JP2013541148A - アノードの酸化防止方法及び装置 - Google Patents

アノードの酸化防止方法及び装置 Download PDF

Info

Publication number
JP2013541148A
JP2013541148A JP2013528732A JP2013528732A JP2013541148A JP 2013541148 A JP2013541148 A JP 2013541148A JP 2013528732 A JP2013528732 A JP 2013528732A JP 2013528732 A JP2013528732 A JP 2013528732A JP 2013541148 A JP2013541148 A JP 2013541148A
Authority
JP
Japan
Prior art keywords
fuel cell
coolant
cooling
cell system
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013528732A
Other languages
English (en)
Inventor
アストロム,キム
ハカラ,トゥーマス
ホッティネン,テロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Convion Oy
Original Assignee
Convion Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Convion Oy filed Critical Convion Oy
Publication of JP2013541148A publication Critical patent/JP2013541148A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04059Evaporative processes for the cooling of a fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本発明は、システムの停止状態におけるパージガスの量を実質的に減らことを目的とする高温燃料電池のための冷却装置に関し、電池燃料システムにおける各燃料セルは、アノード側(100)、カソード側(102)、前記アノード側と前記カソード側の間の電解質(104)を有し、前記燃料電池システムは、燃料セルスタック(積層体)(103)の状態の燃料セルを有している。前記冷却装置は、システムの停止時において高温燃料電池システムにおける冷却プロセスに使用される冷却材を供給することができる冷却材源(120)と、前記冷却材源に接続され、燃料セルのスタックの(実質的に)熱領域に設けられ、前記燃料セルスタックから、少なくとも、輻射により熱を受けとり、受け取った熱を前記冷却材に伝達するように設けられた冷却構造(122)と、前記冷却材を前記冷却材源から前記冷却構造に供給する手段(124)と、使用された冷却材を前記冷却構造から排出する手段(126)と、前記システムの停止が開始したとき、前記冷却構造における冷却材の流れをトリガーするための力を始動する手段(136)を備える。

Description

世の中の大部分のエネルギーは石油、石炭、天然ガス又は原子力によって造り出される。これらの全ての製造方法は、例えば、有用性と環境への適合性に関する限り、夫々特別の問題を有している。環境に関する限り、特に、石油と石炭はそれらが燃焼するとき公害をもたらす。原子力における問題は、少なくとも、使用済みの燃料の貯蔵である。
特に、環境問題のため、より環境に優しく、また、例えば、上述のエネルギー源よりより効率的のよい新しいエネルギー源が開発されてきている。例えば、バイオマスのような燃料のエネルギーが、環境に優しいプロセスで化学反応により直接に電気に変換される燃料電池(燃料セル)は将来のエネルギー転換装置を約束するものである。
図1に示されるような燃料電池は、アノード側100及びカソード側102と、それらの間の電解物質104を有している。固体酸化物型燃料電池(SOFCs)においては、酸素106がカソード側102に供給され、それがカソードから電子を受け取ってマイナス酸素イオンとなって減少する。マイナス酸素イオンは電解物質104を通り、アノード側100に移動し、そこで燃料108と反応し、水と典型的には二酸化炭素を生成する。アノード100とカソード102の間には、負荷110を有する燃料電池用の外部電気回路111が存在する。
図2に、高温燃料電池装置の例としてのSOFC装置が示される。SOFC装置は例えば、天然ガス、バイオガス、メタノール又は他の炭化水素を含有する化合物を燃料として使用することができる。図2のSOFC装置は一つ以上、典型的には複数の燃料セルを積層状態103(SOFCスタック)として有している。各燃料セルは、図1に示したように、アノード100とカソード102の構造を有する。使用される燃料の部分はフィードバック装置109内を、各アノードを通して再循環される。図2のSOFC装置は、また、燃料熱交換器105とリフォーマ(改質装置)107を備えている。典型的には、燃料セルのプロセスにおける異なる位置の熱状態を制御するため、複数の熱交換器が使用される。リフォーマ107は、例えば、天然ガスの燃料を燃料セルに適した組成、例えば、水素及びメタン、二酸化炭素、一酸化炭素及び不活性ガスを含む組成物に変換する。しかしながら、いずれにしても、各SOFC装置においては、リフォーマを必ずしも持つ必要はない。
例えば、不活性ガスは燃料電池技術において使用されるパージガス又はパージガスの一部となるものである。例えば、窒素は燃料電池技術において使用される典型的な不活性ガスである。パージガスは必ずしも元素状態で存在する必要はなく、化合物であってもよい。
測定手段115(燃料流量計、電流計、温度計のような)を使用することにより、SOFC装置を運転するために必要な測定が行われる。
アノード100で使用されるガスの一部は、フィードバック装置109におけるアノードを通して再循環され、ガスの他の部分はアノード100から排出114される。
固体酸化物型燃料電池装置(SOFC)は、燃料を酸化することから電気を直接に造り出す電気化学変換装置である。SOFC装置の利点には、高効率、長期の安定性、低い放熱とコストが含まれる。主たる欠点は、高い運転温度であり、これは、始動時間を長くすることと、機械的及び化学的適合性の問題があることである。
固体酸化物型燃料電池(SOFC装置)のアノード電極は、典型的には、多量のニッケルを含み、このニッケルは、もし、空気が減少していないと、酸化ニッケルを形成するという影響を受け易い。もし、酸化ニッケルの生成が深刻なものとなると、電極の形態が回復不能に変化し、電気化学反応に重大な損害を与えるか、或いは、セルを破壊することとなる。したがって、SOFCシステムは、始動時及び遮断時に燃料電池のアノードが酸化するのを防ぐため、パージガス、即ち、(窒素のような不活性ガスで薄められた水素のような)還元剤を含む安全ガス、を必要とする。実際のシステムにおいては、パージガスの量は、例えば、水素を含む加圧ガスのように、かなりの量となると高価であり、また、そのためのスペースを取るなどの問題を有することから、最小に抑えなければならない。
先行技術の出願によれば、始動時にパージガスを低減することと加熱することが同時に要求され、また、停止時にパージガスを低減することと、システムの冷却が同時に要求されるため、正常の始動時又は停止時におけるパージガスの量は、アノードの再循環、即ち、未使用のパージガスをループに戻すことにより低減される。しかしながら、例えば、ガスアラーム又は全停により起こされる緊急の停止時(ESD)において、必要とされるパージガスを増加するのに利用できる動作可能な再循環がなされない。更に、エアブロワーが停止するため、アノードにおけるエアフローはESDの間はシステムを冷却せず、したがって、ニッケルの酸化が起きない温度にまでシステムを冷却するための時間は実際の停止時に比べ、3倍にもなるため、必要とされるパージガスの量は更に増加する。
上述のように、現在のSOFCスタック(積層体)は、緊急停止時のよう異常状態においてアノードの酸化から保護するため、パージガスを減少する必要がある。しかしながら、パージガスの量は実際の応用分野、特に大きなユニットサイズにおいては、なお重要なものとなっている。積層体は、典型的には300−400℃に存在する臨界温度以上において弊害をもたらすニッケルの酸化に対して損傷を受けやすい。この温度以下においては、ニッケルの酸化反応は遅いため、アノードにおいてガス体を減少させることは、もはや必要がない。受動的な緊急停止時(ESD)において、システムを通して流れる空気流が存在せず、構成要素の高い熱容量とシステムの良好な断熱のため、ユニットの冷却は極めて遅い(10時間又はそれ以上)。たとえ、実際の空冷が使用できても、大部分の熱をシステムに戻す復熱装置の高い効率のため、冷却は遅い。
本発明の目的は、停止時におけるアノードの酸化のリスクを著しく減少する燃料電池を達成することである。
上記課題は、システムの停止状態におけるパージガスの量を実質的に減らすため、高温燃料電池システムのための冷却装置によって達成され、電池燃料システムにおける各燃料セルは、アノード側、カソード側、前記アノード側と前記カソード側の間の電解質を有し、前記燃料電池システムは、燃料セルスタック(積層体)の状態の燃料セルを有している。前記冷却装置は、システムの停止時において高温燃料電池システムにおける冷却プロセスに使用される冷却材を供給することができる冷却材源と、前記冷却材源に接続され、燃料セルのスタックの熱領域に設けられ、前記燃料セルスタックから、少なくとも、輻射により熱を受けとり、受け取った熱を前記冷却材に伝達するように設けられた冷却構造と、前記冷却材を前記冷却材源から前記冷却構造に供給する手段と、使用された冷却材を前記冷却構造から排出する手段と、前記システムの停止が開始したとき、前記冷却構造における冷却材の流れを始動(トリガー)するための始動力を利用する手段を備える。
本発明は、燃料セルが燃料セルスタックの状態で配置されている高温燃料電池システムのシステム停止時におけるパージガスを実質的に減少するための方法に向けられている。この方法においては、高温燃料電池システムの停止時の冷却プロセスにおいて使用される冷却材を、燃料セルスタックの実質的な熱領域に設けられ、燃料セルスタックから少なくとも輻射により熱を受け、受け取った熱を前記冷却材に伝達するように設けられた冷却構造に供給し、前記冷却材のフローは、前記冷却構造に供給され、前記システムの停止が開始したとき、前記冷却構造においてトリガーされ、使用された冷却材が前記冷却構造から排出される。
本発明は、冷却材の使用に基づいており、この冷却材は、実質的に高い熱容量特性を持ち、前記冷却材を流すための装置は実質的に高温の燃料セルスタックの近くに配置される。このようにして、特にESD(緊急停止)時おける高温燃料セルシステムの冷却効率を高め、高温燃料電池システムにおける冷却プロセスにおいて必要とされるパージガスの量は極めて少なくなる。
本発明の利点は、システムの停止時におけるアノードの酸化のリスクが極めて低くなり、燃料電池システムの寿命が費用対効果を高めつつ増加する。また、より早い冷却プロセスのため、実質的なエネルギー生成時間を節約できる。
単一の燃料セル構造を示す図である。 SOFCの例を示す図である。 本発明による高温燃料電池システムのための冷却装置を示す図である。 本発明による好ましい実施例を示す図である。
固体酸化型燃料電池(SOFCs)は多くの形態を持つ。扁平型形態(図1)は燃料電池において最も多く採用されているタイプのサンドイッチ形態のタイプであり、ここでは、電解質104が電極、アノード100とカソード102の間に配置される。SOFCsは、また、管状形態とすることもでき、ここでは、例えば、空気又は燃料が管の内側を通り、他のガスが管の外側に沿って通るようにされる。この装置は、また、燃料として使用されるガスを管の内側を通し、空気を管の外側に沿って通るようにすることもできる。SOFCsの他の形態として、改良扁平型燃料電池(MPC又はMPSOFC)があり、これは、従来の扁平型電池の形態を波形構造で置き替えたものである。この設計では、扁平型と管状型の利点を兼ね備えることが期待される。
SOFCsに使用されるセラミックは高温になるまでイオン的に活性化されず、このため、スタックは600℃〜1000℃の範囲の温度に加熱される必要がある。酸素イオンとなることによる酸素106の減少は(図1)、カソード102において生じる。これらのイオンは、次に、固体酸化物電解質104を通り、アノード100に移動し、そこで、電気化学的に燃料108として使用されるガスを酸化する。この反応では、水と二酸化炭素が電子2個と共に副産物として出される。これらの電子は外部回路を流れと使用される。このサイクルは、これらの電子がカソード材102に再び入って繰り返される。
大きな固体酸化型燃料電池においては、代表的な燃料は、天然ガス(主としてメタン)、種々のバイオガス(主として、窒素及び/又は二酸化炭素で希釈されたメタン)、及び他のアルコール燃料を含む高炭化水素である。メタン及び高炭化水素は、燃料セルスタック103に入る前にリフォーマ107(図2)において、或いは、スタック103内(部分的に)でリフォーム(改質)される必要がある。改質反応は、高炭化水素によって生じる炭素の生成(コーキング)を抑制するため所定量の水、追加的水が必要となる。この水は、アノードガス排気フローを循環することにより内部的に供給される、及び/又は、補助的な水の供給(例えば、直接の新鮮な水の供給又は排ガス凝集水の循環)によって供給することができる。アノード循環装置により、未使用の燃料の一部及びアノードガス内の希釈液はプロセスに戻されるが、その場合は、補助的な水供給装置においてプロセスへの添加材は水だけとなる。固体二酸化物型燃料電池のアノード電極は、典型的には形態が電池性能に影響を与える多孔質のニッケルマトリックスのセラミック−金属構造から成るため、ニッケルの酸化が燃料電池の性能を不可逆的に変える可能性がある。このことが、SOFCシステムが、燃料電池システムにおけるアノード電極が酸化するのを防ぐために、窒素のような不活性ガスで希釈された水素のような還元剤を含むパージガスを必要とする理由である。実際の燃料電池システムにおいて、過剰なパージガスを貯蔵しておくことは不経済である、即ち、安全ガスの量は最小限にしておく必要がある。また、パージガスの使用に必要な加圧装置は、燃料電池システムの物理的サイズに大きな影響を与える。
本発明による実施例においてパージガスの使用を最小限に抑えるため、受動的吸収システムの使用によりスタック103とその周囲から熱を急速に吸収するようにしている。これにより、スタックの温度レベルは、パージガスを必要としない、少なくとも多くの量を必要としないようなレベルにすることができる。これは、例えば、水、又は他の高い熱容量及び/又は高い相変化潜熱を持つ媒体を、ESD(緊急停止)の後のシステムの高温区画に供給し、これにより水を加熱し、蒸発させることにより達成される。水は、例えば、専用の構造体に供給しておき、そこで、高熱の区画の上のタンクから重力を利用して予め設定した制限装置を通して流すようにすることができる。簡単な冷却構造体を、例えば、冷却材を高温の燃料セルスタック区画の上のタンクから、その高温区画の近傍を下降させるようにしたパイプ構造体によって設けることができ、そのパイプ構造体は、また、燃料セルスタック区画の下方へ重力を利用して使用した冷却材を排出することができる。高温区画の側のパイプ構造体における効果的な蒸気発生は冷却剤の流れの速度を所定の速度に制限する。
高温の燃料セルスタック区画の高い温度は、特に、冷却プロセスの初期の高温で、輻射による熱伝達で水を加熱し、蒸発させ、従って、高温構造体からの熱除去が効果的に行われる。システム内で高い熱勾配が生じないようにして水の流量が制限される。水が供給される構造においては、蒸発水による圧力の危険な蓄積を避けるため、圧力開放弁(又は同様な手段)を設けることができる。開放弁からの抽気は、例えば、システムの排気管に安全に導かれ、そこで冷却後に凝縮されるため、ESD後に排水される。
図3は、本発明による高温燃料電池システムの簡略された冷却装置において、本発明において使用される主構成部分を示す。冷却装置は、高温燃料電池システムのシステム停止時における冷却プロセスに使用されるために冷却剤を供給するための冷却材源120を備える。水又は冷却目的に適した他の液体は冷却材として使用され、冷却材源120は、例えば、水パイプ網からの水流入口又は水(又は他の冷却材)を保持するタンク、又は冷却装置に冷却材を供給するためのそもそもの源である。冷却構造122は、冷却材源120に接続され、燃料セルスタックから少なくとも輻射により熱を受け取り、受け取った熱を冷却材に伝達するため、燃料セルスタック103の実質的な熱領域に設けられる。冷却材源120と冷却構造122との間の接続部に、冷却材源120から冷却構造122に冷却材を供給するための手段124が設けられる。当該手段124は、例えば、バルブ装置によって達成される。冷却装置は、また、使用した冷却材を冷却構造122から排出する手段126を備えている。手段126の最も簡単な例は、例えば、パイプであり、冷却構造122から使用された冷却材の流れを排出する。
燃料電池システムの遮断が始まると、冷却装置は、冷却構造122における冷却材の流れをトリガー(始動)するためのトリガー力(始動力)を利用するため、冷却構造への冷却材の流れを、手段136によって制限された流量で手段136により遮断トリガーする。手段136は、例えば、ばねバルブ又は、例えば、トリガーにおける受動的自己作動型(パッシブセルフアクチュエーション型)動作を実行する加圧装置を使用することにより達成される。冷却構造122の作動は、スタック103のアノード側における燃料熱交換器105の作動と一体化される。図3は、また、例えば、窒素のようなガスを遮断時にカソード側に流す可能性があることを示し、従って、図3は、また、ガス熱交換器131及びスタック103のカソード側における冷却プロセスで使用されるガスの排気口を示している。
図4には、高温燃料電池システムにおける遮断時にパージガスの量を実質的に減らすための本発明の好ましい実施例が示されている。これは、冷却材として好ましくは水を収容する冷却材源120を備えている冷却装置によって達成される。この好ましい実施例においては、冷却材源は燃料セルスタック103の上方に位置し、重力を利用して燃料セルスタックの実質的に近傍にある冷却構造122内を所定の冷却材流量で流下するように流量を制限するための制限機能部136を使用して重力が利用される。このように、制限機能部は、また、トリガー力を利用するための手段136の一例でもある。多くの場合では、遮断時はESD(緊急遮断)である。冷却構造122は冷却材源120に接続され、燃料セルスタックから少なくとも輻射により熱を受け取り、受け取った熱を冷却材、即ち、冷却構造122内の水、に伝達するため燃料セルスタック103の実質的に熱領域に設けられる。スタックから水へのこの熱伝達において、即ち、燃料セルスタック冷却プロセスにおいては、水から蒸気へお相転移が利用されている。
図4の好ましい冷却装置は、更に、冷却材を冷却材源120から冷却構造122に供給する手段124を備えている。当該手段124としていくつかの代替手段が存在する。例えば、手段124は分離したタンク装置124を使用して構成することができる。このタンク装置の作動では、冷却構造122に冷却材源120から水を供給するために加圧装置を使用することができる。この手段124は、また、例えば、冷却材を冷却構造122に供給するために加圧動作を行う膜型拡大ベッセル124とすることができる。
ESD(緊急遮断)が始まったとき、手段124によって冷却構造122に供給される冷却材の流れは、また、トリガー力を使用するための手段136によって冷却構造に所定の流量でトリガーされる。手段136は受動的自己作動型の作動を行うことを可能とすることができる。冷却構造内の冷却材の流れをトリガーするトリガー力を利用するための手段136は、また、当該トリガーにより達成される受動的作動が冷却構造内に存在する蓄積圧力を利用して実行されるように構成することができる。当該手段136は、また、冷却材の流れが、手段136により冷却構造122に所定の流量でトリガーされるようにして、必要とされる冷却負荷と燃料セルスタック103への許容できる冷却能力に従って冷却材の流量を変えることができる。
本発明の好ましい実施例においては、冷却構造122の熱輻射吸収効率は、冷却構造の熱輻射吸収領域を最大にするために、冷却構造における冷却材のための板状構造部材を使用して、高めることができる。これらの板状構造部材は、例えば、特に燃料セルスタック103から熱輻射を吸収し、吸収した熱を冷却材、即ち、冷却構造122内に流れる水に伝達するようにされた冷却構造122における冷却ユニットであるところの輻射熱交換器132とすることができる。
更に、冷却装置の冷却効率を高めるため、冷却構造122は、燃料電池システムのアノード側100及びカソード側102の少なくとも一つを冷却するため、燃料セルスタック103から熱を吸収する鞘構造134を備える。ここで吸収された熱は、更に、鞘構造134を通して冷却材に伝達される。図4には、燃料セルスタック103のカソード側100にのみ鞘構造134が示されているが、上述のように、鞘構造はスタック103のアノード側102において燃料セルスタック103の冷却に使用することができる。冷却構造122の作動は、好ましくは、しかし必ずしもではないが、スタック103のアノード側における熱交換器105の作動と連動するようにする。
好ましい冷却装置(図4)は、また、燃料電池システムの他の部分の作動に使用された冷却材を利用するために、使用された冷却材を反応物排出配管装置に注入する手段126を備えることができる。冷却構造122と鞘構造134や熱交換器132のような関連部分において、1000℃或いはそれ以上の高温に耐えるのに適した金属又は他の材料が使用される。
本発明は、明細書と添付図面を参照にして説明したが、本発明は決してこれらに限定されるものでなく、本発明は、請求項によって許容される範囲内において種々の変形がなされるべきものである。
【書類名】明細書
【発明の名称】 アノードの酸化防止方法及び装置
【技術分野】
【0001】
世の中の大部分のエネルギーは石油、石炭、天然ガス又は原子力によって造り出される。これらの全ての製造方法は、例えば、有用性と環境への適合性に関する限り、夫々特別の問題を有している。環境に関する限り、特に、石油と石炭はそれらが燃焼するとき公害をもたらす。原子力における問題は、少なくとも、使用済みの燃料の貯蔵である。
【0002】
特に、環境問題のため、より環境に優しく、また、例えば、上述のエネルギー源よりより効率的のよい新しいエネルギー源が開発されてきている。例えば、バイオマスのような燃料のエネルギーが、環境に優しいプロセスで化学反応により直接に電気に変換される燃料電池(燃料セル)は将来のエネルギー転換装置を約束するものである。
【背景技術】
【0003】
図1に示されるような燃料電池は、アノード側100及びカソード側102と、それらの間の電解物質104を有している。固体酸化物型燃料電池(SOFCs)においては、酸素106がカソード側102に供給され、それがカソードから電子を受け取ってマイナス酸素イオンとなって減少する。マイナス酸素イオンは電解物質104を通り、アノード側100に移動し、そこで燃料108と反応し、水と典型的には二酸化炭素を生成する。アノード100とカソード102の間には、負荷110を有する燃料電池用の外部電気回路111が存在する。
【0004】
図2に、高温燃料電池装置の例としてのSOFC装置が示される。SOFC装置は例えば、天然ガス、バイオガス、メタノール又は他の炭化水素を含有する化合物を燃料として使用することができる。図2のSOFC装置は一つ以上、典型的には複数の燃料セルを積層状態103(SOFCスタック)として有している。各燃料セルは、図1に示したように、アノード100とカソード102の構造を有する。使用される燃料の部分はフィードバック装置109内を、各アノードを通して再循環される。図2のSOFC装置は、また、燃料熱交換器105とリフォーマ(改質装置)107を備えている。典型的には、燃料セルのプロセスにおける異なる位置の熱状態を制御するため、複数の熱交換器が使用される。リフォーマ107は、例えば、天然ガスの燃料を燃料セルに適した組成、例えば、水素及びメタン、二酸化炭素、一酸化炭素及び不活性ガスを含む組成物に変換する。しかしながら、いずれにしても、各SOFC装置においては、リフォーマを必ずしも持つ必要はない。
【0005】
例えば、不活性ガスは燃料電池技術において使用されるパージガス又はパージガスの一部となるものである。例えば、窒素は燃料電池技術において使用される典型的な不活性ガスである。パージガスは必ずしも元素状態で存在する必要はなく、化合物であってもよい。
【0006】
測定手段115(燃料流量計、電流計、温度計のような)を使用することにより、SOFC装置を運転するために必要な測定が行われる。
アノード100で使用されるガスの一部は、フィードバック装置109におけるアノードを通して再循環され、ガスの他の部分はアノード100から排出114される。
【0007】
固体酸化物型燃料電池装置(SOFC)は、燃料を酸化することから電気を直接に造り出す電気化学変換装置である。SOFC装置の利点には、高効率、長期の安定性、低い放熱とコストが含まれる。主たる欠点は、高い運転温度であり、これは、始動時間を長くすることと、機械的及び化学的適合性の問題があることである。
【0008】
固体酸化物型燃料電池(SOFC装置)のアノード電極は、典型的には、多量のニッケルを含み、このニッケルは、もし、空気が減少していないと、酸化ニッケルを形成するという影響を受け易い。もし、酸化ニッケルの生成が深刻なものとなると、電極の形態が回復不能に変化し、電気化学反応に重大な損害を与えるか、或いは、セルを破壊することとなる。したがって、SOFCシステムは、始動時及び遮断時に燃料電池のアノードが酸化するのを防ぐため、パージガス、即ち、(窒素のような不活性ガスで薄められた水素のような)還元剤を含む安全ガス、を必要とする。実際のシステムにおいては、パージガスの量は、例えば、水素を含む加圧ガスのように、かなりの量となると高価であり、また、そのためのスペースを取るなどの問題を有することから、最小に抑えなければならない。
【0009】
先行技術の出願によれば、始動時にパージガスを低減することと加熱することが同時に要求され、また、停止時にパージガスを低減することと、システムの冷却が同時に要求されるため、正常の始動時又は停止時におけるパージガスの量は、アノードの再循環、即ち、未使用のパージガスをループに戻すことにより低減される。しかしながら、例えば、ガスアラーム又は全停により起こされる緊急の停止時(ESD)において、必要とされるパージガスを増加するのに利用できる動作可能な再循環がなされない。更に、エアブロワーが停止するため、アノードにおけるエアフローはESDの間はシステムを冷却せず、したがって、ニッケルの酸化が起きない温度にまでシステムを冷却するための時間は実際の停止時に比べ、3倍にもなるため、必要とされるパージガスの量は更に増加する。
【0010】
上述のように、現在のSOFCスタック(積層体)は、緊急停止時のよう異常状態においてアノードの酸化から保護するため、パージガスを減少する必要がある。しかしながら、パージガスの量は実際の応用分野、特に大きなユニットサイズにおいては、なお重要なものとなっている。積層体は、典型的には300−400℃に存在する臨界温度以上において弊害をもたらすニッケルの酸化に対して損傷を受けやすい。この温度以下においては、ニッケルの酸化反応は遅いため、アノードにおいてガス体を減少させることは、もはや必要がない。受動的な緊急停止時(ESD)において、システムを通して流れる空気流が存在せず、構成要素の高い熱容量とシステムの良好な断熱のため、ユニットの冷却は極めて遅い(10時間又はそれ以上)。たとえ、実際の空冷が使用できても、大部分の熱をシステムに戻す復熱装置の高い効率のため、冷却は遅い。
【0011】
例えば、日本特許出願公開2009−170307Aでは、能動的作動の実施態様について注目ししている、即ち、ポンプなどを使用した燃料システムの能動的制御について注目している。当業者は、このような能動的な実施態様は、特に緊急停止時においては動作上の欠陥を有することは良く知っているところである。
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明の目的は、停止時におけるアノードの酸化のリスクを著しく減少する燃料電池を達成することである。
【課題を解決するための手段】
【発明が解決しようとする課題】
【0013】
本発明の目的は、停止時におけるアノードの酸化のリスクを著しく減少する燃料電池を達成することである。
【課題を解決するための手段】
【0014】
上記課題は、システムの緊急停止状態又同様な状態におけるパージガスの量を実質的に減らすための冷却装置を備える高温燃料電池によって達成され、池燃料システムにおける各燃料セルは、アノード側、カソード側、前記アノード側と前記カソード側の間の電解質を有し、前記燃料電池システムは、燃料セルスタック(積層体)の状態の燃料セルを有し、前記冷却装置は、システムの停止時において高温燃料電池システムにおける冷却プロセスに使用される冷却材を供給することができる冷却材源と、前記冷却材源に接続され、燃料セルのスタックの熱領域に設けられ、前記燃料セルスタックから、少なくとも、輻射により熱を受けとり、受け取った熱を前記冷却材に伝達するように設けられた冷却構造と、前記冷却材を前記冷却材源から前記冷却構造に供給する手段と、使用された冷却材を前記冷却構造から排出する手段と、前記システムの停止が開始したとき、前記冷却構造における冷却材の流れをトリガーするための始動力を利用する手段を、備える。前記冷却装置は、前記冷却装置に冷却材を供給する駆動力として加圧ガスを使用するための手段としての分離したタンク装置と、受動的調整型動作を実行するための始動力を利用することにより、要求される冷却負荷と燃料セルの許容される冷却速度を決定する手段を備える。
【0015】
本発明は、燃料セルが燃料セルスタックの状態で配置されている高温燃料電池システムの緊急システム停止時又は同様な状態におけるパージガスを実質的に減少するための方法に向けられ、この方法においては、高温燃料電池システムの停止時の冷却プロセスにおいて冷却構造に冷却材を供給することにより冷却材が使用され、前記冷却構造は、燃料セルスタックの実質的な熱領域に設けられ、燃料セルスタックから少なくとも輻射により熱を受け、受け取った熱を前記冷却材に伝達するように設けられ、前記冷却構造に供給される前記冷却材の流れは、前記システムの停止が開始したとき、前記冷却構造内へとトリガーされ、使用された冷却材は、前記冷却材構造から排出される。前記冷却材の供給は、分離したタンク装置から、前記冷却材を前記冷却構造に供給するための駆動力として加圧ガスを使用することにより達成され、前記冷却材の流量率は、前記始動による受動的自己調整型作動を利用することにより、前記燃料スタックの要求される冷却負荷と許容される冷却速度に従って決定される。
【0016】
本発明は、冷却材の使用に基づいており、この冷却材は、実質的に高い熱容量特性を持ち、前記冷却材を流すための装置は実質的に高温の燃料セルスタックの近くに配置される。このようにして、特にESD(緊急停止)時おける高温燃料セルシステムの冷却効率を高め、高温燃料電池システムにおける冷却プロセスにおいて必要とされるパージガスの量は極めて少なくなる。
【0017】
本発明の利点は、システムの停止時におけるアノードの酸化のリスクが極めて低くなり、燃料電池システムの寿命が費用対効果を高めつつ増加する。また、より早い冷却プロセスのため、実質的なエネルギー生成時間を節約できる。
【図面の簡単な説明】
【0018】
【図1】 単一の燃料セル構造を示す図である。
【図2】 SOFCの例を示す図である。
【図3】 本発明による高温燃料電池システムのための冷却装置を示す図である。
【図4】 本発明による好ましい実施例を示す図である。
【発明を実施するための形態】
【0019】
固体酸化型燃料電池(SOFCs)は多くの形態を持つ。扁平型形態(図1)は燃料電池において最も多く採用されているタイプのサンドイッチ形態のタイプであり、ここでは、電解質104が電極、アノード100とカソード102の間に配置される。SOFCsは、また、管状形態とすることもでき、ここでは、例えば、空気又は燃料が管の内側を通り、他のガスが管の外側に沿って通るようにされる。この装置は、また、燃料として使用されるガスを管の内側を通し、空気を管の外側に沿って通るようにすることもできる。SOFCsの他の形態として、改良扁平型燃料電池(MPC又はMPSOFC)があり、これは、従来の扁平型電池の形態を波形構造で置き替えたものである。この設計では、扁平型と管状型の利点を兼ね備えることが期待される。
【0020】
SOFCsに使用されるセラミックは高温になるまでイオン的に活性化されず、このため、スタックは600℃〜1000℃の範囲の温度に加熱される必要がある。酸素イオンとなることによる酸素106の減少は(図1)、カソード102において生じる。これらのイオンは、次に、固体酸化物電解質104を通り、アノード100に移動し、そこで、電気化学的に燃料108として使用されるガスを酸化する。この反応では、水と二酸化炭素が電子2個と共に副産物として出される。これらの電子は外部回路を流れと使用される。このサイクルは、これらの電子がカソード材102に再び入って繰り返される。
【0021】
大きな固体酸化型燃料電池においては、代表的な燃料は、天然ガス(主としてメタン)、種々のバイオガス(主として、窒素及び/又は二酸化炭素で希釈されたメタン)、及び他のアルコール燃料を含む高炭化水素である。メタン及び高炭化水素は、燃料セルスタック103に入る前にリフォーマ107(図2)において、或いは、スタック103内(部分的に)でリフォーム(改質)される必要がある。改質反応は、高炭化水素によって生じる炭素の生成(コーキング)を抑制するため所定量の水、追加的水が必要となる。この水は、アノードガス排気フローを循環することにより内部的に供給される、及び/又は、補助的な水の供給(例えば、直接の新鮮な水の供給又は排ガス凝集水の循環)によって供給することができる。アノード循環装置により、未使用の燃料の一部及びアノードガス内の希釈液はプロセスに戻されるが、その場合は、補助的な水供給装置においてプロセスへの添加材は水だけとなる。固体二酸化物型燃料電池のアノード電極は、典型的には形態が電池性能に影響を与える多孔質のニッケルマトリックスのセラミック−金属構造から成るため、ニッケルの酸化が燃料電池の性能を不可逆的に変える可能性がある。このことが、SOFCシステムが、燃料電池システムにおけるアノード電極が酸化するのを防ぐために、窒素のような不活性ガスで希釈された水素のような還元剤を含むパージガスを必要とする理由である。実際の燃料電池システムにおいて、過剰なパージガスを貯蔵しておくことは不経済である、即ち、安全ガスの量は最小限にしておく必要がある。また、パージガスの使用に必要な加圧装置は、燃料電池システムの物理的サイズに大きな影響を与える。
【0022】
本発明による実施例においてパージガスの使用を最小限に抑えるため、受動的吸収システムの使用によりスタック103とその周囲から熱を急速に吸収するようにしている。これにより、スタックの温度レベルは、パージガスを必要としない、少なくとも多くの量を必要としないようなレベルにすることができる。これは、例えば、水、又は他の高い熱容量及び/又は高い相変化潜熱を持つ媒体を、ESD(緊急停止)の後のシステムの高温区画に供給し、これにより水を加熱し、蒸発させることにより達成される。水は、例えば、専用の構造体に供給しておき、そこで、高熱の区画の上のタンクから重力を利用して予め設定した制限装置を通して流すようにすることができる。簡単な冷却構造体を、例えば、冷却材を高温の燃料セルスタック区画の上のタンクから、その高温区画の近傍を下降させるようにしたパイプ構造体によって設けることができ、そのパイプ構造体は、また、燃料セルスタック区画の下方へ重力を利用して使用した冷却材を排出することができる。高温区画の側のパイプ構造体における効果的な蒸気発生は冷却剤の流れの速度を所定の速度に制限する。
【0023】
高温の燃料セルスタック区画の高い温度は、特に、冷却プロセスの初期の高温で、輻射による熱伝達で水を加熱し、蒸発させ、従って、高温構造体からの熱除去が効果的に行われる。システム内で高い熱勾配が生じないようにして水の流量が制限される。水が供給される構造においては、蒸発水による圧力の危険な蓄積を避けるため、圧力開放弁(又は同様な手段)を設けることができる。開放弁からの抽気は、例えば、システムの排気管に安全に導かれ、そこで冷却後に凝縮されるため、ESD後に排水される。
【0024】
図3は、本発明による高温燃料電池システムの簡略された冷却装置において、本発明において使用される主構成部分を示す。冷却装置は、高温燃料電池システムのシステム停止時における冷却プロセスに使用されるために冷却剤を供給するための冷却材源120を備える。水又は冷却目的に適した他の液体は冷却材として使用され、冷却材源120は、例えば、水パイプ網からの水流入口又は水(又は他の冷却材)を保持するタンク、又は冷却装置に冷却材を供給するためのそもそもの源である。冷却構造122は、冷却材源120に接続され、燃料セルスタックから少なくとも輻射により熱を受け取り、受け取った熱を冷却材に伝達するため、燃料セルスタック103の実質的な熱領域に設けられる。冷却材源120と冷却構造122との間の接続部に、冷却材源120から冷却構造122に冷却材を供給するための手段124が設けられる。当該手段124は、例えば、バルブ装置によって達成される。冷却装置は、また、使用した冷却材を冷却構造122から排出する手段126を備えている。手段126の最も簡単な例は、例えば、パイプであり、冷却構造122から使用された冷却材の流れを排出する。
【0025】
燃料電池システムの遮断が始まると、冷却装置は、冷却構造122における冷却材の流れをトリガー(始動)するためのトリガー力(始動力)を利用するため、冷却構造への冷却材の流れを、手段136によって制限された流量で手段136により遮断トリガーする。手段136は、例えば、ばねバルブ又は、例えば、トリガーにおける受動的自己作動型(パッシブセルフアクチュエーション型)動作を実行する加圧装置を使用することにより達成される。冷却構造122の作動は、スタック103のアノード側における燃料熱交換器105の作動と一体化される。図3は、また、例えば、窒素のようなガスを遮断時にカソード側に流す可能性があることを示し、従って、図3は、また、ガス熱交換器131及びスタック103のカソード側における冷却プロセスで使用されるガスの排気口を示している。
【0026】
図4には、高温燃料電池システムにおける遮断時にパージガスの量を実質的に減らすための本発明の好ましい実施例が示されている。これは、冷却材として好ましくは水を収容する冷却材源120を備えている冷却装置によって達成される。この好ましい実施例においては、冷却材源は燃料セルスタック103の上方に位置し、重力を利用して燃料セルスタックの実質的に近傍にある冷却構造122内を所定の冷却材流量で流下するように流量を制限するための制限機能部136を使用して重力が利用される。このように、制限機能部は、また、トリガー力を利用するための手段136の一例でもある。多くの場合では、遮断時はESD(緊急遮断)である。冷却構造122は冷却材源120に接続され、燃料セルスタックから少なくとも輻射により熱を受け取り、受け取った熱を冷却材、即ち、冷却構造122内の水、に伝達するため燃料セルスタック103の実質的に熱領域に設けられる。スタックから水へのこの熱伝達において、即ち、燃料セルスタック冷却プロセスにおいては、水から蒸気へお相転移が利用されている。
【0027】
図4の好ましい冷却装置は、更に、冷却材を冷却材源120から冷却構造122に供給する手段124を備えている。当該手段124としていくつかの代替手段が存在する。例えば、手段124は分離したタンク装置124を使用して構成することができる。このタンク装置の作動では、冷却構造122に冷却材源120から水を供給するために加圧装置を使用することができる。この手段124は、また、例えば、冷却材を冷却構造122に供給するために加圧動作を行う膜型拡大ベッセル124とすることができる。
【0028】
ESD(緊急遮断)が始まったとき、手段124によって冷却構造122に供給される冷却材の流れは、また、トリガー力を使用するための手段136によって冷却構造に所定の流量でトリガーされる。手段136は受動的自己作動型の作動を行うことを可能とすることができる。冷却構造内の冷却材の流れをトリガーするトリガー力を利用するための手段136は、また、当該トリガーにより達成される受動的作動が冷却構造内に存在する蓄積圧力を利用して実行されるように構成することができる。当該手段136は、また、冷却材の流れが、手段136により冷却構造122に所定の流量でトリガーされるようにして、必要とされる冷却負荷と燃料セルスタック103への許容できる冷却能力に従って冷却材の流量を変えることができる。
【0029】
本発明の好ましい実施例においては、冷却構造122の熱輻射吸収効率は、冷却構造の熱輻射吸収領域を最大にするために、冷却構造における冷却材のための板状構造部材を使用して、高めることができる。これらの板状構造部材は、例えば、特に燃料セルスタック103から熱輻射を吸収し、吸収した熱を冷却材、即ち、冷却構造122内に流れる水に伝達するようにされた冷却構造122における冷却ユニットであるところの輻射熱交換器132とすることができる。
【0030】
更に、冷却装置の冷却効率を高めるため、冷却構造122は、燃料電池システムのアノード側100及びカソード側102の少なくとも一つを冷却するため、燃料セルスタック103から熱を吸収する鞘構造134を備える。ここで吸収された熱は、更に、鞘構造134を通して冷却材に伝達される。図4には、燃料セルスタック103のカソード側100にのみ鞘構造134が示されているが、上述のように、鞘構造はスタック103のアノード側102において燃料セルスタック103の冷却に使用することができる。冷却構造122の作動は、好ましくは、しかし必ずしもではないが、スタック103のアノード側における熱交換器105の作動と連動するようにする。
【0031】
好ましい冷却装置(図4)は、また、燃料電池システムの他の部分の作動に使用された冷却材を利用するために、使用された冷却材を反応物排出配管装置に注入する手段126を備えることができる。冷却構造122と鞘構造134や熱交換器132のような関連部分において、1000℃或いはそれ以上の高温に耐えるのに適した金属又は他の材料が使用される。
【0032】
本発明は、明細書と添付図面を参照にして説明したが、本発明は決してこれらに限定されるものでなく、本発明は、請求項によって許容される範囲内において種々の変形がなされるべきものである。

Claims (20)

  1. システム停止状態におけるパージガスの量を実質的に減少するための高温燃料電池システムにおける冷却装置であって、前記燃料電池システムの各燃料セルは、アノード側、カソード側、前記アノード側及び前記カソード側の間の電解質を備え、前記燃料電池システムは前記燃料セルを燃料セルスタックとして備え、前記冷却装置は、
    前記高温燃料電池システムのシステム停止時における冷却プロセスで使用される冷却材を供給する冷却材源と、
    前記冷却材源に接続され、前記燃料セルスタックから少なくとも輻射により熱を受け取り、受け取った熱を前記冷却材に伝達するため、前記燃料セルスタックの実質的な熱効果領域に設けられた冷却構造と、
    前記冷却材を前記冷却材源から前記冷却構造に供給するための手段と、
    前記冷却構造から使用された冷却材を排出する手段と、
    前記システム停止状態が開始したとき、前記冷却構造内における冷却材の流れをトリガーするためのトリガー力を使用するための手段、
    を備える、冷却装置。
  2. 前記冷却装置は、要求される冷却負荷と前記燃料セルスタック許容される冷却速度に従って前記冷却材の流量を変えるための手段を備えることを特徴とする、請求項1に記載の高温燃料電池システムにおける冷却装置。
  3. 前記冷却装置は、前記燃料電池システムから熱を受け取り、前記冷却プロセスにおいて水から蒸気への相転移を利用するための冷却材としての水を備えることを特徴とする、請求項1に記載の高温燃料電池システムにおける冷却装置。
  4. 前記冷却構造は、前記冷却構造の輻射熱吸収効率を高めるための平板状構造部を備えることを特徴とする、請求項1に記載の高温燃料電池システムにおける冷却装置。
  5. 前記冷却装置は受動的自己作動型作動を行う始動力を利用する手段を備えることを特徴とする、請求項1に記載の高温燃料電池システムにおける冷却装置。
  6. 冷却装置は、前記冷却材を前記冷却材源から前記冷却構造に供給するための前記手段として、分離したタンク装置を備える、請求項1に記載の高温燃料電池システムにおける冷却装置。
  7. 前記分離したタンク装置は前記冷却材を前記冷却構造に供給するための駆動力として加圧ガスを使用することを特徴とする、請求項6に記載の高温燃料電池システムにおける冷却装置。
  8. 前記冷却装置は、前記冷却装置の上方に配置された冷却材を保持する冷却材源と所定の流量率に従って冷却材の流れを制限し、重力を利用して前記燃料セルスタックの実質的な近傍を流下させるための制限機能部を備えることを特徴とする、請求項1に記載の高温燃料電池システムにおける冷却装置。
  9. 前記冷却装置は、前記燃料システムのアノード側及びカソード側の少なくとも一方を冷却するために冷却材を使用することにより、前記燃料セルスタックから熱を吸収するための鞘構造を備えることを特徴とする、請求項1に記載の高温燃料電池システムにおける冷却装置。
  10. 前記冷却装置は、前記燃料電池システムの他の部分における作動において使用された冷却材を使用するため、使用された冷却材を反応物質排出配管装置に注入する手段を備えることを特徴とする、請求項1に記載の高温燃料電池システムにおける冷却装置。
  11. 燃料セルが燃料セルスタックとして設けられる高温燃料電池システムのシステム停止状態におけるパージガスの量を実質的に減少するための方法であって、前記高温燃料電池システムの停止状態における冷却プロセスにおいて、冷却構造に冷却材を供給することにより冷却材が使用され、前記冷却構造は、前記燃料セルスタックから少なくとも輻射により熱を受け取り、受け取った熱を前記冷却材に伝達するため、前記燃料セルスタックの実質的に熱効果領域に配置されるものであり、前記冷却構造内に供給される冷却材の流れは、前記システム停止状態が開始されたとき、前記冷却構造内へとトリガーされ、使用された冷却材は前記冷却構造から排出されることを特徴とする方法。
  12. 前記冷却剤の流量は、燃料セルスタックの要求される冷却負荷と許容される冷却速度に従い定められることを特徴とする請求項11に記載の方法。
  13. 前記燃料電池システムから熱を受け取り、前記冷却プロセスにおいて水から蒸気への相転移を利用するため、冷却材として水が使用されることを特徴とする、請求項11に記載の方法。
  14. 前記冷却構造の熱吸収効率は、冷却材に対し、前記冷却構造の板状構造体を使用することにより高められることを特徴とする、請求項11に記載の方法。
  15. 前記始動により達成される受動的自己作動型作動が使用されることを特徴とする請求項11に記載の方法。
  16. 前記冷却材の供給は分離したタンク装置から実行されることを特徴とする、請求項11に記載の方法。
  17. 前記冷却材の供給は、冷却材を前記冷却構造に供給するための駆動力として加圧ガスを使用して分離したタンク装置から実行されることを特徴とする、請求項11に記載の方法。
  18. 前記冷却材の供給は、前記燃料セルスタックの上方の位置から供給され、所定の流量率に従い冷却材の流れを制限して重力を利用して前記燃料セルスタックの実質的に近傍を流下されることを特徴とする、請求項11に記載の方法。
  19. 前記燃料セルスタックから熱を吸収するための鞘構造が使用され、前記燃料電池システムのアノード側及びカソード側の少なくとも一つを冷却するため前記鞘構造における冷却材を使用することを特徴とする、請求項11に記載の方法。
  20. 燃料電池システムの他の部分の作動に使用された冷却材を利用するため、使用された冷却材が反応物質排出配管に注入されることを特徴とする、請求項11に記載の方法。
JP2013528732A 2010-09-17 2011-06-30 アノードの酸化防止方法及び装置 Withdrawn JP2013541148A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20105962A FI20105962A (fi) 2010-09-17 2010-09-17 Menetelmä ja järjestely anodioksidoinnin välttämiseksi
FI20105962 2010-09-17
PCT/FI2011/050620 WO2012035195A2 (en) 2010-09-17 2011-06-30 Method and arrangement for avoiding anode oxidation

Publications (1)

Publication Number Publication Date
JP2013541148A true JP2013541148A (ja) 2013-11-07

Family

ID=42829693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013528732A Withdrawn JP2013541148A (ja) 2010-09-17 2011-06-30 アノードの酸化防止方法及び装置

Country Status (7)

Country Link
US (1) US20130266880A1 (ja)
EP (1) EP2617090B1 (ja)
JP (1) JP2013541148A (ja)
KR (1) KR20140001204A (ja)
CN (1) CN103210536A (ja)
FI (1) FI20105962A (ja)
WO (1) WO2012035195A2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190003665A (ko) * 2016-05-02 2019-01-09 콘비온 오와이 고온 연료 전지의 스택 로우 구조 및 방법
US20190245220A1 (en) * 2018-02-02 2019-08-08 Lg Fuel Cell Systems, Inc. Methods for Transitioning a Fuel Cell System between Modes of Operation
CN110534774B (zh) * 2019-08-15 2022-02-01 河北清清电池有限公司 电池堆低温启动的方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503944A (en) * 1995-06-30 1996-04-02 International Fuel Cells Corp. Water management system for solid polymer electrolyte fuel cell power plants
US6093500A (en) * 1998-07-28 2000-07-25 International Fuel Cells Corporation Method and apparatus for operating a fuel cell system
US6780533B2 (en) * 1999-12-17 2004-08-24 Utc Fuel Cells, Llc Fuel cell having interdigitated flow channels and water transport plates
JP3460703B2 (ja) * 2001-05-28 2003-10-27 日産自動車株式会社 燃料電池冷却系の凍結防止装置
CN100411233C (zh) * 2004-01-14 2008-08-13 丰田自动车株式会社 燃料电池系统及其发电方法
WO2007075173A1 (en) * 2005-12-29 2007-07-05 Utc Power Corporation Circulation of gas-entrained fuel cell coolant
KR100738063B1 (ko) * 2006-06-02 2007-07-10 삼성에스디아이 주식회사 연료전지의 열교환기
ITTO20070333A1 (it) * 2007-05-15 2008-11-16 Ermanno Martinello Apparecchiatura di controllo di un sistema di pressurizzazione dell'acqua.
JP5241157B2 (ja) * 2007-07-10 2013-07-17 東京瓦斯株式会社 高温作動型燃料電池システム
JP5140443B2 (ja) * 2008-01-17 2013-02-06 Jx日鉱日石エネルギー株式会社 燃料電池モジュール及び燃料電池モジュールの運転方法
US8053128B2 (en) * 2008-04-10 2011-11-08 Delphi Technologies, Inc. Apparatus for solid-oxide fuel cell shutdown having a timing circuit and a reservoir

Also Published As

Publication number Publication date
EP2617090B1 (en) 2014-08-13
WO2012035195A2 (en) 2012-03-22
CN103210536A (zh) 2013-07-17
FI20105962A (fi) 2012-03-18
FI20105962A0 (fi) 2010-09-17
KR20140001204A (ko) 2014-01-06
WO2012035195A3 (en) 2012-05-03
US20130266880A1 (en) 2013-10-10
EP2617090A2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US6699612B2 (en) Fuel cell power plant having a reduced free water volume
CN104170139A (zh) 燃料电池混合动力系统
JP2010508633A (ja) 燃料電池の熱交換システム及び方法
JPS5823169A (ja) 燃料電池発電装置およびその運転方法
KR101563455B1 (ko) 고온 연료 전지 시스템에 대한 재순환을 이용하는 방법 및 어레인지먼트
WO2013001166A1 (en) Method and arrangement for minimizing need for safety gases
US20180191006A1 (en) Solid oxide fuel cell system with improved thermal efficiency, and solid oxide fuel cell system heated by high-temperature gas
KR101721237B1 (ko) 외부열원에 의하여 가열되는 고체산화물 연료전지 시스템
JP2013541148A (ja) アノードの酸化防止方法及び装置
KR101179390B1 (ko) 연료 전지 시스템
JP2008277017A (ja) 熱交換システム、燃料電池
KR101753335B1 (ko) 고온가스에 의하여 가열되는 고체산화물 연료전지 시스템
KR102587217B1 (ko) 연료전지 시스템
JP2004273164A (ja) 燃料電池システム
JP6527365B2 (ja) 燃料電池システム
JP2014182923A (ja) 燃料電池システム及びその運転方法
JP6589566B2 (ja) 燃料電池システム
JP5102510B2 (ja) 燃料電池システム
KR101828937B1 (ko) 고온 고분자전해질막연료전지와 랜킨사이클시스템을 결합한 복합발전장치
JP4872390B2 (ja) 燃料電池システム
CN114586205B (zh) 混合发电系统
KR102624449B1 (ko) 발열체에 의한 승온이 적용되는 암모니아 기반 고체산화물 연료전지(sofc) 시스템, 및 이의 작동방법
CN216250820U (zh) 一种镁基固态储氢发电系统
KR20170002144A (ko) 코팅층이 형성된 고체산화물 연료전지 시스템
KR20230081983A (ko) 연료전지시스템의 제어방법

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902