JPS60250920A - Preparation of thick molded piece - Google Patents

Preparation of thick molded piece

Info

Publication number
JPS60250920A
JPS60250920A JP10663584A JP10663584A JPS60250920A JP S60250920 A JPS60250920 A JP S60250920A JP 10663584 A JP10663584 A JP 10663584A JP 10663584 A JP10663584 A JP 10663584A JP S60250920 A JPS60250920 A JP S60250920A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
compression
temperature
mold
melting temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10663584A
Other languages
Japanese (ja)
Other versions
JPH0410846B2 (en
Inventor
Takeshi Minoda
武 美濃田
Kaoru Fujii
藤井 馨
Nobuhiro Kamazaki
鎌崎 信弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP10663584A priority Critical patent/JPS60250920A/en
Publication of JPS60250920A publication Critical patent/JPS60250920A/en
Publication of JPH0410846B2 publication Critical patent/JPH0410846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a molded piece free from mold cavities and rich in thickness at low compression by a method wherein thermoplastic resin is defoamed under repeated change of compression between the highest softening temperature and the lowest melting temperature, then, heated to the highest melting temperature or higher to make compression molding. CONSTITUTION:In the compression molding of thermoplastic resin material, variation of compression is repeated keeping the highest softening temperature in the minimum and the lowest melting temperature in the maximum to defoam the material. Then, the defoamed material is heated to the highest melting temperature in the minimum to be compression-molded into the desired thick molded piece. Additionally, thermoplastic resin material is molded in a mold using several laminated sheets or films or pellets or equivalents. In this manner, it becomes possible to manufacture a thick molded piece free from mold cavities at low compression.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は肉厚の厚い成型品を製造する方法に関し、更に
詳しくは肉厚が10mm以上あるような容器や板のよう
な成型品を製造しても巣の発生がなく良好な厚物成型品
を得ることができる圧縮成形方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a thick-walled molded product, and more specifically, a method for manufacturing a molded product such as a container or a plate having a wall thickness of 10 mm or more. The present invention relates to a compression molding method that can produce good thick molded products without forming cavities.

(従来技術〕 従来肉厚の厚い成型品を製造するには、押出成形法ある
いは圧縮成形法が一般的に利用されている。しかし押出
成形方法は厚さが2〜3mmのシート程度ならうまく成
形できるが、たとえば肉厚が10mm程度もあるような
非常に厚い板を成形すると、グイより出た溶融シートが
自重によって垂れ下がり安定な成形ができず、また得ら
れる成型品も厚みむらや変形の大きいものしか得られな
い。一方、圧縮成形による方法では肉厚の厚い成型品の
製造が可能であるものの、原料となるペレットや粉末が
非常に多くなるので金型容積が大きくなり、またペレッ
トや粉末粒子間に存在する空気の脱泡がうまく行かず巣
のある成型品しか得られないという問題がある。そこで
このような肉厚の厚い成型品を得る方法としてたとえば
特公昭44−25480号公報に記載されているように
、押出機より溶融樹脂をシート状に押出し、未だ溶融状
態にあるうちに折畳むように連続的に積層してブロック
状物を製造する技術が提案されている。しかしこの技術
は装置が複雑かつ大型になるうえ、複雑形状の成型品を
得ることは困難である。また特公昭58−40018号
公報には、同種又は異種の2枚以上の熱可塑性樹脂シー
トを最高熱変形温度よりも30℃低い温度以上最低融点
未満の温度で全体を均一に予熱し、その後予熱したシー
トを積層した状態で400kg/cn+以下の圧力で圧
縮変形して厚肉成型品を製造する技術が開示されている
。この技術によると金型を小型化できるうえ、比較釣果
のない成型品が製造できるが、エチレン・酢酸ビニル共
重合体といつた柔らかい樹脂ならともかく、多くの場合
100kg/c+a以上の高圧縮力をシートにかけない
とうまく一体化しない。しかもこの方法をペレットや粉
末を用いる通常の圧縮成形法に利用すると、やはり巣の
入った厚内成型品しか得られないという問題がある。
(Prior art) Conventionally, extrusion molding or compression molding is generally used to produce thick-walled molded products. However, extrusion molding can successfully mold sheets with a thickness of 2 to 3 mm. However, when molding a very thick plate with a wall thickness of about 10 mm, for example, the molten sheet coming out of the goose will sag under its own weight, making stable molding impossible, and the resulting molded product will have large uneven thickness and deformation. On the other hand, although it is possible to manufacture thick-walled molded products using compression molding, it requires a large amount of pellets and powder as raw materials, resulting in a large mold volume. There is a problem in that the air existing between the particles cannot be defoamed and only molded products with cavities can be obtained.Therefore, as a method for obtaining such thick molded products, for example, Japanese Patent Publication No. 44-25480 discloses As described, a technology has been proposed in which a block-shaped product is produced by extruding molten resin into a sheet from an extruder and folding the resin while it is still in a molten state to continuously stack the sheets.However, this technology In addition, the equipment becomes complicated and large, and it is difficult to obtain molded products with complex shapes.In addition, Japanese Patent Publication No. 58-40018 discloses that two or more thermoplastic resin sheets of the same or different types can be heated to maximum thermal deformation. The technology involves uniformly preheating the entire product at a temperature that is 30°C or more and below the lowest melting point, and then compressing and deforming the preheated sheets in a stacked state at a pressure of 400kg/cm+ or less to produce thick-walled molded products. According to this technology, it is possible to miniaturize the mold and produce molded products with no comparative results, but even with soft resins such as ethylene-vinyl acetate copolymer, in most cases the weight is 100 kg/c+a or more. Unless a high compressive force is applied to the sheet, it will not be integrated properly.Furthermore, if this method is used in a normal compression molding method using pellets or powder, there is still the problem that only a thickly molded product with voids can be obtained.

〔発明の目的〕[Purpose of the invention]

本発明者らはこのようなことから如何なる形状の熱可塑
性樹脂材料を用いても、低圧縮力で巣の発生がない厚肉
成型品を製造することのできる圧縮成形法につき検討を
重ねた結果、材料中に存在する空気等の気体を脱泡する
のに好適な工程でもって予め熱可塑性樹脂材料を処理し
、その後通常の圧縮成形を行えば目的が達成できること
を見い出した。
The inventors of the present invention have conducted repeated studies on a compression molding method that can produce thick-walled molded products with low compressive force and no cavities, regardless of the shape of the thermoplastic resin material. discovered that the objective could be achieved by pre-treating the thermoplastic resin material in a process suitable for defoaming gases such as air present in the material, and then performing normal compression molding.

〔発明の構成及び概要〕[Structure and outline of the invention]

すなわち本発明は熱可塑性樹脂材料を圧縮成形する方法
において、材料を構成する熱可塑性樹脂の最高軟化温度
以上最低融解温度未満の温度範囲に維持しながら減圧・
加圧を繰り返して材料間に存在する気体を脱泡する工程
及び最高融解温度以上に加熱して圧縮成形する工程とか
らなることを特徴とする厚肉成型品の成形方法である。
That is, the present invention provides a method for compression molding a thermoplastic resin material, in which the thermoplastic resin constituting the material is maintained at a temperature range from the maximum softening temperature to the minimum melting temperature, while reducing the pressure and molding the material.
This is a method for forming a thick-walled molded product, which is characterized by comprising the steps of repeatedly applying pressure to defoam gas existing between the materials, and heating to a temperature higher than the maximum melting temperature and compression molding.

艮可囚性班腹林料 本発明の方法で使用する熱可塑性樹脂材料は、熱可塑性
樹脂製のシート、フィルム、ペレット、フレーク、粉末
等如何なる形状のものでもよく、熱可塑性樹脂も低密度
ポリエチレン、高密度ポリエチレン、超高分子量ポリエ
チレン、ポリプロピレン、ポリ1−ブテン、ポリ4−メ
チル−1−ペンテンあるいはエチレン、プロピレン、1
−ブテン、4−メチル−1−ペンテン等のα−オレフィ
ン同志のランダムあるいはブロック共重合体等のポリオ
レフィン、エチレン・アクリル酸共重合体、エチレン・
酢酸ビニル共重合体、エチレン・ビニルアルコール共重
合体、エチレン・塩化ビニル共重合体等のエチレン・ビ
ニル化合物共重合体、ポリスチレン、アクリロニトリル
・スチレン共重合体、ABS、メククリル酸メチル・ス
チレン共重合体、α−メチルスチレン・スチレン共重合
体等のスチレン系樹脂、ポリ塩化ビニル、ポリ塩化ビニ
リデン、塩化ビニル・塩化ビニリデン共重合体、ポリア
クリル酸メチル、ボ+jメタクリル酸メチル等のポリビ
ニル化合物、ナイロン6、ナイロン6−10、ナイロン
11、ナイロン12等のポリアミド、ポリエチレンテレ
フタレート、ポリブチレンテレフタレート等の熱可塑性
ポリエステル、ポリカーボネート、ポリフェニレンオキ
サイド等あるいはそれらの混合物のいずれの樹脂でもよ
い。
The thermoplastic resin material used in the method of the present invention may be in any shape such as a sheet, film, pellet, flake, or powder made of thermoplastic resin, and the thermoplastic resin may also be low-density polyethylene. , high-density polyethylene, ultra-high molecular weight polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene or ethylene, propylene, 1
- Polyolefins such as random or block copolymers of α-olefins such as butene and 4-methyl-1-pentene, ethylene/acrylic acid copolymers, ethylene/acrylic acid copolymers, etc.
Ethylene/vinyl compound copolymers such as vinyl acetate copolymer, ethylene/vinyl alcohol copolymer, ethylene/vinyl chloride copolymer, polystyrene, acrylonitrile/styrene copolymer, ABS, methyl meccrylate/styrene copolymer , styrenic resins such as α-methylstyrene/styrene copolymer, polyvinyl chloride, polyvinylidene chloride, vinyl chloride/vinylidene chloride copolymer, polymethyl acrylate, polyvinyl compounds such as methyl methacrylate, nylon 6 , polyamides such as nylon 6-10, nylon 11, and nylon 12, thermoplastic polyesters such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate, polyphenylene oxide, etc., or mixtures thereof.

戊−長 本発明の圧縮成形法は、前述の各種の熱可塑性樹脂より
なる各種形状の材料を使用して厚肉成型品を製造するの
であるが、まず最初に金型内に充填された熱可塑性樹脂
材料を、材料を構成する樹脂の最高軟化温度以上最低融
解温度未満の温度範囲に維持した状態で金型によって加
圧し、次いで減圧を行ない、かかる加圧減圧を複数回繰
り返すことにより材料間に存在する空気などの気体を脱
泡する。ここで加熱温度は前記の温度範囲であるが、低
圧かつ短時間で脱泡させるには、とくに(最低融解温度
−10)℃〜(最低融解温度−30)℃の温度範囲が好
適である。温度範囲が最高軟化点未満では脱泡が完全に
起こらず、後述する圧縮成形工程によって得られる厚肉
成型品は巣の入ったものとなる。最低融解温度以上であ
ると溶融状態となる部分が発生し、この部分での脱泡が
不充分となり、やはり巣の入った成型品しか得られない
。加圧及び減圧の圧力条件は対象となる成型品の大きさ
や厚みによっても異なるが、概ね上限は100 kg/
 cf以下、多くは50kg/cJ以下、下限はOkg
/af1以上である。とくに減圧時は加圧力のないOk
g / ctA (大気圧)状態が好ましい。加圧減圧
のサイクルもとくに制約はなく、たとえば、後述する実
施例のように加圧3秒、減圧2秒を15〜20回繰り返
すことが例示できるが、何らこのサイクルに限定される
ものではない。
In the compression molding method of the present invention, thick-walled molded products are manufactured using materials of various shapes made of the various thermoplastic resins mentioned above. The plastic resin material is pressurized with a mold while being maintained within the temperature range of the highest softening temperature or higher and lower than the lowest melting temperature of the resin constituting the material, and then the pressure is reduced, and by repeating this pressurization and depressurization multiple times, the gap between the materials is reduced. Defoaming gases such as air present in the air. Here, the heating temperature is within the above-mentioned temperature range, but a temperature range of (minimum melting temperature -10)°C to (minimum melting temperature -30)°C is particularly suitable for defoaming at low pressure and in a short time. If the temperature range is below the maximum softening point, defoaming does not occur completely, and the thick-walled molded product obtained by the compression molding process described below will contain cavities. If the temperature is higher than the minimum melting temperature, a portion becomes molten, and degassing in this portion becomes insufficient, resulting in only a molded product containing voids. Pressure conditions for pressurization and depressurization vary depending on the size and thickness of the molded product, but the upper limit is generally 100 kg/
cf or less, mostly 50kg/cJ or less, lower limit is Okg
/af1 or more. Especially when depressurizing, there is no pressurizing force.
g/ctA (atmospheric pressure) conditions are preferred. There are no particular restrictions on the cycle of pressurization and depressurization, and for example, as in the examples described later, pressurization for 3 seconds and depressurization for 2 seconds may be repeated 15 to 20 times, but the cycle is not limited to this in any way. .

熱可塑性樹脂材料を前述の温度範囲にするための方法は
とくに制限はなく、たとえば圧縮金型内に充填後金型を
加熱して内部の材料を加熱する方法あるいは金型内に充
填する前に加熱機によって予熱しておく方法などが例示
できる。
There are no particular restrictions on the method for bringing the thermoplastic resin material into the above-mentioned temperature range; for example, heating the mold after filling it into a compression mold to heat the material inside the mold, or heating the material inside the mold before filling it into the mold. An example is a method of preheating with a heating machine.

以上の脱泡工程によって材料中に存在する気体を脱泡さ
れた材料は、続いて材料を構成する熱可塑性樹脂の最高
融解温度以上に加熱され圧縮成形される。この際できれ
ば最高融解温度以上10℃以上に加熱するのが好ましい
。また圧縮成形するための圧力は、脱泡工程での加圧以
上にする。
The material from which the gas present in the material has been defoamed by the above defoaming process is then heated to a temperature higher than the highest melting temperature of the thermoplastic resin constituting the material and compression molded. At this time, it is preferable to heat to a temperature higher than the highest melting temperature or higher than 10° C. if possible. Moreover, the pressure for compression molding is higher than the pressure applied in the defoaming process.

このように本発明の圧縮成形法は、全ての熱可塑性樹脂
が軟化はしているが溶融はしていない状態下で圧力変動
を掛けることによって材料間に存在する気体を追い出し
て脱泡し、その後金ての樹脂が溶融する状態で圧力を掛
けて完全に溶融一体加し、巣のない厚肉成型品を得る。
In this way, the compression molding method of the present invention degasses by expelling the gas existing between the materials by applying pressure fluctuations while all the thermoplastic resin is softened but not melted. After that, pressure is applied while the metal resin is melted to completely melt and add it together to obtain a thick-walled molded product with no cavities.

本発明の好適な例としては、シート又はフィルム状の熱
可塑性樹脂を複数枚用いて厚肉の板あるいはブロック状
物を製造する技術である。すなわち、同種又は異種の熱
可塑性樹脂からなるシート又はフィルムを構成する熱可
塑性樹脂のうちの一番高い軟化温度でかつ最低の融解温
度未満に加熱する。加熱方法は複数枚のシートをパラレ
ルであるいはシリーズで予め加熱器内で加熱してもよい
し、金型内で積層した状態で金型を加熱することによっ
て行ってもよい。加熱されて目標温度範囲内になったシ
ートまたはフィルムは積層された状態で加熱された金型
内に入れられ、続いて金型の加熱を続けることによって
温度を維持されながら、金型によって加圧及び減圧を複
数繰り返される。
A preferred example of the present invention is a technique for manufacturing a thick plate or block-like object using a plurality of sheets or films of thermoplastic resin. That is, it is heated to the highest softening temperature and lower than the lowest melting temperature of the thermoplastic resins constituting the sheet or film made of the same or different thermoplastic resins. As for the heating method, a plurality of sheets may be heated in advance in a heater in parallel or in series, or may be carried out by heating the mold while stacking the sheets in a mold. Once heated to within the target temperature range, the sheets or films are placed in a stacked state into a heated mold, and then pressurized by the mold while maintaining the temperature by continuing to heat the mold. and depressurization are repeated multiple times.

次に加圧した状態で金型温度を上昇させ最高融解温度以
上に加熱し、圧縮成形を行なう。その後除冷して金型を
開放し、成型品を取り出すのであるが、かくして得られ
る成型品の各シート又はフィルム間の境界は融着により
完全に一体化しており、とくに同種の樹脂のシート又は
フィルムのみを使用した場合には境界が全(判らず完全
に一体化したものとなる。またとくにこのシートを使用
する場合には、シート厚が2〜6mmのものを使用する
と短時間で厚肉物を製造することができる。シートの枚
数は制約がなく数枚から数十枚まで可能であり、各シー
トの寸法も異なっていてもよく、その形状も丸シート、
角シート、多角シート等如何なる形状でもよい。更に必
要に応じて各シート間に金網、金属棒、セラミック多孔
膜等を介在させてもかまわない。
Next, under pressure, the mold temperature is raised to a temperature higher than the maximum melting temperature, and compression molding is performed. After that, the mold is slowly cooled, the mold is opened, and the molded product is taken out. The boundaries between each sheet or film of the molded product thus obtained are completely integrated by fusion, especially sheets or films of the same type of resin. If only the film is used, the boundary will not be visible and will be completely integrated.In addition, when using this sheet, if you use a sheet with a thickness of 2 to 6 mm, you can thicken it in a short time. There are no restrictions on the number of sheets, and the number of sheets can range from a few sheets to several tens of sheets.The dimensions of each sheet can also be different, and the shapes can be round sheets, round sheets, etc.
It may be of any shape such as a square sheet or a polygonal sheet. Furthermore, if necessary, a wire mesh, metal rod, porous ceramic membrane, etc. may be interposed between each sheet.

〔発明の効果〕〔Effect of the invention〕

以下本発明の圧縮成形法についての特徴を改めて述べる
と、 ■巣のない厚肉成型品ができる。
The features of the compression molding method of the present invention are as follows: (1) A thick-walled molded product without cavities can be produced.

■如何なる形状の熱可塑性樹脂材料にも適用できる。■Applicable to any shape of thermoplastic resin material.

■低い圧縮力で成形できる。■Can be molded with low compression force.

■成型品の強度が大きい。■The strength of the molded product is high.

等を挙げることができる。etc. can be mentioned.

〔実施例〕〔Example〕

以下に本発明の好ましい例を実施例として示すが、本発
明はとくにその目的が損なわれない限り如何なる態様も
採ることができ、これらの実施例に制限されるものでは
ない。
Preferred examples of the present invention are shown below as Examples, but the present invention can take any form as long as the purpose is not impaired and is not limited to these Examples.

実施例1 ポリ4−メチル−1−ペンテン(TPX[F]MX00
4、三井石油化学工業、融点240℃、ビカット軟化点
160℃)のベレットを220℃のプレスにセットされ
た金型の中に充填し、100kg/c+llの樹脂圧力
で30分間予熱した。次いで、Okg / cJの減圧
、加圧を20回繰り返した後、プレスの温度を270℃
にセットし直し、100kg/cnTの樹脂圧力で圧縮
成形した。15分後、金型を水冷にされたプレスに移し
、100kg/c−の樹脂圧力で15分間冷却した。
Example 1 Poly4-methyl-1-pentene (TPX[F]MX00
4. Mitsui Petrochemical Industries, Ltd., melting point 240°C, Vicat softening point 160°C) pellets were filled into a mold set in a press at 220°C and preheated at a resin pressure of 100 kg/c+ll for 30 minutes. Next, after repeating pressure reduction and pressure application of Okg/cJ 20 times, the temperature of the press was increased to 270℃.
was reset and compression molded at a resin pressure of 100 kg/cnT. After 15 minutes, the mold was transferred to a water-cooled press and cooled for 15 minutes at a resin pressure of 100 kg/c-.

冷却後、厚さ20闘、直径180mmの円板状の成型品
を取り出した。その成型品を切断したところ、ベレット
は完全に密着し一体となり、巣も発生していなかった。
After cooling, a disk-shaped molded product with a thickness of 20 mm and a diameter of 180 mm was taken out. When the molded product was cut, the pellets were completely adhered and integrated, and no nests were formed.

比較例1 実施例1と同じポリ4−メチル−1ペンテンのベレット
を270℃のプレスにセットされた金型の中に充填し、
100kg/cn+の樹脂圧力で30分間予熱した。次
いで、Okg / c+flと100kg/c+Ilの
減圧、加圧を20回繰り返した後、100kg/cII
+の樹脂圧力で圧縮成形した。15′分後金型を水冷に
されたプレスに移し、100kg/c♂の樹脂圧力で1
5分間冷却した。
Comparative Example 1 The same poly-4-methyl-1-pentene pellet as in Example 1 was filled into a mold set in a press at 270°C.
Preheating was performed for 30 minutes at a resin pressure of 100 kg/cn+. Next, after repeating the depressurization and pressurization of Okg/c+fl and 100kg/c+Il 20 times, the pressure was reduced to 100kg/cII.
Compression molded with + resin pressure. After 15 minutes, the mold was transferred to a water-cooled press and pressed at a resin pressure of 100 kg/c♂.
Cooled for 5 minutes.

冷却後、厚さ20mm、直径180mmの円板状の成型
品を取り出した。その成型品の内部には巣が発生してい
た。
After cooling, a disc-shaped molded product with a thickness of 20 mm and a diameter of 180 mm was taken out. A nest had developed inside the molded product.

実施例2 実施例1と同じポリ4−メチル−1−ペンテンの7.8
mmの厚さのシートを2枚用意し、220℃のプレスに
セットされた金型の中に充填し、30kg/c♂の樹脂
圧力で30分間予熱した。次いでOkg/cn!と30
kg/c+aの減圧、加圧を20回繰り返した後、プレ
スの温度を240℃にセットし直し、30kg/cnt
の樹脂圧力で圧縮成形した。15分後金型を水冷にされ
たプレスに移し、30kg/cJの樹脂圧力で30分間
冷却した。
Example 2 7.8 of the same poly-4-methyl-1-pentene as in Example 1
Two sheets with a thickness of mm were prepared, filled into a mold set in a press at 220° C., and preheated at a resin pressure of 30 kg/c♂ for 30 minutes. Then Okg/cn! and 30
After repeating the depressurization and pressurization of kg/c+a 20 times, the press temperature was reset to 240℃, and the pressure was reduced to 30kg/cnt.
Compression molded with resin pressure of After 15 minutes, the mold was transferred to a water-cooled press and cooled for 30 minutes at a resin pressure of 30 kg/cJ.

冷却後、厚さ14mm、直径330mmの円板状の成型
品を取り出した。その成型品を切断したところ、2枚の
シートからできているにもかかわらず、完全に密着し一
体となり、巣も発生していなかった。
After cooling, a disc-shaped molded product with a thickness of 14 mm and a diameter of 330 mm was taken out. When the molded product was cut, it was found that even though it was made of two sheets, they were completely adhered to each other and were integrated into one piece, and there were no cavities.

比較例2 実施例1と同じポリ4−メチル−1−ペンテンの7.8
mm厚さのシートを2枚用意し、220℃のプレスにセ
ットされた金型の中に充填し、30kg/cJの樹脂圧
力で30分間予熱した。次いでプレスの温度を240℃
にセットし直し、30kg/cJの樹脂圧力で圧縮成形
した。15分後、金型を水冷にされたプレスに移し、3
0kg/cJの樹脂圧力で30分間冷却した。
Comparative Example 2 7.8 of the same poly-4-methyl-1-pentene as in Example 1
Two sheets with a thickness of mm were prepared, filled into a mold set in a press at 220° C., and preheated for 30 minutes at a resin pressure of 30 kg/cJ. Next, the temperature of the press was set to 240℃.
was reset and compression molded at a resin pressure of 30 kg/cJ. After 15 minutes, transfer the mold to a water-cooled press and
It was cooled for 30 minutes at a resin pressure of 0 kg/cJ.

冷却後、厚さ14mm、直径330mmの円板状の成型
品を取り出した。その成型品の内部には巣が発生してい
た。
After cooling, a disc-shaped molded product with a thickness of 14 mm and a diameter of 330 mm was taken out. A nest had developed inside the molded product.

実施例3 実施例1と同じポリ4−メチル−1−ペンテンの7.8
mm厚さのシートを2枚、5mm厚さのシートを1枚、
計3枚のシートを用意し、220°Cのプレスにセット
された金型に充填し、20kg/ciの樹脂圧力で1時
間予熱した。次いでOkg/cJと20kg/ciの減
圧、加圧を20回繰り返した後、プレスの温度を240
℃にセットし直し20kg/cJの樹脂圧力で圧縮成形
した。1時間後、樹脂圧力を20kg/cn+に保った
ままプレスに水を流して、約1時間冷却した。冷却後厚
さ17mm、直径700mmの円板状の成型品を取り出
した。その成型品を切断したところ、3枚のシートから
できているにもかかわらず、完全に密着し、一体となり
、巣も発生していなかった。
Example 3 7.8 of the same poly-4-methyl-1-pentene as in Example 1
Two sheets with a thickness of mm, one sheet with a thickness of 5 mm,
A total of three sheets were prepared, filled into a mold set in a press at 220°C, and preheated at a resin pressure of 20 kg/ci for 1 hour. Next, after repeating the depressurization and pressurization of Okg/cJ and 20kg/ci 20 times, the temperature of the press was increased to 240
The temperature was reset to 0.degree. C., and compression molding was performed at a resin pressure of 20 kg/cJ. After 1 hour, water was flowed through the press while maintaining the resin pressure at 20 kg/cn+, and the press was cooled for about 1 hour. After cooling, a disc-shaped molded product with a thickness of 17 mm and a diameter of 700 mm was taken out. When the molded product was cut, it was found that even though it was made of three sheets, they were completely adhered to each other and were integrated into one piece, and there were no cavities.

出願人 三井石油化学工業株式会社 代理人 山 口 和 手 続 補 正 書(自発) 昭和59年8月9日 特許庁長官 志賀 学殿 1、事件の表示 昭和59年特許願第106635号 2、発明の名称 厚肉成型品の成形方法 3、補正をする者 事件との関係 特許出願人 (58B)三井石油化学工業株式会社 4、代理人〒100 東京都千代田区霞が関三丁目2@5号 7 補正の内容 (1)明細書9頁7行「複数繰り返される。」とあるの
を「複数回繰り返される。」に補正する。
Applicant Mitsui Petrochemical Industries Co., Ltd. Agent Wate Yamaguchi Amendment (spontaneous) August 9, 1980 Commissioner of the Japan Patent Office Gakudono Shiga1, Indication of the case 1982 Patent Application No. 1066352, Invention Name of molding method for thick-walled molded products 3, Relationship with the case of the person making the amendment Patent applicant (58B) Mitsui Petrochemical Industries, Ltd. 4, Agent 3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100 @ No. 5 No. 7 Amendment Contents (1) On page 9, line 7 of the specification, the phrase ``Repeated multiple times.'' is corrected to ``Repeated multiple times.''

(2)明細書9頁9〜10行「その後除冷して」とある
のを「その後冷却して」に補正する。
(2) In the specification, page 9, lines 9-10, the phrase "then slowly cooled down" should be corrected to "then cooled down."

(5)明細書11頁4行「次いで、Qkq/cmの」と
あるのを[次いでCJk’j/C1N 、!= 100
k(1/Cttt2〕J ニ補正する。
(5) On page 11 of the specification, line 4, ``Then, Qkq/cm'' should be changed to [Then, CJk'j/C1N,! = 100
k(1/Cttt2)J d correction.

(4)明細書14頁1行「240℃」とあるのを「25
0℃」に補正する。
(4) On page 14 of the specification, line 1 “240°C” should be replaced with “25°C”.
Correct to 0°C.

以上that's all

Claims (5)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂材料を圧縮成形する方法において、
材料を構成する熱可塑性樹脂の最高軟化温度以上最低融
解温度未満の温度範囲に維持し ながら減圧・加圧を繰
り返して材料中の気体を脱泡する工程及び最高融解温度
以上に加 熱して圧縮成形する工程とからなることを特
徴とする厚肉成型品の成形方法。
(1) In a method of compression molding a thermoplastic resin material,
The process of defoaming the gas in the material by repeating depressurization and pressurization while maintaining the temperature within the maximum softening temperature or higher and lower than the minimum melting temperature of the thermoplastic resin that makes up the material, and compression molding by heating the material to a temperature higher than the maximum melting temperature. A method for forming a thick-walled molded product, comprising the steps of:
(2)熱可塑性樹脂材料が複数枚のシート及び/又はフ
ィルムを重ね合わせたものである特許請求の範囲第1項
記載の成形方法。
(2) The molding method according to claim 1, wherein the thermoplastic resin material is formed by laminating a plurality of sheets and/or films.
(3)熱可塑性樹脂材料がペレット状である特許請求の
範囲第1項記載の成形方法。
(3) The molding method according to claim 1, wherein the thermoplastic resin material is in the form of pellets.
(4)熱可塑性樹脂材料が粉末状である特許請求の範囲
第1項記載の成形方法。
(4) The molding method according to claim 1, wherein the thermoplastic resin material is in powder form.
(5)同種の熱可塑性樹脂を用いる特許請求の範囲第1
項ないし第4項いずれかに記載の成形方法。
(5) Claim 1 using the same type of thermoplastic resin
The molding method according to any one of Items 1 to 4.
JP10663584A 1984-05-28 1984-05-28 Preparation of thick molded piece Granted JPS60250920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10663584A JPS60250920A (en) 1984-05-28 1984-05-28 Preparation of thick molded piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10663584A JPS60250920A (en) 1984-05-28 1984-05-28 Preparation of thick molded piece

Publications (2)

Publication Number Publication Date
JPS60250920A true JPS60250920A (en) 1985-12-11
JPH0410846B2 JPH0410846B2 (en) 1992-02-26

Family

ID=14438569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10663584A Granted JPS60250920A (en) 1984-05-28 1984-05-28 Preparation of thick molded piece

Country Status (1)

Country Link
JP (1) JPS60250920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014004740A (en) * 2012-06-22 2014-01-16 Bridgestone Corp Method for manufacturing base isolation plug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014004740A (en) * 2012-06-22 2014-01-16 Bridgestone Corp Method for manufacturing base isolation plug

Also Published As

Publication number Publication date
JPH0410846B2 (en) 1992-02-26

Similar Documents

Publication Publication Date Title
CN1050566C (en) Polystyrene foam sheet and process of making same
JP5008850B2 (en) Tetrafluoroethylene resin molded body, stretched tetrafluoroethylene resin molded body, manufacturing method thereof, composite, filter, impact deformation absorbing material, and sealing material
GB2055324A (en) Thin-wall deep-drawn container for thermoplastic resin and process for producing same
CN112341662A (en) Gray antistatic polypropylene composite foaming bead with skin-core structure and molded product thereof
JPS59215836A (en) Improved thermoforming method of polymer foamed body
JPS60250920A (en) Preparation of thick molded piece
US4354996A (en) Method for making a plastic container
CN109337313A (en) The method for forming gradient composites using 3D printing
JPH07308574A (en) Carbon filter medum for sorting
JPS5996928A (en) Method of pressing and storing thermoplastic resin foam before secondary expansion
JPH0160175B2 (en)
JPS5950494B2 (en) Manufacturing method of laminated sheet
CN101462333B (en) Method for preparing polystyrol thick sheet material
JPS63236621A (en) Manufacture of molded form from defective molded form substantially constituted of polymerized unit of tetrafluoroethylene
TW201731940A (en) Low foaming rate bio-composite film and producing method thereof
JP2007084666A (en) Styrenic resin expandable particle, method for producing the same and styrenic resin expansion molded product
JPH074826B2 (en) Thin-walled molded product of polyolefin resin
JP5799522B2 (en) Manufacturing method of resin molding
JPH02214647A (en) Manufacture of ultra-high-molecular weight polyethylene porous material
JPH06179226A (en) Vacuum press molding method for thermoplastic resin
AT204285B (en) Process for the production of porous plastics
JPH01156037A (en) Manufacture of polytetrafluoroethylene vessel
JP7039877B2 (en) Foamable laminate, its manufacturing method, foamed paper and heat insulating container
JPH0361515A (en) Molding method for fiber reinforced thermoplastic synthetic resin
JPS6213896B2 (en)