JP2013531961A - 無効電力管理 - Google Patents

無効電力管理 Download PDF

Info

Publication number
JP2013531961A
JP2013531961A JP2013511665A JP2013511665A JP2013531961A JP 2013531961 A JP2013531961 A JP 2013531961A JP 2013511665 A JP2013511665 A JP 2013511665A JP 2013511665 A JP2013511665 A JP 2013511665A JP 2013531961 A JP2013531961 A JP 2013531961A
Authority
JP
Japan
Prior art keywords
power
reactive power
distribution network
value
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013511665A
Other languages
English (en)
Inventor
ヘイッキ フオモ,
Original Assignee
リアクティブ テクノロジーズ オーワイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リアクティブ テクノロジーズ オーワイ filed Critical リアクティブ テクノロジーズ オーワイ
Publication of JP2013531961A publication Critical patent/JP2013531961A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1892Arrangements for adjusting, eliminating or compensating reactive power in networks the arrangements being an integral part of the load, e.g. a motor, or of its control circuit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

本発明の実施形態は、配電網に流れる無効電力に対する無効電力寄与を制御して、この無効電力流を最適化するようにするための装置、方法及びシステムに関する。本発明の実施形態では、電力消費及び/又は供給装置と共に使用する無効電力制御装置が提供される。この無効電力制御装置は、配電網に流れる電気の無効電力成分に関連した、配電網に流れる電力の無効電力特性を、電力装置にて検出するための検出手段を備える。この無効電力制御装置は、検出された無効電力特性に基づいて、配電網に対する無効電力寄与を制御して、その検出された無効電力特性の値を調整するようにするための制御手段を更に備える。こうすることにより、個々の電力消費及び/又は供給装置が配電網における局部変動に自律的に反応し、且つその検出された無効電力特性を望む値の方へと駆動するようにする無効電力寄与を可能する。
【選択図】図2

Description

本発明は、配電網における無効電力流の管理に関する。特に、本発明は、電力消費及び/又は供給装置での無効電力流を制御するための装置及び方法に関するが、これに限定されない。
発電所の如き電力供給者から家庭用電気器具及び事業所の如き需要家への電気の供給は、典型的に、配電網を介して行われている。図1は、送電グリッド100及び配電グリッド102を備える典型的な配電網1を示している。送電グリッドは、発電所104に接続され、この発電所は、例えば、原子力発電所又はガス火力発電所であり、この送電グリッドは、架空電力ラインの如き電力ラインを使用して、その発電所から非常に高い電圧(例えば、この電圧は、英国では、典型的に、204kV程度であるが、これは国によって変わる)で大量の電気エネルギーを配電グリッド102へと送る。送電グリッド100は、変圧器ノード106を介して配電グリッド102にリンクされ、その変圧器ノード106は、配電グリッド102における配電のため、その電気供給をより低電圧(例えば、英国では、この電圧は、典型的に、50kV程度であるが、これは国によって変わる)へと変換する変圧器106を含む。そして、その配電グリッドは、更により低い電圧へと変換するための更に別の変圧器を備える変電所108を介して、家庭内ユーザ114に給電する市内電線網112の如き局部電線網、及び工場110の如き産業需要家にリンクする。風力発電所116の如きより小さな電力供給者も配電グリッド102に接続することができ、それらに電力を供給することができる。電力は、典型的に、正弦交流電流(AC)波の形にて、配電網の全ての部分を通して送電される。
例えば、家庭内ユーザの場所で電線網に接続される電力消費装置は、その電線網の負荷として作用し、そこから電力を引き出す。このような各装置により与えられる負荷は、典型的に、純粋に抵抗性ではなく、それら装置における容量性及び/又は誘導性素子により無効性要素を含むものである。この負荷の無効成分は、高いインダクタンスを有する電動機及び変成器の如き装置及び高い容量を有する装置において、特に大きい。このような装置は、電圧に対して±90°で流れる無効電流成分を生じ、その結果として、その電線網に流れる電流が、電圧に対して位相ずれする。
用語「無効電力」は、ここでは、電線網の所定の場所で流れる無効電流成分と電圧との積を指すのに使用されている。この無効電力は、装置への正味のエネルギー転送を行えないようにしてしまい、この無効電力は、以下に説明するように、その電線網及び電力供給者にある影響を与えるものである。用語「実電力」は、ここでは、電力消費装置による電気エネルギー消費の割合を指すのに使用される。用語「力率」は、ここでは、実電力と無効電力とのベクトル和に対する実電力の比率を指すのに使用される。
電線網における電流−電圧位相差に与える個々の装置の無効性負荷の影響は小さいが、複数の装置からの累積する影響は、相当なものとなることがある。電流−電圧位相差が大きくなればなるほど、所定の実電流(即ち、電線網電圧と同相にて流れる電流成分)、従って、所定の量の実電力を供給するため装置へ供給されねばならない電流の大きさは大きくなる。更にまた、例えば、電力ラインの加熱による電線網におけるエネルギー損失は、その電流が実であるか無効性であるかに関係なく、全電流に依存している。従って、このような位相差は、需要家の需要を満たすため電力供給者により発電され供給されねばならない全電流の大きさを実効的に増大させてしまい、これにより、電力供給者に経済的負担が掛かり、発電のコストが増大してしまう。同様に、需要家へ所定量の電力を供給するため電力供給者により消費される資源の量は、増大し、これにより、望ましくない程の環境への大きな影響を与えてしまうことになる。
更にまた、変圧器及び電力ラインの如き電線網要素は、その電線網に流れる電流(実であれ無効性であれ)の大きさの総和に従って設計されており、従って、それらの動作は、どのような無効電流によっても悪影響を受けることになる(熱損失等による)。
従来においては、このような電線網に流れる電力の電流−電圧位相差を減少させるための努力は、大規模電力供給者にて無効電力寄与(率)を最少化し及び/又は適当量の補償無効電力を発生し、そして、その配電網内の変圧器ステーションにて無効電力の補償を行うことに、重きが置かれていた。例えば、発電所は、その発電所の無効電力寄与を調整するため、その電線網オペレータとは独立して又はその電線網オペレータからの命令の下で、キャパシタ及び/又はインダクタのバンクを使用することができるようにしている。しかしながら、無効電力補償は、短距離でのみ有効であり(例えば、熱損失による)、また、電流−電圧位相差は、その配電網内の場所から場所で相当に変化し、このことは、少数の大規模電力供給者での無効電力補償では局部化した電流−電圧位相差を有効に補償できていないことを意味している。
無効電力のある幾つかの大規模需要家においても、それらが発生する無効電力を補償するため切換えキャパシタ又は無負荷同期電動機の如き補助手段を使用することにより、その電線網へのそれら自身の無効電力寄与を最少化するための何らかの手段を使用することができ、実際に、ある幾つかの電力供給者は、実電力消費に加えて無効電力寄与にも課金することにより、産業需要家(工場の如き)が無効電力をより少なくすることに貢献することを奨励している。これらの方法は、全て、電線網における電流−電圧位相差に対する個々の装置の寄与を最少化することに重きを置くものである。
米国特許出願US2009/0200994A1には、各々が需要時に無効電力を発生するための回路を含む再生可能エネルギー源の分散システムが記載されている。これら再生可能エネルギー源の各々は、再生可能エネルギー源による無効電力発生を遠隔的に制御する中央制御「電線網オペレーションセンター」と通信する。この電線網オペレーションセンターは、必要量の無効電力の要求を利用会社(即ち、電力供給者)から受け、それに応答して、電線網オペレーションセンターは、必要な補償を行えるようにするためその制御下の再生可能エネルギー源の各々から必要とされる最適無効電力寄与を計算して、それに準じてその再生可能エネルギー源へ指令を送る。これは、電線網に存在するかもしれない電流−電圧位相差をアクティブに補償する方法を提供している。しかしながら、US2009/0200994A1のシステムは、中央制御を必要としているものであり、局部電線網電圧−電流位相差のより局部化した変化に対応することができないものである。
本発明の目的は、従来技術のこれら問題の幾つかを少なくとも軽減することである。
本発明の第1の態様によれば、配電網に接続されるとき、前記配電網からの電力を消費し、又は、前記配電網へ電力を供給するような電力装置に使用するための無効電力制御装置であって、
前記配電網に流れる電気の無効電力成分に関連した、前記配電網に流れる電力の無効電力特性を前記電力装置にて検出するための検出手段と、
前記検出された無効電力特性に基づいて、前記電力装置による前記配電網に対する無効電力寄与を制御して前記検出された無効電力特性の値を調整するように構成された制御手段と、
を備える無効電力制御装置が提供される。
前記電力装置にてなされた無効電力特性測定に基づいて電力装置での無効電力の供給を制御することにより、無効電力の局部変動に対する実時間補償を行うことができる。前記無効電力制御装置によれば、局部測定に基づく無効電力寄与の自律した変動を通じてこれらの局部変動を補償することができ、中央制御を必要としない。
好ましい実施形態では、前記無効電力制御装置は、前記検出された無効電力特性の値を決定し、前記決定された値を所定の値と比較するように構成されており、前記制御手段は、前記検出された値と前記所定の値との間の差を減ずるように前記無効電力寄与を制御するように構成されている。
こうして、前記無効電力制御装置は、前記配電網における電気の無効電力を所定の最適値へ向かって駆動する無効電力寄与を発生すべく電力装置を制御するように構成される。
前記無効電力特性は、前記配電網に流れる電気の電圧と電流との間の位相差に関連させることができ、前記所定の値は、所定の位相差値を含むことができる。
好ましくは、前記無効電力補償装置は、前記検出された無効電力特性に基づいて、前記無効電力成分が前記所定の値より、より誘導性であるか、又は、前記無効電力成分が前記所定の値より、より容量性であるか、を決定するように構成され、前記制御手段は、
前記検出された無効電力成分が前記所定の値よりより誘導性であるとの決定に応答して、前記配電網に対して容量性無効電力を寄与させるように前記電力装置を制御し、
前記検出された無効電力成分が前記所定の値よりより容量性であるとの決定に応答して、前記配電網に対して誘導性無効電力を寄与させるように前記電力装置を制御する、
ように構成される。
こうして、前記無効電力補償装置は、前記配電網における誘導性又は容量性電力流を補償するように前記電力装置を制御することができる。
ある幾つかの実施形態では、前記検出手段は、前記無効電力特性の変化を検出するように構成され、前記制御手段は、前記検出手段がしきい値を横切る前記無効電力特性の値の遷移を検出することに応答して、前記配電網に対する前記無効電力寄与を変化させるように構成される。
好ましくは、前記制御手段は、
前記検出された無効電力成分の値が第1のしきい値より小さい値から前記第1のしきい値よりも大きい値へと変化することに応答して、前記電力装置によって前記配電網に対して寄与される前記無効電力の値を、第1の所定値から第2の所定値へと変化させ、
前記無効電力成分の値が前記第1のしきい値より小さな大きさを有する第2のしきい値より大きな値から前記第2のしきい値より小さな値へと変化することに応答して、前記電力装置によって前記配電網に対して寄与される前記無効電力を、前記第2の所定値から前記第1の所定値へと変化させる、
ように構成される。
これにより、前記配電網に対する無効電力の供給においてヒステリシスが与えられ、前記装置の機能において振動が発生するのが防止され、前記配電網における電流の乱れを防止することができる。
好ましくは、前記制御手段は、前記検出手段が前記無効電力特性の変化を検出した後、所定の時間期間の経過に応答して、前記無効電力を変化させるように構成される。これによっても、システムにおける電気流へ振動が導入されるのを防止することができる。
ある幾つかの実施形態では、前記配電網に流れる電気は、所定の期間を有する交流電気流を含み、前記制御手段は、切換え手段を制御して前記所定の期間の1つ以上の部分中に前記電力装置への電力の供給を選択的に中断させるように構成される。ある幾つかの実施形態では、前記制御手段は、パルス幅変調手段の如き電流変調手段を備え、前記電力特性は、前記電力消費装置の電力のデューティーサイクル特性を含む。
ある幾つかの実施形態では、前記電力装置は、前記配電網へ電力を供給するための電力供給装置を備えており、前記電力供給装置は、直流を与えるように構成されており、前記制御手段は、直流−交流変換手段を制御するように構成されている。
前記無効電力制御装置は、前記配電網に流れる電気の1つ以上の電気品質特性を検出するための手段を備えることができ、前記制御手段は、前記検出された電気品質特性を変更するように、前記電力装置により供給される及び/又は消費される電力の特性を制御するように構成されており、前記検出された1つ以上の電気品質特性は、前記電気流における高調波、電圧のランダムな又は繰り返し変動、電線網不平衡、電力流の振動、電力流の過渡のうちの少なくとも1つを含む。こうして、本発明の実施形態は、無効電力特性以外の配電網における異常を修正するのに使用される。
前記配電網へ電力を供給するための前記電力供給装置は、光起電力発生装置、自家用電気自動車、自家用電気自転車及びCHP電力発生装置の如き家庭用再生可能エネルギー源のうちの少なくとも1つを含むことができる。前記電力装置は、典型的に、現在の技術で可能なほぼ10kWまでの電力を前記配電網へ供給するように構成される電力供給装置を含むことができる。
幾つかの実施形態では、前記配電網は、送電グリッド及び配電グリッドを備え、前記送電グリッドは、1つ以上の変圧器を介して前記配電グリッドに接続され、そこへ電力を供給し、前記配電グリッドは、複数の家庭内及び/又は産業ユーザへ電力を供給し、前記電力装置は、前記配電グリッドからの電力を消費し、又は前記配電グリッドへ電力を供給するためのものである。こうして、本発明の実施形態は、送電グリッドにおいて使用され、例えば、局部又は市内電線網において使用することができる。これにより、このような電線網における局部無効電力流に対して修正寄与をなすことができる。
ある幾つかの実施形態では、前記無効電力制御装置は、制御センターから作動信号を受信するための通信インターフェースを備え、前記制御手段は、前記通信インターフェースでの前記作動信号の受信に応答して、無効電力寄与の制御を行うように構成されている。これにより、中央エンティティが1つ以上の無効電力制御装置を作動及び/又は不作動とすることができるようになり、これは、例えば、無効電力がある電力供給者へと販売されるようなスキームの部分として、無効電力装置のグループが、オンデマンドベースにて無効電力補償を与えるのに使用されるような本発明の用途において有用である。
本発明の第2の態様によれば、配電網において無効電力流を制御するのに使用するためのシステムであって、各々が前記配電網に接続された個々の電力装置を制御する前述したような無効電力制御装置を複数分散して備えるようなシステムが提供される。本発明の実施形態は、前記配電網に対して相殺的無効電力補償を集約的に与えるように構成された電力供給装置の分散グループでもって実施される。
このシステムは、前記複数の分散無効電力制御装置の各々へ前記作動信号を送るための制御センターを備えることもできる。
好ましい実施形態では、前記複数の無効電力制御装置のうちの異なる1つ1つが、前記作動信号を受信後に、異なる間隔で前記制御の実行を開始させるように構成されている。これにより、前記複数の装置の全てが同時に作動され、前記配電網における電力流の突然の変化を生ぜしめるようなことがないようにされる。
ある幾つかの実施形態では、前記無効電力制御装置は、個々の電力装置の1つ以上の性能特性を監視するための手段であって、各装置について前記1つ以上の性能特性を示すデータを前記制御センターへ送信するように構成された手段を備えており、前記1つ以上の性能特性は、前記配電網に流れる検出された無効電力成分の値、個々の電力装置により前記配電網へ供給される無効電力の量、及び無効電力の供給の制御の実行の時間のうちの少なくとも1つを含む。
付加的又は代替的に、前記無効電力制御装置は、前記配電網に流れる電気の電気品質特性を測定するための手段を備えることができ、前記無効電力制御装置の各々は、前記1つ以上の電気品質特性を示すデータを送信するように構成されており、前記1つ以上の電気品質特性は、無効電力特性、前記電気流における高調波、電圧におけるランダムな又は繰り返し変動、電線網不平衡、電力流における振動、及び前記電力流における過渡のうちの少なくとも1つを含む。
これにより、前記制御センターが前記配電網を通しての種々な分散ポイントにてなされる測定に関するデータを得ることができるようになり、このようなデータは、例えば、電線網状態を監視するのにおいて、電力供給者にとって貴重なものである。
本発明の第3の態様によれば、配電網からの電力を消費し及び/又は配電網へ電力を供給するように構成された1つ以上の電力装置に接続された前記配電網における無効電力流を制御するのに使用するための方法であって、
前記配電網に流れる電気の無効電力成分に関連した、前記配電網に流れる電力の無効電力特性を前記電力装置にて検出するステップと、
前記検出された無効電力特性の値を調整するように、前記電力装置による前記配電網に対する無効電力の寄与を、前記検出された無効電力特性に基づいて制御するステップと、
を含むような方法が提供される。
本発明の更なる特徴及び効果は、実施例としてのみ与えられている本発明の好ましい実施形態について添付図面に関してなされる以下の説明から明らかとなろう。
従来技術による配電網を示す。 本発明の実施形態による無効電力制御装置、電力消費及び/又は供給装置、配電網及びそれらの間の接続を示す。 電力消費装置の電力消費サイクルを示す。 本発明の実施形態による電力消費装置による電力の制御された電力消費の第1のタイプを示す。 本発明の実施形態による電力消費装置による電力の制御された電力消費の第2のタイプを示す。 本発明の実施形態による電力消費装置による電力の制御された電力消費の第3のタイプを示す。 本発明の実施形態による無効電力制御装置、電力供給装置、配電網及びそれらの間の接続を示す。 DC電力供給装置の出力での電圧対時間を示すグラフである。 本発明の実施形態による第1のモードにて動作する無効電力制御装置により制御されるHブリッジの端子での時間につれての電圧の変動を示すグラフである。 本発明の実施形態による第2のモードにて動作する無効電力制御装置により制御されるHブリッジの端子での時間につれての電圧の変動を示すグラフである。 本発明の実施形態による第3のモードにて動作する無効電力制御装置により制御されるHブリッジの端子での時間につれての電圧の変動を示すグラフである。 本発明の実施形態による第1のモードにて動作する無効電力制御装置により制御される電力供給装置によって配電網へ与えられる電流の時間につれての電流の変動を示すグラフである。 本発明の実施形態による第2のモードにて動作する無効電力制御装置により制御される電力供給装置によって配電網へ与えられる電流の時間につれての電流の変動を示すグラフである。 本発明の実施形態による第3のモードにて動作する無効電力制御装置により制御される電力供給装置によって配電網へ与えられる電流の時間につれての電流の変動を示すグラフである。 本発明の実施形態による電力消費及び/又は供給装置を制御する時に無効電力制御装置により行われるステップを示すフロー図である。 本発明の実施形態による電力消費及び/又は供給装置での測定された電線網無効電力対発生された無効電力を示すグラフである。
図2は、電力装置202の場所で配電網1に流れる電気の電流と電圧との間の位相差を制御するのに使用するための無効電力制御装置200を示している。この電力装置202は、消費装置であり、例えば、省エネルギーランプ、携帯電話充電器、計算装置電源の如き500Wより低い電力定格を有する低電力消費装置、自家用電気自動車(PEV)の如き500Wと10kWとの間の電力定格を有する中型電力装置、又は、工場に設置された産業用機械の如き10kWより高い電力定格を有する大電力装置であることができる。これら装置は、単相又は多相であることができ、多相の場合には、前述の電力定格は、相当たりのものとなることに注意されたい。
電力装置202が電力消費装置を備える時には、典型的に、正弦波交流電流の如き交流電流の形にて、電力が配電網1から電力装置202へと供給される。
電力装置202は、代替的又は付加的に、電力を配電網1へ供給する電力供給装置を備えることができる。これら電力供給装置は、例えば、光起電力電池を使用して電力を発生する電力発生装置を備えることができ、又は、これら電力供給装置は、単にエネルギーを貯蔵しておき、必要とされる時にエネルギーを放出する装置を備えることができる。ある幾つかの装置は、電力消費装置及び電力供給装置の両者として機能することができ、例えば、自家用電気自動車(PEV)は、典型的に、大量の電気を貯蔵する能力を有している。このことは、これら自家用電気自動車は、電力消費者であることに加えて、高需要時に配電網に対する電力源として使用することができる、ことを意味しており、このような高需要時において、PEVの電池に貯蔵された電気を配電網へと戻し給電することができることを意味している。
本発明の実施形態では、電力装置202は、典型的に、図1に関して前述した配電網1の配電グリッド102の部分、例えば、市内電線網の如き局部電線網に接続される。
無効電力制御装置200は、電力装置202の一体部分として実施することができ、又は、電力装置202の周辺装置として実施することができ、例えば、この無効電力制御装置200は、携帯電話充電器又はPEVのためのAC/DC変換器の部分として実施されることができる。他の配置では、この無効電力制御装置は、配電網1に接続されるスタンドアローン装置として実施することができ、この場合には、電力装置202は、この電力装置が配電網1から電力を受け取り、及び/又は配電網1へ無効電力制御装置200を介して電力を供給するように、交換可能なようにしてそのスタンドアローン装置に接続される。
図2に示す典型的な無効電力制御装置200は、無効電力計203、制御ユニット204及び電流制御装置212を備える。無効電力計203は、電力装置202の場所で配電網1に流れる電力の無効電力成分に関連した無効電力特性(RPC)を検出して測定する。この無効電力計203は、位相固定ループ(PLL)回路において普通に設けられる位相検出器、電圧計及び電流計組合体及びクロックを備えることができ、これは、電力装置202の場所で配電網1における電気の電圧及び電流及びそのタイミング特性を測定するものであり、又は、この無効電力計203は、配電網に流れる電気の無効電力特性を測定することのできる任意の他の装置を備えることができる。この無効電力計203は、それが検出するRPCを示す測定信号を制御ユニット204へ送る。これら測定信号は、無効電力成分の大きさ及び/又は符号(即ち、電流が電圧に対して遅れているか又は進んでいるか)を示すデータを含むことができる。
以下の実施例の多くは、検出された位相差に関して説明されるのであるが、ある幾つかの実施形態では、無効電力制御装置200のモード、例えば、無効電力成分の大きさ、又は電気流の力率を決定するのに、異なるRPCを検出し使用することができる。更にまた、無効電力計203がRPCを「測定する」又は「検出する」と、ここで説明されている場合には、このことは、無効電力計203が制御ユニット204へデータを与え、制御ユニット204がそのデータからRPCを引き出すような場合を含むものであり、例えば、無効電力計203が制御ユニットに配電網1に流れる交流電力のピーク電圧及びピーク電流のタイミングを示すデータを与え、制御ユニット204がそのデータから位相差を導き出すような場合を含むものであると、理解されたい。
制御ユニット204は、プロセッサ206、データ記憶装置210及び通信インターフェース208を備える。プロセッサ206は、例えば、プログラマブル装置として又は簡易ロジック回路を使用して実施されるものであり、無効電力計203によって送られる測定信号を受け取り、これら信号に基づいて、配電網に流れる電気の電流−電圧位相ずれを決定して、制御信号を電流制御装置212へと送る。データ記憶装置210は、無効電力計203によりなされた測定値を示すデータ、プロセッサ206により電流制御装置212へ送られる制御信号等の如きデータを記録するのに使用される。入力/出力インターフェース208は、データ記憶装置に記録されたデータを制御センターに与え及び/又は制御センターからの作動及び/又は不作動信号を受け取るため、制御センターと通信するのに使用され、この制御センター及びこの制御センターと無効電力制御装置との相互動作については、以下により詳細に説明する。
電流制御装置212は、プロセッサ206から制御信号を受け取り、これら制御信号に基づいて、電力装置202への電流及び/又は電力装置からの電流を制御して、電力装置202が配電網1に対して無効電力流を寄与させるようにし、電力装置202からの無効電力流寄与が、以下に説明するように、電流−電圧位相差を設定された最適値の方へと駆動するように容量性又は誘導性電力流として選択されるようにする。
次に、電流制御装置212の典型的な動作について、電力装置202での時間につれての電圧の変動を示す図3aから図3dに関して説明する。説明を簡単なものとするため、この実施例における電力装置202は、電力消費装置であると仮定し、このようなものと称するが、ここに説明する実施例は、電力供給装置にも、等しく又は必要な変更を加えれば、当てはまるものであることは、理解されたい。
図3aから図3dの斜線を施した区域は、電流制御装置212が配電網1から電流を引き出するように電力消費装置202を制御しているときの時間期間を表しており、斜線を施していない区域は、電流制御装置212が配電網1から電流を引き出さないように電力消費装置202を制御しているときの時間期間を表している。この制御は、選択的に、電力消費装置202を、配電網1へ接続したり、配電網1から切り離したりするように、切換え装置、典型的に、半導体スイッチング装置を動作させることにより行うことができる。このようにして、無効電力制御装置200は、電力消費装置202のデューティーサイクルを変えることができ、電力消費装置202が所定のサイクルに亘って非対称的に電力を消費し、それにより、次により詳細に説明するように、配電網1へ与える無効電力の量を調整することができる。電力消費装置へ与えられる電流を変調することにより、電力消費装置202の無効電力寄与は、切換えキャパシタの如き無効電力を発生する付加的な手段を使用せずに、変えることができる。更にまた、電流変調方法により、これらの付加的手段にて可能なよりも、配電網状態の変化に対してより素早く応答することが可能となる。
図3aに示される無効電力制御装置200の動作の第1のモードでは、電力消費装置202は、電圧サイクルの全体に亘って配電網1から電流を引き出す。このモードにおいては、電流制御装置212は、電力消費装置202にどのような影響も及ぼさず、即ち、前述したスイッチは、電圧サイクルの全体に亘って「オン」位置にある。この動作モードでは、電流制御装置212は、配電網における電流−電圧位相差に全く影響を及ぼさない。この動作モードは、ここでは、「中性モード」と称される。
図3bに示す動作の第2のモードでは、無効電力制御装置200は、この装置202での電圧が零を横切る時の後毎に、時間期間Tの間のみ電流を引き出すように電力消費装置202を制御する。これにより、その電圧と同じ周波数に従って変化するが、その電圧より進んだ電流成分が生ずる結果となり、即ち、無効電力制御装置212は、配電網へ容量性無効電力を与えるように電力消費装置202を制御し、通常のように、その位相差には、電流が電圧より進んでいることを示す正値として指定される。このような取り決めに従って、この動作モードでは、無効電力制御装置200は、配電網1に流れる電気の電流−電圧位相差に対する正の寄与を発生するように電力消費装置202を制御する。電力消費装置202が電流−電圧位相差に対して正の寄与を与える動作モードは、ここでは集約的に、「容量性モード」と称される。
図3cに示す動作の第3のモードでは、電流制御装置212は、電圧が零を横切る時の前毎に、時間期間Tの間のみ電流を引き出すように電力消費装置202を制御し、この時間期間Tの長さは、時間期間Tの長さと同じであるか又は異なることができる。これにより、その電圧と同じ周波数に従って変化するが、その電圧よりも遅れている電流成分が生ぜしめられ、即ち、電流制御装置212は、配電網における電力流に対して誘導性の寄与を与えるように電力消費装置202を制御する。前述したような取り決めに従って、このような動作モードでは、無効電力制御装置200は、配電網1に流れる電気の電流−電圧位相差に対して負の寄与を発生するように電力消費装置202の電力消費を制御する。電力消費装置202が電流−電圧位相差に対して負の寄与を与えるような動作モードは、ここでは集約的に、「誘導性モード」と称される。
図3aから図3cは、電流制御装置212の3つの動作モードを示しているのであるが、本発明のある幾つかの実施形態では、無効電力制御装置200は、異なる数のモードを有する。例えば、無効電力制御装置200は、電力消費装置202からのより大きな又はより小さな無効寄与を発生するようにT及び/又はTの値が変えられるような異なるモードを有することができる。無効電力制御装置200は、付加的に又は代替的に、電圧サイクルが多くの時間スロットに分割され、電流が電力消費装置202の無効性寄与を調整するようにそれらスロットのうちの選択されたものから引き出されるような1つ以上の動作モードを有することができる。このような動作モードの実施例は、図3dに示されており、ここでは、各半サイクルC′が16個の時間スロットに分割されており、それら時間スロットのうちの選択されたものから電力が引き出されるようになっており、理解を容易とするため、ここでは、16個のスロットのみを示しているが、典型的に、各半サイクルC′は、何百又は何千個というスロットに分割することができ、これにより、電圧サイクルに亘っての電力消費をより滑らかに分散させることが可能となる。図3dに示す実施例では、各半サイクルC′の初期部分においては、1つ置きの時間スロット中に電力消費装置へ電力が供給され、各半サイクルC′の後期部分においては、2つ置きの時間スロット中においてのみ電力消費装置へ電力が供給され、その結果として、配電網に対する無効電力寄与が容量性となる。
本発明のある幾つかの実施形態では、電流制御装置212は、パルス幅変調(PWM)ユニットを備え、次に説明するように、PWM方法に従って動作する。PWM方法においては、配電網1からの電力給電の各サイクルは、再び、スロット、例えば、数十個のスロットへと分割され、電力が電力消費装置202へ供給される各スロット中の時間比率は、そのサイクルにおけるスロット位置に従って変化され、例えば、電力消費装置202は、各サイクルの第1及び第3四半期中では、その能力の45%で運転され、第2及び第4四半期中では、その能力の55%で運転され、「遅れ」誘導性電力寄与を生ずるようにすることができる。これは、これら時間スロットの各々をサブスロットへと分割し、例えば、所定のスロットのサブスロットの部分中にのみ電力消費装置へ電力を供給することにより実施することができる。
前述したように、図2及び図3に関連して説明した前述の実施例は、電力装置202を電力消費装置としているものであるが、本発明のある幾つかの実施形態では、電力装置202は、配電網1へ電力を供給する電力供給装置であり、電力消費でなく電力の供給が無効電力制御装置200により制御されるのである。この電力の供給の場合には、電力装置202により与えられる交流は、前述した原理に従って変更される。この方法は、電力装置202により与えられる電流がACの形にあるか、又は、前述したように処理される前にACの形へと変換されるような時に、特に適している。
しかしながら、電力装置202がDC電流を与えるような場合には、例えば、もし、電力装置が太陽光パネル又はPEV又は自家用自転車電池の如き電気貯蔵装置である場合には、DC−AC変換処理の部分としてその電流を変調するのが都合がよい。更にまた、電力装置202により与えられるAC電力が、例えば、家庭用バイオ燃料発電機におけるように、変化し易く又は低品質であるような場合には、次に説明するような方法に従って、そのAC電力を安定なDC電力へと変換し、それから、その安定なDC電力をAC電力へと再変換するのが都合がよい。このAC/DC変換は、電池の如き一時的又は断続的エネルギー貯蔵装置を使用することにより実施することができる。
図4は、以下に説明するように、(DC/AC)変換装置(「インバータ」と称されることが多い)の部分として使用される無効電力制御装置200の詳細を示している。この実施例では、この無効電力制御装置200は、DC電力供給装置202aと共に使用され、電流制御装置212は、Hブリッジ412、インダクタ404及び変圧器406を備えており、これらの機能については、以下に説明する。
DC電力供給装置202aからのDC給電は、Hブリッジ412へ接続され、このHブリッジ412は、4つのスイッチ400aから400dを備えており、これらスイッチは、典型的に、トランジスタ又は任意の他の半導体スイッチとして実施される。このHブリッジ412は、DC電力供給装置202aの無効電力寄与を制御するように、無効電力制御ユニット204により制御される。このHブリッジは、端子402a及び402bを介してインダクタ404及び以下に説明するような後続の構成部分に接続される。
Hブリッジ412のスイッチ400の構成を変えることにより、Hブリッジ412の端子402a及び402bの極性を変えることができる。対角的に対向しているスイッチ400a及び400dが開であり、スイッチ400b及び400cが閉であるような構成においては、Hブリッジ端子402aは、電気的に負であり(即ち、電流は端子402aを通して電力供給装置202aの負端子401aの方へ流れる)、一方、Hブリッジ端子402bは、電気的に正である(即ち、電流は、Hブリッジ412の端子402bを通して電力供給装置202aの正端子401aから流れ出る。反対に、スイッチ400a及び400dが開であり、スイッチ400b及び400cが閉であるような構成では、Hブリッジ端子402aは、電気的に正であり、Hブリッジ端子402bは、電気的に負である。
制御ユニット204のプロセッサ206は、端子402a及び402bからAC信号を生ずるように、Hブリッジのスイッチング構成を制御する。Hブリッジ412からの信号は、そのAC信号を平滑化するインダクタ404へと加えられ、そこから、変圧器406へと加えられ、この変圧器は、配電網1における送電に適した電圧を有するようにその信号を調整するものであり、この変圧器406からの信号が配電網1へと加えられるのである。
図5aは、電力供給装置202aの出力端子401a及び401bの間の電位差(V)を時間(T)に関して示したグラフである。この電位差は、不変なものとして示されているが、実際には、これは、例えば、電力供給装置202aが太陽光発電装置である場合には、天候条件によって時間につれてある程度変化するものである。
図5bから図5dは、Hブリッジ412が本発明の実施形態により異なるモードで制御されている時のHブリッジ端子402a及び402bの間の電位差を時間に関して示すグラフである。図5cから図5gは、変圧器406の出力端子408a及び408bでの電流(I)、即ち、配電網1へ供給される電流の時間につれての対応する変動を示している。図5bから図5dに関して説明した実施例の各々において、制御ユニット204は、Hブリッジ412を制御して、スイッチ400aから400dが周期的に反復するオン−オフシーケンスにて動作して、変圧器の出力端子408a及び408bに交流電流が発生されるようにする。この発生される交流電流は、配電網1に流れる電気と同相であり、且つ配電網1に流れる電気の半サイクルC′の長さに対応する半サイクルC′の長さを有するように調整される。
図5bは、制御ユニット204が中性動作モードに従ってHブリッジを制御している時の、Hブリッジ端子402a及び402bでの電圧の時間に関する変動を示している。この動作モードでは、制御ユニット204は、各半サイクルC′の中心点について対称である反復オン−オフシーケンスにてHブリッジ412のスイッチ400を制御して、配電網1へ供給される電流が、図5eに示されるように、対称正弦波交流電流となるようにする。オン−オフパターンであり、配電網に与えられる電流が各半サイクルC′の中心点について対称であるので、配電網に流れる電気に対する無効電力寄与は全くなされない。
図5cは、制御ユニット204が容量性動作モードに従ってHブリッジを制御している時の、Hブリッジ端子402a及び402bでの電圧の時間に関する変動を示している。この動作モードでは、制御ユニット204は、各半サイクルの中心点について非対称である反復オン−オフシーケンスにてHブリッジ412のスイッチ400を制御して、配電網1へ供給される電流が、図5fに示されるように、非対称交流電流となるようにする。Hブリッジ412を通して電流が流れる時間の比率は、各半サイクルCの第1の半分中よりも高く、配電網へ供給される電流は、そこに流れる電気の電圧よりも進むようになり、従って、このモードでは、その配電網1に流れる電気に対して容量性寄与がなされる。
図5dは、制御ユニット204が誘導性動作モードに従ってHブリッジを制御している時の、Hブリッジ端子402a及び402bでの電圧の時間に関する変動を示している。この動作モードでは、制御ユニット204は、各半サイクルの中心点について非対称である反復オン−オフシーケンスにてHブリッジ412のスイッチ400を制御して、配電網1に供給される電流が、図5gに示すように、非対称交流電流となるようにしている。電流がHブリッジ412を通して流れる時間の比率は、各半サイクルC′の第2の半分中よりも高く、配電網に供給される電流は、そこに流れる電気の電圧よりも遅れるようになり、従って、このモードでは、配電網1に流れる電気に対して誘導性寄与がなされる。
図4及び図5aから図5gに関して説明された実施形態は、切換えキャパシタの如き無効電力を発生する付加的な手段を使用せずに、電力供給装置202の無効電力寄与を変えるように、電力供給装置202からの電流を変調する更に別の方法を提供する。ここに説明する実施形態では、無効電力寄与は、各半サイクルC′の中心点について非対称であるが、配電網1に流れる電圧信号と同じ周波数で且つ同じタイミングで零点を横切るようなAC信号を発生することにより制御される。付加的又は代替的に、無効電力寄与は、配電網1に流れる電圧信号と位相がずれるように、その信号が零点を横切るタイミングをずらすことにより発生することができる。
前述の実施例では、無効電力制御装置は、電流制御装置212がモードの各々において所定の大きさの無効電力を供給するような有限数の別々のモードにて動作している。ある幾つかの場合において、電力消費装置202によって与えられる最大許容力率を規定する規制がある。例えば、欧州共同体規制では、25Wまでの電力定格を有する装置は、0.5以上の力率を有していなければならず、75W以上の電力定格を有する装置は、0.9以上の力率を有していなければならない、と規定されている(IEC/EN61000−3−2参照)。従って、電流制御装置212は、測定される電流制御装置212がアクティブである全ての場合において、最大許容出力を与えるように構成されていると、効果的である。しかしながら、ある幾つかの実施形態では、電流制御装置212は、電流−電圧位相差の測定値に従って連続的に与えられる無効電力の大きさを変えるように構成される。
動作モードの数及びタイプは、電力装置202の電力定格の如き特性及び/又は最大許容無効電力寄与を規定する規制に従って選択される。更にまた、電流制御装置212は、前述した実施例に限定されず、例えば、可変抵抗を含み、電流サイクルにおける任意の所定のポイントで使用可能な全電流のある部分を与えるような装置を、前述したようなスイッチング装置と連携して又はそれに替えて使用することができる。
前述した無効電力制御装置200の動作モードに従って、電力消費装置202の電力消費を制御することにより、配電網1における電力流に対して、容量性無効電力寄与及び/又は誘導性無効電力寄与を、その電力装置202の構成部分自身が有している誘導性及び/又は容量性リアクタンスとは無関係に、与えることができる。こうして、電力ユニット202は、例えば、磁石コイル等の如き内部の誘導性構成部分によって、電力流に対して誘導性寄与をなすかもしれないのであるが、無効電力制御装置200の動作による電力流に対する寄与を、例えば、容量性とすることができる。
図6は、本発明のある幾つかの実施形態によって、電力装置202を制御するのに無効電力制御装置204により行われる典型的なステップを示すフロー図である。ステップS600にて、無効電力計203は、電力装置202の場所で配電網に流れる電気の電流−電圧位相差を測定する。
ステップS602にて、制御ユニット202におけるプロセッサ206は、ステップS600にてなされた測定に基づいて、その位相差が所定の範囲内にあるかを決定する。この所定の範囲は、この範囲内では位相差の調整を行う必要のないような位相差の所定の範囲とすることができるものである。もし、その位相差がその所定の範囲内にあると、プロセッサ206が決定する場合には、電力装置202の無効寄与に対する調整は、必要とされず、このプロセスは、ステップS604へと進み、そこで、プロセッサ206は、無効電力制御装置200の中性モードを選択し、その選択された中性モードにて動作させるような指令信号を電流制御装置212へ送る。
一方、もし、位相差が所定の範囲内にないと、プロセッサがステップS602にて決定する場合には、このプロセスは、ステップS606へと進み、そこで、プロセッサ206は、例えば、ステップS600で測定された位相差が所定の範囲の外で誘導性側にあるかを決定することにより、誘導性補償が必要とされるかを決定する。もし、誘導性寄与が必要とされると、プロセッサが決定する場合には、このプロセスは、ステップS608へと進み、そこで、プロセッサは、誘導性モードを選択し、電流制御装置212が電力装置202を制御して配電網1における電力流に対して誘導性寄与を与えるようにし、誘導性モードにて動作させるような指令信号を電流制御装置212へ送る。
もし、ステップS606にて、位相差に対する誘導性補償が必要とされないと決定される場合には、容量性寄与が必要とされると結論付けられ、このプロセスは、ステップS610へと進み、そこで、プロセッサ206は、容量性モードを選択し、電流制御装置212が電力装置202を制御して、配電網における電力流に対して容量性寄与を与えるようにし、容量性モードにて動作させるような指令信号を電流制御装置へ送る。
このようにして、無効電力制御装置200は、配電網1に流れる電気の局部的に検出された電流−電圧位相差に応答して、電流の流れを制御し、それにより、電力装置202へ電力を供給したり及び/又は電力装置202から電力を与えたりするようにする。電流の流れをこのように制御することにより、配電網に流れる電気の位相差を調整する無効電力寄与が生ぜしめられる。電力装置202の電力消費及び/又は供給が大きい場合には、個々の装置からの補正無効電力寄与により、配電網に流れる電気の位相差に対して相当の調整が与えられる。更にまた、個々の電力装置202の電力消費及び/又は供給が小さい場合でも、例えば、個々の電力装置202が前述したように低電力装置である場合でも、このような装置の分散グループからの寄与を組み合わせば、以下により詳細に説明するように、配電網に流れる電気の電流−電圧位相差に対して相当の効果を与えることができる。
典型的に、配電網の状態は時間と共に変化するものであり、従って、本発明のある幾つかの実施形態では、図6に関して前述したプロセスは、無効電力計により検出される位相差の変化により異なるモードとし、それにより異なる無効電力寄与が選択されるようにして、連続的に又はある間隔をおいて繰り返される。
前述した実施例では、位相差が所定の範囲内にあるかを無効電力補償処置200が決定し、その決定に依存して動作モードを選択すると説明しているが、ある幾つかの実施形態では、所定範囲を設けない。これらの実施形態では、無効電力補償装置200は、ステップS602を省略し、直接にステップS606へと進む。換言すると、これらの実施形態では、無効電力補償装置の「中性動作モード」は無く、無効電力補償装置200は、無効電力流が所定の値より誘導性であると又は容量性であると決定されたかに依存して、容量性モードと誘導性モードとの間で切り換えをする。
ある幾つかの場合においては、検出された無効電力成分の符号と常に反対の符号を有する無効電力成分を与え(即ち、検出された無効電力成分が誘導性である場合には、容量性成分を与え、その逆に、検出された無効電力成分が容量性である場合には、誘導性成分を与え)て、前述した所定の値を零とすることが望ましく、他の場合においては、最適電流−電圧位相差を非零値とすることができる。これは、電流−電圧位相差は、配電網1を通して進むにつれて、その配電網1における変圧器及び他の構成部分からの無効性寄与のため変化するからである。従って、送電の効率の観点からの最適状態は、必ずしも、電力装置202の場所で位相差が零であることでなく、その代わりに、位相差は、例えば、電力装置202にて僅かに容量性(例えば、2から5度の範囲において)であり、その位相差が発電所で僅かに誘導性である場合に、その配電網の中間のあるポイントにおいて、その位相差が零となるようにすることができる。従って、無効電力補償装置200は、位相差の値を決定し、これを所定の最適値と比較し、その検出された位相差とその所定の値との間の差を減少させるようにする無効電力寄与を与えるように構成することができる。
前述した所定の範囲は、典型的に、最適値(又は少なくとも含む)を中心としているので、ある場合には、特に、最適値が零又はその近くに設定されている場合及び/又は前述した所定の範囲が比較的に大きい場合には、その範囲の端点は、反対符号となり、即ち、一方の端点は、容量性値に対応し、他方の端点は、誘導性値に対応するようになる。これらの場合において、前述した誘導性補償が必要とされるかを決定するステップ(ステップS606)は、単に、ステップS600で測定された電流−電圧位相差が誘導性であるか、又はそれが無効性であるかを決定することを含むようにすることができる。最適値が非零値に設定されているような、特に、所定の範囲が比較的に狭いような、他の場合においては、その所定の範囲は、容量性値のみを含み又は誘導性値のみを含むようにすることができる。これらの場合において、ステップS606は、ステップS600で測定された位相差を所定の範囲の端点と比較して、その測定された位相差がその範囲の誘導性側にあるか又は容量性側にあるかを決定することを含むことができる。
ある幾つかの場合においては、配電網1における電気の位相ずれに小さな変動があり、もし、これらの変動が前述した許容範囲の端点を定めるしきい値にて又はその近くにて発生する場合には、それら変動により、無効電力制御装置200がモードの間で振動してしまうことがあり、これにより、それら振動が悪化させられてしまい、配電網1に流れる電流が不安定となってしまうことがある。これらの振動を減少させ又は除去するため、図5に関してここに説明するように、無効電力制御装置200がモードの間で切り換えるしきい値に関してヒステレシスを使用することができる。
図7は、測定された配電網位相差対電力装置202の発生された無効電力を示すグラフである。図示の実施例では、電力装置202は、モード2にて動作するときには、+Pの無効電力を発生し、モード1にて動作するときには、零無効電力を発生し、モード3にて動作するときには、−Pの無効電力を発生する。この実施例において発生される無効電力の大きさは、モード2及びモード3において同じであるが、ある幾つかの実施形態では、それらモードの各々においてその大きさを異ならせることができる。
図7は、4つのしきい値RからRを示しており、これらしきい値にて、無効電力制御装置200は、モード切り換えを行い、R及びRは、負の(誘導性)位相差を表しており(|R|>|R|)、及びR及びRは、正の(容量性)位相差を表している(|R|>|R|)。誘導性配電網位相差の大きさが増大するときには、無効電力制御装置は、その位相差の値がRを横切るときに中性モードから容量性モードへの切り換えを行う。しかしながら、反対方向において、誘導性配電網位相差の大きさが減少するときには、無効電力制御装置200は、Rで容量性モードから中性モードへの切り換えは行わず、その代わりに、無効電力制御装置200は、Rでその切り換えを行う。同様に、容量性配電網位相差が増大する場合には、無効電力制御装置200は、中性モードから誘導性モードへの切り換えを行うが、容量性配電網位相差が減少する場合には、無効電力制御装置200は、Rで切り換えを行う。こうして、位相差がしきい値RからRのうちの1つの周りで変動するとしても、無効電力制御装置200の動作モードにおいて振動は起きない。何故ならば、無効電力制御装置200は、R及びRの周りの中性モードにおいて安定であり、Rの周りの容量性モードにおいて安定であり、Rの周りの誘導性モードにおいて安定であるからである。
図7に関して前述した実施例では、R及びRが誘導性値を表すとし、R及びRが容量性値を表すとしているが、前述した最適値が、非零である場合には、RからRの全てが容量性であり又はそれらが全て誘導性であるとすることができることは、理解されよう。この場合において、無効電力制御装置200は、検出された位相差が容量性のままでも、検出された位相差がRを横切るときに容量性寄与を与えるように容量性モードへの切り換えを行い、同様に、検出された位相差が誘導性のままでも、検出された位相差がRを横切るときに誘導性寄与を与えるように誘導性モードへの切り換えを行うことができる。
前述したヒステレシス特徴に対して、付加的又は代替的に、無効電力制御装置は、しきい値を横切るときに、ある所定の時間期間T3の間モードの切換を遅延させるように構成することができる。こうすることによっても、高周波振動がシステムに導入されないようにすることができる。
更にまた、前述したように、本発明のある幾つかの実施形態では、複数の無効電力制御装置200を配電網の異なる場所に分散配置して、それら無効電力制御装置200の各々が個々の電力装置202を制御し、それにより、配電網1に流れる無効電力を制御するのに使用できるシステムを形成するようにすることができる。これは、特に、低又は中間サイズの電力装置202に使用するときに効果的であり、配電網における無効電力流に対する調整を、個々の装置を使用して達成されるよりも、より相当なものとすることができる。例えば、全ての電力消費のほぼ5%が商業店舗及び家庭内での照明装置によるものと推定される。このような照明装置の全てを、本発明による無効電力制御装置200として使用する場合には、ここに説明した方法により、電力消費装置の全電力使用の5%が無効電力として寄与できるものと仮定して(この数値は、ここで説明する方法を使用して容易に達成しうるものである)、全配電網電力容量の0.25%を、より効率的な無効電力特性を与えるのに使用することができる。
無効電力制御装置202の分散グループを使用する実施形態(これらの実施形態に限定されないが)では、無効電力制御装置200がモード切り換えを行うしきい値RからRの値のうちの1つ以上及び/又は切り換え遅延T3の長さを、異なる装置の間で変えることができる。これらの値は、無効電力制御装置200の製造中にランダムに(例えば、定められた最適値の周りの定められた限界値内で)指定され、データ記憶210に記憶させられる。ある場合においては、無効電力制御装置200のプロセッサ206は、値RからR及びT3のうちの1つ以上のものを変えることができ、これは、例えば、所定の時間限界にて又は制御センターからの作動信号による装置の作動にて実施される確率化プロセスに従って行うことができる(以下参照)。このようにしてこれらの値を確率化することにより、装置の分散グループが一致して作動してしまってシステムに望ましくない振動を生じさせてしまうようなことを防止することができる。
前述したように、無効電力制御装置200は、通信インターフェースを介して制御センターと通信するように構成することができる。制御センターは、配電網におけるノード又はここに説明したような無効電力制御装置の分散グループと通信及び/又はそれらを制御するように構成された任意の他の装置であってよい。制御センターと無効電力制御装置200との間の通信は、ワイヤレス又は固定ライン通信、例えば、インターネット及び/又はGSMネットワークを介しての通信を使用して行うことができる。ある場合においては、無効電力制御装置200と制御センターとの間の通信は、電力ライン414に沿ってデータを送信することによっても行うことができる。
本発明のある幾つかの実施形態では、無効電力制御装置200は、制御センターからの作動信号を受信し、この作動信号の受信に応答して配電網1へ与えられる無効電力を制御するように構成され、即ち、その作動信号により、作動信号の受信前には不作動、即ちターンオフされていた無効電力制御装置200がターンオンさせられるように構成することができる。無効電力制御装置が不作動である時には、電力装置202は、通常の動作に従って、即ち、それが無効電力制御装置に接続されていないかのようにして、配電網により与えられる電力を消費及び/又は供給することができる。制御センターは、無効電力制御装置をターンオフ、即ち不作動状態へとする不作動信号を与えることもできる。
制御センターからの作動信号の受信時に、分散グループの無効電力制御装置200の各々は、ターンオンし、例えば、図6に関して前述したプロセスに従って動作を開始する。前述したパラメータRからR及び/又はT3に関した乱数値の発生は、この作動信号の受信に応答して行うことができる。作動信号に応答して作動する無効電力制御装置が全て同時に作動しないようにして、配電網に流れる無効電力に突然の変化が生じないようにすることも効果的である。これは、その作動信号の受信後、ランダムに発生された時間間隔の経過後に各装置が作動されるようにすることにより行うことができ、このランダムに発生される時間間隔は、それら装置自身によって発生することができ、又は、作動信号自体にその時間間隔を規定しておくこともできる。
ある幾つかの実施形態では、パラメータRからR及び/又はT3は、作動信号の部分又はある他の信号として制御センターにより規定される。これにより、無効電力制御装置200の特性を配電網1の特定の状態に従って編成することができる。
ある幾つかの実施形態では、無効電力制御装置200のうちのある幾つかのものを、制御センターの制御無しで自律的に挙動するようにし、他のある幾つかの無効電力制御装置200を制御センターの制御下にて動作するようにする。この場合において、前述した所定の範囲を、自律的無効電力制御装置200に対しては比較的に大きく、遠隔的に制御される装置200に対しては比較的に狭くすると効果的であり、このようにして、全ての無効電力制御装置200は、配電網における無効電力の大きな振れに反応するが、それらの特性を遠隔的に調整することにより、より微細に調整されるような、遠隔的に制御される装置のみがより小さな変化を調整するのに使用されるようにすることができる。
前述したように、無効電力制御装置200を作動及び/又は不作動とするのに制御センターを使用することにより、無効電力制御装置200を、配電網1に対して需要時に無効電力を分配するのに使用するようにすることができる。こうして、無効電力制御装置200のユーザのグループ及び/又は制御センターのオペレータは、例えば、電力供給者へ無効電力を販売することができる。
無効電力制御装置200は、制御センターと通信して、その無効電力制御装置の性能に関するデータ及び他の情報を与えるようにすることもできる。例えば、プロセッサ206は、無効電力制御装置200の作動時間、配電網1へ与えられる無効電力の量、無効電力計203によるRPCの測定結果等の如きデータをデータ記憶装置210に記録し、且つこのような情報を通信インターフェース208を介して制御センターへ与えるように構成される。もし、電力装置202がPEVの如き移動装置である場合には、この電力装置もまた、例えば、GPS追跡装置を使用してその位置を記録し、その位置を制御センターへ通信するように構成することができる。
更にまた、無効電力制御装置200は、配電網1に流れる電気の1つ以上の特性を測定し、これらの電気特性を示すデータを制御センターへ通信することができる。このような測定は、無効電力計203又は1つ以上の他の計量器を使用することにより行うことができる。測定され報告されるこれら1つ以上の電気品質特性として、次のうちの1つ以上を含むことができる。
・無効電力特性;
・ライン電圧が短い時間期間の間公称電圧より高いか又は低いかするディップ、サグ、
スウエル及びブローンアウトの如き電圧変動;これは、例えば、配電網故障、容量性
負荷の切り換え及び過大負荷により発生される;
・高調波;給電周波数の複数倍でのライン電圧における変動;これは、例えば、可変速
度ドライブ及びUPSシステムの如き電力電子負荷により発生される;
・フリッカー;電圧におけるランダム又は繰り返し変動;これは、例えば、ミル、EA
F動作(アーク炉)、溶接装置及びシュレッダーにより発生される;
・配電網不平衡、即ち、異なるライン電圧;これは、単相負荷、相対相負荷及び溶接装
置のような不平衡3相負荷により発生される;
・振動(共振);電気エネルギーの流れが、例えば、インダクタの磁界とキャパシタの
電界との間で周期的に方向を変える;
・過渡(速い乱れ);電圧波形及び電流波形の両者において起こる正弦波における急速
な変化;これは、スイッチング装置、高電力装置のスタート及びストップにより発生
される
無効電力制御装置200は、例えば、図2から図7に関連して前述した方法を適応させて、検出された品質特性を調整するように電力装置202の電力消費及び/又は供給を制御するための手段を含むこともできる。
制御センターは、この情報を使用して、例えば、無効電力補償を必要とする配電網1の区域を決定することができる。このとき、制御センターは、無効電力制御装置200の分散グループによって発生されるべき無効電力の必要量を決定し、且つその適切な配電網区域における装置のグループを特定し、その特定された装置の各々へ作動信号を送ることができる。この目的のため、無効電力制御装置200は、各々が個々にアドレスされるようにするのが都合良く、例えば、各無効電力制御装置200は、IPアドレスを有し、及び/又は各無効電力制御装置に、加入者識別モジュールSIMカードを設けることができ、この場合において、アドレスデータは、MSISDN番号の如きそのSIMカードの識別番号を含む。
ここに説明した技法及び方法は、種々な手段により実施することができる。例えば、これらの技法は、ハードウエア(1つ以上の装置)、ファームウエア(1つ以上の装置)、ソフトウエア(1つ以上のモジュール)又はそれらの組合せにより実施することができる。ハードウエアで実施する場合には、図2及び図4の装置は、1つ以上の特定用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブルロジック装置(PLD)、フィールドプログラマブルゲートアレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、ここに説明した機能を果たすように設計された他の電子ユニット又はそれらの組合せ内で実施することができる。ファームウエア又はソフトウエアの場合には、ここに説明した機能を果たす少なくとも1つのチップセットのモジュール(例えば、手順、機能等)により実施することができる。ソフトウエアコードが、データ記憶装置に記憶され、プロセッサにより実行される。データ記憶ユニット210は、プロセッサ内又はプロセッサの外部にて実施することができる。プロセッサの外部にて実施する場合には、そのデータ記憶ユニットは、当業分野にて知られているように、種々な手段を介してプロセッサに通信できるように結合される。更に、ここに説明したシステムの構成部分は、それに関して説明された種々な態様等を達成し易くするため、配列し直したり及び/又は付加的な構成部分により補足したりすることができるのであり、当業者には理解されるように、これら構成部分は、ここに与えられた図に説明された構成そのものに限定されるものではない。
前述の実施形態は、本発明を例示するための実施例であると理解されたい。本発明の更に別の実施形態が考えられるものである。例えば、前述した実施形態では、配電網1は、単相配電を使用している。しかしながら、当業者には明らかなように、3相システムの如き多相システムに対しても同じ原理が適用できるものである。
更にまた、前述の実施例では、電流制御装置212は、1つ以上の半導体スイッチング装置を使用して実施されている。このような実施形態は、当業分野において許容されるような約25アンペアから35アンペアまでの電流を引き出す家庭用消費装置に使用するのに、特に適している。しかしながら、半導体スイッチを損傷してしまうかもしれないような電流のレベルを生ずるような高電力消費又は供給装置に使用する時には、真空管の如き他のスイッチング装置を使用するのが好ましい。
どの1つの実施形態に関連して説明したどの特徴も、それ単独で使用でき、また、ここで説明した他の特徴と組み合わせて使用することもでき、また、それら実施形態の他のどれの1つ以上の特徴と組み合わせて使用することもでき、また、それら実施形態の他のどれの任意の組合せと組み合わせて使用することもできることは、理解されよう。更にまた、前述していない均等物及び変形態様も、特許請求の範囲に限定された本発明の範囲から逸脱せずに、考え得るものである。

Claims (29)

  1. 配電網に接続された場合に、前記配電網からの電力を消費するための、又は、前記配電網へ電力を供給するための電力装置に使用する無効電力制御装置であって、
    前記配電網に流れる電気の無効電力成分に関連した、前記配電網に流れる電力の無効電力特性を前記電力装置にて検出するための検出手段と、
    前記検出された無効電力特性に基づいて、前記電力装置による前記配電網に対する無効電力寄与を制御して前記検出された無効電力特性の値を調整するように構成された制御手段と、
    を備える無効電力制御装置。
  2. 前記無効電力制御装置は、
    前記検出された無効電力特性の値を決定し、
    前記決定された値を所定の値と比較する、
    ように構成されており、
    前記制御手段は、前記検出された値と前記所定の値との間の差を減ずるように前記無効電力寄与を制御するように構成されている、請求項1に記載の無効電力制御装置。
  3. 前記無効電力特性は、前記配電網に流れる電気の電圧と電流との間の位相差に関連しており、前記所定の値は、所定の位相差値を含む、請求項2に記載の無効電力制御装置。
  4. 前記無効電力制御装置は、前記検出された無効電力特性に基づいて、前記無効電力成分が前記所定の値よりもより誘導性であるか、又は、前記無効電力成分が前記所定の値よりもより容量性であるかを決定するように構成されており、
    前記制御手段は、
    前記検出された無効電力成分が前記所定の値よりもより誘導性であるとの決定に応答して、前記配電網に対して容量性無効電力を寄与させるように前記電力装置を制御し、
    前記検出された無効電力成分が前記所定の値よりもより容量性であるとの決定に応答して、前記配電網に対して誘導性無効電力を寄与させるように前記電力装置を制御する、
    ように構成されている、請求項3に記載の無効電力制御装置。
  5. 前記検出手段は、前記無効電力特性の変化を検出するように構成されており、
    前記制御手段は、前記検出手段がしきい値を横切る前記無効電力特性の値の遷移を検出することに応答して、前記配電網に対する前記無効電力寄与を変化させるように構成されている、請求項1〜4のいずれか1項に記載の無効電力制御装置。
  6. 前記制御手段は、
    前記検出された無効電力成分の値が第1のしきい値より小さい値から前記第1のしきい値よりも大きい値へと変化することに応答して、前記電力装置によって前記配電網に対して寄与される前記無効電力の値を、第1の所定値から第2の所定値へと変化させ、
    前記無効電力成分の値が前記第1のしきい値より小さな大きさを有する第2のしきい値より大きな値から前記第2のしきい値より小さな値へと変化することに応答して、前記電力装置によって前記配電網に対して寄与される前記無効電力を、前記第2の所定値から前記第1の所定値へと変化させる、
    ように構成されている、請求項5に記載の無効電力制御装置。
  7. 前記制御手段は、前記検出手段が前記無効電力特性の変化を検出した後、所定の時間期間の経過に応答して、前記無効電力を変化させるように構成されている、請求項5又は6に記載の無効電力制御装置。
  8. 前記配電網に流れる電気は、所定の期間を有する交流電気流を含み、前記制御手段は、切換え手段を制御して、前記所定の期間の1つ以上の部分中に前記電力装置への及び前記電力装置からの電力の供給を選択的に中断させるように構成されている、請求項1〜7のいずれか1項に記載の無効電力制御装置。
  9. 前記制御手段は、電流変調手段を備える、請求項1〜8のいずれか1項に記載の無効電力制御装置。
  10. 前記制御手段は、パルス幅変調手段を備えており、前記電力装置は、前記配電網からの電力を消費するための電力消費装置を備えており、前記制御手段は、前記電力消費装置の電力消費のデューティーサイクル特性を制御するように構成されている、請求項9に記載の無効電力制御装置。
  11. 前記電力装置は、前記配電網へ電力を供給するための電力供給装置を備えており、前記電力供給装置は、直流を与えるように構成されており、前記制御手段は、直流−交流変換手段を制御するように構成されている、請求項1から10のうちのいずれか1項に記載の無効電力制御装置。
  12. 前記電力装置は、前記直流を与えるための交流−直流変換手段を備える、請求項11に記載の無効電力制御装置。
  13. 前記配電網に流れる電気の1つ以上の電気品質特性を検出するための手段を備えており、前記制御手段は、前記検出された電気品質特性を変更するように、前記電力装置により供給される及び/又は消費される電力の特性を制御するように構成されており、前記検出された1つ以上の電気品質特性は、前記電気流における高調波、電圧のランダムな又は繰り返し変動、電線網不平衡、電力流の振動、電力流の過渡のうちの少なくとも1つを含む、請求項1〜12のいずれか1項に記載の無効電力制御装置。
  14. 前記電力装置は、前記配電網へ電力を供給するための電力供給装置を備えており、前記電力供給装置は、光起電力発生装置、自家用電気自動車、自家用電気自転車及び家庭用再生可能エネルギー源のうちの少なくとも1つを含む、請求項1〜13のいずれか1項に記載の無効電力制御装置。
  15. 前記配電網は、送電グリッド及び配電グリッドを備え、前記送電グリッドは、1つ以上の変圧器を介して前記配電グリッドに接続され、該配電グリッドへ電力を供給し、前記配電グリッドは、複数の家庭内及び/又は産業ユーザへ電力を供給し、前記電力装置は、前記配電グリッドからの電力を消費し、又は前記配電グリッドへ電力を供給するためのものである、請求項1〜14のいずれか1項に記載の無効電力制御装置。
  16. 制御センターから作動信号を受信するための通信インターフェースを備え、前記制御手段は、前記通信インターフェースでの前記作動信号の受信に応答して、前記無効電力寄与の制御を行うように構成されている、請求項1〜15のいずれか1項に記載の無効電力制御装置。
  17. 配電網において無効電力流を制御するのに使用するためのシステムであって、
    各々が前記配電網に接続された個々の電力装置を制御する、複数分散させた請求項15に記載の無効電力制御装置と、
    前記複数分散させた無効電力制御装置の各々へ前記作動信号を送るための制御センターと、
    を備えるシステム。
  18. 前記複数の無効電力制御装置のうちの異なる1つ1つは、前記作動信号を受信後に、異なる間隔で前記制御の実行を開始させるように構成されている、請求項16に記載のシステム。
  19. 前記無効電力制御装置の各々は、個々の電力装置の1つ以上の性能特性を測定するための手段を備えており、前記無効電力制御装置の各々は、前記1つ以上の性能特性を示すデータを前記制御センターへ送信するように構成されており、前記1つ以上の性能特性は、前記配電網に流れる検出された無効電力成分の値、個々の電力装置により前記配電網へ寄与させられる無効電力の量、及び無効電力の寄与の前記制御の実行の時間のうちの少なくとも1つを含む、請求項16又は17に記載のシステム。
  20. 前記無効電力制御装置の各々は、前記配電網に流れる電気の電気品質特性を測定するための手段を備えており、前記無効電力制御装置の各々は、前記測定された1つ以上の電気品質特性を示すデータを送信するように構成されており、前記1つ以上の電気品質特性は、無効電力特性、前記電気流における高調波、電圧におけるランダムな又は繰り返し変動、電線網不平衡、電力流における振動、及び前記電力流における過渡のうちの少なくとも1つを含む、請求項17〜19のいずれか1項に記載のシステム。
  21. 配電網からの電力を消費し及び/又は配電網へ電力を供給するように構成された1つ以上の電力装置に接続された前記配電網における無効電力流を制御するのに使用するための方法であって、
    前記配電網に流れる電気の無効電力特性成分に関連した、前記配電網に流れる電力の無効電力特性を前記電力装置にて検出するステップと、
    前記検出された無効電力特性の値を調整するように、前記電力装置による前記配電網に対する無効電力の寄与を、前記検出された無効電力特性に基づいて制御するステップと、
    を含む方法。
  22. 前記検出された無効電力特性の値を決定するステップと、
    前記決定された値を所定の値と比較するステップと、
    前記検出された値と前記所定の値との間の差を減ずるように前記無効電力寄与を制御するステップと、
    を含む、請求項21に記載の方法。
  23. 前記無効電力特性は、前記配電網に流れる電気の電圧と電流との間の位相差に関連している、請求項22に記載の方法。
  24. 前記検出された無効電力成分が前記所定の値よりより誘導性であるか、又は前記検出された無効電力成分が前記所定の値よりより容量性であるか、を前記検出された無効電力特性に基づいて決定するステップと、
    前記無効電力成分が前記所定の値よりより誘導性であると決定された場合において、前記配電網に対して容量性無効電力を寄与させるように前記電力装置を制御するステップと、
    前記検出された無効電力成分が前記所定の値よりより容量性であると決定される場合において、前記配電網に対して誘導性無効電力を寄与させるように前記電力装置を制御するステップと、
    を含む、請求項23に記載の方法。
  25. 前記無効電力特性の変化を検出するステップと、
    前記無効電力成分の値がしきい値を横切る遷移が検出されたことに応答して、前記電力装置の前記無効電力寄与を変えるステップと、
    を含む、請求項21〜24のいずれか1項に記載の方法。
  26. 乱数値発生プロセスに従って前記しきい値を決定するステップを含む、請求項25に記載の方法。
  27. 前記検出された無効電力特性の値が第1のしきい値より小さな値から前記第1のしきい値より大きな値へと変化したことに応答して、前記電力装置により前記配電網に対して寄与させられる前記無効電力を、第1の所定値から第2の所定値へと変化させるステップと、
    前記無効電力特性の値が、前記第1のしきい値より大きな大きさを有する第2のしきい値より大きな値から前記第2のしきい値より小さな値へと変化したことに応答して、前記電力装置により前記配電網に対して寄与させられる前記無効電力を前記第2の所定値から前記第1の所定値へと変化させるステップと、
    を含む、請求項25又は26に記載の方法。
  28. 前記無効電力特性における前記変化を検出後、所定時間期間の経過に応答して、前記電力装置による前記配電網に対する前記無効電力寄与を変化させるステップを含む、請求項25〜27のいずれか1項に記載の方法。
  29. 乱数値発生プロセスに従って前記時間期間の値を決定するステップを含む、請求項28に記載の方法。
JP2013511665A 2010-05-25 2011-05-24 無効電力管理 Pending JP2013531961A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1008685.8 2010-05-25
GB1008685A GB2480620A (en) 2010-05-25 2010-05-25 Reactive Power Management
GB1013987.1A GB2480705B (en) 2010-05-25 2010-08-20 Reactive power management
GB1013987.1 2010-08-20
PCT/EP2011/058510 WO2011147852A2 (en) 2010-05-25 2011-05-24 Reactive power management

Publications (1)

Publication Number Publication Date
JP2013531961A true JP2013531961A (ja) 2013-08-08

Family

ID=42341253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013511665A Pending JP2013531961A (ja) 2010-05-25 2011-05-24 無効電力管理

Country Status (9)

Country Link
US (2) US8749207B2 (ja)
EP (1) EP2577832B1 (ja)
JP (1) JP2013531961A (ja)
KR (1) KR101797262B1 (ja)
CN (1) CN103038969B (ja)
ES (1) ES2693295T3 (ja)
GB (2) GB2480620A (ja)
SG (1) SG185099A1 (ja)
WO (1) WO2011147852A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536960A (ja) * 2013-11-06 2016-11-24 リアクティブ テクノロジーズ リミテッドReactive Technologies Limited グリッド周波数応答
JP2017536799A (ja) * 2014-09-08 2017-12-07 イー・ギア・エルエルシー グリッドに結合された実時間適応分散間欠電力
JP7399124B2 (ja) 2021-01-05 2023-12-15 東芝三菱電機産業システム株式会社 自励式無効電力補償装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480620A (en) * 2010-05-25 2011-11-30 Energy2Trade Oy Reactive Power Management
CN103155352B (zh) * 2010-10-14 2016-10-19 皇家飞利浦电子股份有限公司 工作状态确定装置
CN203670098U (zh) * 2011-02-16 2014-06-25 株式会社安川电机 风力发电用电力转换装置、风力发电装置以及风场
US20130076131A1 (en) * 2011-04-08 2013-03-28 Panasonic Corporation Distributed power generation system and operation method thereof
US10541533B2 (en) 2011-09-16 2020-01-21 Varentec, Inc. Systems and methods for edge of network voltage control of a power grid
US9014867B2 (en) 2011-09-16 2015-04-21 Varentec, Inc. Systems and methods for edge of network voltage control of a power grid
EP2788832B1 (en) * 2011-12-06 2018-09-05 Varentec, Inc. Systems and methods for switch-controlled var sources coupled to a power grid
WO2013106906A1 (en) * 2012-01-17 2013-07-25 Ecamion Inc. A control, protection and power management system for an energy storage system
US9304522B2 (en) 2012-04-19 2016-04-05 Varentec, Inc. Systems and methods for dynamic AC line voltage regulation with energy saving tracking
AU2012378295B2 (en) 2012-04-25 2017-04-13 Schneider Electric It Corporation Current monitoring device
EP2939034B1 (en) * 2012-12-27 2019-05-29 Schneider Electric USA, Inc. Power meter with current and phase sensor
US10135247B2 (en) 2013-10-17 2018-11-20 General Electric Company Methods and systems for integrated Volt/VAr control in electric network
US9973036B2 (en) 2013-12-31 2018-05-15 Schneider Electric It Corporation Automatic sub-millisecond clock synchronization
EP3105601A4 (en) * 2014-02-14 2017-09-27 The Powerwise Group, Inc. Meter/voltage regulator with volt-ampere reactive control positioned at customer site
KR101590698B1 (ko) * 2014-03-31 2016-02-01 엘지전자 주식회사 전원 판단 장치
US10042374B2 (en) * 2014-06-13 2018-08-07 Siemens Gamesa Renewable Energy A/S Method and apparatus for determining a weakened grid condition and controlling a power plant in a manner appropriate to the grid condition
CN104410078B (zh) * 2014-10-29 2016-08-17 国网山东省电力公司潍坊供电公司 基于场景削减的配电网抗负荷波动的无功功率控制方法
SG10201502972VA (en) * 2015-04-15 2016-11-29 Sun Electric Pte Ltd Method and system for operating a plurality of photovoltaic (pv) generating facilities connected to an electrical power grid network
CN104836240B (zh) * 2015-04-27 2017-06-20 国家电网公司 一种基于电网固有结构特性的配电网最优无功补偿方法
WO2016179411A1 (en) * 2015-05-05 2016-11-10 Gridco, Inc. Caution mode controller and method thereof for reactive power devices
US10270253B2 (en) * 2015-05-14 2019-04-23 Varentec, Inc. System and method for regulating the reactive power flow of one or more inverters coupled to an electrical grid
GB201601472D0 (en) * 2016-01-26 2016-03-09 Alstom Grid Uk Ltd Oscillations in electrical power networks
US9929665B2 (en) 2016-04-20 2018-03-27 International Business Machines Corporation Remotely controllable modular power control device for power generation
CN105896561B (zh) * 2016-05-24 2018-05-01 北京交通大学 利用电动汽车充电机对配电网进行实时无功补偿的方法
KR20180004581A (ko) 2016-07-04 2018-01-12 엘에스산전 주식회사 무효 전력 보상 시스템의 모니터링 장치 및 그 방법
WO2018009837A1 (en) * 2016-07-07 2018-01-11 University Of Hawai'i Dynamic reactive compensation
JP6731325B2 (ja) * 2016-10-12 2020-07-29 日立グローバルライフソリューションズ株式会社 電力変換装置およびこれを用いたシステム
CN108321834B (zh) * 2017-01-16 2020-03-06 浙江昱能科技有限公司 一种并网逆变器的控制方法及控制器
US10518662B2 (en) 2017-06-22 2019-12-31 Thermo King Corporation Method and system for power management using a power converter in transport
CN109390953A (zh) * 2018-11-20 2019-02-26 国电南瑞科技股份有限公司 含分布式电源和电动汽车的低压配电网无功电压协调控制方法和系统
CN113394787A (zh) * 2021-06-08 2021-09-14 国网浙江省电力有限公司经济技术研究院 一种考虑热电耦合特性的电力系统概率最优潮流计算方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156320A (ja) * 1984-12-28 1986-07-16 Toshiba Corp 静止形無効電力補償装置
JPS6343530A (ja) * 1986-08-07 1988-02-24 三菱電機株式会社 電源装置
JPH09163605A (ja) * 1995-11-29 1997-06-20 Toyo Electric Mfg Co Ltd 電力系統総合補償装置
JPH11289668A (ja) * 1998-04-03 1999-10-19 Tokyo Gas Co Ltd 無効電力制御装置および無効電力制御方法
JP2000232736A (ja) * 1999-02-12 2000-08-22 Tdk Corp 連系分散型発電システム
JP2000358329A (ja) * 1999-06-14 2000-12-26 Fuji Electric Co Ltd 燃料電池発電装置
JP2002300726A (ja) * 2001-03-30 2002-10-11 Tokyo Gas Co Ltd 電力供給システムおよび無効電力供給方法および自家発電設備解列方法ならびに無効電力供給指令装置
JP2009254166A (ja) * 2008-04-08 2009-10-29 Tokyo Electric Power Co Inc:The 配電線電圧調整方法及び装置
JP2009254167A (ja) * 2008-04-08 2009-10-29 Tokyo Electric Power Co Inc:The 配電線電圧調整方法及び装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052648A (en) 1976-07-19 1977-10-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Power factor control system for ac induction motors
US4355274A (en) 1980-09-08 1982-10-19 Bourbeau Frank J Load responsive control system for constant speed induction motor
US4356440A (en) * 1980-09-18 1982-10-26 The Charles Stark Draper Laboratory, Inc. Power factor correction system
GB2085204B (en) * 1980-10-06 1984-03-07 Gec Elliott Automation Ltd Motor control system
US5043857A (en) * 1990-04-11 1991-08-27 Sundstrand Corporation Real-time control of PWM inverters by pattern development from stored constants
JP2861313B2 (ja) * 1990-07-20 1999-02-24 富士電機株式会社 単独・連系運転用インバータの制御回路
US5041959A (en) * 1990-08-14 1991-08-20 General Electric Company Control system for a current source converter supplying an AC bus
US5083039B1 (en) * 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
AU3148893A (en) * 1991-11-27 1993-06-28 U.S. Windpower, Inc. Variable speed wind turbine with reduced power fluctuation and a static var mode of operation
US5369353A (en) * 1992-12-08 1994-11-29 Kenetech Windpower, Inc. Controlled electrical energy storage apparatus for utility grids
JPH06343530A (ja) 1993-06-03 1994-12-20 Nissan Motor Co Ltd ヘッドレストステー支持構造
JP3311214B2 (ja) * 1995-09-05 2002-08-05 東京電力株式会社 電力変換装置の制御装置
DE19623540C1 (de) * 1996-06-13 1997-12-18 Asea Brown Boveri Verfahren zur Stabilisierung eines Wechselstromnetzes gegen Blindleistungsschwankungen und Blindleistungskompensationseinrichtung
US6525490B1 (en) * 2000-10-02 2003-02-25 Patricia Ann Bailey Power saving circuitry
US7280377B2 (en) * 2004-08-16 2007-10-09 Caterpillar Inc. Power converter in a utility interactive system
TWI236792B (en) * 2004-08-30 2005-07-21 Uis Abler Electronics Co Ltd Active equipment for harmonic suppression
EP2013393B1 (en) 2006-04-27 2012-06-06 Libeltex Method for producing polymeric fiber insulation batts for residential and commercial construction applications
US7768221B2 (en) 2006-06-02 2010-08-03 Power Efficiency Corporation Method, system, and apparatus for controlling an electric motor
US7844370B2 (en) * 2006-08-10 2010-11-30 Gridpoint, Inc. Scheduling and control in a power aggregation system for distributed electric resources
DE102007018888A1 (de) * 2007-04-19 2008-10-30 Repower Systems Ag Windenergieanlage mit Blindleistungsvorgabe
US7872441B2 (en) * 2007-06-29 2011-01-18 GM Global Technology Operations LLC Systems and methods for operating Z-source inverter inductors in a continuous current mode
EP2017936B1 (en) * 2007-07-16 2010-10-20 Gamesa Innovation & Technology, S.L. Wind power system and method of operating it
CA2715340C (en) 2008-02-12 2015-08-04 Enphase Energy, Inc. Method and apparatus for distributed var compensation
US8406019B2 (en) * 2008-09-15 2013-03-26 General Electric Company Reactive power compensation in solar power system
US8068352B2 (en) * 2008-12-19 2011-11-29 Caterpillar Inc. Power inverter control for grid-tie transition
GB2480620A (en) 2010-05-25 2011-11-30 Energy2Trade Oy Reactive Power Management

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156320A (ja) * 1984-12-28 1986-07-16 Toshiba Corp 静止形無効電力補償装置
JPS6343530A (ja) * 1986-08-07 1988-02-24 三菱電機株式会社 電源装置
JPH09163605A (ja) * 1995-11-29 1997-06-20 Toyo Electric Mfg Co Ltd 電力系統総合補償装置
JPH11289668A (ja) * 1998-04-03 1999-10-19 Tokyo Gas Co Ltd 無効電力制御装置および無効電力制御方法
JP2000232736A (ja) * 1999-02-12 2000-08-22 Tdk Corp 連系分散型発電システム
JP2000358329A (ja) * 1999-06-14 2000-12-26 Fuji Electric Co Ltd 燃料電池発電装置
JP2002300726A (ja) * 2001-03-30 2002-10-11 Tokyo Gas Co Ltd 電力供給システムおよび無効電力供給方法および自家発電設備解列方法ならびに無効電力供給指令装置
JP2009254166A (ja) * 2008-04-08 2009-10-29 Tokyo Electric Power Co Inc:The 配電線電圧調整方法及び装置
JP2009254167A (ja) * 2008-04-08 2009-10-29 Tokyo Electric Power Co Inc:The 配電線電圧調整方法及び装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536960A (ja) * 2013-11-06 2016-11-24 リアクティブ テクノロジーズ リミテッドReactive Technologies Limited グリッド周波数応答
JP2017536799A (ja) * 2014-09-08 2017-12-07 イー・ギア・エルエルシー グリッドに結合された実時間適応分散間欠電力
JP7399124B2 (ja) 2021-01-05 2023-12-15 東芝三菱電機産業システム株式会社 自励式無効電力補償装置

Also Published As

Publication number Publication date
EP2577832B1 (en) 2018-09-05
CN103038969A (zh) 2013-04-10
SG185099A1 (en) 2012-12-28
GB201008685D0 (en) 2010-07-07
WO2011147852A2 (en) 2011-12-01
WO2011147852A3 (en) 2012-03-29
KR101797262B1 (ko) 2017-11-13
US9385588B2 (en) 2016-07-05
ES2693295T3 (es) 2018-12-10
GB2480705A (en) 2011-11-30
US20140232357A1 (en) 2014-08-21
GB201013987D0 (en) 2010-10-06
EP2577832A2 (en) 2013-04-10
GB2480620A (en) 2011-11-30
US20110285362A1 (en) 2011-11-24
US8749207B2 (en) 2014-06-10
GB2480705B (en) 2013-04-17
KR20130117657A (ko) 2013-10-28
CN103038969B (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
US9385588B2 (en) Reactive power management
US11273718B2 (en) Electric vehicle battery charger
JP7428638B2 (ja) 電気自動車用バッテリ充電器
US9866144B2 (en) Three port converter with dual independent maximum power point tracking and dual operating modes
CN110718898B (zh) 鲁棒的逆变器拓扑结构
CN114846716A (zh) 控制能量存储器的能量模块的接通时间
CN110718902A (zh) 地面故障最小化
US20220231509A1 (en) Vehicle-grid-home power interface
CN111512532A (zh) 三个电桥支路的至少一个转换器模块的变换器,用于运行这种变换器的方法和这种变换器的应用
WO2019071331A1 (en) BATTERY CHARGER FOR ELECTRIC VEHICLE
WO2016133467A1 (en) A photovoltaic system for controling single phase photovoltaic sources for optimal self-consumption
Huang et al. Implementation and evaluation of an IPT battery charging system in assisting grid frequency stabilisation through Dynamic Demand Control
JP6343434B2 (ja) 電力変換装置及び電力変換方法
CN112421632B (zh) 一种非线性负荷电网谐波补偿控制方法
HASSAN et al. Power Compensation And Voltage Frequency Flicker Control Of Solar Using VF Droop Control Technique
KR20050052037A (ko) 전압 강하 전용 전압제어장치 및 방법
WO2015198057A1 (en) Power control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160119