を封入した免震装置が提案されている。かかる免震プラグは、鉛免震プラグと同様、長期の使用に際しても、その減衰性能及び変位追従性が安定して確保される。なお、塑性流動材としては、天然ゴムやアクリルゴムなどがあり、硬質充填材としては、ステンレス鋼粉、鉄粉などの金属粉体などがある。かかる免震プラグは、金型内に充填された粉体材料を加圧方向に直交する平面状の加圧面を有するスタンパにより所定の面圧にて加圧成形することで製造される。   For example, Patent Document 1 discloses a powder material in which a hollow portion of a laminate is made of a plastic fluid material and a hard filler instead of a lead seismic isolation plug, and a gap between the hard fillers is filled with the plastic fluid material. A seismic isolation device in which is enclosed is proposed. Such a seismic isolation plug, like a lead seismic isolation plug, ensures stable damping performance and displacement follow-up even during long-term use. Examples of the plastic fluid material include natural rubber and acrylic rubber, and examples of the hard filler include metal powder such as stainless steel powder and iron powder. Such a seismic isolation plug is manufactured by press-molding a powder material filled in a mold at a predetermined surface pressure with a stamper having a flat pressure surface perpendicular to the pressing direction.

特開2006−316990号公報JP 2006-316990 A

特許文献1に記載の免震プラグを具える免震装置は、鉛からなる免震プラグを使用することなく、減衰特性及び変位追従性が長期にわたり安定して確保されているものの、近年の建設物の大型化、高層化を背景に、免震装置の更なる性能向上が求められており、そのことから、免震装置の減衰特性及び変位追従性の更なる向上が希求されている。また、特許文献1には、この免震プラグの製造方法についても言及されているが、一般的な粉体材料の加圧成形法の域を出るものではない。   Although the seismic isolation device including the seismic isolation plug described in Patent Document 1 has stable damping characteristics and displacement followability for a long time without using a seismic isolation plug made of lead, construction in recent years Against the background of the increase in size and height of objects, further improvement in the performance of the seismic isolation device is required. For this reason, further improvement in the damping characteristics and displacement followability of the seismic isolation device is desired. Patent Document 1 also mentions a method for manufacturing this seismic isolation plug, but it does not leave the range of a general powder material pressure forming method.

そこで、この発明の目的は、これまで充分に着目、検討されてこなかった免震プラグの製造方法について改良を図ることにより、材料に鉛を使用することなく、免震装置の減衰性能及び変位追従性を更に向上させ得る免震プラグを有利に製造する方法を提供することにある。また、この発明の更なる目的は、かかる製造方法を実施し得る免震プラグの製造装置を提供することにある。   Therefore, the object of the present invention is to improve the manufacturing method of the seismic isolation plug that has not been sufficiently focused and studied so far, so that the damping performance and displacement tracking of the seismic isolation device can be achieved without using lead as a material. It is an object of the present invention to provide a method for advantageously manufacturing a seismic isolation plug capable of further improving the performance. A further object of the present invention is to provide an apparatus for manufacturing a seismic isolation plug capable of implementing such a manufacturing method.

前記目的を達成するため、第一発明は、金型内に充填された粉体材料を、スタンパを用いて加圧成形する免震プラグの製造方法において、かかる加圧成形を複数回行い、複数回の加圧成形のうち、少なくとも1回の加圧成形を、軸線方向に対して傾斜した加圧面を有する第一のスタンパを用いて行なうことを特徴とする免震プラグの製造方法である。なお、ここでいう「軸線方向に対し傾斜」とは、スタンパの軸線方向に対し交差する方向を含むものをいう。   In order to achieve the above object, the first invention provides a seismic isolation plug manufacturing method in which a powder material filled in a mold is pressed using a stamper. The method for manufacturing a seismic isolation plug is characterized in that at least one press forming is performed using a first stamper having a press surface inclined with respect to the axial direction. Here, “inclination with respect to the axial direction” means that includes a direction intersecting with the axial direction of the stamper.

また、第一発明において、第一のスタンパを用いて加圧成形した後に、第一のスタンパを、スタンパの軸線中心に所定角度回転させ、かかる回転した第一のスタンパを用いて再度加圧成形を行なうことが好ましい。このとき、所定の角度を90°とし、前記第一のスタンパを回転させてから加圧成形する工程を4回行なうことが好ましい。   In the first invention, after the first stamper is pressure-molded, the first stamper is rotated by a predetermined angle about the axis of the stamper, and the first stamper thus rotated is pressure-molded again. It is preferable to carry out. At this time, it is preferable that the predetermined angle is set to 90 °, and the pressure molding is performed four times after the first stamper is rotated.

更に、第一発明において、第一のスタンパは、スタンパの軸線方向に対して垂直な加圧面を有することが好ましい。なお、ここでいう「垂直な加圧面」とは、全体としてみたときの加圧面の形状が垂直である、波状や曲率を有する略垂直な加圧面を含むものである。あるいは、第一のスタンパは、スタンパの軸線方向にて垂直断面視したときに、スタンパの中央部が加圧方向に突出したV字状の加圧面を有することが好ましい。なお、ここでいう「V字状の加圧面」とは、全体としてみたときの加圧面の形状がスタンパの中央部が加圧方向に突出したV字状である、波状や曲率を有する略V字状の加圧面を含むものである。   Furthermore, in the first invention, the first stamper preferably has a pressing surface perpendicular to the axial direction of the stamper. Here, the “vertical pressure surface” includes a substantially vertical pressure surface having a wave shape or a curvature, the shape of the pressure surface being vertical when viewed as a whole. Alternatively, the first stamper preferably has a V-shaped pressurizing surface in which the central portion of the stamper projects in the pressurizing direction when viewed in a vertical cross section in the axial direction of the stamper. The “V-shaped pressurizing surface” as used herein refers to a substantially V shape having a wave shape or a curvature in which the shape of the pressurizing surface as a whole is a V-shape in which the central portion of the stamper protrudes in the pressurizing direction. It includes a letter-shaped pressure surface.

更にまた、第一発明において、第一のスタンパを用いて加圧成形した後に、第一のスタンパとは異なる形状の加圧面を有する第二のスタンパを用いて粉体材料を加圧成形することが好ましい。   Furthermore, in the first invention, after the pressure molding is performed using the first stamper, the powder material is pressure molded using the second stamper having a pressing surface having a shape different from that of the first stamper. Is preferred.

加えて、第一発明において、粉体材料を2方向から加圧成形することが好ましい。   In addition, in the first invention, the powder material is preferably pressure-molded from two directions.

加えてまた、粉体材料は、塑性流動材及び硬質充填材からなることが好ましい。   In addition, the powder material is preferably made of a plastic fluid material and a hard filler.

第二発明は、上述した第一発明の免震プラグの製造方法を用いて製造される免震プラグである。   2nd invention is a seismic isolation plug manufactured using the manufacturing method of the seismic isolation plug of 1st invention mentioned above.

第三発明は、粉体材料が充填される金型、及び金型内の粉体材料を加圧成形させる加圧面を有するスタンパを具える、免震装置用の免震プラグの製造装置において、かかるスタンパは、軸線方向に対して傾斜した加圧面を有する第一のスタンパであることを特徴とする免震プラグの製造装置である。   A third invention is a seismic isolation plug manufacturing apparatus for a seismic isolation device, comprising a mold filled with a powder material, and a stamper having a pressing surface for pressing the powder material in the mold. Such a stamper is a first stamper having a pressure surface inclined with respect to the axial direction, and is a seismic isolation plug manufacturing apparatus.

また、第三発明において、スタンパは、スタンパの軸線を中心に回転可能であることが好ましい。   In the third invention, the stamper is preferably rotatable around the axis of the stamper.

更に、第三発明において、第一のスタンパは、スタンパの軸線方向に対して垂直な加圧面を有することが好ましい。   Furthermore, in the third invention, the first stamper preferably has a pressing surface perpendicular to the axial direction of the stamper.

あるいは、第三発明において、第一のスタンパは、該スタンパの軸線方向にて垂直断面視したときに、スタンパの中央部が加圧方向に突出したV字状の加圧面を有することが好ましい。   Alternatively, in the third invention, the first stamper preferably has a V-shaped pressurizing surface in which a central portion of the stamper projects in the pressurizing direction when viewed in a vertical cross section in the axial direction of the stamper.

加えて、第三発明において、第一のスタンパに加え、第一のスタンパの加圧面とは異なる形状の加圧面を有する第二のスタンパを更に具えることが好ましい。   In addition, in the third invention, in addition to the first stamper, it is preferable to further include a second stamper having a pressing surface having a shape different from the pressing surface of the first stamper.

加えてまた、第三発明において、スタンパは、対向する一対のスタンパであることが好ましい。   In addition, in the third invention, the stamper is preferably a pair of stampers facing each other.

この発明によれば、鉛の代替材料である粉体材料を用いて、これを加圧成形する際に、該粉体材料の流動が強制されるために、空気含有率の小さい成形品を得ることができる。従って、免震装置の減衰性能及び変位追従性の向上に大きく寄与する免震プラグを提供することが可能となる。また、空気含有率の小さな免震プラグを製造するために適した製造装置を提供することが可能となる。   According to the present invention, when a powder material that is a substitute material for lead is used and pressure-molded, the flow of the powder material is forced, so that a molded product with a low air content is obtained. be able to. Therefore, it is possible to provide a seismic isolation plug that greatly contributes to the improvement of the damping performance and displacement followability of the seismic isolation device. In addition, it is possible to provide a manufacturing apparatus suitable for manufacturing a seismic isolation plug having a small air content.

(a)〜(f)は、この発明に従う免震プラグの製造工程を示した図である。(A)-(f) is the figure which showed the manufacturing process of the seismic isolation plug according to this invention. (a)は、この発明に従って製造された免震プラグを圧入した免震装置の上面図であり、(b)は、かかる免震装置の断面図である。(A) is a top view of the seismic isolation apparatus which press-fit the seismic isolation plug manufactured according to this invention, (b) is sectional drawing of this seismic isolation apparatus. (a)〜(f)は、この発明に従うその他の免震プラグの製造工程を示した図である。(A)-(f) is the figure which showed the manufacturing process of the other seismic isolation plug according to this invention. (a)は、充分に圧縮されていない粉体材料の硬質充填材の相互配置を示した図であり、(b)は、充分に圧縮された粉体材料の硬質充填材の相互配置を示した図である。(A) is the figure which showed the mutual arrangement | positioning of the hard filler of the powder material which is not fully compressed, (b) shows the mutual arrangement | positioning of the hard filler of the powder material which was fully compressed. It is a figure. (a)〜(f)は、この発明に従うその他の免震プラグの製造工程を示した図である。(A)-(f) is the figure which showed the manufacturing process of the other seismic isolation plug according to this invention. (a)〜(f)は、この発明に従うその他の免震プラグの製造工程を示した図である。(A)-(f) is the figure which showed the manufacturing process of the other seismic isolation plug according to this invention. 実施例の免震プラグの製造装置のスタンパを示した図である。It is the figure which showed the stamper of the manufacturing apparatus of the seismic isolation plug of an Example. 実施例の免震プラグの製造装置のスタンパを示した図である。It is the figure which showed the stamper of the manufacturing apparatus of the seismic isolation plug of an Example. この発明に従うその他の免震プラグの製造装置のスタンパを示した図である。It is the figure which showed the stamper of the manufacturing apparatus of the other seismic isolation plug according to this invention.

次に、図面を参照しつつ、この発明の実施形態を説明する。図1(a)〜(f)は、本実施形態に係る免震プラグの製造工程を示した図である。図2(a)は、本実施形態に従って製造された免震プラグを圧入した免震装置の上面図であり、図2(b)は、かかる免震装置の断面図である。図3(a)〜(f)は、本実施形態に係るその他の免震プラグの製造工程を示した図である。図4(a)は、充分に圧縮されていない粉体材料の硬質充填材の相互配置を示した図であり、図4(b)は、充分に圧縮された粉体材料の硬質充填材の相互配置を示した図である。図5(a)〜(f)及び図6(a)〜(f)は、本実施形態に係るその他の免震プラグの製造工程にて使用される種々の形状の加圧面を有するスタンパを示した図である。図7〜9は、この発明に従うその他の免震プラグの製造装置のスタンパを示した図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1A to 1F are views showing a manufacturing process of the seismic isolation plug according to the present embodiment. FIG. 2A is a top view of the seismic isolation device in which the seismic isolation plug manufactured according to the present embodiment is press-fitted, and FIG. 2B is a cross-sectional view of the seismic isolation device. FIG. 3A to FIG. 3F are views showing manufacturing processes of other seismic isolation plugs according to the present embodiment. FIG. 4 (a) is a diagram showing the mutual arrangement of hard fillers of powder material that is not sufficiently compressed, and FIG. 4 (b) is an illustration of hard fillers of powder material that is sufficiently compressed. It is the figure which showed mutual arrangement | positioning. 5 (a) to 5 (f) and FIGS. 6 (a) to 6 (f) show stampers having pressure surfaces of various shapes used in the manufacturing process of other seismic isolation plugs according to the present embodiment. It is a figure. FIGS. 7-9 is the figure which showed the stamper of the manufacturing apparatus of the other seismic isolation plug according to this invention.

本実施形態に係る免震プラグの製造装置1は、図1に示すように、塑性流動材A及び硬質充填材Bからなる粉体材料2が充填される円筒形状の金型3、及びかかる金型3内の粉体材料2を加圧する加圧面4を有する2種のスタンパ5a、5bを具える。まず、図1(a)〜(d)に示すスタンパ5aは、スタンパ5aの軸線Xを中心に回転可能であり、かかるスタンパ5aは、スタンパ5aの軸線方向に対し傾斜した平面状の加圧面4aを有する(この構成では、スタンパ5aは、第一のスタンパのことをいうものである)。また、図1(e)に示す別のスタンパ5bは、加圧方向に略直交する平面状の加圧面4bを有する(この構成では、スタンパ5bは、第二のスタンパをいうものである。)。かかる製造装置を用いて、図1(a)〜(f)の製造工程にて示すように、金型3内に充填された粉体材料2を、スタンパ5a及び5bにより加圧することで免震装置用の免震プラグ6を成形する。以下にその詳細を説明する。   As shown in FIG. 1, a seismic isolation plug manufacturing apparatus 1 according to the present embodiment includes a cylindrical mold 3 filled with a powder material 2 composed of a plastic fluid A and a hard filler B, and the mold. Two stampers 5a and 5b having a pressing surface 4 for pressing the powder material 2 in the mold 3 are provided. First, the stamper 5a shown in FIGS. 1A to 1D is rotatable about the axis X of the stamper 5a. The stamper 5a is a flat pressing surface 4a inclined with respect to the axial direction of the stamper 5a. (In this configuration, the stamper 5a refers to the first stamper). Further, another stamper 5b shown in FIG. 1 (e) has a planar pressing surface 4b substantially orthogonal to the pressing direction (in this configuration, the stamper 5b refers to a second stamper). . Using such a manufacturing apparatus, as shown in the manufacturing steps of FIGS. 1A to 1F, the powder material 2 filled in the mold 3 is pressed by the stampers 5a and 5b to be seismically isolated. The seismic isolation plug 6 for the apparatus is formed. Details will be described below.

まず、図1(a)に示すように、金型3内に免震プラグ6の材料となる塑性流動材A及び硬質充填材Bからなる粉体材料2を充填する。次いで、図1(b)に示すように、スタンパ5aを矢印の方向に移動させて、スタンパ5aの加圧面4aにより粉体材料2を加圧成形し、粉体材料2の加圧方向に対して斜めの流動を促しつつ、粉体材料2の受圧面7の形状を加圧面4aの形状に対応する形状に変形させる。次いで、スタンパ5aの加圧方向とは反対の方向にスタンパ5aを引き上げてから、スタンパ5aの軸線Xを中心に、例えば、180°回転させることにより、図1(c)に示すように、最初の加圧成形にて与えられた受圧面7に対向する加圧面4aの形状を初回とは異なる形状に変更させる。次いで、図1(d)に示すように、再度、スタンパ5aを矢印の方向に移動させて、加圧面4aにより粉体材料2の受圧面7を加圧し、粉体材料2の加圧方向に対して斜めの流動を促しつつ、粉体材料2の受圧面7の形状を新たな加圧面4aの形状に対応する形状に変形させる。上記工程により、空気含有率を低減した免震プラグが得られる。このようにして得られた免震プラグ6は、免震装置8への圧入に供することも可能であるが、図1(e)〜(f)に示す工程によって成形することが好ましい。すなわち、図1(d)に示す工程の後、図1(e)に示すように、軸線方向に対し傾斜した平面状のスタンパ5aを、スタンパ5bの加圧方向に直交する平面状の加圧面4bを有するスタンパ5bに置き換え、それを用いて免震プラグ6を加圧し、免震プラグ6の形状を整え(加圧方向に略直交する平面状とし)、成形が完了する。そして、かかる免震プラグ6は、金型3から抜き出され、免震装置8への圧入に供される。かかる免震装置8としては、例えば、図2(a)及び図2(b)に示すような、ゴム板と鋼板とを交互に積層した積層体を具え、装置中央に免震プラグを配置した構造を有する免震装置8がある。
なお、上記した図1(e)〜(f)の工程に替えて、以下の工程により、免震プラグ6の受圧面7の形状を加圧方向に直交する平面状とすることもできる。すなわち、図3(a)〜(d)に示す工程(図1(a)〜(d)の工程と同一の工程)の後、図3(e)に示すように、粉体材料2を、金型3から抜き出し、図3(e)に示す点線に沿って、受圧面7の突出した部分を切断することで、粉体材料2の形状を整え(加圧方向に直交する平面状とし)、図3(f)に示すような免震プラグ6の成形が完了する。そして、かかる免震プラグ6が免震装置8への圧入に供される。
First, as shown in FIG. 1 (a), a mold 3 is filled with a powder material 2 composed of a plastic fluid A and a hard filler B, which are materials for the seismic isolation plug 6. Next, as shown in FIG. 1B, the stamper 5a is moved in the direction of the arrow, and the powder material 2 is pressure-molded by the pressing surface 4a of the stamper 5a. The shape of the pressure receiving surface 7 of the powder material 2 is deformed into a shape corresponding to the shape of the pressing surface 4a while promoting an oblique flow. Next, the stamper 5a is lifted in a direction opposite to the pressurizing direction of the stamper 5a, and then rotated around the axis line X of the stamper 5a, for example, by 180 °, as shown in FIG. The shape of the pressure surface 4a facing the pressure-receiving surface 7 given by the pressure molding is changed to a shape different from the first time. Next, as shown in FIG. 1 (d), the stamper 5 a is moved again in the direction of the arrow, and the pressure receiving surface 7 of the powder material 2 is pressed by the pressing surface 4 a, so that the pressure direction of the powder material 2 is increased. On the other hand, the shape of the pressure receiving surface 7 of the powder material 2 is deformed into a shape corresponding to the shape of the new pressure surface 4a while promoting an oblique flow. Through the above process, a seismic isolation plug with a reduced air content is obtained. Although the seismic isolation plug 6 thus obtained can be used for press-fitting into the seismic isolation device 8, it is preferably formed by the steps shown in FIGS. That is, after the step shown in FIG. 1 (d), as shown in FIG. 1 (e), a planar stamper 5a inclined with respect to the axial direction is replaced with a planar pressing surface orthogonal to the pressing direction of the stamper 5b. It replaces with the stamper 5b which has 4b, pressurizes the seismic isolation plug 6 using it, arranges the shape of the seismic isolation plug 6 (it is set as planar shape substantially orthogonal to a pressurization direction), and shaping | molding is completed. The seismic isolation plug 6 is extracted from the mold 3 and used for press-fitting into the seismic isolation device 8. As such a seismic isolation device 8, for example, as shown in FIGS. 2 (a) and 2 (b), a laminated body in which rubber plates and steel plates are alternately laminated is provided, and a seismic isolation plug is arranged in the center of the device. There is a seismic isolation device 8 having a structure.
In addition, it replaces with the process of above-mentioned FIG.1 (e)-(f), and the shape of the pressure receiving surface 7 of the seismic isolation plug 6 can also be made into the planar shape orthogonal to a pressurization direction by the following processes. That is, after the steps shown in FIGS. 3A to 3D (the same steps as those in FIGS. 1A to 1D), as shown in FIG. The shape of the powder material 2 is adjusted by cutting out the protruding portion of the pressure receiving surface 7 along the dotted line shown in FIG. The formation of the seismic isolation plug 6 as shown in FIG. The seismic isolation plug 6 is used for press-fitting into the seismic isolation device 8.

一般に、免震プラグの減衰性能及び変位追従性を向上させるには、プラグ内の空気含有率を小さくすることが有効である。しかし、粉体材料が、ゴムなどの粘性を有する塑性流動材を含む場合、粉体材料の流動性が低下し、粉体材料内の空気が抜けにくい。従来の免震プラグの製造方法では、その加圧方向に直交する平面状の加圧面を有するスタンパにより粉体材料を所定の面圧にて加圧して免震プラグを成形していたことから、受圧面から離間するほどに、粉体材料に負荷される圧縮力が小さい。そのことに伴い、受圧面から離間するほどに、粉体材料の空気含有率が大きくなっていた。また、粉体材料と金型の壁面との摩擦により、金型側にある粉体材料ほど、その動きが拘束され、粉体材料の流動性が低下する。以上のことから、スタンパにより加圧しても金型側の粉体材料が充分に圧縮されずに、金型の壁面に近いほどに、粉体材料の空気含有率が大きくなっていた。すなわち、粉体材料の相互配置は、粉体材料が充分に流動しなかったことから、図4(a)に示すように、粉体材料相互間の隙間が大きく、空気の残留し易い配列である。一方、この発明に従う加圧成形を経た粉体材料2の相互配置は、粉体材料2が充分に流動することから、図4(b)に示すような最密配置となり、粉体材料2間の隙間が小さくなり、空気が残留し難い配置となる。このように、発明者は、粉体材料の流動を全体に促すことが、免震プラグの空気含有率を更に小さくすることにつながり、かかる免震プラグを具える免震装置の減衰性能及び変位追従性を向上し得ることを見出した。
粉体材料の流動を促し、免震プラグの空気含有率を小さくすることを達成する手段として、上述の製造方法を採用した。上述したように粉体材料2を加圧成形すると、粉体材料2の流動が全体に促され、粉体材料2間の隙間が小さくなるため、粉体材料2全体が図4(b)に示すような配置となる。その結果、免震プラグ6の空気含有率が小さくなり、このようにして製造された免震プラグ6を圧入した免震装置では、減衰性能及び変位追従性がともに向上する。なお、粉体材料2の流動が有効に促される限りは、スタンパ5aの加圧面4aをその他の形状とすることもでき、例えば、図5の製造工程に示すように、加圧面4aの形状を複数回屈曲したような形状とし、局所的な斜めの流動を複数箇所にて発生させることも可能である。
In general, it is effective to reduce the air content in the plug in order to improve the damping performance and displacement followability of the seismic isolation plug. However, when the powder material includes a plastic fluid material having viscosity such as rubber, the fluidity of the powder material is lowered, and the air in the powder material is difficult to escape. In the conventional seismic isolation plug manufacturing method, since the powder material was pressed at a predetermined surface pressure with a stamper having a flat pressing surface perpendicular to the pressing direction, the seismic isolation plug was formed. The further away from the pressure receiving surface, the smaller the compressive force applied to the powder material. As a result, the air content of the powder material increases as the distance from the pressure receiving surface increases. Further, due to the friction between the powder material and the wall surface of the mold, the movement of the powder material on the mold side is restricted, and the fluidity of the powder material is lowered. From the above, the powder material on the mold side is not sufficiently compressed even when pressed by a stamper, and the air content of the powder material increases as it approaches the wall surface of the mold. That is, the mutual arrangement of the powder materials is an arrangement in which the gap between the powder materials is large and air tends to remain as shown in FIG. 4A because the powder materials did not flow sufficiently. is there. On the other hand, the mutual arrangement of the powder material 2 that has undergone the pressure molding according to the present invention is the closest arrangement as shown in FIG. The gap becomes smaller and the air hardly remains. In this way, the inventor urged the flow of the powder material as a whole to further reduce the air content of the seismic isolation plug, and the damping performance and displacement of the seismic isolation device having such a seismic isolation plug. It has been found that the followability can be improved.
The above-described manufacturing method was adopted as a means for promoting the flow of the powder material and reducing the air content of the seismic isolation plug. When the powder material 2 is pressure-molded as described above, the flow of the powder material 2 is promoted throughout, and the gap between the powder materials 2 is reduced, so that the entire powder material 2 is shown in FIG. The arrangement is as shown. As a result, the air content of the seismic isolation plug 6 is reduced, and in the seismic isolation device in which the seismic isolation plug 6 thus manufactured is press-fitted, both the damping performance and the displacement followability are improved. As long as the flow of the powder material 2 is effectively promoted, the pressing surface 4a of the stamper 5a can have other shapes. For example, as shown in the manufacturing process of FIG. It is also possible to generate a shape that is bent a plurality of times and to generate a local oblique flow at a plurality of locations.

また、副次的な効果ではあるが、図1に示す製造工程では、図3に示す製造工程のように粉体材料2を切断する工程が無いことから、かかる切断により発生する粉体材料2の廃棄部分が無く、免震プラグの製造に際し、粉体材料を無駄なく使用することができるので、免震プラグ6の生産コストを削減する観点から好ましい。   Moreover, although it is a secondary effect, in the manufacturing process shown in FIG. 1, since there is no step of cutting the powder material 2 as in the manufacturing process shown in FIG. 3, the powder material 2 generated by such cutting is used. Therefore, it is preferable from the viewpoint of reducing the production cost of the seismic isolation plug 6 because the powder material can be used without waste when manufacturing the seismic isolation plug.

なお、粉体材料2を構成する塑性流動材Aに含まれる物質としては、(天然ゴム、ポリブタジエンゴム、アクリルゴム、シリコンゴム、ポリウレタン、ウレタン系エラストマーなどの)エストラマー成分、(ロジン樹脂、フェノール樹脂などの)樹脂、カーボンブラック、(フタル酸、マレイン酸、クエン酸などの)可塑剤、(ヒマシ油、アマニ油、ナタネ油などの)軟化材などが挙げられる。また、硬質充填材Bに含まれる物質としては、銅粉、ステンレス鋼粉、ジルコニウム粉、タングステン粉、青銅粉、アルミニウム粉、ニッケル粉、モリブデン粉、チタン粉、鉄粉などの金属粉体や金属化合物が挙げられる。なお、塑性流動材Aと硬質充填材Bの夫々について選定される材料の組成、含有率、組み合わせ等は、免震プラグ6に所望される性能に応じて適宜変更することができる。また、粉体材料2は、塑性流動材A及び硬質充填材Bからなる構成に限定されるものではなく、その他の種々の粉体材料2を適用することも可能である。   The material contained in the plastic fluid A constituting the powder material 2 includes elastomer components (such as natural rubber, polybutadiene rubber, acrylic rubber, silicon rubber, polyurethane, urethane elastomer), (rosin resin, phenol resin). Resin), carbon black, plasticizers (such as phthalic acid, maleic acid, citric acid), softening materials (such as castor oil, linseed oil, rapeseed oil), and the like. The substance contained in the hard filler B includes metal powder such as copper powder, stainless steel powder, zirconium powder, tungsten powder, bronze powder, aluminum powder, nickel powder, molybdenum powder, titanium powder, iron powder, and metal. Compounds. In addition, the composition of the material selected about each of the plastic fluid material A and the hard filler B, a content rate, a combination, etc. can be suitably changed according to the performance desired for the seismic isolation plug 6. Moreover, the powder material 2 is not limited to the structure which consists of the plastic fluidity material A and the hard filler B, and it is also possible to apply other various powder materials 2.

また、図6の製造工程に示すように、対向する一対のスタンパ5a及び5bを用いて、粉体材料2を挟み込むように2方向から加圧成形することが好ましい。図6(b)〜(d)に示すように、軸線方向に対し傾斜する平面状の加圧面4aを夫々有する、一対のスタンパ5aを用いて、粉体材料2を挟んで加圧すると、図1に示すような単一のスタンパ5aにより粉体材料2を加圧する場合に比べ、粉体材料2の加圧方向に対し斜めの流動がより促されるので、粉体材料2の空気含有率が更に小さくなる。次いで、図6(e)に示すように、粉体材料2を一対の対向するスタンパ5bであって、スタンパ5bの加圧方向に直交する平面状の加圧面4bを有するスタンパ5bにより加圧することで、粉体材料2の形状を整え、図6(f)に示すような免震プラグ6の製造が完了する。かかる免震プラグ6を具える免震装置8は、減衰性能及び変位追従性を更に向上させることが可能である。また、一方向から加圧するよりも、複数方向から加圧する方が、粉体材料を所望の空気含有率とすることに要する時間を短縮することができるため、免震プラグ6の生産性を更に向上させることが可能となる。   Moreover, as shown in the manufacturing process of FIG. 6, it is preferable to press-mold from two directions so that the powder material 2 may be inserted | pinched using a pair of stampers 5a and 5b which oppose. As shown in FIGS. 6B to 6D, when a pair of stampers 5a each having a flat pressing surface 4a inclined with respect to the axial direction are pressed with the powder material 2 interposed therebetween, FIG. Compared with the case where the powder material 2 is pressed by a single stamper 5a as shown in FIG. 1, the flow of the powder material 2 is more inclined and the air content of the powder material 2 is increased. It becomes even smaller. Next, as shown in FIG. 6 (e), the powder material 2 is pressed by a stamper 5b having a pair of opposed stampers 5b and having a flat pressing surface 4b orthogonal to the pressing direction of the stamper 5b. Thus, the shape of the powder material 2 is adjusted, and the manufacture of the seismic isolation plug 6 as shown in FIG. The seismic isolation device 8 including the seismic isolation plug 6 can further improve the damping performance and the displacement followability. Moreover, since the time required to make the powder material have a desired air content can be shortened by pressurizing from a plurality of directions rather than pressurizing from one direction, the productivity of the seismic isolation plug 6 is further increased. It becomes possible to improve.

これまで説明してきた製造方法では、同一のスタンパ5aをその軸線Xを中心に回転させることで向きを変え、結果として加圧面4aの形状を異なる形状とし、粉体材料2を異なる形状に複数回変形させるものである。その他の方法としては、加圧面4の形状が相互に異なる複数のスタンパ5を準備し、それらを交代で用いて粉体材料2を加圧することにより、スタンパ5を回転させること無く、粉体材料2を異なる形状に複数回変形させることも可能である。   In the manufacturing method described so far, the direction is changed by rotating the same stamper 5a around its axis X, and as a result, the shape of the pressing surface 4a is changed to a different shape, and the powder material 2 is changed to different shapes a plurality of times. It is to be deformed. As another method, a plurality of stampers 5 with different shapes of the pressing surface 4 are prepared, and the powder material 2 is pressed by using them alternately, so that the powder material can be rotated without rotating the stamper 5. It is also possible to deform 2 into different shapes multiple times.

また、加圧面が異形の複数のスタンパを並列配置し、この列に沿って金型3を移動させて、複数の異形のスタンパ5により順次粉体材料2を加圧成形することにより、免震プラグを製造する装置構成とすることが可能である。あるいは、逆に、金型3の位置を固定し、前記の並列させたスタンパ5を順次に移動させることにより、かかるスタンパ5により粉体材料2を連続的に加圧成形することにより、免震プラグを製造する装置構成とすることも可能である。後者の装置構成は省スペース化の観点から好ましい。   In addition, a plurality of stampers with irregularly shaped pressing surfaces are arranged in parallel, the mold 3 is moved along this row, and the powder material 2 is sequentially pressure-molded by the plurality of irregularly shaped stampers 5, thereby providing seismic isolation. An apparatus configuration for manufacturing a plug can be provided. Or, conversely, by fixing the position of the mold 3 and sequentially moving the above-mentioned stampers 5 arranged in parallel, the powder material 2 is continuously pressure-molded by the stampers 5, thereby providing seismic isolation. It is also possible to adopt an apparatus configuration for manufacturing a plug. The latter apparatus configuration is preferable from the viewpoint of space saving.

更に、図1、3、6に示すスタンパ5は、軸線方向に対し傾斜する平面状の加圧面4aを有するが、図7に示すように、加圧面4の一部を軸線方向に対し直交する平面状とすることも可能である。あるいは、スタンパ5は、図8に示すように、スタンパ5の軸線方向にて垂直断面視したときに、スタンパ5の中央部が加圧方向に突出したV字状の加圧面4を有するものとすることが好ましい。例えば、図8に示すスタンパ形状を採用し、加圧成形する場合には、一回目の加圧成形後に、スタンパ5を90°回転させてから再度粉体材料2を加圧成形することにより、粉体材料2の受圧面7の形状が大きく変形し、粉体材料2の流動が有効に促進され、免震プラグ6の空気含有率が小さくなる。かかるスタンパ5を90°回転させてから再度粉体材料2を加圧成形する工程を複数回、好適には4回繰り返すことにより、免震プラグ6の空気含有率が大幅に低減することとなる。なお、図9に示すように、スタンパ5のV字状の加圧面4の一部を軸線方向に対し直交する平面状とすることも可能である。また、加圧面4は平面状に限定されるものではなく、図示は省略するが、曲率を有する形状とすることも可能である。   Further, the stamper 5 shown in FIGS. 1, 3 and 6 has a flat pressing surface 4a inclined with respect to the axial direction, but as shown in FIG. 7, a part of the pressing surface 4 is orthogonal to the axial direction. It can also be planar. Alternatively, as shown in FIG. 8, the stamper 5 has a V-shaped pressing surface 4 in which the central portion of the stamper 5 protrudes in the pressing direction when viewed in a vertical section in the axial direction of the stamper 5. It is preferable to do. For example, when the stamper shape shown in FIG. 8 is adopted and pressure molding is performed, after the first pressure molding, the stamper 5 is rotated by 90 ° and then the powder material 2 is pressure molded again. The shape of the pressure receiving surface 7 of the powder material 2 is greatly deformed, the flow of the powder material 2 is effectively promoted, and the air content of the seismic isolation plug 6 is reduced. By repeating the step of pressure forming the powder material 2 again after rotating the stamper 90 by 90 ° a plurality of times, preferably four times, the air content of the seismic isolation plug 6 is greatly reduced. . As shown in FIG. 9, a part of the V-shaped pressurizing surface 4 of the stamper 5 can be a plane that is orthogonal to the axial direction. Further, the pressing surface 4 is not limited to a flat shape, and although not shown in the drawing, it may be a shape having a curvature.

更にまた、図示例では、回転可能なスタンパ5の回転角度をいずれも180°としているが、加圧面4の形状に応じて、粉体材料2の流動を促すに最も適当な角度に適宜変更することも可能である。   Furthermore, in the illustrated example, the rotation angle of the rotatable stamper 5 is 180 °, but the angle is appropriately changed to the most suitable angle for promoting the flow of the powder material 2 according to the shape of the pressing surface 4. It is also possible.

なお、上述したところは、この発明の実施形態の一部を示したにすぎず、この発明の趣旨を逸脱しない限り、これらの構成を相互に組み合わせたり、種々の変更を加えたりすることができる。例えば、図示例では、粉体材料2の受圧面7を異なる形状に2〜4回圧縮変形させて免震プラグ6を製造しているが、所望される空気含有率に応じて、その回数を更に増やすことも可能である。   Note that the above description shows only a part of the embodiment of the present invention, and these configurations can be combined with each other or various modifications can be made without departing from the gist of the present invention. . For example, in the illustrated example, the seismic isolation plug 6 is manufactured by compressing and deforming the pressure-receiving surface 7 of the powder material 2 into different shapes 2 to 4 times, but depending on the desired air content, the number of times is changed. Further increase is possible.

次に、特許文献1に記載の平面状のスタンパを使用して製造した免震プラグ(比較例免震プラグ1)、及び図6に示したところに従うこの発明の製造方法を用いて製造した免震プラグ(実施例免震プラグ1)を夫々試作し、それらの性能評価を行ったので、以下に説明する。   Next, a seismic isolation plug (comparative example seismic isolation plug 1) manufactured using the planar stamper described in Patent Document 1 and an isolation module manufactured using the manufacturing method of the present invention according to the place shown in FIG. Each of the seismic plugs (Example seismic isolation plug 1) was prototyped and its performance was evaluated, which will be described below.

比較例免震プラグ1は以下に説明する方法により製造した。はじめに、計算比重が5.54g/cmであり、表1に示す組成を有する塑性流動材及び硬質充填材からなる粉体材料を、内径が43.6mmの円筒状の金型内に充填し、次いで、かかる粉体材料を、スタンパの加圧方向に直交する平面状の加圧面を有するスタンパにより、58.8MPaの面圧にて粉体材料を加圧変形させることで製造した。なお、かようにして製造された免震プラグの直径は43.6mmであり、高さは68.0mmである。製造された免震プラグの空気含有率は、金型内に充填される粉体材料の計算比重に対する、製造された免震プラグの実比重から算出した。 The comparative example seismic isolation plug 1 was manufactured by the method described below. First, a powder material made of a plastic fluid material and a hard filler having a calculated specific gravity of 5.54 g / cm 3 and having the composition shown in Table 1 was filled into a cylindrical mold having an inner diameter of 43.6 mm. Then, the powder material was manufactured by pressurizing and deforming the powder material at a surface pressure of 58.8 MPa with a stamper having a flat pressure surface perpendicular to the pressing direction of the stamper. In addition, the diameter of the seismic isolation plug manufactured in this way is 43.6 mm, and the height is 68.0 mm. The air content of the manufactured seismic isolation plug was calculated from the actual specific gravity of the manufactured seismic isolation plug relative to the calculated specific gravity of the powder material filled in the mold.

また、実施例免震プラグ1は、以下に説明する方法により製造した。はじめに、計算比重が5.54g/cmであり、表1に示す組成を有する塑性流動材及び硬質充填材からなる粉体材料を、内径が43.6mmの円筒状の金型内に充填する。次いで、図7に示すように、スタンパの軸線方向に対し直交する平面状の部分と、スタンパの軸線方向に対し60°にて傾斜してなる部分を有する加圧面を具える、対向する2つのスタンパを用いて、かかる粉体材料を、夫々29.4MPaの面圧(併せて、58.8MPa)にて粉体材料を挟み込んで加圧変形させる。次いで、かかるスタンパを加圧する方向とは反対の方向にスタンパを引き上げてから、スタンパの軸線Xを中心に90°回転させることで、受圧面に対向する加圧面の形状を異なる形状に変更させる。次いで、再度、スタンパを矢印の方向に移動させて、傾斜した加圧面により粉体材料を上記と同一の面圧にて加圧し、粉体材料の受圧面の形状を加圧面の形状に対応する形状に変形させる。次いで、かかるスタンパを金型から引き抜き、スタンパの加圧方向に直交する平面状の加圧面を有するスタンパを用いて粉体材料を加圧し、粉体材料の受圧面を平面化させることで製造した。なお、かようにして製造された免震プラグの直径は43.6mmであり、高さは57.4mmである。製造された免震プラグの空気含有率は、金型内に充填される粉体材料の計算比重に対する、製造された免震プラグの実比重から算出した。 Moreover, the example seismic isolation plug 1 was manufactured by the method demonstrated below. First, a powder material composed of a plastic fluid material and a hard filler having a calculated specific gravity of 5.54 g / cm 3 and having the composition shown in Table 1 is filled into a cylindrical mold having an inner diameter of 43.6 mm. . Next, as shown in FIG. 7, two opposing surfaces each having a pressing surface having a planar portion orthogonal to the axial direction of the stamper and a portion inclined at 60 ° with respect to the axial direction of the stamper. Using a stamper, the powder material is pressed and deformed by sandwiching the powder material at a surface pressure of 29.4 MPa (in combination with 58.8 MPa). Next, the stamper is pulled up in a direction opposite to the direction in which the stamper is pressed, and then rotated by 90 ° about the axis X of the stamper, whereby the shape of the pressing surface facing the pressure receiving surface is changed to a different shape. Next, the stamper is moved again in the direction of the arrow, and the powder material is pressed by the inclined pressing surface at the same surface pressure as described above, and the shape of the pressure receiving surface of the powder material corresponds to the shape of the pressing surface. Transform to shape. Next, the stamper was extracted from the mold, and the powder material was pressed using a stamper having a flat pressing surface orthogonal to the pressing direction of the stamper, and the pressure receiving surface of the powder material was flattened. . In addition, the diameter of the seismic isolation plug manufactured in this way is 43.6 mm, and the height is 57.4 mm. The air content of the manufactured seismic isolation plug was calculated from the actual specific gravity of the manufactured seismic isolation plug relative to the calculated specific gravity of the powder material filled in the mold.

Figure 2010253851
Figure 2010253851

*1 (天然ゴム)
未加硫、RSS#4
・ 2 (ポリブタジエンゴム(低シス))
未加硫、旭化成製「ジエンNF35R」
*3 カーボンブラック
ISAF、東海カーボン製「シースト6P」
*4 樹脂
日本ゼオン製「ゼオファイン」、新日本石油化学製「日石ネオポリマー140」、丸善石油化学製「マルカレッツM−890A」、「ゼオファイン」:「日石ネオポリマー140」:「マルカレッツM−890A」=40:40:20(質量比)
*5 可塑剤
ジオクチルアジペート(DOA)
*6 その他の配合剤
亜鉛華、ステアリン酸、老化防止剤[住友化学製「アンステージ6C」、ワックス[新日本石油製「プロトワックス1」]、亜鉛華:ステアリン酸:老化防止剤:ワックス=4:5:3:1(質量比)
* 1 (natural rubber)
Unvulcanized, RSS # 4
・ 2 (Polybutadiene rubber (low cis))
Unvulcanized, Asahi Kasei "Diene NF35R"
* 3 Carbon Black ISAF, Tokai Carbon "Seast 6P"
* 4 Resins “Zeofine” manufactured by Nippon Zeon, “Nisseki Neopolymer 140” manufactured by Nippon Petrochemical, “Marcaretz M-890A” manufactured by Maruzen Petrochemical, “Zeofine”: “Nisseki Neopolymer 140”: “Marcaretz M-” 890A "= 40: 40: 20 (mass ratio)
* 5 Plasticizer Dioctyl adipate (DOA)
* 6 Other compounding agents Zinc white, stearic acid, anti-aging agent [“Anstage 6C” manufactured by Sumitomo Chemical, wax [“Proto Wax 1” manufactured by Nippon Oil Corporation], zinc white: stearic acid: anti-aging agent: wax = 4: 5: 3: 1 (mass ratio)

その結果、比較例免震プラグ1の実比重が4.44g/cmとなり、その空気含有率が19.7%であったのに対し、実施例免震プラグ1の実比重が4.93g/cmとなり、その空気含有率が11.4%まで小さくなっていた。 As a result, the actual specific gravity of the comparative example base-isolated plug 1 was 4.44 g / cm 3 and its air content was 19.7%, whereas the actual specific gravity of the example base-isolated plug 1 was 4.93 g. / Cm 3 , and the air content was reduced to 11.4%.

次に、図8に示すV字状のスタンパを使用して製造した免震プラグ(比較例免震プラグ2)、及び図8に示すV字状のスタンパを使用して、この発明の製造方法を用いて製造した免震プラグ(実施例免震プラグ2)を夫々試作し、それらの性能評価を行ったので、以下に説明する。   Next, the seismic isolation plug (comparative example seismic isolation plug 2) manufactured using the V-shaped stamper shown in FIG. 8 and the manufacturing method of the present invention using the V-shaped stamper shown in FIG. Each of the seismic isolation plugs (Example Seismic Isolation Plug 2) manufactured using the above-mentioned was prototyped and the performance evaluation thereof was performed, which will be described below.

比較例免震プラグ1は以下に説明する方法により製造した。はじめに、計算比重が5.54g/cmであり、表1に示す組成を有する塑性流動材及び硬質充填材からなる粉体材料を、内径が43.4mmの円筒状の金型内に充填し、次いで、かかる粉体材料を、スタンパ中央の頂点部の角度θが90°であり、V字状の加圧面を有するスタンパ(図8に示すスタンパを参照)を有する、対向する2つのスタンパを用いて、かかる粉体材料を、夫々29.4MPaの面圧(併せて、58.8MPa)にて粉体材料を挟み込んで加圧変形させることにより製造した。なお、かようにして製造された免震プラグの直径は43.4mmであり、高さは28.0mmである。製造された免震プラグの空気含有率は、金型内に充填される粉体材料の計算比重に対する、製造された免震プラグの実比重から算出した。 The comparative example seismic isolation plug 1 was manufactured by the method described below. First, a powder material composed of a plastic fluid material and a hard filler having a calculated specific gravity of 5.54 g / cm 3 and having the composition shown in Table 1 was filled into a cylindrical mold having an inner diameter of 43.4 mm. Then, two opposing stampers having a stamper having a V-shaped pressurizing surface (see the stamper shown in FIG. 8) having an angle θ of 90 ° at the center of the stamper and having a V-shaped pressurizing surface are obtained. The powder material was produced by sandwiching the powder material at a surface pressure of 29.4 MPa (in combination with 58.8 MPa) and applying pressure deformation. In addition, the diameter of the seismic isolation plug manufactured in this way is 43.4 mm, and the height is 28.0 mm. The air content of the manufactured seismic isolation plug was calculated from the actual specific gravity of the manufactured seismic isolation plug relative to the calculated specific gravity of the powder material filled in the mold.

また、実施例免震プラグ2は、以下に説明する方法により製造した。はじめに、計算比重が5.54g/cmであり、表1に示す組成を有する塑性流動材及び硬質充填材からなる粉体材料を、内径が43.4mmの円筒状の金型内に充填する。次いで、上記したV字状の加圧面を有するスタンパを具える、対向する2つのスタンパを用いて、かかる粉体材料を、夫々29.4MPaの面圧(併せて、58.8MPa)にて粉体材料を挟み込んで加圧変形させる。次いで、かかるスタンパを加圧する方向とは反対の方向にスタンパを引き上げてから、スタンパの軸線Xを中心に90°回転させることで、受圧面に対向する加圧面の形状を異なる形状に変更させる。次いで、再度、スタンパを矢印の方向に移動させて、傾斜した加圧面により粉体材料を上記と同一の面圧にて加圧し、粉体材料の受圧面の形状を加圧面の形状に対応する形状に変形させる。かかる回転してから加圧成形する工程を更に2回行なう(すなわち、合計4回の加圧成形を行なう)ことにより免震プラグを製造した。なお、かようにして製造された免震プラグの直径は43.4mmであり、高さは
34.0mmである。製造された免震プラグの空気含有率は、金型内に充填される粉体材料の計算比重に対する、製造された免震プラグの実比重から算出した。
Moreover, the example seismic isolation plug 2 was manufactured by the method demonstrated below. First, a powder material made of a plastic fluid material and a hard filler having a calculated specific gravity of 5.54 g / cm 3 and having the composition shown in Table 1 is filled into a cylindrical mold having an inner diameter of 43.4 mm. . Then, using two stampers facing each other, each of which includes a stamper having a V-shaped pressing surface, the powder material is powdered at a surface pressure of 29.4 MPa (in combination with 58.8 MPa). The body material is sandwiched and deformed under pressure. Next, the stamper is pulled up in a direction opposite to the direction in which the stamper is pressed, and then rotated by 90 ° about the axis X of the stamper, whereby the shape of the pressing surface facing the pressure receiving surface is changed to a different shape. Next, the stamper is moved again in the direction of the arrow, and the powder material is pressed by the inclined pressing surface at the same surface pressure as described above, and the shape of the pressure receiving surface of the powder material corresponds to the shape of the pressing surface. Transform to shape. The step of pressure forming after the rotation was further performed twice (that is, the pressure forming was performed four times in total) to manufacture the seismic isolation plug. In addition, the diameter of the seismic isolation plug manufactured in this way is 43.4 mm, and the height is 34.0 mm. The air content of the manufactured seismic isolation plug was calculated from the actual specific gravity of the manufactured seismic isolation plug relative to the calculated specific gravity of the powder material filled in the mold.

その結果、比較例免震プラグ2の空気含有率が4.90%であったのに対し、実施例免震プラグ2の空気含有率が3.33%まで小さくなっていた。   As a result, while the air content rate of the comparative seismic isolation plug 2 was 4.90%, the air content rate of the example seismic isolation plug 2 was reduced to 3.33%.

以上の説明から明らかなように、この発明によって、材料に鉛を使用することなく、免震装置の減衰性能及び変位追従性を向上させ得る免震プラグの製造方法、並びにかかる製造方法を実施し得る免震プラグの製造装置を提供することが可能となった。   As is apparent from the above description, according to the present invention, a method for manufacturing a seismic isolation plug that can improve the damping performance and displacement followability of the seismic isolation device without using lead as a material, and such a manufacturing method are implemented. It has become possible to provide a seismic isolation plug manufacturing device.

1 免震プラグの製造装置
2 粉体材料
3 金型
4、4a、4b 加圧面
5、5a、5b スタンパ
6 免震プラグ
7 受圧面
8 免震装置
A 塑性流動材
B 硬質充填材
X スタンパの軸線
DESCRIPTION OF SYMBOLS 1 Seismic isolation plug manufacturing equipment 2 Powder material 3 Mold 4, 4a, 4b Pressurization surface 5, 5a, 5b Stamper 6 Seismic isolation plug 7 Pressure receiving surface 8 Seismic isolation device A Plastic fluid material B Hard filler X Stamper axis

Claims (15)

金型内に充填された粉体材料を、スタンパを用いて加圧成形する免震プラグの製造方法において、
該加圧成形を複数回行い、
前記複数回の加圧成形のうち、少なくとも1回の加圧成形を、軸線方向に対して傾斜した加圧面を有する第一のスタンパを用いて行なうことを特徴とする免震プラグの製造方法。
In the manufacturing method of the seismic isolation plug that press-molds the powder material filled in the mold using a stamper,
The pressure molding is performed a plurality of times,
A method of manufacturing a seismic isolation plug, comprising performing at least one of the plurality of press moldings using a first stamper having a pressurizing surface inclined with respect to the axial direction.
前記第一のスタンパを用いて加圧成形した後に、該第一のスタンパを、該スタンパの軸線中心に所定角度回転させ、該回転した第一のスタンパを用いて再度加圧成形を行なう、請求項1に記載の免震プラグの製造方法。   The first stamper is subjected to pressure molding using the first stamper, and then the first stamper is rotated by a predetermined angle about the axial center of the stamper, and the pressure molding is performed again using the rotated first stamper. The manufacturing method of the seismic isolation plug of claim | item 1. 前記所定の角度を90°とし、前記第一のスタンパを回転させてから加圧成形する工程を4回行なう、請求項2に記載の免震プラグの製造方法。   The method for manufacturing a seismic isolation plug according to claim 2, wherein the predetermined angle is 90 °, and the step of pressure forming is performed four times after rotating the first stamper. 前記第一のスタンパは、該スタンパの軸線方向に対して垂直な加圧面を有する、請求項1〜3のいずれか一項に記載の免震プラグの製造方法。   The said 1st stamper is a manufacturing method of the seismic isolation plug as described in any one of Claims 1-3 which has a pressurization surface perpendicular | vertical with respect to the axial direction of this stamper. 前記第一のスタンパは、該スタンパの軸線方向にて垂直断面視したときに、スタンパの中央部が加圧方向に突出したV字状の加圧面を有する、請求項1〜3のいずれか一項に記載の免震プラグの製造方法。   The first stamper according to any one of claims 1 to 3, wherein the first stamper has a V-shaped pressurizing surface in which a central portion of the stamper protrudes in the pressurizing direction when viewed in a vertical cross section in the axial direction of the stamper. The manufacturing method of the seismic isolation plug as described in a term. 前記第一のスタンパを用いて加圧成形した後に、該第一のスタンパとは異なる形状の加圧面を有する第二のスタンパを用いて粉体材料を加圧成形する、請求項1〜5のいずれか一項に記載の免震プラグの製造方法。   The powder material is pressure-molded using a second stamper having a pressing surface having a shape different from that of the first stamper after being pressure-molded using the first stamper. The manufacturing method of the seismic isolation plug as described in any one. 前記粉体材料を2方向から加圧成形する、請求項1〜6のいずれか一項に記載の免震プラグの製造方法。   The manufacturing method of the seismic isolation plug as described in any one of Claims 1-6 which press-molds the said powder material from two directions. 前記粉体材料は、塑性流動材及び硬質充填材からなる、請求項1〜7のいずれか一項に記載の免震プラグの製造方法。   The said powder material is a manufacturing method of the seismic isolation plug as described in any one of Claims 1-7 which consists of a plastic fluid material and a hard filler. 請求項1〜8のいずれかに記載の免震プラグの製造方法を用いて製造される免震プラグ。   The seismic isolation plug manufactured using the manufacturing method of the seismic isolation plug in any one of Claims 1-8. 粉体材料が充填される金型、及び該金型内の粉体材料を加圧成形させる加圧面を有するスタンパを具える、免震装置用の免震プラグの製造装置において、
前記スタンパは、軸線方向に対して傾斜した加圧面を有する第一のスタンパであることを特徴とする免震プラグの製造装置。
In an apparatus for manufacturing a seismic isolation plug for a seismic isolation apparatus, comprising a mold filled with a powder material, and a stamper having a pressing surface for pressing the powder material in the mold.
The said stamper is a 1st stamper which has a pressurization surface inclined with respect to the axial direction, The manufacturing apparatus of the seismic isolation plug characterized by the above-mentioned.
前記スタンパは、スタンパの軸線を中心に回転可能である、請求項11に記載の免震プラグの製造装置。   The seismic isolation plug manufacturing apparatus according to claim 11, wherein the stamper is rotatable about an axis of the stamper. 前記第一のスタンパは、該スタンパの軸線方向に対して垂直な加圧面を有する、請求項10又は11に記載の免震プラグの製造方法。   The method for manufacturing a seismic isolation plug according to claim 10 or 11, wherein the first stamper has a pressing surface perpendicular to an axial direction of the stamper. 前記第一のスタンパは、該スタンパの軸線方向にて垂直断面視したときに、スタンパの中央部が加圧方向に突出したV字状の加圧面を有する、請求項10〜12のいずれか一項に記載の免震プラグの製造装置。   The first stamper according to any one of claims 10 to 12, wherein the first stamper has a V-shaped pressing surface in which a central portion of the stamper protrudes in the pressing direction when viewed in a vertical cross section in the axial direction of the stamper. Equipment for manufacturing seismic isolation plugs as described in the paragraph. 前記第一のスタンパに加え、該第一のスタンパの加圧面とは異なる形状の加圧面を有する第二のスタンパを更に具える、請求項10〜13のいずれか一項に記載の免震プラグの製造装置。   The seismic isolation plug according to any one of claims 10 to 13, further comprising a second stamper having a pressing surface having a shape different from the pressing surface of the first stamper in addition to the first stamper. Manufacturing equipment. 前記スタンパは、対向する一対のスタンパである、請求項10〜14のいずれか一項に記載の免震プラグの製造装置。   The said stamper is a manufacturing apparatus of the seismic isolation plug as described in any one of Claims 10-14 which is a pair of stamper which opposes.
JP2009108332A 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor Active JP5404161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108332A JP5404161B2 (en) 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108332A JP5404161B2 (en) 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Publications (2)

Publication Number Publication Date
JP2010253851A true JP2010253851A (en) 2010-11-11
JP5404161B2 JP5404161B2 (en) 2014-01-29

Family

ID=43315340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108332A Active JP5404161B2 (en) 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Country Status (1)

Country Link
JP (1) JP5404161B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121308A (en) * 2010-12-10 2012-06-28 Bridgestone Corp Method and apparatus for manufacturing base isolation plug, and base isolation plug
JP2012193846A (en) * 2011-03-02 2012-10-11 Bridgestone Corp Manufacturing method of base isolation plug for base isolation device and its manufacturing device
JP2014004740A (en) * 2012-06-22 2014-01-16 Bridgestone Corp Method for manufacturing base isolation plug
JP2014004739A (en) * 2012-06-22 2014-01-16 Bridgestone Corp Method and apparatus for manufacturing base isolation plug and base isolation plug
JP5568675B1 (en) * 2013-10-07 2014-08-06 株式会社ダイナミックデザイン Seismic isolation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047194A (en) * 2007-08-14 2009-03-05 Bridgestone Corp Method of manufacturing stacked base isolation bearing and plug forming device used therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047194A (en) * 2007-08-14 2009-03-05 Bridgestone Corp Method of manufacturing stacked base isolation bearing and plug forming device used therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121308A (en) * 2010-12-10 2012-06-28 Bridgestone Corp Method and apparatus for manufacturing base isolation plug, and base isolation plug
JP2012193846A (en) * 2011-03-02 2012-10-11 Bridgestone Corp Manufacturing method of base isolation plug for base isolation device and its manufacturing device
JP2014004740A (en) * 2012-06-22 2014-01-16 Bridgestone Corp Method for manufacturing base isolation plug
JP2014004739A (en) * 2012-06-22 2014-01-16 Bridgestone Corp Method and apparatus for manufacturing base isolation plug and base isolation plug
JP5568675B1 (en) * 2013-10-07 2014-08-06 株式会社ダイナミックデザイン Seismic isolation device

Also Published As

Publication number Publication date
JP5404161B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5404161B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5345888B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
CN105149455A (en) Drawing and forming method for deep cylindrical piece and mould thereof
JP5345881B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
US20150360273A1 (en) Drawing Die Provided With Slant Blank Clamping Surface
JP5250467B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5590816B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5307385B2 (en) Manufacturing method of concentric expanded tube or eccentric expanded tube
JP5442464B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
WO2004110668A1 (en) Method of manufacturing disk member
JP5366639B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
CN207057393U (en) Prevent the mould of scraps-bounce
CN207288576U (en) A kind of stainless steel cylindrical element automatic punching device
CN202498145U (en) Flanging die
JP2011011225A (en) Method of sizing sintered part
JP5157716B2 (en) Method for manufacturing universal joint yoke
CN104475578A (en) Metal plate pressure tank bending die
JP2012193846A (en) Manufacturing method of base isolation plug for base isolation device and its manufacturing device
JP2011158033A (en) Manufacturing method of seismic isolation plug for seismic isolation device, and seismic isolation plug manufactured by the method
CN110523844A (en) A kind of progressive die process for stamping of tubulose thin-walled parts
CN102653120B (en) Manufacture method for shock insulation plug, shock insulation plug, and manufacture device for shock insulation plug
JP2020131255A (en) Press molding method
JP2023092179A (en) Tubular component manufacturing method and press device
WO2022004222A1 (en) Workpiece production apparatus
JP2012215213A (en) Method and device for manufacturing plug and the plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250