JP2013517526A - 振動電極付多電極システム - Google Patents

振動電極付多電極システム Download PDF

Info

Publication number
JP2013517526A
JP2013517526A JP2012548927A JP2012548927A JP2013517526A JP 2013517526 A JP2013517526 A JP 2013517526A JP 2012548927 A JP2012548927 A JP 2012548927A JP 2012548927 A JP2012548927 A JP 2012548927A JP 2013517526 A JP2013517526 A JP 2013517526A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
electrode system
fiber
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012548927A
Other languages
English (en)
Other versions
JP5822846B2 (ja
Inventor
ロバート ジー ウィレイ
ブレット クラーク
ジャレド シー メイツェラー
クライド ジェイ トロウトマン
Original Assignee
3エスエーイー テクノロジーズ インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3エスエーイー テクノロジーズ インク filed Critical 3エスエーイー テクノロジーズ インク
Publication of JP2013517526A publication Critical patent/JP2013517526A/ja
Application granted granted Critical
Publication of JP5822846B2 publication Critical patent/JP5822846B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/245Removing protective coverings of light guides before coupling

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma Technology (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

1本又は複数本の光ファイバを保持するファイバホルダ、光ファイバを熱する加熱場が生じるよう配置された複数個の電極、並びに電極のうち1個又は複数個を振動させる振動機構を備える多電極システムを提案する。その電極は完全真空中や不完全真空中に配置可能である。本システムは各種ファイバの処理、例えばストリッピング、スプライシング、アニーリング、テーパリング等に使用可能である。対応するファイバ処理方法も提案する。

Description

本願は、いずれも審査に継続中で本願出願人を譲受人とする2007年10月2日付米国暫定特許出願第60/976859号(名称:「真空中多電極システム」(Multi-Electrode System In A Vacuum))、2007年8月3日付米国暫定特許出願第60/953803号(名称:「ファイバスプライシング及び改質ファイバストリッピング向けの三相アーク」(Three-phase Arc for Fiber Splicing and Improved Fiber Stripping))、並びに2007年2月7日付米国暫定特許出願第60/888691号(名称:「大径ファイバスプライシング及び改質ファイバストリッピング向けの三相アーク」(Three-Phase Arc for Large Diameter Fiber Splicing and Improved Fiber Stripping))に基づき米国特許法第119条(e)の規定による優先権を主張する2008年2月7日付米国特許出願第12/027394号(名称:「多電極システム」(Multi-Electrode System))の一部継続出願であるので、この参照を以てそれらの出願の全内容を本願に繰り入れることとする。
本発明は光ファイバ、特にそのスプライシング及びストリッピングシステム及び方法に関する。
光ファイバ用の熔融スプライサでは、ファイバを熱して互いに熔着させるのに放電が使用されることが多い。業界ではこの放電のことを「アーク」と呼んでいる。ただ、一説によれば、現用の電流レベルで生じるのは真正なアーク放電ではなく、高温プラズマ場をもたらすコロナ放電であるとのことである。
現状では、これと同様のアークが、光ファイバのストリッピング(被覆除去)、機械的なストリッピングを経たファイバのクリーニング(デブリ除去)等にも使用されている。その際には、図1Aに示すように、1〜10mm程度の間隔で配置された一対の電極102,104の鋭端間にアーク106を発生させ、そのアーク106でファイバ110を加熱するスプライサを使用する。複数本のファイバを一度にスプライシング(接合)する際や、直径が大きめのファイバ130を扱う際には、図1Bに示すように電極間隔を広めにしてアーク126を発生させる必要がある。スプライサ内光学系を設計する際には、光ファイバの通り道に電極122,124がはみ出さないよう電極間隔即ち「ギャップ」を広めにすることも必要である。
電極としては、タングステン製のものが広く使用されているが、タングステンとセリウム又はトリウムとの合金製のものが使用される場合もある。これは、それらの元素を添加すると、電極の熱電子仕事関数が下がって電子が電極表面から去りやすくなり、放電開始電圧が下がるからである。3SAE Technology, Inc.が開発したイオン補強低温プラズマ技術等に倣い、外部イオン源でアーク放電開始を支援する構成を採ることも可能である。外部イオン源を使用せず平凡な鋼製電極で好適なアークを発生させることも可能ではあるが、アーク特性の再現性に乏しくなるのが普通である。
電極間に印加される電圧は、電極端間の間隔が狭めならDCとされることが多く、10mm以上ならACとされることが多い。放電を起こすのに必要な電圧(放電開始電圧)はパッシェンの法則、即ち電極間ギャップの絶縁破壊電圧をギャップ内気体の種類(通常は空気)、圧力、温度、電極形状、電極素材及びギャップ幅に関連付ける複雑且つ非線形な関数で与えられる。スプライサやストリッパでは、パッシェンの法則を適用するのに必要なこれらのパラメタがほとんどわからないので、そのアークについての定量的且つ理論的な解析はあまり行われていない。実験的に求めた場合、放電開始電圧は5〜30kVの範囲内になるのが普通である。
アーク放電が始まった後は、ギャップ内プラズマの持続的イオン化を放電開始電圧よりも低い電圧で実行することができる。ただ、その電圧を電流で除して得られる回路定数、即ちプラズマのインピーダンスを事前に知るのは難しい。しかも、アーク式スプライサでは、周波数や電流によっては負インピーダンスと覚しき状況になる。これらの性質は、アーク式スプライサの定電圧動作を実現する上で大きな妨げとなる。そのため、大抵のアーク式スプライサで平均電流一定化制御が採用されている。ギャップに注入される電力の計測値に基づき、放電を受けるファイバの温度を割合正確に推定できるからである。
特に重宝なのは、アークを通じ光ファイバに供給されるエネルギを調節すること、ひいてはファイバの種類に応じた適正加熱や条件差補償が可能なことである。これは、持続中のアークに供給される電流を上述した制御手法に従い変化させることや、アークをパルス的にオンオフさせることで達成することができる。
米国特許第4049414号明細書 米国特許第5018824号明細書 米国特許第3761764号明細書 米国特許出願公開第2005/0223748号明細書 米国特許第6742939号明細書(B2) 米国特許第6886998号明細書(B2) 米国特許第5560760号明細書 米国特許第3960531号明細書 米国特許第2817695号明細書 米国特許第7670065号明細書 米国特許出願公開第2007/0031098号明細書 米国特許出願公開第2006/0263016号明細書 米国特許出願公開第2002/0176673号明細書 米国特許出願公開第2008/0187273号明細書 特開平5−70166号公報 米国特許出願公開第2010/0226613号明細書 欧州特許第0262303号明細書
Halfpenny D.R., Kane D.M., "Electric-arc cleaning of optical-fiber endfaces", Applied Optics, 1996, Vol.35 Issue 22, pages 4516-4517 Furukawa Electric, "Fusion Splicers and Tools", FITEL, Volume 3, October 2009, pp.1-32
ただ、大抵の光ファイバが図1Aの如く80〜125μm径であるところ、大出力ファイバレーザ等の分野では、その被覆抜き直径が1mm以上のファイバが必要とされる。直径が200μm超のファイバは通常の熔融スプライサに収まらないので、大径光ファイバ(LDF)向けに、受容最大径や構成上の特徴が異なる専用のスプライサが開発されている。
LDFのうち太めのもの、例えばその直径が600μm超のものについては、一般に、アーク式スプライサではなく巻線抵抗加熱式又はレーザ加熱式スプライサが使用されている。それは、ファイバ素材の誘電性によってアークのファイバ沿い湾曲が引き起こされるため、太めのファイバではその全周がプラズマ場内に包絡されることとならないからである。これは、ファイバの不均一加熱、ひいてはスプライシング品質の不足につながる。
アークを用い光ファイバにストリッピングを施す装置でも、不均一加熱の現象が問題になることがある。例えば、プラズマ場のすぐ外側(上方又は下方)にファイバを配置し、アークの作用で被覆を分解させる一般的なアーク式ストリッパでは、その仕組み上、ファイバの片側が他側に比べ高温になってしまう。多々ある被覆のなかにはこのことが問題になるものもある。例えば、うまく除去できる温度窓が狭い被覆を除去するには、熱分布をより均一にする必要がある。
本願で提案するのは、複数個の電極を用いアークを発生させる多電極システム及び方法である。発生したアークは、1本又は複数本の光ファイバに対する熱処理、例えばスプライシング、アニーリング、拡散、ストリッピング、テーパリング、アブレーション又はその組合せに使用可能であるほか、光ファイバ間カップリング等、他の用途及び状況でも使用可能である。また、こうしたシステム乃至方法であれば、複数個ある電極のうち1個又は複数個を振動させることで、上述の諸機能を実行するのに十分なパワーを保ちつつプラズマ場を拡幅することができる。
本発明に係る多電極システムは、大気条件下又は完全乃至不完全真空中で稼働する三相システム、特にその電極のうち1個又は複数個が振動し又は分離されている状態で稼働するシステムとして構成することができる。こうしたシステム乃至方法には幾つかの利点がある。まず、本発明のシステム及び方法は完全乃至不完全真空中で使用できるので、対流の発生を妨げ、等温域がより安定なプラズマ場を得ることができる。大気圧下で使用される従来型のシステム及び方法と違い、プラズマに発する熱で外乱性の上昇気流が生じないため、プラズマが攪乱されることも、プラズマの熱バランスが変化することも、加熱対象ファイバの断面位置がずれることもない。
また、本発明に係るシステム及び方法では、完全乃至不完全真空中で使用することで対流の発生を妨げ、等温域がより広いプラズマ場を得ることができる。大気圧下で使用されプラズマに発する熱が立ち上る従来型のシステム及び方法と違い、外乱性の上昇気流が生じて電極間イオン飛跡が乱されることがない。その飛跡乱れによる気中プラズマの不安定化や消沈は、完全乃至不完全真空中では全く生じない。絶縁体である空気が欠乏する分、完全乃至不完全真空中では電極間誘電体量が激減するため、空気中に比べ極端に低い電圧にてアーク放電を開始させ維持することができる。
本発明に係るシステム及び方法では、更に、完全乃至不完全真空中で使用することで電極酸化を妨げることができる。即ち、プラズマ発生中に存在する酸素の量が少ないので、電極劣化の進行がかなり低速化される。
そして、本発明に係るシステム及び方法では、完全乃至不完全真空中で使用することで燃焼を妨げることができる。多くのファイバで被覆として使用されているアクリラート等の素材は大気圧下の空気中で燃焼するので、標準的なアークに曝されると燃えてしまうことがある。酸素がない完全乃至不完全真空中では、同じプロセスを実行しても被覆が燃焼しないため、バースト技術と同様のプロセスで被覆を熱的に切断(アブレーション)することができる。
本発明の一実施形態に係る多電極システムは、1本又は複数本の光ファイバを保持するファイバホルダと、光ファイバを熱する加熱場が生じるよう配置された複数個の電極と、電極のうち1個又は複数個を振動させる振動機構と、を備える。
本システムは、約125μm以上の直径を有する大径光ファイバを扱う構成にすることができる。
本システムは、複数本の光ファイバを扱う構成にすることができる。
本システムは、振動機構の働きで加熱場の幅がガウス熱プロファイルの半値幅まで拡がる構成にすることができる。
本システムは、複数個の電極が振動する構成にすることができる。
本システムは、全ての電極が振動する構成にすることができる。
本システムは、振動機構によって引き起こされる電極振動を制御するコントローラを備える構成にすることができる。
本システムは、その振動機構が1個又は複数個の圧電アクチュエータを有する構成にすることができる。
本システムは、その振動機構の振動周波数が0Hz超約10Hz以下の構成にすることができる。
本システムは、その電極が2個の構成にすることができる。
本システムは、その電極が3個の構成にすることができる。
本システムは、その電極が4個の構成にすることができる。
本システムは、隣り合う電極間にプラズマアークを発生させることで、加熱場として加熱プラズマ場を発生させる構成にすることができる。
本システムは、生じる加熱プラズマ場が略均一な構成にすることができる。
本システムは、生じる加熱プラズマ場の温度が約65℃以上の構成にすることができる。
本システムは、生じる加熱プラズマ場でファイバ表面温度を約1600℃以上にする構成にすることができる。
本システムは、生じる加熱プラズマ場でファイバ表面温度を約3000℃以上にする構成にすることができる。
本システムは、生じる加熱プラズマ場でファイバ表面温度を約25〜900℃即ち光ファイバのストリッピングに適した範囲内にする構成にすることができる。
本システムは、その電極が完全乃至不完全真空中に位置する構成にすることができる。
本システムは、その電極がゲージ圧で22〜24インチ水銀、絶対圧で200〜150トールの圧力下に位置する構成にすることができる(1インチ=約2.5×10-2m)。
本システムは、その電極が酸素富化不完全真空中に位置する構成にすることができる。
本システムは、その電極のなかに、他の電極との間隔を調整可能なものがある構成にすることができる。
本発明の他の実施形態に係る多電極システムは、1本又は複数本の光ファイバを保持するファイバホルダと、光ファイバを熱する略均一な加熱プラズマ場が生じるよう配置された複数個の電極と、電極のうち1個又は複数個を振動させる振動機構と、を備え、振動機構の働きで略均一な加熱プラズマ場の幅がガウス熱プロファイルの半値幅まで拡がる構成を採る。
本発明の更に他の実施形態に係る方法は、1本又は複数本の光ファイバを扱える加熱場を発生させる方法であって、ファイバホルダに光ファイバを保持させるステップと、複数個の電極を用い光ファイバ加熱用の加熱場を発生させるステップと、電極のうち1個又は複数個を振動させるステップと、を有する。
本方法は、約125μm以上の直径を有する大径光ファイバを扱う形態にすることができる。
本方法は、複数本の光ファイバを扱う形態にすることができる。
本方法は、電極の振動で加熱場の幅をガウス熱プロファイルの半値幅まで拡げる形態にすることができる。
本方法は、加熱場として略均一な加熱プラズマ場を発生させる形態にすることができる。
本方法は、用いる電極を完全乃至不完全真空中に配置する形態にすることができる。
本方法は、用いる電極が2個の形態にすることができる。
本方法は、用いる電極が3個の形態にすることができる。
本方法は、用いる電極が4個の形態にすることができる。
本方法は、複数個の電極を振動させる形態にすることができる。
本方法は、全ての電極を振動させる形態にすることができる。
光ファイバのスプライシングに使用可能な従来型の二電極システムに小径光ファイバを併記した図である。 同システムに大径光ファイバを併記した図である。 本発明の一実施形態に係る多電極システムを示す図である。 図2Aに示したシステムで使用可能な電極支持器及びファイバ支持器を示すブロック図である。 各電極に振動電極を付した二電極システムの一例を示す図である。 図2A及び図2Bに示したシステムにおける三電極間の正弦波位相差を示すグラフである。 変圧器一次巻線群に供給すると図3に示した結果が得られる好適な電流波形を示すグラフである。 図2A及び図2Bに示した三電極システムを駆動する回路の一例を示す図である。 本発明の他の実施形態に係る多電極システムを示す図である。 図6Aに示したシステムの側面図である。 図6A及び図6Bに示した電極や図2A及び図2Bに示した電極を振動させることで生じるプラズマ場のガウス熱プロファイルを示すグラフである。 図6A〜図6Cに示した三電極システムを駆動する回路の一例を示す図である。 図7に示したマイクロコントローラユニットで実行される実時間制御アルゴリズム800の一例を示すフローチャートである。 本発明の更に他の実施形態に係る三電極システムを示す底面図である。 同システムの側面図である。 本発明の更に他の実施形態に係る三電極システムを示す底面図である。 同システムの側面図である。 本発明の更に他の実施形態に係る四電極システムを示す図である。 本発明の更に他の実施形態に係る四電極システムを示す図である。 本発明の更に他の実施形態に係る四電極システムを示す図である。 本発明の更に他の実施形態に係る四電極システムを示す図である。 本発明の更に他の実施形態に係る四電極システムを示す図である。 本発明の更に他の実施形態に係る四電極システムを示す図である。 本発明の更に他の実施形態に係る四電極システムを示す図である。 本発明の更に他の実施形態に係る四電極システムを示す図である。
以下、図面を参照しつつ本発明の好適な実施形態について例示説明する。図中、同一又は類似部材には同様の参照符号を付してある。
なお、以下の説明では、「第1」「第2」等の語がその修飾先の語を互いに区別する趣旨で使用されており、修飾先の語に何かの条件を課す趣旨で使用されてはいないので、その点に留意されたい。例えば、それらの語を冠することで要素同士が区別されはしても、それらの要素間の順序が限定されるわけではない。仮に、名称の上で「第1」要素と「第2」要素を入れ替えたとしても、本発明の技術的範囲から逸脱することはない。また、以下の説明では、「或いは」「又は」「乃至」等の語が、その前後に列記されている事物のうち任意の1個又は任意の複数個の組合せを包括する趣旨で使用されているので、その点にも留意されたい。
以下の説明では、ある要素が他の要素に「接触」「接続」「結合」しているとの表現が、両要素が直に接触等している場合も他の要素を介し接触等している場合も包括する趣旨で使用されている。他の要素を介さず接触等している場合には、ある要素が他の要素に「直に」又は「直接」接触、接続乃至結合しているとの表現が使用されている。要素同士の関係を表す他の表現、例えば「介在」「隣接」等の表現も同じ要領で使用されている。
以下の説明では、総じて、本発明の要旨を限定することではなくその具体的な実施形態を説明することを目的とした用語法が採用されている。例えば、「複数」と明示又は暗示されている場合を除き、単数でも複数でもよいと解されたい。そして、以下の説明では、「備える」「有する」「含む」等の語が、その語で参照される特徴、ステップ、動作、要素、部材等が存在するという趣旨で使用されており、他の特徴、ステップ、動作、要素、部材等が存在しないという趣旨で使用されているわけではないので、その点に留意されたい。
まず、本発明の諸実施形態に係る多電極システムによれば、光ファイバ周りでの熱分布を概ね均一にすることができる。本件技術分野で習熟を積まれた方々(いわゆる当業者)にはご理解頂けるように、本願記載の技術によれば、ファイバのスプライシングやストリッピングに使用可能なアークを発生させることができる。こうした多電極システムは他の場面や用途、例えばアニーリング、拡散、テーパリング、アブレーション等でも使用することができる。それ以外の用途及び状況、例えばファイバ間カップリングの形成にもこのシステム乃至方法を使用することができる。本願では、そうしたシステム乃至その組合せを総称して、多電極システム、ファイバ処理システム乃至多電極ファイバ処理システムと呼ぶことにする。
図2Aに、本発明の一実施形態に係る多電極システムとして、3個の電極202,204,206を備えその内側に光ファイバ210を1本又は複数本配置可能な三電極システム200を示す。この図では、「Y」字状に配置された電極202,204,206の内側にファイバ210の断面が示されている。即ち、ファイバ210は紙面及び電極配置に対し略直交する方向に延びている。また、ファイバ210は、電極202,204,206に囲まれるよう図示しないファイバホルダ、別称ファイバ支持器によって保持されている。完全乃至不完全真空中で使用する際には、必要に応じ、ファイバ210の一端を真空容器外に既知且つ相応の封止装置を介し引き出せばよい。そうしたファイバホルダは本件技術分野で既に知られている。
電極202,204,206は、例えば、図中破線220で示す完全乃至不完全真空中に配置される。ゲージ圧で22〜24インチ水銀、絶対圧で200〜150トールといった不完全真空中であれば、プラズマ温度を65℃程度まで下げることができる。真空度がより高ければ室温のプラズマも実現することができる。ファイバ被覆の種類によっては、酸素富化不完全真空中で400℃未満の低温プラズマを用いファイバをストリッピングすることで、このプロセスの性能を高めること、例えば質及び速度を向上させることができる。しかも、ファイバ被覆を浸食するプロセスであるので、熱分解によりファイバ被覆を除去するプロセスと異なり、ファイバの脆化や煤け(炭素残留)がストリッピング窓界面で生じることがない。
電極202,204,206を完全乃至不完全真空中に配置するにせよそれ以外に配置するにせよ、光ファイバ210が通るスプライシング対象領域を囲む正三角形の頂点に、3個ある電極202,204,206の鋭端が位置する構成であるので、ファイバ210が非常に均一な分布の加熱場で取り巻かれることとなる。従って、高周波例えば周波数=30kHzの三相AC電圧を用い3個の電極202,204,206を駆動することで、図2Aに示す如く、3本の独立したアーク212,214,216を発生させることができる。
光ファイバ210は、図示の通り、プラズマアーク212,214,216で形成され非常に均一な熱分布を呈する加熱プラズマ場218により完全に包囲されている。従って、本実施形態のシステム乃至方法によれば、その温度の均一性を高めつつ、ファイバ使用本数が3本未満のシステム乃至方法でのそれと同程度のファイバ表面温度を実現することができる。例えば、本実施形態のシステムで生じる場218は、ストリッピングに適した約25〜900℃のファイバ表面温度や、スプライシングに適した約1600℃以上のファイバ表面温度を実現するに足るものである。3000℃超の温度も実現可能である。ファイバ210の形態、被覆、周囲条件その他の関連パラメタによっては、その他のファイバ表面温度を場218で発生させる場合もあろう。
電極202,204,206の位置が光ファイバ210に対し近めの場合、そのファイバ210はプラズマ場218に直に露出される。逆に、遠めの場合は、ファイバ210がプラズマの輻射熱で加熱されるというストリッピング向け或いはクリーニング向けの状況が生じる。従って、本発明を実施するに当たっては、ファイバ210が大径か小径(標準径)か、処理内容がスプライシングかストリッピングか等に応じ、一通りずつ都合複数通りの設定を本システム200に準備するのが望ましい。本システム200を、電極202,204,206の相互距離をある位置範囲内で調整可能な構成にしてもよい。本システム200を、ファイバ径を検出して電極202,204,206の位置を自動調節する構成、例えば施したい処理の内容(スプライシング、アニーリング、拡散、ストリッピング、テーパリング、アブレーション、カップリング形成等)とファイバ径検出結果とに基づき自動位置調節を行う構成にしてもよい。これについては図2B等も参照されたい。
ファイバ被覆のなかには、プラズマアークに直に露出させた方が好適にストリッピングできるものもある。例えば、プラズマ場内の酸素イオンで酸化し切除されるタイプの被覆である。被覆表面をプラズマに直に露出させるには電極間隔を適宜設定すればよい。その他の点については、熱分解でストリッピングする方法と同様である。
電極202,204,206の配置は、スプライサ内光学系に備わるレンズ等、ファイバ近傍に存する諸物体の仕様に応じて左右されるので、図示の如く1個が下向き、2個が上向きの配置になる場合もあれば、その逆の配置になる場合もある。用途によっては、電極202,204,206の配置が水平面に対し平行になることや、不規則な配置間隔を呈することや、傾斜を呈することもある。
本実施形態では、電極202,204,206が環270、別称電極支持器上に載置乃至装着されている。その環270は振動機構272に連結、装着乃至載置されている。即ち、機構272で環270を振動させると電極202,204,206もそれにつれ振動する構成となっている。また、本実施形態ではその環270に入口が設けられているので、電極202,204,206で囲まれた空間内に光ファイバ210を容易に装填することができる。
電極202,204,206を振動させることで生じる諸利点のうち、最たるものはプラズマ場の拡幅である。最近行った実験では、電極202,204,206を振動させたときに、光ファイバ210の軸に沿いガウス熱プロファイルが発生した。なお、この振動が採りうる形態については、図6A〜図6Cを参照してより詳細に説明する。
従来型二電極システムで使用されていた種々のアーク性能改善・制御技術、例えばパルス幅変調、イオン注入、フィードバック制御等の技術も、本発明の諸実施形態に適用することができる。シールド、合焦スリーブその他、アーク分布に変化を及ぼす部材に電極を嵌め合わせるようにしてもよい。プラズマ場近傍に誘電体を挿入する従来型のアークベンディング技術も使用することができる。
本発明は、更に、4個以上の電極を有するシステムに拡張することもできる。
図2Bに、図2Aに示したシステムで使用可能な電極支持器及びファイバ支持器の一例を示す。電極支持器たる環270は、スプライシング、アニーリング、拡散、ストリッピング、テーパリング、アブレーション、光ファイバ間カップリング形成等の対象となる1本又は複数本の光ファイバ210が占める軸に対し、電極202,204,206の向きを所要の向きに保持するのに使用されている。環270は図2Aに示した振動機構272で随時振動させうる構成であり、電極202,204,206のうち1個又は複数個を振動させる電極アクチュエータ274を備えている。ファイバ210は、ファイバ支持器234の働きで、電極202,204,206に対し正しい位置を占めるように保持されている。アクチュエータ274は、ファイバ210に対する電極202,204,206の距離を調節可能な構成にすることもできる。例えば、ファイバ210に対する電極202,204,206の距離がファイバ径に応じ自動調節される構成にすること、またコントローラ230に接続された圧電アクチュエータをアクチュエータ274として用いそうした調節を実行することが可能である。コントローラ230例えばマイクロプロセッサに付随するメモリ上に、ファイバ径や実行すべき処理の内容(スプライシング、アニーリング、拡散、ストリッピング、テーパリング、アブレーション、光ファイバ間カップリング形成等)に関連付けて、電極配置毎の所定設定やファイバ210からの距離を記憶させるのが望ましい。
図2Cに、本発明の一実施形態として、完全乃至不完全真空中に配置された二電極システムを示す。このような構成のシステムでも、配置先が真空であれば、本発明に係る効果を得ることができる。完全乃至不完全真空中では、略均一な熱分布を呈するプラズマ場を2個の電極で得られるからである。加えて、電極102,104のうち一方又は双方を対応する振動機構103,105で振動させることで、より幅広なプラズマ場を発生させることができる。振動機構103,105は、単一の機構とすることも、コントローラ230によって一体制御される2個の振動機構にすることも、個別に制御される2個の制御機構にすることもできる。
図3に、図2Aの如く三相アークが発生する際電極202,204,206に現れうる電圧の一例をグラフ300として示す。この例では基本周波数が約22kHz、ピークトゥピーク電圧が20kVとなっている。プロット312は電極202、プロット314は電極204、プロット316は電極206についてのものである。
この例では、プロット314,316に示す如く、時刻0μsにて電極204・206間にアークが発生する。時刻約6μsでは、プロット316,312に示す如く、電極206・202間空間へとそのアークがシフトしていく。時刻13μsでは、プロット312,314に示す如く、そのアークが電極202・204間に移動していく。以下同様に、アークが生じるのはその時点で電位差が最大になっている二電極間である。ただ、位相差の交番が迅速な分、光ファイバ及びそれを取り巻く空気の熱時定数に比べアークの発振周期が長めになることから、見かけ上は、アークの生成及びそれによる加熱がほぼ定常的に行われることとなる。
背景技術の欄に記した通り、電極に現れる電圧そのものを制御するのはかなり難しいことである。しかし、昇圧用変圧器の一次巻線に供給される電流を制御する、というずっと現実的な方法を図示例にも適用することができる。図4に、変圧器一次巻線群に供給される電流の好適波形例をグラフ400として示す。こうした波形の駆動電流であれば、大雑把には図3に示したものと対応関係のある電圧波形、ひいては可制御的な三相アークを発生させることができる。
変圧器一次巻線群を駆動する電流の波形としては、0°相、120°相及び240°相を占める都合三通りの波形が必要である。それらは、リングカウンタ等、周知のディジタル的又はアナログ的手段で発生させることができる。グラフ400中、プロット412は電極202、プロット414は電極204、プロット416は電極206についてのものである。
図5に、図2Aに示した三電極システムを駆動する回路500の一例構成を示す。この回路500では、6個のDフリップフロップD1〜D6で循環シフトレジスタが形成されている。短いスタートアップパルス502を印加しこの回路500を始動させると、まず3個ある電極202,204,206のうち電極202が正、電極204が負となり、その状態から様々な位相状態を巡る交番動作が始まる。この例ではクロック周波数が132kHz、基本周波数がその1/6となっているが、略均一な加熱プラズマ場を維持できるのであれば他の周波数を使用することもできる。バッファ510,512,514,516,518,520となるCD4050Bに代え図示しない電流制御回路を使用することもできる。
電圧の発生には3個の10CT:780型高圧変圧器522,524,526が使用されているが、共通コアへの捲回で形成された可調LC回路で所要電圧を発生させることもできる。この図では、3個ある変圧器522,524,526の二次巻線が共通の面に接地されているが、隣り合う電極間を二次巻線でつなぐΔ結線を採用してもよい。
その変圧器522,524,526は図中のMOSFET530,532,534,536,538,540によって駆動される。本実施形態の多電極システムでは、駆動トランジスタたるそれらMOSFET530,532,534,536,538,540での電力損失を抑えて効率を高めるため、正側駆動デバイス導通期間と負側駆動デバイス導通期間の重複を防ぐ不感帯機能が設けられている。この不感帯機能には、不感帯幅の調節等を通じアーク電力を調節する働きもある。不感帯機能には、更に、アークの発生個所が位相交番順に従い先の個所から次の個所へと移る際に瞬間的にアークを消沈させ、綺麗なアーク状態間遷移をもたらす働きもある。
こうした不感帯機能は、交番周期に比し1〜49%の幅を占め変圧器一次巻線に電流がほぼ流れない期間即ち不感帯が2個生ずるよう、電流波形を制御することで実現することができる。
三電極システムの他の実施形態としては、図2Aを参照して上述した三電極システムのそれとほぼ同一の特性を有するアークを、接地電極1個、通電電極2個のみで実現する実施形態を挙げることができる。
図6Aに、本発明の一実施形態に係る多電極システムとして、接地電極1個及び通電電極2個を備える三電極システム600を示す。完全乃至不完全真空620中にこれを配置した場合、図2Aを参照して上述したそれに対応する効果を得ることができる。この例でも、電極602,604,606の働きでアーク612,614,616ひいてはプラズマ場618が生じ、電極602,604,606から見て内側に位置する1本又は複数本の光ファイバ610にその場618が作用するからである。
アーク212,214,216を発生させるべく電極202,204,206それぞれが対応する電圧波形で駆動され、その電圧波形間に120°の位相間隔がある図2Aの三相アークシステム200と異なり、本実施形態では電極602,604が同じ軸上にあり、電極606と相俟って「T」字を形成している。電極間の角度差が図2Aに示した実施形態でのそれと同じく120°であるので、その性能もほぼ同じ性能になる。しかし、本実施形態では、よりコンパクトで熔融スプライサへの装着に適した構成を、性能を損なうことなく得ることができる。無論、いわゆる当業者なら本願の記載から理解できる通り、これ以外の向きで電極を配置することもできる。
本実施形態では、図示の通り電極606が接地されている。そのため、電極602,604を同一波形、位相差0°で駆動した場合は、電極602・604間に位相差がないためアーク612が発生せず、互いにそっくりな2個のアーク614,616が「V」字をなして発生する。
電極606を接地したまま電極602,604を逆極性、即ち位相差180°の電圧波形で駆動した場合はアーク612のみが発生する。これは、電極602・604間電位差が、電極602,604のうち一方と接地電極606との間の電位差に対して二倍になるためである。
これらの状況を踏まえるならば、電極606を接地したまま、電極602,604に印加される電圧波形間の位相差(値域:0〜180°)を適切に設定すれば、3本のアーク612,614,616がほぼ同一の強度で発生する状況になる、と考えるのが論理的である。ベクトル数学に基づき理論解析を行ったところ、そうなる位相差が60°であることが判明した。また、駆動用波形の周波数・パワーや電極の間隔・状態をはじめとする現実的諸条件に依存するため、その値が実際には約40〜160°の範囲内で変動することも判明している。アーク612,614,616が互いに略同一の強度になるのは、光ファイバ610の周辺に略均一な加熱プラズマ場618が発生しているときである。
本実施形態では、その電極602,604,606が図2A中の環270に似た環670に連結、装着乃至載置されている。その環670は、振動機構272に似た振動機構672に装着乃至載置されている。環670を形成する素材としては、セラミクス等、予測される熱域にて構造的一体性を維持可能な種々の素材を使用可能である。
図6Bに、図6Aに示した三電極システム600の側面を示す。この図の例では、環670が振動機構672上に載置されている。機構672は、その環670をある距離範囲Δd内で反復的に振動させる。それに応じ電極602,604,606が振動することで、アーク612,614,616によるプラズマ場618が拡幅される。その結果、プラズマ場618の幅が変調されることとなる。
振動機構としては種々の振動機構、例えばAC電圧印加に応じ伸縮することで振動を発生させる圧電アクチュエータを使用することができる。その圧電アクチュエータとしては、水晶、セラミクスその他の圧電素材で形成されたものや、それらの圧電素材を併用して形成されたものを使用することができる。そうしたアクチュエータを可撓材に組み込むことで、精度よい線形運動を発生させることができる。
図6Cに、プラズマ場のガウス熱プロファイルたるガウス曲線の例を2本示す。図中、縦軸は温度、横軸はガウス曲線の中心(即ち距離=0の位置)に対する電極の距離を表している。幅が狭く実線で示されている1本目の熱プロファイルは、電極を振動させずに発生させたプラズマ場のものである。幅が広く破線で示されている2本目の熱プロファイルは、電極を振動させて発生させたプラズマ場のものである。図6Aに示した実施形態を例にすると、これは、ファイバ610の軸に沿って生じるプラズマ場618の熱プロファイルが、電極602,604,606を振動させない場合に比べ顕著に広くなる、ということである。電極を振動させることで、プラズマ場の熱プロファイルを幅広にするだけでなく、電極を振動させない構成での最大値を維持しつつプラズマ場のパワーを増強することもできる。なお、パワー、振動周波数、振動範囲等の調節で熱プロファイルは変化するので、本発明が図6Cに示した熱プロファイルに限定されるわけではない。
図7に、図6A〜図6Cに示した三電極システム600を駆動する回路700の一例を示す。この図の構成は、図5に示した構成に対し、バッファ、MOSFET及び変圧器を備える点で類似する反面、3個目の電極が接地電位に固定されていて対応するバッファ、MOSFET及び変圧器が備わっていない点で相違している。
この図の構成では、プログラマブルなマイクロコントローラユニット750で生成され、バッファ710,712,714,716経由で供給される駆動信号によって、MOSFET732,734,736,738がオンオフされる。ドライバたるMOSFET732,734,736,738としてはMC34151又はそれに類するMOSFETを使用でき、マイクロコントローラユニット750としてはMicrochip, Inc.製のPAL18F2520を使用できる。こうした回路構成であるので、駆動信号の持続時間及び位相関係を実時間で制御・調節することができる。その実時間調節を通じ、アーク612,614,616を略同一の強度に維持することも、何らかの目的でその相対強度を故意に変化させることも可能である。
その駆動信号の接地還流路上には、それぞれ、マイクロコントローラユニット750にてアーク強度を検知できるよう、小さな値例えば100Ωの抵抗R1が直列に挿入されている。この抵抗R1の両端間に発生する電圧は、対応する電極例えば602から供給されるアーク電流に正比例している。同様の抵抗R1は他の電極にも付設されている。例えば、100Ωの検知電極602に20mAの電流が流れれば、その抵抗R1の両端間に2Vの信号が発生する。
これらの検知抵抗にて生じる信号は高周波AC電圧の形態である。マイクロコントローラユニット750による計測により適した形態になるよう、本実施形態ではそれらの信号が整流及び濾波を通じDC電圧に変換されている。
その整流/濾波網は、図示の通り、ダイオードD、2個の抵抗R2,R3及びキャパシタCを用いた簡略な構成であり、3個ある電極それぞれに設けられている。この網の出力は、検知抵抗電圧の絶対値の算術平均に比例した電圧である。より高い精度が必要なら、検知抵抗電圧の自乗平均(例.自乗平均平方根即ちRMS)に比例した電圧を出力する周知手法を使用すればよい。アークに供給される電力を正確に計測したい用途では、その点で優れているRMS値を使用した方がよい。
また、図示の回路では12Vの電源が使用されているが、これを可調にすることも可能である。例えば、本件技術分野で周知の可調バックレギュレータ回路を設け、12Vから極低い電圧(例.1V)へ又は任意の中間電圧へと電圧値を調節できるようにしてもよい。仮に、前掲の手法を極低パワーに適用しMOSFETを極幅狭なパルスで駆動することとした場合、アーク発生動作が不安定になりかねないので、極低パワーのアークが必要な場合は電源電圧値の調節で対処する方がよいであろう。入力電圧の低減、変圧器における昇圧比の低減等といった手法をブースト型レギュレータと併用することによっても、同様の範囲で電圧値を変化させることができる。
図8に、図7に示したマイクロコントローラユニット750で実行される実時間制御アルゴリズム800の一例をフローチャートにより示す。このアルゴリズム800では、電極602,604,606それぞれについての電流検知結果、即ち図7及び図8中の電流I1,I2,I3に関する評価が実行される。即ち、検知された電流I1,I2,I3がマイクロコントローラユニットによって設定された初期電流Isetとほぼ等しいか否かが調べられ、その結果に基づき電極602,604,606向けのパルス幅が調節される。
具体的に述べると、ステップ802では、初期電流Isetをはじめ電極602,604,606についての初期回路設定が入力される。ステップ804ではI1=I2か否かが判別される。判別結果が「Yes」ならステップ810に進む。ステップ804でI1<I2と判別された場合はステップ806にて電極602向けのパルス幅が拡張される。ステップ804でI1>I2と判別された場合はステップ808にて電極604向けのパルス幅が拡張される。ステップ806,808が済んだら、ステップ804で「Yes」と判別された場合と同じくステップ810に進む。
ステップ810では、I3=I1,I2か否かが判別される。判別結果が「Yes」ならステップ816に進む。ステップ810でI3>I1,12と判別された場合はステップ812にて位相差が拡張される。ステップ810でI3<I1,I2と判別された場合はステップ812にて位相差が縮小される。ステップ812,814が済んだら、ステップ810で「Yes」と判別された場合と同じくステップ816に進み、I1,I2,I3=Isetか否かが判別される。判別結果が「Yes」ならステップ804に進み前掲の動作が反復される。ステップ816でI1,I2,I3>Isetと判別された場合はステップ818にて電極602,604向けパルス幅が縮小される。ステップ816にてI1,I2,I3<Isetと判別された場合はステップ820にて電極602,604向けパルス幅が拡張される。その後は、いずれの場合もステップ804に進み前掲の動作が反復される。
次に、本発明の技術的範囲に収まる様々な電極配置について説明する。これから説明する諸例を好適に使用しうる状況は様々であり、光ファイバの加熱パターンを変化させたい場合に適するものもあれば、組込先のシステムを構成する他の部材との関係で電極を好適に配置したい場合に適するものもある。
図9A(底面図)及び図9B(側面図)に、本発明の更に他の実施形態に係る三電極システム900を示す。このシステム900では、電極902,904,906が同一の水平面上に配置されているので、アーク912,914,916もそれと同じ面上に発生する。ファイバ910が通る面は電極配置面の上方にあるので、アーク領域から対流により上昇してくる熱流によって専ら加熱されることとなる。両面間の距離は、図示例の場合1〜10mmの範囲内となろう。また、電極配置は「Y」字状、「T」字状等、用途上の必要性乃至利便性を考慮し決定すればよい。例えば、長方形のアークアレイが生じるように4個の電極を配置してもよいし、五角形になるよう5個の電極を配置してもよい。電極902,904,906のうち1個又は複数個には、前掲の例に倣い振動機構903,905,907を結合させるとよい。
図10A(底面図)及び図10B(側面図)に、本発明の更に他の実施形態に係る三電極システム1000を示す。このシステム1000には、アーク1012,1014,1016をもたらす電極1002,1004,1006が備わっている。ファイバ1010は、電極1002,1004,1006が配置されているのと同じ面(ここでは鉛直面)上に配置されている。そのため、この例ではファイバ1010がアーク1012,1014,1016のうち2本(以上)と交差することになる。このようにすると、他の実施形態に比べ周囲熱分布の均一性がやや落ちることとなるものの、ファイバ1010上の被加熱部分の長さは増すこととなる。電極1002,1004,1006のうち1個又は複数個には、前掲の例に倣い振動機構1003,1005,1007を結合させるとよい。
図11A〜図11Hに、本発明の更に他の実施形態に係る多電極システム、特に四電極システム1110の諸例を示す。いずれの例でも、電極1102,1104,1106,1108がアーク1112,1114,1116,1118、ひいてはプラズマ場1119の生成に使用されており、その場1119によって1本又は複数本ファイバ1110が加熱されている。図示例では電極1102,1104,1106,1108が完全乃至不完全真空1120中に配置されているが、前述の如くそれ以外の環境に配置することもできる。電極1102,1104,1106,1108のうち1個又は複数個には、前掲の例に倣い振動機構1172が装着されている。機構1172、真空配置又はその双方を省略する形態での実施も可能である。
図11Aに示した例ではファイバ1110の向きが電極に対し垂直、図11Bに示した例では平行となっている。図11Cに示した例では、電極の延長線同士が「X」字状に交差している。図11Dに示した例では、電極の延長線がファイバ1110に対し傾斜している。図11Eに示した例では、ある対の電極で規定される電極配置面と別の対の電極で規定される電極配置面との間を通る第3の面上にファイバ1110が配置されている。図11A〜図11Dに示した諸例ではどの電極も同じ面上にある。図11A〜図11Cに示した諸例では、ファイバ1110が配置される面が電極配置面と同一の面又はその近傍に位置する面となっている。
図11A〜図11Eに示した諸例のいずれも、ファイバ1110の向きが紙面貫通方向、即ち紙面及びプラズマ場1119に対し略直交する方向になるよう変形することができる。一例として、図11Fに、ファイバ1110の向きが紙面貫通方向になるよう図11Cの構成を変形した例を示す。図11Gに、ファイバ1110の向きが紙面貫通方向になるよう図11A又は図11Bの構成を変形した例を示す。そして、図11Hに、電極1102,1104の延長線同士を連ねさせる一方電極1106,1108を傾斜させ、更にファイバ1110の向きを紙面貫通方向にした例を示す。図11Hに示した構成を変形し、ファイバ1110がアーク1112,1116と交差する構成、ファイバ1110がアーク1114,1118と交差する構成等々にすることもできる。
これらは電極及びファイバが占めうる様々な位置関係の一例に過ぎない。本発明は、それ自体、複数個所で制御下アーク放電を保持できるというユニークな特質を通じ、豊富な変形可能性を生み出すものである。例えば、どういった形態の三電極システムでも、図5に示した回路や図7に示した回路で電極を駆動することができる。
以上、本発明の好適乃至最適な実施形態と覚しき構成に関し説明したが、本発明の範囲内で本願記載の実施形態に様々な変形を施せること、本発明を様々な形態で実施することができること、本発明を適用可能な用途が多様であること、またそうした用途のうち一部しか本願には記されていないことをご理解頂きたい。別紙特許請求の範囲における記載の意図は、当該記載に文理上該当する構成やそれに対し均等な構成が、それらの変形乃至改良版に該当するものを含め、本発明の技術的範囲に属することを、宣明する点にある。

Claims (30)

  1. 1本又は複数本の光ファイバを保持するファイバホルダと、
    光ファイバを熱する加熱場が生じるよう配置された複数個の電極と、
    電極のうち1個又は複数個を振動させる振動機構と、
    を備える多電極システム。
  2. 請求項1記載の多電極システムであって、約125μm以上の直径を有する大径光ファイバを扱う多電極システム。
  3. 請求項1記載の多電極システムであって、複数本の光ファイバを扱う多電極システム。
  4. 請求項1記載の多電極システムであって、振動機構の働きで加熱場の幅がガウス熱プロファイルの半値幅まで拡がる多電極システム。
  5. 請求項1記載の多電極システムであって、複数個の電極が振動する多電極システム。
  6. 請求項1記載の多電極システムであって、全ての電極が振動する多電極システム。
  7. 請求項1記載の多電極システムであって、その振動機構が1個又は複数個の圧電アクチュエータを有する多電極システム。
  8. 請求項1記載の多電極システムであって、その振動機構の振動周波数が0Hz超約10Hz以下の多電極システム。
  9. 請求項1記載の多電極システムであって、その電極が2個の多電極システム。
  10. 請求項1記載の多電極システムであって、その電極が3個の多電極システム。
  11. 請求項1記載の多電極システムであって、その電極が4個の多電極システム。
  12. 請求項1記載の多電極システムであって、隣り合う電極間にプラズマアークを発生させることで、加熱場として加熱プラズマ場を発生させる多電極システム。
  13. 請求項12記載の多電極システムであって、生じる加熱プラズマ場が略均一な多電極システム。
  14. 請求項1記載の多電極システムであって、その電極が完全乃至不完全真空中に配置された多電極システム。
  15. 請求項14記載の多電極システムであって、その電極がゲージ圧で22〜24インチ水銀、絶対圧で200〜150トールの圧力下に配置された多電極システム。
  16. 請求項14記載の多電極システムであって、その電極が酸素富化不完全真空中に配置された多電極システム。
  17. 請求項1記載の多電極システムであって、その電極のなかに、他の電極との間隔を調整可能なものがある多電極システム。
  18. 1本又は複数本の光ファイバを保持するファイバホルダと、
    光ファイバを熱する略均一な加熱プラズマ場が生じるよう配置された複数個の電極と、
    電極のうち1個又は複数個を振動させる振動機構と、
    を備え、振動機構の働きで略均一な加熱プラズマ場の幅がガウス熱プロファイルの半値幅まで拡がる多電極システム。
  19. 1本又は複数本の光ファイバを扱える加熱場を発生させる方法であって、
    ファイバホルダに光ファイバを保持させるステップと、
    複数個の電極を用い光ファイバ加熱用の加熱場を発生させるステップと、
    電極のうち1個又は複数個を振動させるステップと、
    を有する方法。
  20. 請求項19記載の方法であって、約125μm以上の直径を有する大径光ファイバを扱う方法。
  21. 請求項19記載の方法であって、複数本の光ファイバを扱う方法。
  22. 請求項19記載の方法であって、電極の振動で加熱場の幅をガウス熱プロファイルの半値幅まで拡げる方法。
  23. 請求項19記載の方法であって、加熱場として略均一な加熱プラズマ場を発生させる方法。
  24. 請求項19記載の方法であって、用いる電極を完全乃至不完全真空中に配置するステップを有する方法。
  25. 請求項19記載の方法であって、用いる電極が2個の方法。
  26. 請求項19記載の方法であって、用いる電極が3個の方法。
  27. 請求項19記載の方法であって、用いる電極が4個の方法。
  28. 請求項19記載の方法であって、複数個の電極を振動させる方法。
  29. 請求項19記載の方法であって、全ての電極を振動させる方法。
  30. 請求項19記載の方法であって、振動機構として1個又は複数個の圧電アクチュエータを使用する方法。
JP2012548927A 2010-01-15 2010-01-15 多電極システムおよび加熱プラズマ場を発生させる方法 Active JP5822846B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/021197 WO2011087508A1 (en) 2010-01-15 2010-01-15 Multi-electrode system with vibrating electrodes

Publications (2)

Publication Number Publication Date
JP2013517526A true JP2013517526A (ja) 2013-05-16
JP5822846B2 JP5822846B2 (ja) 2015-11-25

Family

ID=44304533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012548927A Active JP5822846B2 (ja) 2010-01-15 2010-01-15 多電極システムおよび加熱プラズマ場を発生させる方法

Country Status (7)

Country Link
EP (1) EP2524255B1 (ja)
JP (1) JP5822846B2 (ja)
CN (2) CN107479134B (ja)
CA (1) CA2786344C (ja)
DK (1) DK2524255T3 (ja)
MX (1) MX2012008220A (ja)
WO (1) WO2011087508A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021152611A (ja) * 2020-03-24 2021-09-30 古河電気工業株式会社 融着機

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985029B2 (en) 2007-02-07 2011-07-26 3Sae Technologies, Inc. Multi-electrode system with vibrating electrodes
US9028158B2 (en) 2007-02-07 2015-05-12 3Sae Technologies, Inc. Multi-stage fiber processing system and method
WO2012097271A1 (en) 2011-01-14 2012-07-19 3Sae Technologies, Inc. Thermal mechanical diffusion system and method
US9266771B1 (en) 2014-07-31 2016-02-23 Corning Optical Communications LLC Electric arc apparatus for processing an optical fiber, and related systems and methods
CN104570215B (zh) * 2015-01-13 2015-11-04 深圳市创鑫激光股份有限公司 一种焊接器
CN107390322A (zh) * 2017-09-14 2017-11-24 南京吉隆光纤通信股份有限公司 光纤熔接机四电极焊接装置
CN109828334B (zh) * 2019-04-15 2023-09-22 南京邮电大学 一种全自动化熔接机
CN111239901A (zh) * 2020-01-17 2020-06-05 国兴汇金(深圳)科技有限公司 一种去除光纤涂覆层的方法
CN113960716A (zh) * 2021-09-24 2022-01-21 上海电信工程有限公司 一种超低损耗光纤的熔接方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158803A (ja) * 1989-11-16 1991-07-08 Kyocera Corp 光分岐結合器の製造方法
JPH03160404A (ja) * 1989-11-20 1991-07-10 Nippon Telegr & Teleph Corp <Ntt> 光ファイバカップラ製造装置
JPH11160565A (ja) * 1997-12-01 1999-06-18 Fujikura Ltd 光ファイバ融着接続機における放電制御装置および放電制御方法
JP2001124949A (ja) * 1999-10-28 2001-05-11 Moritex Corp 光ファイバカプラの製造方法および製造装置
JP2001166175A (ja) * 1999-12-03 2001-06-22 Sumitomo Electric Ind Ltd 光ファイバ融着接続方法
US20080187273A1 (en) * 2007-02-07 2008-08-07 Brett Clark Multi-Electrode System

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184712A (ja) * 1986-09-26 1988-07-30 Sumitomo Electric Ind Ltd 光ファイバの接続方法
DD291646A (ja) * 1990-01-16 1991-07-04
JPH05333227A (ja) * 1992-03-30 1993-12-17 Furukawa Electric Co Ltd:The 光ファイバの融着接続方法
JP2003084166A (ja) * 2001-09-13 2003-03-19 Sumitomo Electric Ind Ltd 多芯光ファイバ放電加熱方法および放電加熱装置
JP2003284366A (ja) * 2002-03-26 2003-10-03 Shigeki Toyama 加熱・吸熱部を有する球面アクチュエータ
CN100430765C (zh) * 2003-09-18 2008-11-05 艾利森电话股份有限公司 具有失配模场直径的光纤的熔接
CN101183162A (zh) * 2007-12-07 2008-05-21 华南理工大学 场诱导不同组分玻璃光纤的熔接方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158803A (ja) * 1989-11-16 1991-07-08 Kyocera Corp 光分岐結合器の製造方法
JPH03160404A (ja) * 1989-11-20 1991-07-10 Nippon Telegr & Teleph Corp <Ntt> 光ファイバカップラ製造装置
JPH11160565A (ja) * 1997-12-01 1999-06-18 Fujikura Ltd 光ファイバ融着接続機における放電制御装置および放電制御方法
JP2001124949A (ja) * 1999-10-28 2001-05-11 Moritex Corp 光ファイバカプラの製造方法および製造装置
JP2001166175A (ja) * 1999-12-03 2001-06-22 Sumitomo Electric Ind Ltd 光ファイバ融着接続方法
US20080187273A1 (en) * 2007-02-07 2008-08-07 Brett Clark Multi-Electrode System

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021152611A (ja) * 2020-03-24 2021-09-30 古河電気工業株式会社 融着機
JP7129441B2 (ja) 2020-03-24 2022-09-01 古河電気工業株式会社 融着機

Also Published As

Publication number Publication date
CN107479134A (zh) 2017-12-15
DK2524255T3 (en) 2019-02-11
CN107479134B (zh) 2022-11-15
MX2012008220A (es) 2012-10-15
EP2524255A1 (en) 2012-11-21
CA2786344C (en) 2018-07-17
WO2011087508A1 (en) 2011-07-21
JP5822846B2 (ja) 2015-11-25
CN102918438A (zh) 2013-02-06
CA2786344A1 (en) 2011-07-21
EP2524255B1 (en) 2018-10-17
EP2524255A4 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP5822846B2 (ja) 多電極システムおよび加熱プラズマ場を発生させる方法
JP5208134B2 (ja) 多電極システムおよび加熱プラズマ場を生成する方法
US9952386B2 (en) Multi-electrode system with vibrating electrodes
EP2666041B1 (en) Multi-stage fiber processing system and method
US6336750B1 (en) Structured arc technique using a focusing sleeve
US9028158B2 (en) Multi-stage fiber processing system and method
US4758386A (en) Wave-shaped AC arc for lensing system
JP2021152611A (ja) 融着機
JP2003098376A (ja) 光ファイバ融着接続方法及び光ファイバ融着接続部の放電加熱装置
JPH11219971A (ja) ワイヤボンディング電気トーチ装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140513

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140530

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151006

R150 Certificate of patent or registration of utility model

Ref document number: 5822846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250