JP2014004739A - Method and apparatus for manufacturing base isolation plug and base isolation plug - Google Patents

Method and apparatus for manufacturing base isolation plug and base isolation plug Download PDF

Info

Publication number
JP2014004739A
JP2014004739A JP2012141429A JP2012141429A JP2014004739A JP 2014004739 A JP2014004739 A JP 2014004739A JP 2012141429 A JP2012141429 A JP 2012141429A JP 2012141429 A JP2012141429 A JP 2012141429A JP 2014004739 A JP2014004739 A JP 2014004739A
Authority
JP
Japan
Prior art keywords
pusher
seismic isolation
isolation plug
powder material
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012141429A
Other languages
Japanese (ja)
Other versions
JP6023477B2 (en
Inventor
Kazuaki Nomura
和明 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2012141429A priority Critical patent/JP6023477B2/en
Publication of JP2014004739A publication Critical patent/JP2014004739A/en
Application granted granted Critical
Publication of JP6023477B2 publication Critical patent/JP6023477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for manufacturing a base isolation plug which can manufacture a base isolation plug having a low air content while suppressing the occurrence of molding failure, and to provide a base isolation plug which has a flat end surface, has a low air content, and is excellent in damping performance and displacement following performance.SOLUTION: A method for manufacturing the base isolation plug includes: a preliminary pressure molding step of pressurizing at least one side of a powder material filled into a mold by using a concave pusher having a pressure surface in which a central part is sunk to a pressure-direction tip end in a direction opposite to the pressure direction; and a final pressure molding step of pressurizing at least the side, pressurized by the concave pusher, of the powder material pressurized in the preliminary pressure molding step by using a flat pusher having a flat surface orthogonal to the pressure direction as a pressure surface. The concave pusher has a ratio of a pusher axial direction length of the pressure surface to a pusher external diameter of less than 0.5. A base isolation plug is manufactured by a manufacturing apparatus suitable for the manufacturing method and by the manufacturing method.

Description

本発明は、免震装置の支承等として使用される免震構造体用の免震プラグの製造方法およびその製造装置、並びに、免震プラグに関するものである。   The present invention relates to a method for manufacturing a seismic isolation plug for a seismic isolation structure used as a support for a seismic isolation device, a manufacturing apparatus therefor, and a seismic isolation plug.

従来、ゴム等の粘弾性的性質を有する軟質板と鋼板等の硬質板とを交互に積層した免震構造体が、免震装置の支承等として使用されている。そして、このような免震構造体の中には、例えば、軟質板と硬質板とからなる積層体の中心に中空部を形成し、そして該中空部の内部に、均一組成となるように成形したプラグを圧入したものがある。   2. Description of the Related Art Conventionally, seismic isolation structures in which soft plates having viscoelastic properties such as rubber and hard plates such as steel plates are alternately stacked have been used as bearings for seismic isolation devices. In such a seismic isolation structure, for example, a hollow portion is formed at the center of a laminate composed of a soft plate and a hard plate, and the hollow portion is molded so as to have a uniform composition. Some plugs are pressed.

ここで、軟質板と硬質板とからなる積層体に圧入される上記プラグは、地震の発生に伴って積層体がせん断変形する際に塑性変形することで、振動のエネルギーを吸収する。そして、該プラグとしては、全体が鉛からなるプラグが用いられることが多かった。しかしながら、鉛は、環境負荷が大きく、また廃棄時等に要するコストが大きい。そのため、近年では、鉛の代替材料を用いて、十分な減衰性能、変位追従性等を有する免震プラグを開発することが試みられている。   Here, the plug that is press-fitted into the laminate composed of the soft plate and the hard plate absorbs vibration energy by plastic deformation when the laminate undergoes shear deformation in response to the occurrence of an earthquake. As the plug, a plug made entirely of lead is often used. However, lead has a large environmental load and a high cost for disposal. Therefore, in recent years, an attempt has been made to develop a seismic isolation plug having sufficient damping performance, displacement followability, etc., using a lead substitute material.

具体的には、鉛の代替材料を用いた免震プラグとして、ゴム等の塑性流動材と、金属粉体等の硬質充填材とを含有する粉体材料を加圧成形してなる免震プラグが提案されている(例えば、特許文献1参照)。   Specifically, as a seismic isolation plug using an alternative material for lead, a seismic isolation plug formed by pressure molding a powder material containing a plastic fluid material such as rubber and a hard filler such as metal powder. Has been proposed (see, for example, Patent Document 1).

ここで、塑性流動材と硬質充填材とを含有する粉体材料を加圧成形して免震プラグを製造する際には、通常、金型内に投入した粉体材料を、加圧方向に直交する平面を加圧面として有する平面プッシャーで加圧して免震プラグを製造する。しかし、塑性流動材を含む粉体材料は流動性が低いため、平面プッシャーのみを用いて免震プラグを製造した場合、加圧成形時に金型内で粉体材料が十分に流動せず、粉体材料中に混入している空気が十分に抜けずに免震プラグの空気含有率が高くなり、所望の減衰性能や変位追従性等を得ることができないことがある。   Here, when manufacturing a seismic isolation plug by pressing a powder material containing a plastic fluid and a hard filler, the powder material put into the mold is usually placed in the pressing direction. A seismic isolation plug is manufactured by applying pressure with a plane pusher having an orthogonal plane as a pressing surface. However, since powder materials including plastic fluid materials have low fluidity, when a seismic isolation plug is manufactured using only a flat pusher, the powder material does not flow sufficiently in the mold at the time of pressure molding. In some cases, air mixed in the body material does not sufficiently escape and the air content of the seismic isolation plug increases, so that desired damping performance, displacement followability, and the like cannot be obtained.

そこで、加圧成形時に金型内で粉体材料を強制的に流動させて粉体材料中に混入した空気を抜き、空気含有率が低くて所望の減衰性能や変位追従性等を得ることができる免震プラグを製造する方法として、外周部が中央部よりも加圧方向に突出した形状の加圧面を有するプッシャーを用いる方法が提案されている。(例えば、特許文献2参照)。具体的には、円錐形状の窪みよりなる加圧面を有するすり鉢形プッシャーや、加圧方向最先端よりも内方に位置する底辺で交差する二つの平面を加圧面として有する楔溝形プッシャーを用いて、円筒状の金型内の粉体材料を中央部が突出した形状に加圧成形した後、中央部が突出した形状に加圧成形された粉体材料を平面プッシャーで再び加圧成形して円柱形状の免震プラグを製造する方法が提案されている。そして、この免震プラグの製造方法によれば、すり鉢形または楔溝形のプッシャーを用いて中央部が突出した形状に加圧成形した粉体材料を平面プッシャーで再び加圧成形しているので、粉体材料の流動が促されて粉体材料中の空気が抜け、低空気含有率の免震プラグを得ることができる。   Therefore, it is possible to forcibly flow the powder material in the mold during pressure molding to remove the air mixed in the powder material, and to obtain the desired damping performance and displacement followability with a low air content. As a method of manufacturing a seismic isolation plug that can be used, a method of using a pusher having a pressing surface whose outer peripheral portion protrudes in the pressing direction from the central portion has been proposed. (For example, refer to Patent Document 2). Specifically, a mortar-shaped pusher having a pressurizing surface made of a conical depression or a wedge-groove pusher having two flat surfaces intersecting at the bottom located inward from the forefront of the pressing direction as a pressing surface After pressing the powder material in the cylindrical mold into a shape with a protruding central part, the powder material that has been pressed into a shape with a protruding central part is pressed again with a flat pusher. A method of manufacturing a cylindrical seismic isolation plug has been proposed. And, according to this method of manufacturing a seismic isolation plug, the powder material that has been pressure-molded into a shape in which the central portion protrudes using a mortar-shaped or wedge-shaped pusher is pressure-molded again with a flat pusher. The flow of the powder material is promoted, and the air in the powder material is released, so that a seismic isolation plug having a low air content can be obtained.

特開2006−316990号公報JP 2006-316990 A 特開2010−221679号公報JP 2010-221679 A

しかし、上記従来のすり鉢形プッシャーや楔溝形プッシャーを用いた免震プラグの製造方法では、中央部が突出した形状に加圧成形した粉体材料を平面プッシャーで再び加圧成形して免震プラグの両端を平面状に加圧成形しているので、製造された免震プラグの端面の外周部が崩れ(欠け)てしまうことがあった。即ち、すり鉢形プッシャーや楔溝形プッシャーを用いた従来の免震プラグの製造方法では、免震プラグの端面が平坦にならず、成形不良が生じて所望の減衰性能や変位追従性等を有する免震プラグを得ることができないことがあった。また、上記従来のすり鉢形プッシャーや楔溝形プッシャーを用いた免震プラグの製造方法には、空気含有率を更に低減するという点において改善の余地があった。   However, in the conventional method of manufacturing a seismic isolation plug using a mortar-shaped pusher or a wedge groove type pusher, the powder material that has been press-molded into a shape with a protruding central portion is pressure-molded again with a flat pusher and is seismically isolated. Since both ends of the plug are pressure-molded into a flat shape, the outer peripheral portion of the end face of the manufactured seismic isolation plug sometimes collapses (is missing). That is, in the conventional seismic isolation plug manufacturing method using a mortar type pusher or a wedge groove type pusher, the end face of the seismic isolation plug is not flat, and molding failure occurs, and the desired damping performance and displacement followability are obtained. In some cases, seismic isolation plugs could not be obtained. Moreover, the manufacturing method of the seismic isolation plug using the conventional mortar type pusher and the wedge groove type pusher has room for improvement in that the air content is further reduced.

そこで、本発明は、成形不良の発生を抑制しつつ空気含有率の低い免震プラグを製造することができる免震プラグの製造方法および製造装置を提供することを目的とする。また、本発明は、端面が平坦で空気含有率が低い、減衰性能や変位追従性に優れる免震プラグを提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method and manufacturing apparatus of a seismic isolation plug which can manufacture a seismic isolation plug with a low air content rate, suppressing generation | occurrence | production of a shaping | molding defect. Another object of the present invention is to provide a seismic isolation plug having a flat end face and a low air content, and excellent damping performance and displacement followability.

本発明者は、成形不良の発生を抑制しつつ空気含有率の低い免震プラグを製造することを目的として、鋭意検討を行った。そして、本発明者は、平面プッシャーで加圧する前の粉体材料の形状、特に、粉体材料の突出している部分の大きさ(中央部の突出高さ)が、免震プラグの端面の外周部の崩れ(欠け)の発生および免震プラグの空気含有率に大きな影響を及ぼしていることを見出し、本発明を完成させた。   The present inventor has intensively studied for the purpose of manufacturing a seismic isolation plug having a low air content while suppressing the occurrence of molding defects. The present inventor determined that the shape of the powder material before being pressed by the flat pusher, in particular, the size of the protruding portion of the powder material (the protruding height of the central portion) is the outer periphery of the end face of the seismic isolation plug. The present invention has been completed by finding out that it has a great influence on the occurrence of breakage (chips) and the air content of the seismic isolation plug.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の免震プラグの製造方法は、塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震構造体用の免震プラグを製造する方法であって、金型内に充填された粉体材料の少なくとも一方側を、加圧方向最先端に対し中央部が加圧方向とは反対の方向に陥没した加圧面を有する凹形プッシャーを用いて加圧する予備加圧成形工程と、前記予備加圧成形工程で加圧された粉体材料の、少なくとも前記凹形プッシャーを用いて加圧された側を、加圧方向に直交する平面を加圧面として有する平面プッシャーを用いて加圧する最終加圧成形工程とを含み、前記凹形プッシャーは、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比が0.5未満であることを特徴とする。このように、予備加圧成形工程において、プッシャー外径(D)に対する加圧面のプッシャー軸線方向長さ(L)の比(L/D)が0.5未満である凹形プッシャーを用いて粉体材料を加圧すれば、金型内で粉体材料を強制的に流動させて粉体材料中に混入した空気を抜くことができる。従って、空気含有率の低い免震プラグを製造することができる。また、予備加圧成形工程においてL/Dが0.5未満である凹形プッシャーを用いて粉体材料を加圧した後、最終加圧成形工程において、凹形プッシャーで加圧された側を平面プッシャーで加圧し、免震プラグを製造すれば、免震プラグの端面における成形不良の発生を抑制することができる。
なお、本発明において、「加圧方向」とは、金型内の粉体材料をプッシャーで加圧する際にプッシャーが進行する方向を指す。また、「中央部」とは、加圧方向最先端のプッシャー径方向内側に位置する部分を指す。更に、「プッシャー外径」とは、プッシャーの、加圧面が形成されている部分の最大外径を指す。そして、「加圧面のプッシャー軸線方向長さ」とは、加圧面の加圧方向最先端を通って加圧方向に直交する平面と、加圧面の加圧方向最後端を通って加圧方向に直交する平面との間の加圧方向に沿う長さを指す。
That is, the present invention aims to advantageously solve the above-mentioned problems, and the method for manufacturing a seismic isolation plug according to the present invention includes a powder material containing a plastic fluid and a hard filler in a mold. To produce a seismic isolation plug for a seismic isolation structure in which at least one side of the powder material filled in the mold is added to the center in the pressing direction. A pre-pressing step of pressing using a concave pusher having a pressing surface recessed in a direction opposite to the pressing direction, and at least the concave pusher of the powder material pressed in the pre-pressing step A final pressure forming step of pressing a side pressed using a flat pusher having a plane perpendicular to the pressing direction as a pressing surface, wherein the concave pusher is a pressing surface with respect to the outer diameter of the pusher. The ratio of the length in the pusher axial direction is 0. And less than. In this way, in the pre-press molding process, the powder using the concave pusher whose ratio (L / D) of the pusher axial length (L) of the pressure surface to the pusher outer diameter (D) is less than 0.5. When the body material is pressurized, the powder material can be forced to flow in the mold to remove air mixed in the powder material. Therefore, a seismic isolation plug with a low air content can be manufactured. In addition, after pressing the powder material using a concave pusher having an L / D of less than 0.5 in the pre-press molding step, the side pressed by the concave pusher in the final pressure molding step If a base-isolated plug is manufactured by applying pressure with a flat pusher, it is possible to suppress the occurrence of molding defects at the end face of the base-isolated plug.
In the present invention, the “pressing direction” refers to the direction in which the pusher advances when the powder material in the mold is pressed by the pusher. In addition, the “center portion” refers to a portion located on the innermost side in the pusher radial direction in the pressing direction. Furthermore, the “pusher outer diameter” refers to the maximum outer diameter of the portion of the pusher where the pressing surface is formed. And, “the length of the pressure surface in the direction of the pusher axis” refers to a plane perpendicular to the pressure direction passing through the foremost pressure direction of the pressure surface and a pressure direction through the end of the pressure surface in the pressure direction. It refers to the length along the pressing direction between the orthogonal planes.

ここで、本発明の免震プラグの製造方法は、前記凹形プッシャーが、加圧方向最先端よりも加圧方向とは反対の方向に位置する底辺で交差する二つの平面を加圧面として有する楔溝形プッシャーであり、前記二つの平面が、鋭角側から測定して90°超の角度で交差することが好ましい。二つの平面の交差角度が90°超の楔溝形プッシャーを凹形プッシャーとして用いれば、金型内で粉体材料を更に大きく流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。また、2つの平面の交差角度が90°超の楔溝形プッシャーを凹形プッシャーとして用いれば、予備加圧成形工程後の最終加圧成形工程において、免震プラグの端面における成形不良の発生を更に抑制することができるからである。   Here, in the manufacturing method of the seismic isolation plug according to the present invention, the concave pusher has, as the pressing surfaces, two planes intersecting at the bottom located in the direction opposite to the pressing direction rather than the foremost pressing direction. It is a wedge groove type pusher, and the two planes preferably intersect at an angle of more than 90 ° as measured from the acute angle side. If a wedge groove type pusher whose crossing angle between two planes is more than 90 ° is used as a concave pusher, the powder material can flow more greatly in the mold to sufficiently remove the air mixed in the powder material. This is because the air content of the seismic isolation plug can be further reduced. In addition, if a wedge groove type pusher whose crossing angle between two planes exceeds 90 ° is used as a concave pusher, it is possible to cause molding defects at the end face of the seismic isolation plug in the final pressure forming process after the pre-pressure forming process. This is because it can be further suppressed.

また、本発明の免震プラグの製造方法は、前記金型内の粉体材料はプッシャーで両側から挟んで加圧成形され、前記予備加圧成形工程では、前記粉体材料を、前記凹形プッシャーで一方側から加圧すると共に、加圧方向最後端に対し中央部が加圧方向に突出した加圧面を有する凸形プッシャーで他方側から加圧することが好ましい。予備加圧成形工程において、凹形プッシャーと凸形プッシャーとで粉体材料を両側から挟んで加圧すれば、金型内で粉体材料を更に大きく流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。
なお、本発明において、「中央部」とは、加圧方向最後端のプッシャー径方向内側に位置する部分を指す。
Further, in the method for manufacturing a seismic isolation plug according to the present invention, the powder material in the mold is press-molded by being sandwiched from both sides by a pusher, and the powder material is formed into the concave shape in the pre-press molding step. It is preferable to pressurize from one side with a pusher and pressurize from the other side with a convex pusher having a pressurizing surface with a central portion protruding in the pressurizing direction with respect to the end in the pressurizing direction. In the pre-press molding process, if the powder material is sandwiched and pressed from both sides by the concave pusher and the convex pusher, the air that has flowed further in the mold and mixed in the powder material This is because the air content of the seismic isolation plug can be further reduced.
In the present invention, the “center portion” refers to a portion located inside the pusher radial direction at the rearmost end in the pressing direction.

更に、本発明の免震プラグの製造方法は、前記凸形プッシャーの、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比が、前記凹形プッシャーの、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比よりも大きいことが好ましい。凸形プッシャーの、プッシャー外径(d)に対する加圧面のプッシャー軸線方向長さ(l)の比(l/d)を、凹形プッシャーの、プッシャー外径(D)に対する加圧面のプッシャー軸線方向長さ(L)の比(L/D)よりも大きくすれば、金型内で粉体材料を十分に流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。   Furthermore, the manufacturing method of the seismic isolation plug of the present invention is such that the ratio of the length of the pressing surface in the pusher axial direction of the convex pusher to the outer diameter of the pusher is the pusher axis of the pressing surface of the concave pusher with respect to the outer diameter of the pusher. It is preferable that it is larger than the ratio of the direction lengths. The ratio (l / d) of the pusher axial length (l) of the pressure surface to the pusher outer diameter (d) of the convex pusher is expressed as the pusher axial direction of the pressure surface to the pusher outer diameter (D) of the concave pusher. If it is larger than the ratio of length (L) (L / D), the powder material can flow sufficiently in the mold and the air mixed in the powder material can be extracted sufficiently. This is because the air content of the plug can be further reduced.

そして、本発明の免震プラグの製造方法は、前記凸形プッシャーが、加圧方向最後端よりも加圧方向側に位置する頂辺で交差する二つの平面を加圧面として有する楔形プッシャーであることが好ましい。楔形プッシャーを凸形プッシャーとして用いれば、金型内で粉体材料を更に大きく流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。   And the manufacturing method of the seismic isolation plug of this invention is a wedge-shaped pusher which the said convex pusher has as a pressurization surface two planes which cross | intersect in the top side located in a pressurization direction side rather than a pressurization direction rear end. It is preferable. If the wedge-shaped pusher is used as a convex pusher, the powder material can flow more greatly in the mold and the air mixed in the powder material can be sufficiently removed, so the air content of the seismic isolation plug is further reduced. Because it can be done.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の免震プラグは、上述した免震プラグの製造方法を用いて製造したことを特徴とする。このように、上述した免震プラグの製造方法を用いて製造した免震プラグによれば、免震プラグの端面が平坦で空気含有率が低いので、優れた減衰性能や変位追従性を得ることができる。   Moreover, this invention aims at solving the said subject advantageously, The seismic isolation plug of this invention was manufactured using the manufacturing method of the seismic isolation plug mentioned above, It is characterized by the above-mentioned. In this way, according to the seismic isolation plug manufactured using the above-described method for manufacturing a seismic isolation plug, the end face of the seismic isolation plug is flat and the air content is low, so that excellent damping performance and displacement followability can be obtained. Can do.

更に、本発明の免震プラグは、塑性流動材および硬質充填材を含有する粉体材料からなり、空気含有率が3.0%以下、且つ、端面の平坦化度が1.0%以下であることを特徴とする。このように、空気含有率を3.0%以下とし、且つ、端面の平坦化度を1.0%以下とした粉体材料製の免震プラグによれば、優れた減衰性能や変位追従性を得ることができる。
なお、本発明において、「空気含有率」とは、免震プラグの製造に使用した粉体材料の理論比重(ρ)と免震プラグの実比重(ρ)との差(ρ−ρ)を、免震プラグの製造に使用した粉体材料の理論比重(ρ)で除し、百分率で表した値(={(ρ−ρ)/ρ}×100%)を指す。また、「端面の平坦化度」とは、免震プラグの端面の中央1箇所および外周4箇所において測定した免震プラグの高さの最大値hmaxと最小値hminとの差(hmax−hmin)を、免震プラグの両端面のそれぞれにおいて互いに直交する2方向に測定した免震プラグ径の平均値davで除し、百分率で表した値(={(hmax−hmin)/dav}×100%)を指す。
Furthermore, the seismic isolation plug of the present invention is made of a powder material containing a plastic fluid and a hard filler, and has an air content of 3.0% or less and an end face flatness of 1.0% or less. It is characterized by being. As described above, according to the seismic isolation plug made of a powder material in which the air content is 3.0% or less and the flatness of the end face is 1.0% or less, excellent damping performance and displacement followability are obtained. Can be obtained.
In the present invention, the “air content ratio” means the difference (ρ A −) between the theoretical specific gravity (ρ A ) of the powder material used for manufacturing the base isolation plug and the actual specific gravity (ρ B ) of the base isolation plug. ρ B ) divided by the theoretical specific gravity (ρ A ) of the powder material used to manufacture the seismic isolation plug and expressed as a percentage (= {(ρ A −ρ B ) / ρ A } × 100%) Point to. Further, the “flatness of the end face” is the difference between the maximum value h max and the minimum value h min of the height of the base isolation plug measured at one center and four places on the outer periphery of the end face of the base isolation plug (h max -h the min), divided by the average value d av seismic isolation plug diameter measured in two directions perpendicular to each other in each of the end faces of the seismic isolation plug, expressed as a percentage value (= {(h max -h min ) / Dav } × 100%).

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の免震プラグの製造装置は、塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震構造体用の免震プラグを製造する装置であって、前記粉体材料が充填される金型と、前記金型内の粉体材料の加圧に用いられる複数のプッシャーと、前記粉体材料の加圧に使用するプッシャーを交換するプッシャー交換機構とを備え、前記複数のプッシャーには、加圧方向最先端に対し中央部が加圧方向とは反対の方向に陥没した加圧面を有する凹形プッシャーおよび加圧方向に直交する平面を加圧面として有する平面プッシャーが含まれ、前記凹形プッシャーは、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比が0.5未満であることを特徴とする。このように、プッシャー外径(D)に対する加圧面のプッシャー軸線方向長さ(L)の比(L/D)が0.5未満である凹形プッシャーを設ければ、凹形プッシャーを用いて粉体材料を加圧することにより、金型内で粉体材料を強制的に流動させて粉体材料中に混入した空気を抜くことができる。従って、空気含有率の低い免震プラグを製造することができる。また、平面プッシャーおよびプッシャー交換機構を設ければ、凹形プッシャーで加圧した粉体材料を平面プッシャーで加圧して、免震プラグの端面における成形不良の発生を抑制することができる。
なお、本発明において、「加圧方向」とは、金型内の粉体材料をプッシャーで加圧する際にプッシャーを進行させる方向を指す。また、「中央部」とは、加圧方向最先端のプッシャー径方向内側に位置する部分を指す。更に、「プッシャー外径」とは、プッシャーの、加圧面が形成されている部分の最大外径を指す。そして、「加圧面のプッシャー軸線方向長さ」とは、加圧面の加圧方向最先端を通って加圧方向に直交する平面と、加圧面の加圧方向最後端を通って加圧方向に直交する平面との間の加圧方向に沿う長さを指す。
Another object of the present invention is to advantageously solve the above-mentioned problems, and the seismic isolation plug manufacturing apparatus of the present invention provides a powder material containing a plastic fluid material and a hard filler in a mold. A device for producing a seismic isolation plug for a seismic isolation structure by pressure molding with a mold filled with the powder material and a plurality of used for pressurizing the powder material in the mold And a pusher exchanging mechanism for exchanging a pusher used for pressurizing the powder material, and the plurality of pushers have a central portion opposite to the pressurizing direction with respect to the leading end in the pressurizing direction. A concave pusher having a pressure surface depressed in the surface and a planar pusher having a pressure surface as a plane perpendicular to the pressure direction, the concave pusher having a ratio of the length of the pressure surface in the pusher axial direction to the outer diameter of the pusher. Less than 0.5 The features. In this way, if a concave pusher having a ratio (L / D) of the length (L) of the pressing surface in the pusher axial direction to the pusher outer diameter (D) is less than 0.5, the concave pusher is used. By pressurizing the powder material, the powder material can be forced to flow in the mold to remove air mixed in the powder material. Therefore, a seismic isolation plug with a low air content can be manufactured. In addition, if a flat pusher and a pusher exchange mechanism are provided, the powder material pressed by the concave pusher can be pressed by the flat pusher to suppress the occurrence of molding defects on the end face of the seismic isolation plug.
In the present invention, the “pressing direction” refers to the direction in which the pusher is advanced when the powder material in the mold is pressed with the pusher. In addition, the “center portion” refers to a portion located on the innermost side in the pusher radial direction in the pressing direction. Furthermore, the “pusher outer diameter” refers to the maximum outer diameter of the portion of the pusher where the pressing surface is formed. And, “the length of the pressure surface in the direction of the pusher axis” refers to a plane perpendicular to the pressure direction passing through the foremost pressure direction of the pressure surface and a pressure direction through the end of the pressure surface in the pressure direction. It refers to the length along the pressing direction between the orthogonal planes.

ここで、本発明の免震プラグの製造装置は、前記凹形プッシャーが、加圧方向最先端よりも加圧方向とは反対の方向に位置する底辺で交差する二つの平面を加圧面として有する楔溝形プッシャーであり、前記二つの平面が、鋭角側から測定して90°超の角度で交差することが好ましい。二つの平面の交差角度が90°超の楔溝形プッシャーを凹形プッシャーとして設ければ、楔溝形プッシャーを用いて粉体材料を加圧することにより、金型内で粉体材料を更に大きく流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。また、2つの平面の交差角度が90°超の楔溝形プッシャーを設ければ、楔溝形プッシャーで加圧した粉体材料を平面プッシャーで加圧し、免震プラグの端面における成形不良の発生を更に抑制することができるからである。   Here, in the seismic isolation plug manufacturing apparatus of the present invention, the concave pusher has, as the pressing surfaces, two planes that intersect at the bottom located in the direction opposite to the pressing direction rather than the foremost pressing direction. It is a wedge groove type pusher, and the two planes preferably intersect at an angle of more than 90 ° as measured from the acute angle side. If a wedge groove type pusher with an angle of intersection of two planes exceeding 90 ° is provided as a concave pusher, the powder material is further increased in the mold by pressurizing the powder material using the wedge groove type pusher. This is because the air content of the seismic isolation plug can be further reduced because the air mixed in the powder material can be sufficiently removed. In addition, if a wedge groove type pusher with an intersection angle between two planes exceeding 90 ° is provided, the powder material pressurized by the wedge groove type pusher is pressed by the plane pusher, and a molding defect occurs at the end face of the seismic isolation plug. It is because it can suppress further.

また、本発明の免震プラグの製造装置は、前記複数のプッシャーとして、加圧方向最後端に対し中央部が加圧方向に突出した加圧面を有する凸形プッシャーを更に含むことが好ましい。凸形プッシャーを設ければ、凹形プッシャーおよび凸形プッシャーで粉体材料を両側から加圧することにより、金型内で粉体材料を更に大きく流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。   Moreover, it is preferable that the seismic isolation plug manufacturing apparatus of the present invention further includes a convex pusher having a pressing surface whose central portion protrudes in the pressing direction with respect to the rearmost end in the pressing direction, as the plurality of pushers. If a convex pusher is provided, the powder material is pressurized from both sides with the concave pusher and the convex pusher, allowing the powder material to flow more greatly in the mold to sufficiently absorb the air mixed in the powder material. This is because the air content of the seismic isolation plug can be further reduced.

更に、本発明の免震プラグの製造装置は、前記凸形プッシャーの、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比が、前記凹形プッシャーの、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比よりも大きいことが好ましい。凸形プッシャーの、プッシャー外径(d)に対する加圧面のプッシャー軸線方向長さ(l)の比(l/d)を、凹形プッシャーの、プッシャー外径(D)に対する加圧面のプッシャー軸線方向長さ(L)の比(L/D)よりも大きくすれば、凹形プッシャーおよび凸形プッシャーで粉体材料を両側から加圧した際に、金型内で粉体材料を十分に流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。   Further, in the seismic isolation plug manufacturing apparatus of the present invention, the ratio of the length of the pressing surface in the pusher axial direction of the convex pusher to the outer diameter of the pusher is the pusher axis of the pressing surface of the concave pusher with respect to the outer diameter of the pusher. It is preferable that it is larger than the ratio of the direction lengths. The ratio (l / d) of the pusher axial length (l) of the pressure surface to the pusher outer diameter (d) of the convex pusher is expressed as the pusher axial direction of the pressure surface to the pusher outer diameter (D) of the concave pusher. If the length (L) is greater than the ratio (L / D), when the powder material is pressed from both sides with the concave pusher and the convex pusher, the powder material will flow sufficiently in the mold. This is because the air mixed in the powder material can be sufficiently removed, so that the air content of the seismic isolation plug can be further reduced.

そして、本発明の免震プラグの製造装置は、前記凸形プッシャーが、加圧方向最後端よりも加圧方向側に位置する頂辺で交差する二つの平面を加圧面として有する楔形プッシャーであることが好ましい。楔形プッシャーを凸形プッシャーとして用いれば、楔形プッシャーを用いて粉体材料を加圧することにより、金型内で粉体材料を更に大きく流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。   In the seismic isolation plug manufacturing apparatus of the present invention, the convex pusher is a wedge-shaped pusher having, as pressure surfaces, two planes intersecting at the apex located on the pressure direction side with respect to the pressure direction rearmost end. It is preferable. If the wedge-shaped pusher is used as a convex pusher, the powder material is pressurized using the wedge-shaped pusher to cause the powder material to flow more greatly in the mold and sufficiently remove air mixed in the powder material. This is because the air content of the seismic isolation plug can be further reduced.

本発明の免震プラグの製造方法および製造装置によれば、成形不良の発生を抑制しつつ空気含有率の低い免震プラグを製造することができる。また、本発明によれば、端面が平坦で空気含有率が低い、減衰性能や変位追従性に優れる免震プラグを提供することができる。   According to the manufacturing method and the manufacturing apparatus of the seismic isolation plug of the present invention, it is possible to manufacture the seismic isolation plug having a low air content while suppressing the occurrence of molding defects. Further, according to the present invention, it is possible to provide a seismic isolation plug having a flat end face and a low air content and excellent damping performance and displacement followability.

(a)〜(k)は、本発明に従う代表的な免震プラグの製造方法を用いて免震プラグを製造する工程を説明する図である。(A)-(k) is a figure explaining the process of manufacturing a seismic isolation plug using the manufacturing method of the typical seismic isolation plug according to this invention. (a)は、本発明の免震プラグを圧入した免震構造体の上面図であり、(b)は、図2(a)に示す免震構造体のI−I線に沿う断面図である。(A) is a top view of the seismic isolation structure in which the seismic isolation plug of the present invention is press-fitted, and (b) is a sectional view taken along line II of the seismic isolation structure shown in FIG. 2 (a). is there. 免震プラグの製造に用いる楔形プッシャーの先端部の形状を示す図であり、(a)は正面図、(b)は側面図、(c)は平面図である。It is a figure which shows the shape of the front-end | tip part of the wedge-shaped pusher used for manufacture of a seismic isolation plug, (a) is a front view, (b) is a side view, (c) is a top view. 免震プラグの製造に用いる楔溝形プッシャーの先端部の形状を示す図であり、(a)は正面図、(b)は側面図、(c)は平面図である。It is a figure which shows the shape of the front-end | tip part of the wedge groove type pusher used for manufacture of a seismic isolation plug, (a) is a front view, (b) is a side view, (c) is a top view. (a)〜(e)は、本発明に従う他の免震プラグの製造方法を用いて免震プラグを製造する工程を説明する図である。(A)-(e) is a figure explaining the process of manufacturing a seismic isolation plug using the manufacturing method of the other seismic isolation plug according to this invention. 免震プラグの体積および端面の平坦化度の算出方法を説明する図である。It is a figure explaining the calculation method of the volume of a seismic isolation plug, and the flatness degree of an end surface. (a)〜(b)は、凹形プッシャーの変形例の先端部の形状を示す正面図であり、(c)〜(d)は、凸形プッシャーの変形例の先端部の形状を示す正面図である。(A)-(b) is a front view which shows the shape of the front-end | tip part of the modification of a concave pusher, (c)-(d) is the front which shows the shape of the front-end | tip part of the modification of a convex pusher. FIG. 免震プラグを使用した免震構造体における、水平方向の変形変位(δ)と水平方向荷重(Q)との関係を示すグラフである。It is a graph which shows the relationship between a horizontal deformation displacement (delta) and a horizontal load (Q) in the base isolation structure using a base isolation plug.

以下、図面を参照して本発明の実施の形態を詳細に説明する。ここで、本発明の免震プラグの製造方法は、塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震プラグを製造する際に、所定の形状を有するプッシャーを所定の順番で用いて粉体材料を加圧することを特徴とする。具体的には、本発明の免震プラグの製造方法は、金型内に充填された粉体材料の少なくとも一方側を、加圧方向最先端に対し中央部が加圧方向とは反対の方向に陥没した加圧面を有する凹形プッシャーを用いて加圧した後、加圧された粉体材料の、少なくとも凹形プッシャーを用いて加圧された側を、加圧方向に直交する平面を加圧面として有する平面プッシャーを用いて加圧することを特徴とする。なお、本発明の免震プラグの製造方法は、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比が0.5未満である凹形プッシャーを用いることを必要とする。また、本発明の免震プラグの製造方法では、任意に、凹形プッシャーを用いて粉体材料加圧する際に、加圧方向最後端に対し中央部が加圧方向に突出した加圧面を有する凸形プッシャーと、凹形プッシャーとで粉体材料を挟み込んで加圧してもよい。
そして、本発明の免震プラグの製造方法を用いて製造された本発明の免震プラグは、免震装置の支承等として使用される免震構造体に用いられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, the manufacturing method of the seismic isolation plug according to the present invention provides a predetermined shape when the powder material containing the plastic fluid material and the hard filler is pressure-molded in a mold to manufacture the seismic isolation plug. The powder material is pressurized using the pushers having the predetermined order. Specifically, in the method for manufacturing a seismic isolation plug according to the present invention, at least one side of the powder material filled in the mold has a direction in which the central portion is opposite to the pressurizing direction with respect to the forefront of the pressurizing direction. After applying pressure using a concave pusher having a pressing surface recessed into the surface, add a plane perpendicular to the pressing direction to at least the side of the pressurized powder material that has been pressed using the concave pusher. Pressurization is performed using a flat pusher having a pressure surface. In addition, the manufacturing method of the seismic isolation plug of this invention requires using the concave pusher whose ratio of the length of a pressurization surface direction of a pressurization surface with respect to a pusher outer diameter is less than 0.5. Moreover, in the manufacturing method of the seismic isolation plug of this invention, when pressing powder material using a concave pusher, it has the pressurization surface which the center part protruded in the pressurization direction with respect to the pressurization direction end. The powder material may be sandwiched between a convex pusher and a concave pusher and pressurized.
And the seismic isolation plug of this invention manufactured using the manufacturing method of the seismic isolation plug of this invention is used for the seismic isolation structure used as a support etc. of a seismic isolation apparatus.

具体的には、本発明の免震プラグは、例えば図2(a)に上面図を示し、図2(b)に図2(a)のI―I線に沿う断面図を示すような、略ドーナツ盤状の弾性を有する軟質板51と剛性を有する硬質板52とを交互に積層してなり、積層方向(鉛直方向)に伸びる円柱状の中空部53を有する積層体54と、積層体54の両端(上端および下端)に固定された略ドーナツ盤状のフランジ板56および円盤状の封止板55よりなる2枚のフランジと、積層体54の外周面を覆うゴム製の被覆材57とを具える免震構造体50の中空部53に圧入されて用いられる。そして、積層体54の中空部53に免震プラグ20を圧入してなる免震構造体50は、例えば地盤と構造物との間に取り付けられて用いられる。   Specifically, the seismic isolation plug of the present invention has, for example, a top view in FIG. 2 (a) and a cross-sectional view taken along line II in FIG. 2 (a). A laminated body 54 having a cylindrical hollow portion 53 extending in the laminating direction (vertical direction) by alternately laminating soft plates 51 having substantially donut disk-like elasticity and hard plates 52 having rigidity; Two flanges made of a substantially donut disk-shaped flange plate 56 and a disk-shaped sealing plate 55 fixed to both ends (upper end and lower end) of 54, and a rubber covering material 57 covering the outer peripheral surface of the laminate 54 Are used by being press-fitted into the hollow portion 53 of the seismic isolation structure 50. And the seismic isolation structure 50 formed by press-fitting the seismic isolation plug 20 in the hollow part 53 of the laminated body 54 is used, for example, attached between the ground and the structure.

ここで、本発明の免震プラグの一例は、塑性流動材および硬質充填材を含有する粉体材料が充填される金型と、金型内の粉体材料の加圧に用いられる複数のプッシャーと、粉体材料の加圧に使用するプッシャーを交換するプッシャー交換機構とを備える本発明の免震プラグの製造装置の一例を用いて、例えば後述のようにして製造することができる。   Here, an example of the seismic isolation plug of the present invention includes a mold filled with a powder material containing a plastic fluid material and a hard filler, and a plurality of pushers used for pressurizing the powder material in the mold. Using the example of the seismic isolation plug manufacturing apparatus of the present invention that includes the pusher replacement mechanism that replaces the pusher used to pressurize the powder material, for example, it can be manufactured as described below.

なお、免震プラグの製造装置のプッシャー交換機構は、使用する順に並列配置した複数のプッシャーに沿って金型を移動させることにより使用するプッシャーを交換し得るようにした機構であっても良いし、位置を固定した金型に対して使用する順に並列配置した複数のプッシャーを移動させることにより使用するプッシャーを交換し得るようにした機構であっても良い。更に、プッシャー交換機構は、粉体材料を加圧する方向と平行な方向に延びる回転軸線に関してプッシャーおよび金型の少なくとも一方を回転させる回転機構を有していても良い。   The pusher replacement mechanism of the seismic isolation plug manufacturing apparatus may be a mechanism that allows replacement of the pusher to be used by moving the mold along a plurality of pushers arranged in parallel in the order of use. The mechanism may be such that the pushers to be used can be replaced by moving a plurality of pushers arranged in parallel in the order of use with respect to the mold having a fixed position. Furthermore, the pusher exchange mechanism may have a rotation mechanism that rotates at least one of the pusher and the mold with respect to a rotation axis extending in a direction parallel to the direction in which the powder material is pressed.

また、免震プラグの製造に用いられる粉体材料を構成する塑性流動材としては、特に限定されることなく、例えば、天然ゴム、ポリブタジエンゴム、アクリルゴム、シリコンゴム、ポリウレタン、ウレタン系エラストマーなどのエストラマー成分と、ロジン樹脂、フェノール樹脂などの樹脂と、カーボンブラック、シリカなどの補強性充填材と、フタル酸、マレイン酸、クエン酸などの可塑剤と、ヒマシ油、アマニ油、ナタネ油などの軟化剤とを含む混合物が挙げられる。また、硬質充填材としては、特に限定されることなく、例えば、銅粉、ステンレス鋼粉、ジルコニウム粉、タングステン粉、青銅粉、アルミニウム粉、ニッケル粉、モリブデン粉、チタン粉、鉄粉などの金属粉体や金属化合物が挙げられる。そして、これら塑性流動材および硬質充填材の組成等は、免震プラグ20に求められる性能に応じて適宜変更することができる。   Further, the plastic fluid material constituting the powder material used for manufacturing the seismic isolation plug is not particularly limited, and examples thereof include natural rubber, polybutadiene rubber, acrylic rubber, silicon rubber, polyurethane, and urethane-based elastomer. Estramer components, resins such as rosin resin and phenol resin, reinforcing fillers such as carbon black and silica, plasticizers such as phthalic acid, maleic acid and citric acid, and castor oil, linseed oil, rapeseed oil, etc. The mixture containing a softener is mentioned. Further, the hard filler is not particularly limited, for example, metal such as copper powder, stainless steel powder, zirconium powder, tungsten powder, bronze powder, aluminum powder, nickel powder, molybdenum powder, titanium powder, iron powder, etc. Examples thereof include powders and metal compounds. The composition of the plastic fluid material and the hard filler can be appropriately changed according to the performance required for the seismic isolation plug 20.

本発明の免震プラグの製造方法の一例では、図1(a)〜(k)に示す工程に従い、凸形プッシャーとしての楔形プッシャー3と、凹形プッシャーとしての楔溝形プッシャー4と、平面プッシャー5とを所定の順序・組合せで用いて、金型内の粉体材料を加圧成形して免震プラグを製造する。なお、粉体材料を加圧成形する際の圧力は、所望の免震プラグの性能等に応じて適宜設定することができる。   In an example of the manufacturing method of the seismic isolation plug of this invention, according to the process shown to Fig.1 (a)-(k), the wedge-shaped pusher 3 as a convex pusher, the wedge groove-shaped pusher 4 as a concave pusher, and a plane Using the pushers 5 in a predetermined order and combination, the powder material in the mold is pressure-molded to manufacture a seismic isolation plug. In addition, the pressure at the time of pressure-molding powder material can be suitably set according to the performance etc. of a desired seismic isolation plug.

ここで、楔形プッシャー3は、粉体材料を加圧する側の先端部の正面図を図3(a)に、側面図を図3(b)に、平面図を図3(c)にそれぞれ示すように、加圧方向最後端33a,33bよりも加圧方向側(図3(a),(b)では上側)に突出して位置する頂辺31で交差する二つの平面32a,32bを加圧面として有するプッシャーである。即ち、楔形プッシャー3では、加圧面の加圧方向最後端33a,33bに対し、加圧面の中央部(加圧方向最後端33a,33bのプッシャー径方向内側に位置する部分)が加圧方向に突出している。
そして、楔形プッシャー3の先端部では、頂辺31に直交する断面が、加圧方向に凸のV字形をしており、頂辺31の延在方向および加圧方向の双方に直交する方向(図3(a)では左右方向)の楔形プッシャー3の幅が、頂辺31に向かって漸減している。
なお、楔形プッシャー3では、二つの平面32a,32bは、交差角度βで交差している。また、楔形プッシャー3のプッシャー外径はdであり、加圧面のプッシャー軸線方向長さはlである。
Here, the wedge-shaped pusher 3 is shown in FIG. 3A, a side view in FIG. 3B, and a plan view in FIG. In this way, the two flat surfaces 32a and 32b intersecting at the apex 31 that protrudes to the pressing direction side (the upper side in FIGS. 3A and 3B) from the pressing direction rearmost ends 33a and 33b are pressed surfaces. As a pusher. That is, in the wedge-shaped pusher 3, the central portion of the pressure surface (the portion located on the inner side in the pusher radial direction of the pressure direction rear ends 33a and 33b) is in the pressure direction with respect to the pressure direction rear ends 33a and 33b. It protrudes.
And in the front-end | tip part of the wedge-shaped pusher 3, the cross section orthogonal to the top side 31 is convex V shape in the pressurization direction, and the direction orthogonal to both the extension direction of the top side 31 and the pressurization direction ( The width of the wedge-shaped pusher 3 in the left-right direction in FIG. 3A gradually decreases toward the top side 31.
In the wedge-shaped pusher 3, the two planes 32a and 32b intersect at an intersection angle β. Further, the pusher outer diameter of the wedge-shaped pusher 3 is d, and the length of the pressing surface in the pusher axis direction is l.

因みに、図3に示す楔形プッシャー3では、金型に対して楔形プッシャー3を真っ直ぐに挿入し易くする観点から頂辺31を平面視で楔形プッシャー3の中央に位置させているが、本発明の免震プラグの製造方法では、平面視における頂辺31の位置が中央からオフセットした楔形プッシャーを用いても良い。また、図3に示す楔形プッシャー3では、頂辺31が加圧方向に直交しているが、本発明の免震プラグの製造方法では、頂辺が加圧方向に対して傾斜した楔形プッシャーを用いても良い。   Incidentally, in the wedge-shaped pusher 3 shown in FIG. 3, the apex 31 is positioned at the center of the wedge-shaped pusher 3 in plan view from the viewpoint of facilitating the straight insertion of the wedge-shaped pusher 3 into the mold. In the manufacturing method of the seismic isolation plug, a wedge-shaped pusher in which the position of the apex 31 in plan view is offset from the center may be used. In the wedge-shaped pusher 3 shown in FIG. 3, the apex 31 is orthogonal to the pressurizing direction. However, in the seismic isolation plug manufacturing method of the present invention, a wedge-shaped pusher whose apex is inclined with respect to the pressurizing direction is used. It may be used.

楔溝形プッシャー4は、粉体材料を加圧する側の先端部の正面図を図4(a)に、側面図を図4(b)に、平面図を図4(c)にそれぞれ示すように、加圧方向最先端43a,43bよりも加圧方向(図4(a),(b)では上方)とは反対方向に窪んで位置する底辺41(換言すれば、楔溝形プッシャー4の加圧方向最先端43a,43bよりも加圧方向後方(図4(a),(b)では下方)に位置する底辺41)で交差する二つの平面42a,42bを加圧面として有するプッシャーである。即ち、楔溝形プッシャー4の先端部には、底辺41に直交する断面の形状がV字形の溝が形成されている。
そして、楔溝形プッシャー4の先端部では、底辺41に直交する断面が、加圧方向とは反対の方向に凸のV字形をしており、底辺41の延在方向および加圧方向の双方に直交する方向(図4(a)では左右方向)の平面42a,42b間の距離が、底辺41に向かって漸減している。
なお、楔溝形プッシャー4では、二つの平面42a,42bは、交差角度αで交差している。また、楔溝形プッシャー4のプッシャー外径はDであり、加圧面のプッシャー軸線方向長さはLである。そして、この楔溝形プッシャー4では、プッシャー外径Dに対する加圧面のプッシャー軸線方向長さLの比L/Dが0.5未満である。また、交差角度αは、90°超である。
The wedge-groove pusher 4 is shown in FIG. 4A, a side view in FIG. 4B, and a plan view in FIG. In addition, the bottom 41 (in other words, the wedge groove type pusher 4 of the wedge groove type pusher 4) is depressed in the direction opposite to the pressurizing direction (upward in FIGS. 4A and 4B) than the pressurizing direction leading ends 43a and 43b. The pusher has two flat surfaces 42a and 42b that intersect at the pressure direction leading edge 43a and 43b at the rear side of the pressure direction (the bottom 41 in FIGS. 4A and 4B) as pressure surfaces. . That is, a groove having a V-shaped cross section perpendicular to the bottom 41 is formed at the tip of the wedge groove pusher 4.
At the tip of the wedge groove-shaped pusher 4, the cross section perpendicular to the base 41 has a V shape that is convex in the direction opposite to the pressurizing direction, and both the extending direction of the base 41 and the pressurizing direction are both. The distance between the planes 42 a and 42 b in the direction orthogonal to the horizontal direction (the left-right direction in FIG. 4A) gradually decreases toward the bottom 41.
In the wedge groove type pusher 4, the two flat surfaces 42a and 42b intersect at an intersecting angle α. The pusher outer diameter of the wedge groove type pusher 4 is D, and the length of the pressure surface in the pusher axis direction is L. In this wedge groove type pusher 4, the ratio L / D of the length L in the pusher axial direction of the pressure surface to the pusher outer diameter D is less than 0.5. Further, the crossing angle α is more than 90 °.

因みに、図4に示す楔溝形プッシャー4では、金型に対して楔溝形プッシャー4を真っ直ぐに挿入し易くする観点から底辺41を平面視で楔溝形プッシャー4の中央に位置させているが、本発明の免震プラグの製造方法では、平面視における底辺41の位置が中央からオフセットした楔溝形プッシャーを用いても良い。また、図4に示す楔溝形プッシャー4では、底辺41が加圧方向に直交しているが、本発明の免震プラグの製造方法では、底辺が加圧方向に対して傾斜した楔溝形プッシャーを用いても良い。   Incidentally, in the wedge groove type pusher 4 shown in FIG. 4, the base 41 is positioned at the center of the wedge groove type pusher 4 in plan view from the viewpoint of facilitating the straight insertion of the wedge groove type pusher 4 into the mold. However, in the seismic isolation plug manufacturing method of the present invention, a wedge groove type pusher in which the position of the bottom 41 in a plan view is offset from the center may be used. Further, in the wedge groove type pusher 4 shown in FIG. 4, the bottom 41 is orthogonal to the pressurizing direction. However, in the method for manufacturing the seismic isolation plug of the present invention, the bottom is inclined with respect to the pressurizing direction. A pusher may be used.

平面プッシャー5は、加圧方向に直交する平面を加圧面として有するプッシャーである。なお、平面プッシャー5の平面の形状は、粉体材料が充填される金型の中空部の加圧方向に直交する断面の形状と略等しい形状である。
因みに、楔形プッシャー3のプッシャー外径d、楔溝形プッシャー4のプッシャー外径D、平面プッシャー5のプッシャー外径および金型1の内径は略等しい。
The plane pusher 5 is a pusher having a plane orthogonal to the pressing direction as a pressing surface. The planar shape of the planar pusher 5 is substantially the same as the sectional shape orthogonal to the pressing direction of the hollow portion of the mold filled with the powder material.
Incidentally, the pusher outer diameter d of the wedge-shaped pusher 3, the pusher outer diameter D of the wedge groove-shaped pusher 4, the pusher outer diameter of the flat pusher 5 and the inner diameter of the mold 1 are substantially equal.

そして、図1(a)〜(k)に製造工程を示す本発明の免震プラグの製造方法の一例では、まず、図1(a)〜(h)に示すように、円筒状の金型1の内部に投入した粉体材料2を、加圧方向に対向させた一対の楔形プッシャー3および楔溝形プッシャー4で両側から挟んで加圧する。
具体的には、最初に、図1(a)に示すように、金型1内に充填した粉体材料2の一方側(図1では上側)から楔形プッシャー3を金型1内に挿入すると共に、粉体材料2の他方側(図1では下側)から楔溝形プッシャー4を金型1内に挿入し、粉体材料2を、加圧方向に対向させた楔形プッシャー3および楔溝形プッシャー4で両側から挟んで加圧する。次に、図1(b)に示すように、楔形プッシャー3および楔溝形プッシャー4を金型1から抜き取った後、図1(c)に示すように、楔形プッシャー3および楔溝形プッシャー4を例えば90°回転させ、90°回転させた楔形プッシャー3および楔溝形プッシャー4で粉体材料2を両側から挟んで再び加圧する。その後、図1(d)に示すように、楔形プッシャー3および楔溝形プッシャー4を金型1から抜き取る。そして、図1(e)〜(h)に示すように、楔形プッシャー3および楔溝形プッシャー4を例えば90°回転させ、90°回転させた楔形プッシャー3および楔溝形プッシャー4で粉体材料2を両側から挟んで再び加圧する操作を更に2回繰り返す。即ち、楔形プッシャー3の頂辺31の延在方向および楔溝形プッシャー4の底辺41の延在方向を一回前の加圧時とは異ならせつつ、粉体材料2を合計4回加圧する(予備加圧成形工程)。
And in an example of the manufacturing method of the seismic isolation plug of this invention which shows a manufacturing process to Fig.1 (a)-(k), as shown to Fig.1 (a)-(h), a cylindrical metal mold | die is shown first. The powder material 2 put into the interior of 1 is pressed by being sandwiched from both sides by a pair of wedge-shaped pushers 3 and wedge groove-shaped pushers 4 opposed to each other in the pressing direction.
Specifically, first, as shown in FIG. 1A, a wedge-shaped pusher 3 is inserted into the mold 1 from one side (upper side in FIG. 1) of the powder material 2 filled in the mold 1. At the same time, a wedge-shaped pusher 4 is inserted into the mold 1 from the other side (lower side in FIG. 1) of the powder material 2, and the wedge-shaped pusher 3 and the wedge groove facing the powder material 2 in the pressing direction. Pressure is applied by sandwiching the pusher 4 from both sides. Next, as shown in FIG. 1 (b), after the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 are extracted from the mold 1, as shown in FIG. 1 (c), the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 are removed. Is rotated by 90 °, for example, and the powder material 2 is sandwiched from both sides by the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 rotated by 90 °, and pressurized again. Thereafter, as shown in FIG. 1 (d), the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 are extracted from the mold 1. Then, as shown in FIGS. 1E to 1H, the wedge-shaped pusher 3 and the wedge-groove pusher 4 are rotated by 90 °, for example, and the wedge-shaped pusher 3 and the wedge-groove pusher 4 rotated by 90 ° are used for the powder material. The operation of pressurizing again by sandwiching 2 from both sides is repeated twice more. That is, the powder material 2 is pressed a total of four times while the extending direction of the top side 31 of the wedge-shaped pusher 3 and the extending direction of the bottom side 41 of the wedge-shaped pusher 4 are different from those of the previous pressing. (Pre-press molding process).

なお、この予備加圧成形工程では、粉体材料2を、一方側から楔形プッシャー3で加圧し、他方側から楔溝形プッシャー4で加圧している。従って、加圧された粉体材料2の端面(受圧面)の形状は、一方側が楔形プッシャー3の加圧面の形状に対応した形状となり、他方側が楔溝形プッシャー4の加圧面の形状に対応した形状となる。即ち、予備加圧成形工程で加圧された粉体材料2は、一方側の端面が、角度βで交差する二つの平面よりなり、他方側の端面が、角度αで交差する二つの平面よりなる。   In this pre-press forming step, the powder material 2 is pressurized with a wedge-shaped pusher 3 from one side and is pressed with a wedge-groove pusher 4 from the other side. Therefore, the shape of the end surface (pressure receiving surface) of the pressed powder material 2 is a shape corresponding to the shape of the pressure surface of the wedge-shaped pusher 3 on one side, and corresponds to the shape of the pressure surface of the wedge-shaped pusher 4 on the other side. It becomes the shape. That is, the powder material 2 that has been pressed in the pre-press molding step is composed of two planes whose one end face intersects at an angle β and whose other end face intersects two angles at an angle α. Become.

最後に、この一例の免震プラグの製造方法では、図1(i)〜(k)に示すように、予備加圧成形工程において楔形プッシャー3および楔溝形プッシャー4を用いて加圧された粉体材料2を、加圧方向に対向させた一対の平面プッシャー5,5で両側から挟んで加圧する。具体的には、まず、図1(i)に示すように、粉体材料2の両側から平面プッシャー5,5を金型1内に挿入して粉体材料2を加圧する。次に、図1(j)に示すように、二つの平面プッシャー5,5を金型1から抜き取る(最終加圧成形工程)。そして、加圧成形された粉体材料2よりなる免震プラグ20を金型1から取り外す。   Finally, in the manufacturing method of the seismic isolation plug of this example, as shown in FIGS. 1 (i) to (k), the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 were pressurized in the pre-press molding process. The powder material 2 is pressed by being sandwiched from both sides by a pair of flat pushers 5 and 5 facing each other in the pressing direction. Specifically, first, as shown in FIG. 1 (i), the flat pushers 5 and 5 are inserted into the mold 1 from both sides of the powder material 2 to pressurize the powder material 2. Next, as shown in FIG. 1 (j), the two flat pushers 5 and 5 are extracted from the mold 1 (final pressure molding step). Then, the seismic isolation plug 20 made of the pressure-formed powder material 2 is removed from the mold 1.

そして、この一例の免震プラグの製造方法によれば、予備加圧成形工程において、粉体材料2の他方側を楔溝形プッシャー4で加圧しているので、金型1内で粉体材料2を強制的に流動させて粉体材料2中に混入した空気を抜くことができる。従って、空気含有率の低い免震プラグ20を製造することができる。なお、楔溝形プッシャー4を用いることで粉体材料2を強制的に流動させることができる理由は、明らかではないが、楔溝形プッシャー4のプッシャー外径Dに対する加圧面のプッシャー軸線方向長さLの比L/Dが0.5未満であるので、傾斜が緩やかな加圧面に沿って粉体材料2を楔溝形プッシャー4の加圧面の加圧方向後端側(底辺41側)まで十分に流動させることができるからであると推察される。即ち、楔溝形プッシャー4は、比L/Dが0.5未満であり、加圧面となる二つの平面42a,42bの交差角度αが鈍角(90°超)であるので、楔溝形プッシャー4を用いれば、傾斜が緩やかな平面42a,42bに沿って粉体材料2を楔溝形プッシャー4の底辺41側まで十分に流動させることができると推察される。また、金型内で粉体材料が強く流動させられることにより粉体材料内の空気が抜けて免震プラグの空気含有率が低くなるのは、粉体材料の流動により粉体材料内の硬質充填材同士が密に配置されるためであると推察される。   Then, according to the manufacturing method of the seismic isolation plug of this example, since the other side of the powder material 2 is pressed by the wedge groove type pusher 4 in the pre-pressing molding step, the powder material is formed in the mold 1. 2 can be forced to flow to remove air mixed in the powder material 2. Therefore, the seismic isolation plug 20 having a low air content can be manufactured. Although the reason why the powder material 2 can be forced to flow by using the wedge groove type pusher 4 is not clear, the length of the pressure surface in the pusher axial direction with respect to the pusher outer diameter D of the wedge groove type pusher 4 is not clear. Since the ratio L / D of the thickness L is less than 0.5, the powder material 2 is pushed along the pressure surface of the wedge groove-shaped pusher 4 along the pressure surface with a gentle slope (the bottom 41 side). It is guessed that it is possible to flow sufficiently. That is, the wedge groove type pusher 4 has a ratio L / D of less than 0.5, and the crossing angle α between the two flat surfaces 42a and 42b serving as the pressing surfaces is an obtuse angle (greater than 90 °). 4 is presumed to allow the powder material 2 to sufficiently flow to the bottom 41 side of the wedge-shaped pusher 4 along the planes 42a and 42b having gentle slopes. In addition, when the powder material is made to flow strongly in the mold, the air in the powder material is released and the air content of the seismic isolation plug is lowered. This is presumably because the fillers are densely arranged.

また、この一例の免震プラグの製造方法では、予備加圧成形工程において粉体材料2の他方側を楔溝形プッシャー4で加圧した後、最終加圧成形工程において粉体材料2の他方側(楔溝形プッシャー4で加圧された側)を平面プッシャー5で加圧し、免震プラグ20を製造している。従って、この一例の免震プラグの製造方法では、免震プラグ20の端面(特に他方側(図1では下側)の端面)における成形不良の発生を抑制することができる。なお、予備加圧成形工程と最終加圧成形工程とを順次実施することにより免震プラグの端面における成形不良の発生を抑制することができる理由は、明らかではないが、以下の通りであると推察される。即ち、楔溝形プッシャー4の、プッシャー外径Dに対する加圧面のプッシャー軸線方向長さLの比L/Dは0.5未満であり、予備加圧成形工程において楔溝形プッシャー4で加圧された粉体材料2の受圧面の傾斜は緩やかになるので、最終加圧成形工程において平面プッシャー5で粉体材料2を加圧した際に、粉体材料2が金型1の内周面側(即ち、免震プラグ20の端面の外周縁側)まで良好に流動し、成形不良の発生を抑制することができると推察される。換言すれば、楔溝形プッシャー4は、比L/Dが0.5未満であり、加圧面となる二つの平面42a,42bの交差角度αが鈍角であるので、比L/Dが0.5以上(交差角度αが90°以下)の楔溝形プッシャーを用いた場合と比較し、傾斜が緩やかな(平面の交差角度αが鈍角の)粉体材料2の受圧面を平面プッシャー5で加圧して粉体材料2を金型1の内周面側まで良好に流動させることができると推察される。   In this example of the method for manufacturing a seismic isolation plug, the other side of the powder material 2 is pressed in the final pressure forming step after the other side of the powder material 2 is pressed by the wedge groove type pusher 4 in the pre-press forming step. The seismic isolation plug 20 is manufactured by pressing the side (the side pressed by the wedge groove type pusher 4) with the flat pusher 5. Therefore, in this example of the method for manufacturing a seismic isolation plug, it is possible to suppress the occurrence of molding defects on the end face of the seismic isolation plug 20 (particularly, the end face on the other side (lower side in FIG. 1)). The reason why it is possible to suppress the occurrence of molding defects on the end face of the seismic isolation plug by sequentially performing the pre-press molding process and the final pressure molding process is not clear, but is as follows. Inferred. In other words, the ratio L / D of the pusher axial direction length L of the pressure surface to the pusher outer diameter D of the wedge groove type pusher 4 is less than 0.5, and the wedge groove type pusher 4 is pressurized in the pre-press molding process. Since the inclination of the pressure-receiving surface of the powder material 2 is gentle, when the powder material 2 is pressed by the flat pusher 5 in the final pressure forming process, the powder material 2 is the inner peripheral surface of the mold 1. It is presumed that it can flow well to the side (that is, the outer peripheral edge side of the end face of the seismic isolation plug 20) and suppress the occurrence of molding defects. In other words, the wedge groove type pusher 4 has a ratio L / D of less than 0.5, and the crossing angle α between the two flat surfaces 42a and 42b serving as the pressing surfaces is an obtuse angle. Compared to the case of using a wedge groove type pusher having 5 or more (crossing angle α is 90 ° or less), the flat pusher 5 is used for the pressure receiving surface of the powder material 2 having a gentle inclination (the crossing angle α of the flat surface is obtuse). It is assumed that the powder material 2 can be flowed well to the inner peripheral surface side of the mold 1 by applying pressure.

ここで、この一例の免震プラグの製造方法では、予備加圧成形工程において粉体材料2の一方側を楔形プッシャー3で加圧した後、最終加圧成形工程において粉体材料2の一方側(楔形プッシャー3で加圧された側)を平面プッシャー5で加圧している。そのため、最終加圧成形工程において、粉体材料2の一方側では、粉体材料2が受圧面の中央部側(楔形プッシャー3の頂辺31に対応する位置)に向かって流れ込む。従って、この一例の免震プラグの製造方法では、免震プラグ20の一方側の端面においても、端面の外周部の崩れ(欠け)の発生を抑制し、成形不良の発生を抑制することができる。   Here, in the manufacturing method of the seismic isolation plug of this example, after pressing one side of the powder material 2 with the wedge-shaped pusher 3 in the pre-press forming step, one side of the powder material 2 in the final press forming step. The side pressed by the wedge-shaped pusher 3 is pressed by the flat pusher 5. Therefore, in the final pressure molding process, on one side of the powder material 2, the powder material 2 flows toward the center side of the pressure receiving surface (a position corresponding to the top side 31 of the wedge-shaped pusher 3). Therefore, in this example of the method for manufacturing a seismic isolation plug, even on the one end face of the seismic isolation plug 20, the occurrence of collapse (chip) of the outer peripheral portion of the end face can be suppressed, and the occurrence of molding defects can be suppressed. .

また、この一例の免震プラグの製造方法では、予備加圧成形工程において、楔形プッシャー3および楔溝形プッシャー4で粉体材料2を挟み込んで加圧しているので、金型1内で粉体材料2を強制的に流動させ、粉体材料2内の空気を十分に抜くことができる。更に、この一例の免震プラグの製造方法では、予備加圧成形工程において、楔形プッシャー3の頂辺31の延在方向および楔溝形プッシャー4の底辺41の延在方向を異ならせつつ粉体材料2を複数回(図1では4回)加圧しているので、金型1内での粉体材料2の流動を強く促し、粉体材料2内の空気を十分に抜くことができる。   In this example of the seismic isolation plug manufacturing method, since the powder material 2 is sandwiched and pressed by the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 in the pre-press forming step, The material 2 can be forced to flow, and the air in the powder material 2 can be sufficiently extracted. Furthermore, in the manufacturing method of the seismic isolation plug of this example, in the pre-press forming process, the extending direction of the top side 31 of the wedge-shaped pusher 3 and the extending direction of the bottom side 41 of the wedge-shaped pusher 4 are made different. Since the material 2 is pressurized a plurality of times (four times in FIG. 1), the flow of the powder material 2 in the mold 1 is strongly promoted, and the air in the powder material 2 can be sufficiently extracted.

因みに、予備加圧成形工程では、粉体材料2を楔溝形プッシャー4の加圧面の加圧方向後端側(底辺41側)まで十分に流動させる観点からは、加圧時に、楔形プッシャー3の頂辺31の延在方向と楔溝形プッシャー4の底辺41の延在方向とを一致させることが好ましい。しかし、本発明の免震プラグの製造方法では、頂辺31の延在方向と底辺41の延在方向とを異ならせた状態で粉体材料2を加圧しても良い。また、粉体材料2を加圧する回数は、製造する免震プラグの直径や粉体材料の組成に応じて適宜変更しても良い。更に、楔形プッシャー3および楔溝形プッシャー4を回転させる角度は、頂辺31および底辺41の延在方向を変えることができれば(即ち、180°の整数倍以外であれば)任意の角度とすることができるが、金型1内で粉体材料2を均等に隅々まで流動させる観点からは、90°とすることが好ましい。なお、本発明の免震プラグの製造方法では、楔形プッシャーおよび楔溝形プッシャーの位置を固定した状態で、内部に粉体材料を充填した金型を回転させることにより、頂辺および底辺の延在方向を変えても良い。   Incidentally, in the pre-press molding process, from the viewpoint of sufficiently flowing the powder material 2 to the rear end side (bottom 41 side) in the pressing direction of the pressing surface of the wedge groove-shaped pusher 4, the wedge-shaped pusher 3 is applied during pressing. It is preferable that the extending direction of the top side 31 and the extending direction of the bottom side 41 of the wedge-shaped pusher 4 coincide with each other. However, in the seismic isolation plug manufacturing method of the present invention, the powder material 2 may be pressed in a state where the extending direction of the top side 31 and the extending direction of the bottom side 41 are different. Moreover, you may change suitably the frequency | count of pressurizing the powder material 2 according to the diameter of the seismic isolation plug to manufacture, or the composition of powder material. Furthermore, the angle at which the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 are rotated is an arbitrary angle as long as the extending direction of the top side 31 and the bottom side 41 can be changed (that is, other than an integral multiple of 180 °). However, from the viewpoint of allowing the powder material 2 to flow evenly in the mold 1, the angle is preferably 90 °. In the seismic isolation plug manufacturing method of the present invention, the top and bottom sides are extended by rotating a mold filled with a powder material inside while the positions of the wedge-shaped pusher and the wedge-groove pusher are fixed. You may change the direction.

上述した通り、この一例の免震プラグの製造方法によれば、予備加圧成形工程および最終加圧成形工程を順次実施することにより、金型1内で粉体材料2を強制的に流動させて粉体材料2中に混入した空気を抜くことができるので、空気含有率の低い免震プラグ20を製造することができる。また、免震プラグ20の端面における成形不良の発生を抑制することができる。従って、成形不良の発生を抑制しつつ空気含有率の低い免震プラグを製造することができる。
そして、上記一例の免震プラグの製造方法を用いて製造した免震プラグは、空気含有率が例えば3.0%以下、好ましくは2.8%以下となり、また、端面の平坦化度が例えば1.0%以下、好ましくは0.8%以下となる。この免震プラグは、免震構造体に用いた際に非常に良好な減衰性能や変位追従性を発揮する。
As described above, according to the manufacturing method of the seismic isolation plug of this example, the powder material 2 is forced to flow in the mold 1 by sequentially performing the pre-press molding step and the final press molding step. Since the air mixed in the powder material 2 can be removed, the seismic isolation plug 20 having a low air content can be manufactured. In addition, the occurrence of molding defects on the end face of the seismic isolation plug 20 can be suppressed. Therefore, it is possible to manufacture a seismic isolation plug having a low air content while suppressing the occurrence of molding defects.
And the seismic isolation plug manufactured using the manufacturing method of the seismic isolation plug of the above example has an air content of, for example, 3.0% or less, preferably 2.8% or less, and the flatness of the end surface is, for example, 1.0% or less, preferably 0.8% or less. This seismic isolation plug exhibits very good damping performance and displacement followability when used in a seismic isolation structure.

ここで、予備加圧成形工程において粉体材料を金型内で良好に流動させ、免震プラグの空気含有率を低減する観点からは、凹形プッシャー(上記一例では楔溝形プッシャー4)のプッシャー外径Dに対する加圧面のプッシャー軸線方向長さLの比L/Dは、0.134以上であることが好ましく、0.182以上であることが更に好ましく、0.289以下であることが特に好ましい。比L/Dが小さすぎる場合、凹形プッシャーの先端部の形状が平面プッシャーに近づき、金型内で粉体材料を十分に流動させることができなくなる虞があるからである。また、比L/Dを0.289以下とすれば、成形不良の発生の抑制と、空気含有率の低減とを更に高いレベルで両立させることができるからである。   Here, from the viewpoint of allowing the powder material to flow well in the mold in the pre-press molding process and reducing the air content of the seismic isolation plug, the concave pusher (wedge groove type pusher 4 in the above example) is used. The ratio L / D of the length L in the pusher axial direction of the pressure surface with respect to the pusher outer diameter D is preferably 0.134 or more, more preferably 0.182 or more, and preferably 0.289 or less. Particularly preferred. This is because if the ratio L / D is too small, the shape of the tip of the concave pusher approaches the flat pusher and the powder material may not be able to flow sufficiently in the mold. Further, if the ratio L / D is 0.289 or less, it is possible to achieve both higher levels of suppression of molding defects and reduction in air content.

また、予備加圧成形工程において粉体材料を金型内で良好に流動させ、免震プラグの空気含有率を低減する観点からは、凹形プッシャーとしての楔溝形プッシャーの平面の交差角度αは、150°以下であることが好ましく、140°以下であることが更に好ましく、120°以上であることが特に好ましい。交差角度αが大きすぎる場合、楔溝形プッシャーの先端部の形状が平面プッシャーに近づき、金型内で粉体材料を十分に流動させることができなくなる虞があるからである。また、交差角度αを120°以上とすれば、成形不良の発生の抑制と、空気含有率の低減とを更に高いレベルで達成することができるからである。   Further, from the viewpoint of allowing the powder material to flow well in the mold in the pre-press molding process and reducing the air content of the seismic isolation plug, the intersection angle α of the plane of the wedge groove type pusher as the concave pusher Is preferably 150 ° or less, more preferably 140 ° or less, and particularly preferably 120 ° or more. This is because if the crossing angle α is too large, the shape of the tip of the wedge groove type pusher approaches the flat pusher and the powder material may not be able to flow sufficiently in the mold. In addition, if the crossing angle α is set to 120 ° or more, it is possible to achieve higher levels of suppressing the occurrence of molding defects and reducing the air content.

更に、予備加圧成形工程において粉体材料を金型内で良好に流動させ、免震プラグの空気含有率を低減する観点からは、凸形プッシャー(上記一例では楔形プッシャー3)のプッシャー外径dに対する加圧面のプッシャー軸線方向長さlの比l/dは、凹形プッシャー(上記一例では楔溝形プッシャー4)の比L/Dよりも大きいことが好ましい。比l/dが比L/Dよりも大きい場合、粉体材料を凹形プッシャーの加圧面の加圧方向後端側まで十分に流動させ、粉体材料から空気を十分に抜くことができるからである。   Furthermore, from the viewpoint of allowing the powder material to flow well in the mold in the pre-press molding step and reducing the air content of the seismic isolation plug, the outer diameter of the pusher of the convex pusher (wedge shaped pusher 3 in the above example). It is preferable that the ratio 1 / d of the length l in the pusher axial direction of the pressing surface with respect to d is larger than the ratio L / D of the concave pusher (wedge groove type pusher 4 in the above example). When the ratio l / d is larger than the ratio L / D, the powder material can sufficiently flow to the rear end side in the pressing direction of the pressing surface of the concave pusher, and air can be sufficiently extracted from the powder material. It is.

また、成形不良の発生の抑制と、空気含有率の低減とを更に高いレベルで達成する観点からは、凸形プッシャー(上記一例では楔形プッシャー3)のプッシャー外径dに対する加圧面のプッシャー軸線方向長さlの比l/dは、0.50以下であることが好ましく、0.134以上であることが更に好ましく、0.50未満であることが特に好ましく、0.233以上であることがより好ましい。比l/dが大きすぎる場合、凸形プッシャーで加圧した側を平面プッシャーで加圧した際に、粉体材料が中央部まで流れ込まず、免震プラグの端面の中央部に窪み(成形不良)が発生する場合があるからである。また、比l/dが小さすぎる場合、凸形プッシャーの先端部の形状が平面プッシャーに近づき、金型内で粉体材料を十分に流動させることができなくなる虞があるからである。   Further, from the viewpoint of achieving a higher level of suppressing the occurrence of molding defects and reducing the air content rate, the direction of the pusher axis of the pressing surface with respect to the pusher outer diameter d of the convex pusher (wedge shaped pusher 3 in the above example) The ratio l / d of the length l is preferably 0.50 or less, more preferably 0.134 or more, particularly preferably less than 0.50, and preferably 0.233 or more. More preferred. When the ratio l / d is too large, the powder material does not flow to the center when the side pressed with the convex pusher is pressed with the flat pusher, and the depression is formed in the center of the end face of the seismic isolation plug (molding failure). ) May occur. Further, when the ratio 1 / d is too small, the shape of the tip of the convex pusher approaches the flat pusher, and there is a possibility that the powder material cannot be sufficiently flowed in the mold.

更に、成形不良の発生の抑制と、空気含有率の低減とを高いレベルで達成する観点からは、凸形プッシャーとしての楔形プッシャーの平面の交差角度βは、90°以上であることが好ましく、150°以下であることが更に好ましく、90°超であることが特に好ましく、130°以下であることがより好ましい。交差角度βが小さすぎる場合、楔形プッシャーで加圧した側を平面プッシャーで加圧した際に、粉体材料が中央部まで流れ込まず、免震プラグの端面の中央部に窪み(成形不良)が発生する場合があるからである。また、交差角度βが大きすぎる場合、楔形プッシャーの先端部の形状が平面プッシャーに近づき、金型内で粉体材料を十分に流動させることができなくなる虞があるからである。   Furthermore, from the viewpoint of achieving a high level of suppressing the occurrence of molding defects and reducing the air content, the crossing angle β of the wedge-shaped pusher as the convex pusher is preferably 90 ° or more, It is further preferably 150 ° or less, particularly preferably more than 90 °, and more preferably 130 ° or less. If the crossing angle β is too small, the powder material does not flow to the center when the side pressed with the wedge-shaped pusher is pressed with a flat pusher, and a recess (molding failure) is formed in the center of the end face of the seismic isolation plug. This is because it may occur. Further, if the crossing angle β is too large, the shape of the tip of the wedge-shaped pusher approaches the flat pusher, and there is a possibility that the powder material cannot be sufficiently flowed in the mold.

以上、図面を参照して本発明の実施形態を説明したが、本発明の免震プラグの製造方法、免震プラグの製造装置および免震プラグは上述した一例に限定されることは無く、本発明の免震プラグの製造方法、免震プラグの製造装置および免震プラグには適宜変更を加えることができる。   As mentioned above, although embodiment of this invention was described with reference to drawings, the manufacturing method of the seismic isolation plug of this invention, the manufacturing apparatus of a seismic isolation plug, and a seismic isolation plug are not limited to the example mentioned above, The seismic isolation plug manufacturing method, the seismic isolation plug manufacturing apparatus, and the seismic isolation plug of the invention can be modified as appropriate.

具体的には、本発明の免震プラグの製造方法では、粉体材料をプッシャーで両側から加圧しなくても良く、例えば図5(a)〜(e)に示すように、一端が閉止された有底円筒状の金型61に充填した粉体材料2を一方側から加圧して免震プラグを製造しても良い。ここで、この他の例の免震プラグの製造方法では、具体的には、図5(a)に示すように、まず、金型61内に充填した粉体材料2の一方側(図5では上側)から、凹形プッシャーとしての楔溝形プッシャー4を金型61内に挿入し、粉体材料2を加圧する(予備加圧成形工程)。次に、図5(b)に示すように、楔溝形プッシャー4を金型61から抜き取った後、図5(c)に示すように、粉体材料2の一方側(図6では上側)から平面プッシャー5を金型61内に挿入し、粉体材料2を再び加圧する(最終加圧成形工程)。そして最後に、図5(d)に示すように、平面プッシャー5を金型61から抜き取ることにより、図5(e)に示すような免震プラグ20を得ることができる。   Specifically, in the seismic isolation plug manufacturing method of the present invention, it is not necessary to press the powder material from both sides with a pusher. For example, as shown in FIGS. 5 (a) to 5 (e), one end is closed. Alternatively, the powder material 2 filled in the bottomed cylindrical mold 61 may be pressurized from one side to manufacture a seismic isolation plug. Here, in the manufacturing method of the seismic isolation plug of this other example, specifically, as shown in FIG. 5A, first, one side of the powder material 2 filled in the mold 61 (FIG. 5). Then, the wedge groove type pusher 4 as a concave pusher is inserted into the mold 61 from the upper side), and the powder material 2 is pressurized (pre-press molding step). Next, as shown in FIG. 5 (b), after the wedge-groove pusher 4 is removed from the mold 61, as shown in FIG. 5 (c), one side of the powder material 2 (upper side in FIG. 6). Then, the flat pusher 5 is inserted into the mold 61, and the powder material 2 is pressed again (final pressure molding step). And finally, as shown in FIG.5 (d), the seismic isolation plug 20 as shown in FIG.5 (e) can be obtained by extracting the plane pusher 5 from the metal mold | die 61. FIG.

また、本発明の免震プラグの製造方法および製造装置では、凹形プッシャーとして、図7(a),(b)示すプッシャーを用いてもよい。また、本発明の免震プラグの製造方法および製造装置では、凸形プッシャーとして、図7(c),(d)に示すプッシャーを用いてもよい。   Moreover, in the manufacturing method and manufacturing apparatus of the seismic isolation plug of this invention, you may use the pusher shown to Fig.7 (a), (b) as a concave shape pusher. Moreover, in the manufacturing method and manufacturing apparatus of the seismic isolation plug of this invention, you may use the pusher shown to FIG.7 (c), (d) as a convex pusher.

ここで、図7(a)に正面図を示すプッシャー4Aは、円錐形状の窪みよりなる加圧面42Aを有するすり鉢形プッシャーである。そして、このすり鉢形プッシャー4Aは、窪みの底点41Aが、加圧方向最先端縁43Aよりも加圧方向とは反対の方向に位置している。即ち、すり鉢形プッシャー4Aは、加圧方向最先端に対し中央部が加圧方向とは反対の方向に陥没した加圧面42Aを有している。また、このすり鉢形プッシャー4Aは、プッシャー外径Dに対する加圧面42Aのプッシャー軸線方向長さLの比L/Dが0.5未満である。   Here, the pusher 4A whose front view is shown in FIG. 7 (a) is a mortar-shaped pusher having a pressure surface 42A made of a conical depression. In the mortar-shaped pusher 4A, the bottom 41A of the dent is positioned in a direction opposite to the pressurizing direction with respect to the foremost edge 43A in the pressurizing direction. That is, the mortar-shaped pusher 4A has a pressing surface 42A in which the central portion is depressed in the direction opposite to the pressing direction with respect to the forefront of the pressing direction. Further, in this mortar-shaped pusher 4A, the ratio L / D of the length L in the pusher axial direction of the pressure surface 42A to the pusher outer diameter D is less than 0.5.

図7(b)に正面図を示すプッシャー4Bは、階段状に縮径する略円柱状の窪みよりなる加圧面42Bを有するプッシャーである。そして、このプッシャー4Bは、窪みの底面41Bが、加圧方向最先端縁43Bよりも加圧方向とは反対の方向に位置している。即ち、プッシャー4Bは、加圧方向最先端に対し中央部が加圧方向とは反対の方向に陥没した加圧面42Bを有している。また、このプッシャー4Bは、プッシャー外径Dに対する加圧面42Bのプッシャー軸線方向長さLの比L/Dが0.5未満である。   A pusher 4B, whose front view is shown in FIG. 7B, is a pusher having a pressurizing surface 42B made up of a substantially cylindrical depression whose diameter is reduced stepwise. In the pusher 4B, the bottom surface 41B of the recess is positioned in a direction opposite to the pressurizing direction with respect to the foremost edge 43B in the pressurizing direction. That is, the pusher 4B has a pressurizing surface 42B in which the central portion is recessed in the direction opposite to the pressurizing direction with respect to the forefront of the pressurizing direction. In the pusher 4B, the ratio L / D of the length L in the pusher axial direction of the pressing surface 42B to the pusher outer diameter D is less than 0.5.

図7(c)に正面図を示すプッシャー3Aは、円錐形状の突出部よりなる加圧面32Aを有する円錐形プッシャーである。そして、この円錐形プッシャー3Aは、突出部の頂点31Aが、加圧面32Aの加圧方向最先後端縁33Aよりも加圧方向側に位置している。即ち、円錐形プッシャー3Aは、加圧方向最後端に対し中央部が加圧方向に突出した加圧面32Aを有している。   A pusher 3A whose front view is shown in FIG. 7C is a conical pusher having a pressing surface 32A made of a conical protrusion. In the conical pusher 3A, the apex 31A of the projecting portion is positioned on the pressing direction side of the pressing surface 32A with respect to the pressing direction foremost rear end edge 33A. That is, the conical pusher 3 </ b> A has a pressing surface 32 </ b> A whose central portion protrudes in the pressing direction with respect to the end in the pressing direction.

図7(d)に正面図を示すプッシャー3Bは、階段状に縮径する略円柱状の突出部よりなる加圧面32Bを有するプッシャーである。そして、このプッシャー3Bは、突出部の頂面31Bが、加圧面32Bの加圧方向最後端縁33Bよりも加圧方向側に位置している。即ち、プッシャー3Bは、加圧方向最後端に対し中央部が加圧方向に突出した加圧面32Bを有している。   A pusher 3B whose front view is shown in FIG. 7D is a pusher having a pressurizing surface 32B made up of a substantially columnar projecting portion whose diameter is reduced stepwise. And as for this pusher 3B, the top surface 31B of the protrusion part is located in the pressurization direction side rather than the pressurization direction end edge 33B of the pressurization surface 32B. That is, the pusher 3B has a pressing surface 32B having a central portion protruding in the pressing direction with respect to the end in the pressing direction.

また、本発明の免震プラグの製造方法では、予備加圧成形工程において、粉体材料を、2つの凹形プッシャーで両側から挟み込んで加圧してもよい。更に、本発明の免震プラグの製造方法では、予備加圧成形工程において粉体材料の一方側のみを凹形プッシャーで加圧し、粉体材料の他方側は任意の形状のプッシャーを用いて加圧してもよい。そして、予備加圧成形工程において粉体材料の他方側を任意の形状のプッシャーで加圧した場合には、最終加圧成形工程において、粉体材料の他方側を平面プッシャー以外のプッシャーで加圧し、加圧後に切断等の手段を用いて他方側の端面を平坦化してもよい。   Moreover, in the manufacturing method of the seismic isolation plug of this invention, you may pinch and press a powder material from both sides with two concave pushers in a pre-press-molding process. Furthermore, in the seismic isolation plug manufacturing method of the present invention, only one side of the powder material is pressed with a concave pusher in the pre-pressing step, and the other side of the powder material is added using a pusher of any shape. You may press. When the other side of the powder material is pressed with a pusher having an arbitrary shape in the pre-press molding process, the other side of the powder material is pressed with a pusher other than the flat pusher in the final pressure molding process. The other end face may be flattened by using means such as cutting after pressurization.

以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.

(実施例1)
表1に示す組成を有する塑性流動材および硬質充填材を含む粉体材料を用いて、内径16cmの円筒状の金型内で免震プラグを製造した。
具体的には、表2に示すように、予備加圧成形工程として、表2に示す形状の楔形プッシャーおよび楔溝形プッシャーで粉体材料を両側から挟み込んで加圧した。その後、最終加圧成形工程として、粉体材料を2つの平面プッシャーで両側から挟み込んで合計1回加圧した。なお、予備加圧成形工程では、楔形プッシャーおよび楔溝形プッシャーを90°ずつ回転させながら粉体材料を合計4回加圧した。
そして、得られた免震プラグについて、空気含有率、端面の平坦化度、外観および減衰性能を以下の方法で評価した。結果を表2に示す。
Example 1
A seismic isolation plug was manufactured in a cylindrical mold having an inner diameter of 16 cm using a powder material containing a plastic fluid and a hard filler having the composition shown in Table 1.
Specifically, as shown in Table 2, as a pre-press molding process, the powder material was sandwiched and pressed from both sides by a wedge-shaped pusher and a wedge groove-shaped pusher having the shape shown in Table 2. Thereafter, as a final pressure forming step, the powder material was sandwiched from both sides by two flat pushers and pressed once in total. In the pre-press forming step, the powder material was pressed a total of four times while rotating the wedge-shaped pusher and the wedge groove-shaped pusher by 90 °.
And about the obtained seismic isolation plug, the air content rate, the flatness degree of an end surface, an external appearance, and attenuation | damping performance were evaluated with the following method. The results are shown in Table 2.

Figure 2014004739
Figure 2014004739

*1 不定形粉末、平均粒径40μm
*2 天然ゴムと合成ゴムのブレンド
* 1 Amorphous powder, average particle size 40μm
* 2 Blend of natural rubber and synthetic rubber

<空気含有率>
免震プラグの製造に使用した粉体材料の理論比重(ρ)と免震プラグの実比重(ρ)とを求めた。そして、免震プラグの製造に使用した粉体材料の理論比重(ρ)と免震プラグの実比重(ρ)との差(ρ−ρ)を免震プラグの製造に使用した粉体材料の理論比重(ρ)で除した値を百分率で表して空気含有率ε(={(ρ−ρ)/ρ}×100%)とした。なお、免震プラグの実比重は、下記式(1)を用いて算出した。また、免震プラグの製造に使用した粉体材料の理論比重(ρ)を算出したところ、5.204g/cmであった。
ρ=W/V=W/(A×hav) ・・・(1)
ここで、式(1)中、Wは免震プラグの質量、Vは免震プラグの体積、Aは免震プラグの断面積、havは免震プラグの平均高さである。なお、Aは、免震プラグ径の平均値davを用いて算出することができ(A=(dav/2)×π)、免震プラグの平均径davは、図6に示すように免震プラグ20の両端面(上面および下面)のそれぞれにおいて互いに直交する2方向にノギスで測定した免震プラグ径(d,d,d,d)の平均値(dav=(d+d+d+d)/4)である。また、havは、図6に示す免震プラグ20の端面の外周4箇所においてノギスで測定した免震プラグの高さ(h,h,h,h)の平均値(hav=(h+h+h+h)/4)である。
<端面の平坦化度>
製造した免震プラグについて、図6に示すように免震プラグ20の端面の外周4箇所および中央1箇所の合計5箇所において免震プラグの高さ(h,h,h,h,h)をノギスで測定した。また、図6に示すように、免震プラグ20の両端面(上面および下面)のそれぞれにおいて互いに直交する2方向に免震プラグ径(d,d,d,d)をノギスで測定した。そして、測定した5箇所の免震プラグの高さの最大値hmaxと最小値hminとの差(hmax−hmin)を、測定した免震プラグ径の平均値dav(=(d+d+d+d)/4)で除した値を百分率で表して平坦化度f(={(hmax−hmin)/dav}×100%)とした。
<免震プラグの外観>
製造した免震プラグの外観を目視で観察し、目立った欠損(成形不良)が無い場合を「○(非常に良好)」、欠損はあるが著しいものではない場合を「△(良好)」、欠損が著しくて成形性が非常に悪い場合を「×(不良)」として評価した。
<減衰性能>
製造した免震プラグを圧入した免震構造体に対し、動的試験機を用いて鉛直方向に基準面圧をかけた状態で水平方向に加振して規定変位のせん断変形を生じさせた。なお、加振変位は、積層体のゴム(軟質板)総厚さを100%として、歪50〜250%とし、加振周波数は0.33Hzとし、垂直面圧は15MPaとした。図8に、水平方向の変形変位(δ)と免震構造体の水平方向荷重(Q)との関係の一例を示す。図8中のヒステリシス曲線で囲まれた領域の面積ΔWが広くなるほど、振動のエネルギーを多く吸収できることを意味する。ここでは、簡便のため、歪100%における切片荷重Q(変位0における水平荷重値)を免震プラグ断面積Aで除した値τp(=Q/A)で免震プラグの減衰性能を評価した。なお、切片荷重Qは、ヒステリシス曲線が縦軸と交差する点での荷重Qd1、Qd2を用いて、下記式(2)から計算した。
=(Qd1+Qd2)/2 ・・・(2)
τpが大きくなる程、ヒステリシス曲線で囲まれた領域の面積が広くなり、減衰性能が優れていることを示す。
<Air content>
The theoretical specific gravity (ρ A ) of the powder material used for manufacturing the base isolation plug and the actual specific gravity (ρ B ) of the base isolation plug were determined. Then, the difference (ρ A −ρ B ) between the theoretical specific gravity (ρ A ) of the powder material used for manufacturing the base isolation plug and the actual specific gravity (ρ B ) of the base isolation plug was used for manufacturing the base isolation plug. The value obtained by dividing the powder material by the theoretical specific gravity (ρ A ) was expressed as a percentage to obtain an air content ε (= {(ρ A −ρ B ) / ρ A } × 100%). The actual specific gravity of the seismic isolation plug was calculated using the following formula (1). Moreover, it was 5.204 g / cm < 3 > when the theoretical specific gravity ((rho) A ) of the powder material used for manufacture of a seismic isolation plug was computed.
ρ B = W B / V B = W B / (A B × h av ) (1)
Here, in the formula (1), W B is the mass of the seismic isolation plugs, V B is the volume of seismic isolation plug, A B is the cross-sectional area of the seismic isolation plug, the h av is the average height of the seismic isolation plug. Incidentally, A B may be calculated using the average value d av seismic isolation plug diameter (A B = (d av / 2) 2 × π), the average diameter d av seismic isolation plug 6 As shown in FIG. 2 , the average values of the diameters of the seismic isolation plugs (d 1 , d 2 , d 3 , d 4 ) measured with calipers in two directions orthogonal to each other on both end surfaces (upper surface and lower surface) of the seismic isolation plug 20 ( d av = (d 1 + d 2 + d 3 + d 4 ) / 4). In addition, h av is the average value (h av ) of the heights (h 1 , h 2 , h 3 , h 4 ) of the seismic isolation plugs measured with calipers at four locations on the outer periphery of the end face of the seismic isolation plug 20 shown in FIG. = (H 1 + h 2 + h 3 + h 4 ) / 4).
<Flatness of the end face>
As for the manufactured seismic isolation plug, as shown in FIG. 6, the heights of the seismic isolation plugs (h 1 , h 2 , h 3 , h 4) at a total of 5 locations including the outer periphery of the seismic isolation plug 20 at four locations and the central one location. , H 5 ) were measured with calipers. Further, as shown in FIG. 6, the seismic isolation plug diameters (d 1 , d 2 , d 3 , d 4 ) are set in two directions orthogonal to each other on both end surfaces (upper surface and lower surface) of the seismic isolation plug 20 with calipers. It was measured. Then, the difference (h max −h min ) between the maximum height h max and the minimum value h min of the measured five base isolation plugs is determined as the average value d av (= (d The value obtained by dividing by 1 + d 2 + d 3 + d 4 ) / 4) was expressed as a percentage to obtain a flatness degree f (= {(h max −h min ) / d av } × 100%).
<Appearance of seismic isolation plug>
Visually observe the appearance of the manufactured seismic isolation plug, “○ (very good)” when there is no conspicuous defect (molding defect), “△ (good)” when there is a defect but not significant, The case where the defect was remarkable and the moldability was very bad was evaluated as “x (defect)”.
<Attenuation performance>
The seismic isolation structure into which the manufactured seismic isolation plug was press-fitted in a horizontal direction with a reference surface pressure applied in the vertical direction using a dynamic testing machine to cause shear deformation with a specified displacement. The vibration displacement was set such that the total rubber (soft plate) thickness of the laminate was 100%, the strain was 50 to 250%, the vibration frequency was 0.33 Hz, and the vertical surface pressure was 15 MPa. FIG. 8 shows an example of the relationship between the horizontal deformation displacement (δ) and the horizontal load (Q) of the seismic isolation structure. As the area ΔW of the region surrounded by the hysteresis curve in FIG. 8 becomes wider, it means that more vibration energy can be absorbed. Here, simple for the attenuation of seismic isolation plug (horizontal load value in displacement 0) intercept load Q d in the distortion 100% seismic isolation plug cross-sectional area A B at a value obtained by dividing .tau.p (= Q d / A B) Performance was evaluated. Incidentally, sections load Q d, using the load Q d1, Q d2 at the point where the hysteresis curve intersects the vertical axis was calculated from the following equation (2).
Q d = (Q d1 + Q d2 ) / 2 (2)
As τp increases, the area surrounded by the hysteresis curve increases, indicating that the attenuation performance is excellent.

(実施例2〜3)
予備加圧成形工程において使用した楔形プッシャーおよび楔溝形プッシャーの形状を表2に示すように変更した以外は、実施例1と同様にして免震プラグを製造した。
そして、得られた免震プラグについて、空気含有率、端面の平坦化度、外観および減衰性能を実施例1と同様の方法で評価した。結果を表2に示す。
(Examples 2-3)
A seismic isolation plug was manufactured in the same manner as in Example 1 except that the shapes of the wedge-shaped pusher and the wedge groove-shaped pusher used in the pre-press molding process were changed as shown in Table 2.
And about the obtained seismic isolation plug, the air content rate, the flatness degree of an end surface, the external appearance, and the attenuation | damping performance were evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.

(実施例4)
予備加圧成形工程の操作を表2に示すように変更した以外は、実施例1と同様にして免震プラグを製造した。
具体的には、表2に示すように、予備加圧成形工程として、2つの楔溝形プッシャーで粉体材料を両側から挟み込んで加圧した。その後、最終加圧成形工程として、粉体材料を2つの平面プッシャーで両側から挟み込んで合計1回加圧した。なお、予備加圧成形工程では、楔溝形プッシャーを90°ずつ回転させながら粉体材料を合計4回加圧した。
そして、得られた免震プラグについて、空気含有率、端面の平坦化度、外観および減衰性能を実施例1と同様の方法で評価した。結果を表2に示す。
Example 4
A seismic isolation plug was produced in the same manner as in Example 1 except that the operation of the pre-press molding process was changed as shown in Table 2.
Specifically, as shown in Table 2, as a pre-press molding process, the powder material was sandwiched and pressed from both sides by two wedge groove type pushers. Thereafter, as a final pressure forming step, the powder material was sandwiched from both sides by two flat pushers and pressed once in total. In the pre-press forming step, the powder material was pressed a total of four times while rotating the wedge groove type pusher by 90 °.
And about the obtained seismic isolation plug, the air content rate, the flatness degree of an end surface, the external appearance, and the attenuation | damping performance were evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.

(従来例1)
表1に示す組成を有する塑性流動材および硬質充填材を含む粉体材料を用いて、内径16cmの円筒状の金型内で免震プラグを製造した。
具体的には、表2に示すように、2つの平面プッシャーで粉体材料を両側から挟み込んで加圧した。
そして、得られた免震プラグについて、空気含有率、端面の平坦化度、外観および減衰性能を実施例1と同様の方法で評価した。結果を表2に示す。
(Conventional example 1)
A seismic isolation plug was manufactured in a cylindrical mold having an inner diameter of 16 cm using a powder material containing a plastic fluid and a hard filler having the composition shown in Table 1.
Specifically, as shown in Table 2, the powder material was sandwiched from both sides with two flat pushers and pressed.
And about the obtained seismic isolation plug, the air content rate, the flatness degree of an end surface, the external appearance, and the attenuation | damping performance were evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.

(比較例1)
予備加圧成形工程において使用した楔形プッシャーおよび楔溝形プッシャーの形状を表2に示すように変更した以外は、実施例1と同様にして免震プラグを製造した。
そして、得られた免震プラグについて、空気含有率、端面の平坦化度、外観および減衰性能を実施例1と同様の方法で評価した。結果を表2に示す。
(Comparative Example 1)
A seismic isolation plug was manufactured in the same manner as in Example 1 except that the shapes of the wedge-shaped pusher and the wedge groove-shaped pusher used in the pre-press molding process were changed as shown in Table 2.
And about the obtained seismic isolation plug, the air content rate, the flatness degree of an end surface, the external appearance, and the attenuation | damping performance were evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.

Figure 2014004739
Figure 2014004739

表2より、実施例1〜4の免震プラグは、従来例1の免震プラグに比べ、空気含有率が低いので、優れた減衰性能を発揮し得ることが分かる。また、実施例1〜4の免震プラグは、比較例1の免震プラグに比べ、端面の平坦化度の値が小さく(即ち、端面が平坦であり)、成形不良の発生が抑制されていると共に、空気含有率が低いので、優れた減衰性能を発揮し得ることが分かる。特に、実施例1の免震プラグは、実施例2〜4の免震プラグに比べ、端面の平坦化度の値が小さく(即ち、端面が平坦であり)、成形不良の発生が抑制されていると共に、空気含有率が低いことが分かる。   From Table 2, it can be seen that the seismic isolation plugs of Examples 1 to 4 have a lower air content than the seismic isolation plug of Conventional Example 1, and thus can exhibit excellent damping performance. Further, the seismic isolation plugs of Examples 1 to 4 have a smaller end face flatness value than the seismic isolation plug of Comparative Example 1 (that is, the end face is flat), and the occurrence of molding defects is suppressed. In addition, since the air content is low, it can be seen that excellent damping performance can be exhibited. In particular, the seismic isolation plug of Example 1 has a smaller end face flatness value than the seismic isolation plugs of Examples 2 to 4 (that is, the end face is flat), and the occurrence of molding defects is suppressed. And the air content is low.

本発明の免震プラグの製造方法および製造装置によれば、成形不良の発生を抑制しつつ空気含有率の低い免震プラグを製造することができる。また、本発明によれば、端面が平坦で空気含有率が低い、減衰性能や変位追従性に優れる免震プラグを提供することができる。   According to the manufacturing method and the manufacturing apparatus of the seismic isolation plug of the present invention, it is possible to manufacture the seismic isolation plug having a low air content while suppressing the occurrence of molding defects. Further, according to the present invention, it is possible to provide a seismic isolation plug having a flat end face and a low air content and excellent damping performance and displacement followability.

1 金型
2 粉体材料
3 楔形プッシャー
3A 円錐形プッシャー
3B プッシャー
4 楔溝形プッシャー
4A すり鉢形プッシャー
4B プッシャー
5 平面プッシャー
20 免震プラグ
31 頂辺
32a,32b 平面(加圧面)
33a,33b 加圧方向最後端
31A 頂点
31B 頂面
32A,32B 加圧面
33A,33B 加圧方向最後端縁
41 底辺
42a,42b 平面(加圧面)
43a,43b 加圧方向最先端
41A 底点
41B 底面
42A,42B 加圧面
43A,43B 加圧方向最先端縁
50 免震構造体
51 軟質板
52 硬質板
53 中空部
54 積層体
55 封止板
56 フランジ板
57 被覆材
61 金型
DESCRIPTION OF SYMBOLS 1 Mold 2 Powder material 3 Wedge shaped pusher 3A Cone shaped pusher 3B Pusher 4 Wedge groove shaped pusher 4A Mortar shaped pusher 4B Pusher 5 Planar pusher 20 Seismic isolation plug 31 Top side 32a, 32b Plane (pressurizing surface)
33a, 33b Pressure direction rearmost end 31A Vertex 31B Top surface 32A, 32B Pressure surface 33A, 33B Pressure direction rearmost edge 41 Base sides 42a, 42b Plane (pressure surface)
43a, 43b Pressure direction most advanced 41A Bottom point 41B Bottom face 42A, 42B Pressure direction 43A, 43B Pressure direction most advanced edge 50 Seismic isolation structure 51 Soft plate 52 Hard plate 53 Hollow part 54 Laminate 55 Sealing plate 56 Flange Plate 57 Covering material 61 Mold

Claims (12)

塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震構造体用の免震プラグを製造する方法であって、
金型内に充填された粉体材料の少なくとも一方側を、加圧方向最先端に対し中央部が加圧方向とは反対の方向に陥没した加圧面を有する凹形プッシャーを用いて加圧する予備加圧成形工程と、
前記予備加圧成形工程で加圧された粉体材料の、少なくとも前記凹形プッシャーを用いて加圧された側を、加圧方向に直交する平面を加圧面として有する平面プッシャーを用いて加圧する最終加圧成形工程と、
を含み、
前記凹形プッシャーは、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比が0.5未満であることを特徴とする、免震プラグの製造方法。
A method of manufacturing a seismic isolation plug for a seismic isolation structure by pressing a powder material containing a plastic fluid and a hard filler in a mold,
Preliminary pressurizing at least one side of the powder material filled in the mold using a concave pusher having a pressing surface with the central portion depressed in the direction opposite to the pressing direction with respect to the forefront of the pressing direction. A pressure molding process;
Pressurize at least the side of the powder material that has been pressed in the pre-pressing step using the concave pusher, using a flat pusher having a plane perpendicular to the pressing direction as a pressing surface. A final pressure molding process;
Including
The method for manufacturing a seismic isolation plug, wherein the concave pusher has a ratio of a length of a pressure surface in a pusher axial direction to a pusher outer diameter of less than 0.5.
前記凹形プッシャーが、加圧方向最先端よりも加圧方向とは反対の方向に位置する底辺で交差する二つの平面を加圧面として有する楔溝形プッシャーであり、
前記二つの平面が、鋭角側から測定して90°超の角度で交差することを特徴とする、請求項1に記載の免震プラグの製造方法。
The concave pusher is a wedge groove type pusher having, as a pressing surface, two planes intersecting at the base located in the direction opposite to the pressing direction from the pressing direction foremost,
The method for manufacturing a seismic isolation plug according to claim 1, wherein the two planes intersect at an angle of more than 90 ° as measured from an acute angle side.
前記金型内の粉体材料はプッシャーで両側から挟んで加圧成形され、
前記予備加圧成形工程では、前記粉体材料を、前記凹形プッシャーで一方側から加圧すると共に、加圧方向最後端に対し中央部が加圧方向に突出した加圧面を有する凸形プッシャーで他方側から加圧することを特徴とする、請求項1または2に記載の免震プラグの製造方法。
The powder material in the mold is pressure-molded by sandwiching from both sides with a pusher,
In the pre-pressing molding step, the powder material is pressed from one side by the concave pusher, and a convex pusher having a pressing surface whose central portion protrudes in the pressing direction with respect to the rearmost end in the pressing direction. The method for manufacturing a seismic isolation plug according to claim 1, wherein pressure is applied from the other side.
前記凸形プッシャーの、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比が、前記凹形プッシャーの、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比よりも大きいことを特徴とする、請求項3に記載の免震プラグの製造方法。   The ratio of the length of the pressing surface in the pusher axial direction to the outer diameter of the pusher of the convex pusher is larger than the ratio of the length of the pressing surface in the axial direction of the pusher to the outer diameter of the concave pusher. The manufacturing method of the seismic isolation plug of Claim 3. 前記凸形プッシャーが、加圧方向最後端よりも加圧方向側に位置する頂辺で交差する二つの平面を加圧面として有する楔形プッシャーであることを特徴とする、請求項3または4に記載の免震プラグの製造方法。   The said convex-shaped pusher is a wedge-shaped pusher which has two planes which cross | intersect on the top side located in the pressurization direction side rather than the pressurization direction rearmost end as a pressurization surface. Manufacturing method for seismic isolation plugs. 請求項1〜5の何れかに記載の免震プラグの製造方法を用いて製造した免震プラグ。   The seismic isolation plug manufactured using the manufacturing method of the seismic isolation plug in any one of Claims 1-5. 塑性流動材および硬質充填材を含有する粉体材料からなり、空気含有率が3.0%以下、且つ、端面の平坦化度が1.0%以下であることを特徴とする、免震プラグ。   A seismic isolation plug comprising a powder material containing a plastic fluid and a hard filler, having an air content of 3.0% or less and a flatness of an end face of 1.0% or less. . 塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震構造体用の免震プラグを製造する装置であって、
前記粉体材料が充填される金型と、
前記金型内の粉体材料の加圧に用いられる複数のプッシャーと、
前記粉体材料の加圧に使用するプッシャーを交換するプッシャー交換機構と、
を備え、
前記複数のプッシャーには、加圧方向最先端に対し中央部が加圧方向とは反対の方向に陥没した加圧面を有する凹形プッシャーおよび加圧方向に直交する平面を加圧面として有する平面プッシャーが含まれ、
前記凹形プッシャーは、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比が0.5未満であることを特徴とする、免震プラグの製造装置。
An apparatus for producing a seismic isolation plug for a seismic isolation structure by pressing a powder material containing a plastic fluid and a hard filler in a mold,
A mold filled with the powder material;
A plurality of pushers used to press the powder material in the mold;
A pusher exchange mechanism for exchanging a pusher used for pressurizing the powder material;
With
The plurality of pushers include a concave pusher having a pressing surface in which a central portion is recessed in a direction opposite to the pressing direction with respect to the leading edge in the pressing direction, and a flat pusher having a plane orthogonal to the pressing direction as a pressing surface. Contains
An apparatus for manufacturing a seismic isolation plug, wherein the concave pusher has a ratio of a length of a pressing surface in a pusher axial direction to a pusher outer diameter of less than 0.5.
前記凹形プッシャーが、加圧方向最先端よりも加圧方向とは反対の方向に位置する底辺で交差する二つの平面を加圧面として有する楔溝形プッシャーであり、
前記二つの平面が、鋭角側から測定して90°超の角度で交差することを特徴とする、請求項8に記載の免震プラグの製造装置。
The concave pusher is a wedge groove type pusher having, as a pressing surface, two planes intersecting at the base located in the direction opposite to the pressing direction from the pressing direction foremost,
The seismic isolation plug manufacturing apparatus according to claim 8, wherein the two planes intersect at an angle of more than 90 ° as measured from an acute angle side.
前記複数のプッシャーとして、加圧方向最後端に対し中央部が加圧方向に突出した加圧面を有する凸形プッシャーを更に含む、請求項8または9に記載の免震プラグの製造装置。   The seismic isolation plug manufacturing apparatus according to claim 8 or 9, further comprising a convex pusher having a pressing surface whose central portion protrudes in the pressing direction with respect to the rearmost end in the pressing direction as the plurality of pushers. 前記凸形プッシャーの、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比が、前記凹形プッシャーの、プッシャー外径に対する加圧面のプッシャー軸線方向長さの比よりも大きいことを特徴とする、請求項10に記載の免震プラグの製造装置。   The ratio of the length of the pressing surface in the pusher axial direction to the outer diameter of the pusher of the convex pusher is larger than the ratio of the length of the pressing surface in the axial direction of the pusher to the outer diameter of the concave pusher. The manufacturing apparatus of the seismic isolation plug of Claim 10. 前記凸形プッシャーが、加圧方向最後端よりも加圧方向側に位置する頂辺で交差する二つの平面を加圧面として有する楔形プッシャーであることを特徴とする、請求項10または11に記載の免震プラグの製造装置。   The said convex pusher is a wedge-shaped pusher which has as a pressurization surface two planes which cross | intersect the apex located in the pressurization direction side rather than the last end of a pressurization direction, It is characterized by the above-mentioned. Seismic isolation plug manufacturing equipment.
JP2012141429A 2012-06-22 2012-06-22 Seismic isolation plug manufacturing method and manufacturing apparatus Expired - Fee Related JP6023477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141429A JP6023477B2 (en) 2012-06-22 2012-06-22 Seismic isolation plug manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141429A JP6023477B2 (en) 2012-06-22 2012-06-22 Seismic isolation plug manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2014004739A true JP2014004739A (en) 2014-01-16
JP6023477B2 JP6023477B2 (en) 2016-11-09

Family

ID=50102933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141429A Expired - Fee Related JP6023477B2 (en) 2012-06-22 2012-06-22 Seismic isolation plug manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6023477B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151337A (en) * 2006-11-24 2008-07-03 Bridgestone Corp Laminated support
JP2010249154A (en) * 2009-04-10 2010-11-04 Bridgestone Corp Manufacturing method of base isolation plug for base isolation device and manufacturing device of the same
JP2010253851A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Method of manufacturing base isolation plug for base isolation device, and device therefor
JP2010255782A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Plug for seismic isolator and manufacturing method thereof
JP2010253848A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Method of manufacturing base isolation plug for base isolation device, and device therefor
JP2011144839A (en) * 2010-01-12 2011-07-28 Bridgestone Corp Production method of base isolation plug for base isolation device, and production equipment therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151337A (en) * 2006-11-24 2008-07-03 Bridgestone Corp Laminated support
JP2010249154A (en) * 2009-04-10 2010-11-04 Bridgestone Corp Manufacturing method of base isolation plug for base isolation device and manufacturing device of the same
JP2010253851A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Method of manufacturing base isolation plug for base isolation device, and device therefor
JP2010255782A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Plug for seismic isolator and manufacturing method thereof
JP2010253848A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Method of manufacturing base isolation plug for base isolation device, and device therefor
JP2011144839A (en) * 2010-01-12 2011-07-28 Bridgestone Corp Production method of base isolation plug for base isolation device, and production equipment therefor

Also Published As

Publication number Publication date
JP6023477B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5415821B2 (en) Substantially cylindrical powder molded body and powder molding die apparatus
US7857562B2 (en) Direct tension indicating washer having enhanced emission of indicating material
CN102683242A (en) Rotary lamination apparatus
JP5404161B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5345888B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP6023477B2 (en) Seismic isolation plug manufacturing method and manufacturing apparatus
JP2022070970A (en) Tool set having displacement compensation
JP5628651B2 (en) Seismic isolation plug manufacturing method and manufacturing apparatus
JP5250467B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5345881B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5977599B2 (en) Manufacturing method of seismic isolation plug
JP5442464B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
CN207490723U (en) RO pump front end cap assemblies press-in motor cylinder toolings
JP5590816B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5862927B2 (en) Green compact mold equipment for curved plate parts
JP5802413B2 (en) Bond magnet and manufacturing method thereof
JP6857049B2 (en) Bathing agent
JP2012193846A (en) Manufacturing method of base isolation plug for base isolation device and its manufacturing device
JP5164783B2 (en) Seismic isolation structure
JP2011158033A (en) Manufacturing method of seismic isolation plug for seismic isolation device, and seismic isolation plug manufactured by the method
CN206233857U (en) Shock resistance alloy screw
CN206009829U (en) A kind of annular matrix diel
KR102189207B1 (en) Stepped die
CN102653120A (en) Manufacture method for shock insulation plug, shock insulation plug, and manufacture device for shock insulation plug
JP5390252B2 (en) Seismic isolation plug manufacturing method and isolation plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161007

R150 Certificate of patent or registration of utility model

Ref document number: 6023477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees