JP2014003138A - 複合部材の製造方法、モールド設計方法、及び製造条件決定方法 - Google Patents

複合部材の製造方法、モールド設計方法、及び製造条件決定方法 Download PDF

Info

Publication number
JP2014003138A
JP2014003138A JP2012137055A JP2012137055A JP2014003138A JP 2014003138 A JP2014003138 A JP 2014003138A JP 2012137055 A JP2012137055 A JP 2012137055A JP 2012137055 A JP2012137055 A JP 2012137055A JP 2014003138 A JP2014003138 A JP 2014003138A
Authority
JP
Japan
Prior art keywords
mold
layer
glass substrate
molding material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012137055A
Other languages
English (en)
Inventor
Hiroshi Sakamoto
寛 坂本
Yuriko Kaida
由里子 海田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012137055A priority Critical patent/JP2014003138A/ja
Publication of JP2014003138A publication Critical patent/JP2014003138A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】パターンの輪郭形状を保ちながら、不要な残膜を除去できる複合部材の製造方法を提供する。
【解決手段】複合部材の製造方法は、ガラス基板10とモールド30との間に成形材料の層20を挟み、モールド30の凹凸パターンが転写した凹凸層40をガラス基板10上に形成する転写工程と、ガラス基板10とモールド30との間に成形材料の層20を挟むときにモールド30の所定の凸部31とガラス基板10との間に残る残膜41にレーザ光50を照射し、残膜41を除去する除去工程とを有する。
【選択図】図1

Description

本発明は、複合部材の製造方法、モールド設計方法、及び製造条件決定方法に関する。
インプリント法で、ガラス基板上に凹凸層を設けた複合部材が作製されている(例えば特許文献1参照)。凹凸層は、ガラス基板とモールドとの間に成形材料の層を挟んで固化し、成形材料の層にモールドの凹凸パターンを転写することにより作製される。
特開2010−18666号公報
図4(a)に示すように凹凸層140は、ガラス基板110とモールドとの間に成形材料の層を挟むときにモールドの凸部とガラス基板110との間に残る残膜141を有する。用途によっては残膜141を除去する必要があり、その除去には、一般的にエッチングが用いられている。
しかし、エッチングでは図4(b)に示すように残膜141以外の部分も削られ、パターン142の輪郭形状が劣化する。
本発明は、上記課題に鑑みてなされたものであって、パターンの輪郭形状を保ちながら、不要な残膜を除去できる複合部材の製造方法の提供を目的とする。
上記課題を解決するため、本発明の一態様による複合部材の製造方法は、
ガラス基板とモールドとの間に成形材料の層を挟み、前記モールドの凹凸パターンが転写した凹凸層を前記ガラス基板上に形成する転写工程と、
前記ガラス基板と前記モールドとの間に前記成形材料の層を挟むときに前記モールドの所定の凸部と前記ガラス基板との間に残る残膜にレーザ光を照射し、前記残膜を除去する除去工程とを有する。
本発明によれば、パターンの輪郭形状を保ちながら、不要な残膜を除去できる複合部材の製造方法が提供される。
本発明の一実施形態による複合部材の製造方法を示す断面図 本発明の一実施形態による複合部材の製造方法の除去工程の説明図 本発明の一実施形態による複合部材の平面図 従来の複合部材の製造方法の問題点を示す断面図
以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して、説明を省略する。
図1は、本発明の一実施形態による複合部材の製造方法を示す断面図である。複合部材の製造方法は、ガラス基板10上に成形材料の層20を形成する準備工程(図1(a))、成形材料の層20の表面にモールド30を押し付ける転写工程(図1(b))、モールド30と凹凸層40とを分離する分離工程(図1(c))、及び転写工程でモールド30の所定の凸部31とガラス基板10との間に残る残膜41を分離工程後にレーザ光50で除去する除去工程(図1(d))を備える。この製造方法によれば、図1(e)に示すように、ガラス基板10、及びガラス基板10上に形成されるパターン層42を備える複合部材2が得られる。パターン層42は、凹凸層40の残膜41をレーザ光50で除去してなる開口部43を有する。開口部43においてガラス基板10が露出している。以下、各工程について説明する。
(準備工程)
準備工程では、ガラス基板10上に成形材料の層20を形成する。尚、準備工程では、モールド30上に成形材料の層20を形成してもよい。いずれの場合でも、転写工程ではガラス基板10とモールド30との間に成形材料の層20が挟まれる。
ガラス基板10のガラスとしては、例えば無アルカリガラス、ホウケイ酸ガラス、ソーダライムガラス、高シリカガラス、その他の酸化ケイ素を主な成分とする酸化物系ガラス等が挙げられる。ガラス基板10のガラスは、複合部材の用途に応じて選択される。
ガラス基板10は、ガラス基板10と成形材料との密着を高めるため、予め表面処理が施されたものであってよい。表面処理としては、プライマー処理、オゾン処理、プラズマエッチング処理等が挙げられる。プライマーとしては、シランカップリング剤、シラザン等が用いられる。
成形材料は、例えば光硬化性樹脂を含む。光硬化性樹脂としては、光インプリント法に用いられる一般的なものが使用できる。光硬化性樹脂は、モノマー、光重合開始剤等で構成される。モノマーとしては、ラジカル重合タイプの場合、アクリルモノマー、ビニルモノマー等があり、イオン重合タイプの場合、エポキシモノマー、ビニルエーテルモノマー等がある。光硬化性樹脂は、液状の状態で用意され、例えば図1(a)に示すようにガラス基板10上に塗布される。
樹脂の塗布方法としては、例えばダイコート法、ロールコート法、グラビアコート法、インクジェット印刷法、スプレーコート法、スピンコート法、フローコート法、ブレードコート法、ディップコート法等が用いられる。
尚、本実施形態の成形材料は、光硬化性樹脂を含むが、熱可塑性樹脂を含んでもよい。熱可塑性樹脂には、熱インプリント法に用いられる一般的なものが使用でき、例えばアクリル樹脂、ポリカーボネート樹脂、オレフィン系樹脂等が挙げられる。熱可塑性樹脂は、シートの形態で用意されガラス基板10上に貼り付けてもよいし、溶液の形態で用意されガラス基板10上に塗布し、乾燥してもよい。また、熱可塑性樹脂は、加熱軟化したうえでガラス基板10上に塗布して冷却してもよい。
(転写工程)
転写工程では、インプリント法で凹凸層40を形成する。転写工程は、ガラス基板10とモールド30との間に成形材料の層20を挟み、モールド30の凹凸パターンが転写した凹凸層40を形成する。凹凸層40の凹凸パターンは、モールド30の凹凸パターンが略反転したパターンである。
光インプリント法では、光硬化性樹脂を含む成形材料の層20の表面にモールド30の凹凸パターンを押し付け、光を照射し、成形材料の層20を固化(硬化)させることで凹凸層40を形成する。
光硬化性樹脂を硬化させる光としては、例えば紫外光、可視光、赤外光等が挙げられる。紫外光の光源としては、紫外線蛍光灯、紫外線LED、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯等が挙げられる。可視光の光源としては、可視光蛍光灯、可視光白熱灯、可視光LED等が用いられる。
光インプリント法では、モールド30及びガラス基板10の少なくとも一方が光透過性の材料で構成される。光源から出射した光は、透明なモールド30又は透明なガラス基板10を介して成形材料の層20に照射される。
光インプリント法では、室温での成型が可能であり、モールド30とガラス基板10との線膨張係数差による歪みが発生しにくく、転写精度が良い。尚、硬化反応の促進のため、成形材料の層20は加熱されてもよい。
一方、熱インプリント法では、熱可塑性樹脂を含む成形材料の層20を加熱により軟化し、軟化した成形材料の層20の表面にモールド30を押し付け、成形材料の層20を冷却して固化させることで、凹凸層40を形成する。
加熱源としては、加熱光を照射する光源(例えばハロゲンランプ、レーザ)、ヒータ等が用いられる。加熱温度は、熱可塑性樹脂のガラス転移温度以上である。
モールド30を押し付ける工程と、成形材料の層20を加熱する工程とは、どちらの工程が先であってもよく、同時に行ってもよい。モールド30を加熱することで成形材料の層20を加熱してもよい。
モールド30は、例えばシリコン、シリコン酸化膜、石英ガラス、金属(例えばニッケル、クロム)、又は樹脂(例えばポリカーボネートや環状オレフィン樹脂)で構成される。金属および樹脂は、モールド30にフレキシブル性を与える。
モールド30は、モールド30の製造コスト削減のため、マスターモールドを用いて成型され、何度も複製可能となっている。複製方法には、例えばインプリント法、電鋳法などがある。マスターモールドは、例えばフォトリソグラフィ法又は電子線描画法で基材を加工して作製される。
モールド30は、図1に示すように板状でもよいし、エンドレスベルト状でもよい。板状のモールド30は、フレキシブルなものでもよいし、リジッドなものでもよい。エンドレスベルト状のモールドは、フレキシブルな板状のモールドの両端部を溶着してなる。エンドレスベルト状のモールドは、連続生産に適している。
モールド30は、モールド表面と樹脂との離型性を高めるため、離型処理が施されたものであってよい。離型処理としては、例えばフッ素コート処理、シリコーンコート処理等が挙げられる。
モールド30の凹凸パターンは、モールド30の基準位置を示す基準マーク30Mを含む。
転写工程では、モールド30の基準マーク30Mを成形材料の層20の表面に転写することにより、凹凸層40の基準マーク40M(図3参照)を形成する。基準マーク40Mを基準位置とする座標系での凹凸パターンの位置座標を一度計測し、記憶しておけば、次回からは基準マーク40Mの位置を検出するだけで、凹凸パターン全体の位置を知ることができる。
基準マーク40Mは、例えば図3に示すように平面視で十字状に形成される。1つの直線状部分の中心線と、残りの直線状部分の中心線との交点が基準点となる。尚、基準マーク40Mの平面視での形状は、例えば四角形、三角形、円形、楕円形、又は菱形であってもよい。これらの場合、基準マークの中心点が基準点となる。
基準マーク40Mは、凹凸パターンの位置を特定するためのものであって、複数設けられる。例えば、3つの基準マーク40Mが設けられ、1つの基準点を原点、原点と他の1つの基準点とを結ぶ直線をX軸、原点と残りの1つの基準点とを結ぶ直線をY軸とするXY座標系で、凹凸パターンの位置が特定される。X軸とY軸とは直交することが好ましい。また、2つの基準マーク40Mが設けられ、一方の基準点を極とし、2つの基準点を結ぶ直線を始線とする極座標系で、凹凸パターンの位置が特定されてもよい。座標系の種類は、後述のステージ60の種類等に応じて選択される。例えばステージ60がXYステージの場合にはXY座標系が、ステージ60がRθステージの場合には極座標系が用いられる。
凹凸パターンの位置は、例えば凹凸パターンの全体(基準マーク40Mを含む)をカメラで撮像し、撮像した画像データを画像処理することによって計測される。画像処理装置は、例えば画素の輝度が急激に変化する位置を微分フィルタで検出し、画像中における凹凸パターンの位置を検出することにより、基準マーク40Mにより設定される座標系での凹凸パターンの位置を検出する。検出結果は、レーザ光50の照射位置を制御するコントローラ70(図2参照)の記憶部71に記憶される。コントローラ70は、例えばマイクロコンピュータで構成され、CPU、メモリ等を含む。コントローラ70が画像処理装置を兼ねてもよい。
尚、本実施形態のカメラは、凹凸パターンの全体を撮像するが、凹凸パターンを複数の領域に分割して撮像してもよい。この場合、画像処理装置は、複数の画像を画像処理し、各画像の画像処理の結果と、各画像を撮像したときのカメラの位置とに基づいて凹凸パターンの位置座標を検出する。
尚、本実施形態では、凹凸層40における凹凸パターンの位置を計測するが、モールド30における凹凸パターンの位置を計測してもよい。いずれの場合でも、凹凸層40における基準マーク40Mの位置を検出するだけで、凹凸層40における凹凸パターン全体の位置を知ることができる。
転写工程は、モールド30がフレキシブルな板状のものの場合、ガラス基板10を平坦に支持すると共にモールド30の一部を湾曲させながらモールド30を成形材料の層20に押し付ける工程を含んでよい。ガラス基板10が平坦に支持されるので、ガラス基板10に曲げ応力が加わらず、ガラス基板10が破損しにくい。また、モールド30の湾曲部分が移動し、モールド30と成形材料の層20とが徐々に接触すると、モールド30と成形材料の層20との間に気泡が噛み込み難く、転写精度が良い。一方、モールド30がリジッドな板状のものの場合、気泡の噛み込みの抑制のため、減圧雰囲気下で転写工程が行われてもよい。
(分離工程)
分離工程では、モールド30と凹凸層40とを分離する。モールド30と凹凸層40との分離は、成形材料の層20の材料である樹脂の固化後に行われる。
分離工程は、モールド30がフレキシブルな板状のものの場合、ガラス基板10を平坦に支持すると共にモールド30の一部を湾曲させながらモールド30を凹凸層40から分離する工程を含んでよい。ガラス基板10が平坦に支持されるので、ガラス基板10に曲げ応力が加わらず、ガラス基板が破損しにくい。モールド30の湾曲部分が移動すると、モールド30と凹凸層40とが徐々に分離されるので、分離に要する力が軽減され、モールド30や凹凸層40が破損しにくく、凹凸層のパターンの欠け(千切れ)も低減される。
(除去工程)
除去工程は、転写工程でモールド30の所定の凸部31とガラス基板10との間に残る残膜41にレーザ光50を照射する。残膜41は、レーザ光50を吸収し吸収熱によって気化し、除去される。レーザ光50の幅は、凹凸層40の凹部の幅よりも狭い。
凹凸層40の凹部の側壁はガラス基板10の表面に対して垂直であり、ガラス基板10の表面に対して垂直にレーザ光50が入射される。レーザ光50の集光角が小さくなるほど、残膜41を除去して形成される開口部43の側壁がガラス基板10の表面に対して急峻になるので好ましい。
図2は、本発明の一実施形態による除去工程の説明図である。除去工程は、凹凸層40付きのガラス基板10をステージ60に載せる工程(図2(a))、カメラ80で凹凸層40の基準マーク40M(図3参照)を撮像しその位置を検知する工程(図2(b))、及び基準マーク40Mの位置を基準位置としてレーザ光50の照射位置を制御する工程(図2(c))を有する。
レーザ光50の光源51としては、例えばCOレーザ(波長10600nm)、YAGレーザ(波長1064nm)、半導体レーザ(波長808nm、波長940nm)、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、Fレーザ(波長157nm)、Krレーザ(波長146nm)、Arレーザ(波長126nm)が挙げられる。これらの中でも、高出力で安価な半導体レーザが好ましい。
レーザ光50の光路の途中には、光源51から出射したレーザ光50を凹凸層40に照射する光学系52が設けられる。光学系52は、光源51から出射したレーザ光50を凹凸層40に向けて集光する集光レンズなどで構成される。
ステージ60は、例えばXYステージであって、光源51及び光学系52に対して移動可能となっている。ステージ60と、光源51及び光学系52とが相対的に移動することで、レーザ光50の照射位置が移動する。尚、本実施形態では、ステージ60側が移動するが、光源51及び光学系52側が移動してもよいし、両側が移動してもよい。
コントローラ70は、図2(b)に示すようにカメラ80で凹凸層40を撮像し、撮像した画像データを画像処理することによって凹凸層40における基準マーク40M(図3参照)のステージ60に対する位置を検知する。そうして、コントローラ70は、予め記憶部71に記憶されているデータを参照し、凹凸層40の凹凸パターンのステージ60に対する位置を検知する。
コントローラ70は、凹凸層40の基準マーク40M(図3参照)の位置を基準位置として、図2(c)に示すように凹凸層40におけるレーザ光50の照射位置を制御する。コントローラ70による制御下で、レーザ光50の光源51や光学系52とステージ60とが相対的に移動され、レーザ光50が残膜41に選択的に照射される。
レーザ光50は、残膜41を選択的に除去するので、凹凸パターンの平面視での輪郭形状を保ちつつ、残膜41を除去できる。
基準マーク40Mと、残膜41とは同じ凹凸層40に形成されており、残膜41を除去するレーザ光50の照射位置は基準マーク40Mの位置を基準位置として制御される。よって、残膜41が精度良く除去できる。また、ステージ60とガラス基板10との精密な位置合わせ、及び転写工程におけるガラス基板10とモールド30との精密な位置合わせが不要である。
(複合部材)
複合部材2は、ガラス基板10、及びガラス基板10上に形成されるパターン層42を備える。パターン層42は、凹凸層40の残膜41をレーザ光50で除去してなる開口部43を有する。開口部43において、ガラス基板10が露出している。成形材料としての樹脂とガラスとの材質の違いによって凹凸パターンが平面視で明確に認識できる。視認性が高くなるように、樹脂が遮光性を有し、ガラスが透光性を有することが好ましい。また、樹脂の色と、ガラスの色とが互いに異なることが好ましい。例えば、樹脂の色が黒色、ガラスの色が無色透明であってよい。
(複合部材の用途)
図3は、本発明の一実施形態による複合部材の平面図である。この複合部材2は、免疫分析チップに用いられるものである。パターン層42の開口部43は、反応槽部44、反応槽部44から延びる流出部45、及び反応槽部44から延びる流入部46〜49を備える。流出部45の先端部には廃液部45aが設けられる。流入部46〜49の先端部には供給部46a〜49aが設けられる。
反応槽部44には、反応固相としての直径1mm以下の固体微粒子Pが設置される。固体微粒子Pは、免疫抗原−抗体反応のための反応固相としての役割を果たす。
流出部45は、固体微粒子Pの径よりも小さい縦断面積を有する。固体微粒子Pは反応槽部44から流出部45に流出せず、固体微粒子Pとの未反応物だけが反応槽部44から流出部45に流出して分離され、廃液部45aに導かれる。
流入部46〜49は、供給部46a〜49aに供給される抗原、標識抗体(第2抗体)、第1抗体、洗浄液を別々に反応槽部44へ導く。
この複合部材2を用いた免疫分析では、先ず、流路部46、47より導入した抗原および標識抗体を固体微粒子Pと反応させる。次に未反応物を流出部45で分離し、例えば光熱変換分析により分析する。光熱変換分析では、例えば熱レンズ顕微鏡を用いる。これにより、微量の試料で、簡便に且つ短時間で免疫分析ができる。
本実施形態では、開口部43においてガラス基板10が露出しており、成形材料としての樹脂とガラスとの材質の違いによって流路パターンが平面視で明確に認識できる。また、流路パターンの側壁がガラス基板10の表面に対して急峻であり、流路の幅が深さ方向に均一である。一般的に、流路の幅が狭くなるほど、流動抵抗が増え、流速が遅くなる。本実施形態では、流路の幅が深さ方向に均一であるので、乱流が発生しにくい。
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に制限されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。
例えば、上記実施形態の複合部材2は、免疫分析チップに適用されるが、その他のマイクロ流路デバイスに適用されてもよい。その他のマイクロ流路デバイスとしては、DNA分析チップ、DNA分離チップ、マイクロリアクター等が挙げられる。
また、上記実施形態では、転写工程で成形材料を固化した後、分離工程を行うが、分離工程後に成形材料を固化してもよい。
また、上記実施形態では、凹凸層40の残膜41を選択的に除去してパターン層42を形成するので、図1に示すように、パターン層42の開口部43の深さD1は、凹凸層40における凸部と凹部との段差D2(即ち、モールド30における凸部と凹部との段差D3)よりも大きくなる。パターン層42の開口部43の深さD1は、モールド30における凸部と凹部との段差D3(D3=D2)と、残膜41の厚さD4との和(D3+D4)と等しい。残膜41の厚さD4は、成形材料の塗布時の膜厚、転写時の成形材料の温度、転写時の成形材料への圧力等の製造条件で決まる。そこで、パターン層42の開口部43の深さD1が目標値になるように、モールド30の形状及び寸法、製造条件を決める。例えば、深さの異なる複数の溝を有する試験モールドを準備し、該試験モールドを用いてガラス基板10上に凹凸層を形成する試験を行う。この試験を、製造条件を変えて繰り返し行う。そうして、パターン層42の開口部43の深さD1が目標値になるように、モールド30の形状及び寸法、製造条件を決める。このとき、残膜41を除去する手間を低減するため、できるだけ残膜41の厚さD4が薄くなるように、モールド30の形状及び寸法、製造条件を決める。
また、転写工程において、モールド30の凸部31とガラス基板10との間の距離L1(図1(b)参照)又はモールド30の凹部とガラス基板10との間の距離L2を検出し、検出した距離L1、L2が目標値になるように、成形材料の層20を挟む圧力、及び成形材料の層20の温度の少なくとも一方を調整してもよい。複合部材2を繰り返し製造するとき、残膜41の厚さD4が毎回同じになり、パターン層42の開口部43の深さD1が毎回同じになる。例えば、距離L1、L2が目標値よりも大きくなるように、成形材料の層20を挟む圧力の目標値、及び成形材料の層20の温度の目標値を設定しておく。成形工程において、距離L1、L2を監視しながら、距離L1、L2の検出値が目標値になるように、成形材料の層20を挟む圧力を目標値よりも高圧にすること、及び成形材料の層20の温度を目標値よりも高温にすることの少なくとも一方を実施する。距離L1、L2は、例えば干渉膜厚計等で測定可能である。
2 複合部材
10 ガラス基板
20 成形材料の層
30 モールド
31 凸部
30M 基準マーク
40 凹凸層
40M 基準マーク
50 レーザ光
51 光源
52 光学系
60 ステージ
70 コントローラ
71 記憶部
80 カメラ

Claims (5)

  1. ガラス基板とモールドとの間に成形材料の層を挟み、前記モールドの凹凸パターンが転写した凹凸層を前記ガラス基板上に形成する転写工程と、
    前記ガラス基板と前記モールドとの間に前記成形材料の層を挟むときに前記モールドの所定の凸部と前記ガラス基板との間に残る残膜にレーザ光を照射し、前記残膜を除去する除去工程とを有する、複合部材の製造方法。
  2. 前記モールドの凹凸パターンは、前記モールドの基準位置を示す基準マークを含み、
    前記除去工程では、前記転写工程で前記凹凸層に転写された基準マークを基準位置として、前記レーザ光の照射位置を制御する、請求項1に記載の複合部材の製造方法。
  3. 前記転写工程において、前記モールドの凸部と前記ガラス基板との間の距離、又は前記モールドの凹部と前記ガラス基板との間の距離を検出し、検出した距離が目標値となるように前記成形材料の層を挟む圧力、及び前記成形材料の層の温度のうち少なくとも一方を調整する、請求項1又は2に記載の複合部材の製造方法。
  4. 請求項1〜2の複合部材の製造方法で用いられるモールドの形状及び寸法を設計するモールド設計方法であって、
    前記凹凸層の前記残膜を除去してなるパターン層の開口部の深さが目標値になるように、モールドの形状及び寸法を設計するモールド設計方法。
  5. 請求項1〜2の複合部材の製造方法の製造条件を決める製造条件決定方法であって、
    前記凹凸層の前記残膜を除去してなるパターン層の開口部の深さが目標値になるように、製造条件を決める製造条件決定方法。
JP2012137055A 2012-06-18 2012-06-18 複合部材の製造方法、モールド設計方法、及び製造条件決定方法 Pending JP2014003138A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137055A JP2014003138A (ja) 2012-06-18 2012-06-18 複合部材の製造方法、モールド設計方法、及び製造条件決定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137055A JP2014003138A (ja) 2012-06-18 2012-06-18 複合部材の製造方法、モールド設計方法、及び製造条件決定方法

Publications (1)

Publication Number Publication Date
JP2014003138A true JP2014003138A (ja) 2014-01-09

Family

ID=50036046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137055A Pending JP2014003138A (ja) 2012-06-18 2012-06-18 複合部材の製造方法、モールド設計方法、及び製造条件決定方法

Country Status (1)

Country Link
JP (1) JP2014003138A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506973B2 (en) 2019-03-14 2022-11-22 Canon Kabushiki Kaisha Imprint apparatus, imprinting method, and article manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506973B2 (en) 2019-03-14 2022-11-22 Canon Kabushiki Kaisha Imprint apparatus, imprinting method, and article manufacturing method

Similar Documents

Publication Publication Date Title
CN103048879B (zh) 压印设备和使用该压印设备的物品制造方法
US20180050513A1 (en) Anti-Fogging and Anti-Fouling Laminate and Method for Producing Same, Article and Method for Producing Same, and Anti-Fouling Method
KR101020634B1 (ko) 기능성 나노패턴을 갖는 렌즈의 제조방법
JP5942551B2 (ja) ナノインプリント用マスターテンプレート及びレプリカテンプレートの製造方法
KR20210109452A (ko) 균일한 광 강도를 위한 노광 장치 및 이를 이용하는 방법
US8287792B2 (en) Methods of forming fine patterns using a nanoimprint lithography
WO2015012161A1 (ja) 第1モールドの凹凸パターンを転写した第2モールド、第2モールドの製造方法、第2モールドを用いた物品の製造方法、光学パネルの製造方法、および光学素子の製造方法
KR100922574B1 (ko) 박판형 기판 고정 장치 및 이를 이용한 박판형 기판의 나노패턴 제조 방법
JP6393479B2 (ja) 親水性積層体、及びその製造方法、並びに物品、及びその製造方法
JP6281592B2 (ja) レプリカテンプレートの製造方法
JP2014003138A (ja) 複合部材の製造方法、モールド設計方法、及び製造条件決定方法
EP3462082B1 (en) Optical body and light emitting device
JP5732724B2 (ja) ナノインプリント方法
CN109070441B (zh) 复制原盘的制造方法和被形成体的制造方法
TW201617195A (zh) 用於生產光學玻璃元件之方法
KR102289836B1 (ko) 광학 부품의 만곡 표면 상에 (서브)마이크로 구조를 생성하기 위한 방법 및 광학 부품
JP6995530B2 (ja) 型を用いて基板上の組成物を成形する成形装置及び物品の製造方法
KR101422112B1 (ko) 나노임프린트 리소그래피 방법
JP6996333B2 (ja) ブランクス基材、インプリントモールド、インプリントモールドの製造方法及びインプリント方法
JP2017072791A (ja) ナノ構造付き成形体
KR20140097639A (ko) 유리 표면 성형 장치 및 방법
KR20150054725A (ko) 유리 표면 성형 방법
TW202337676A (zh) 樹脂積層光學體的製造方法
WO2014057941A1 (ja) ロールの製造方法、およびパターン形成方法
TWI843727B (zh) 光學單元、光照射裝置、影像顯示裝置